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Abstract

In this day and age with the prevalence of smartphones, networking has evolved in an

intricate and complex way. With the help of a technology-driven society, the term ”social

networking” was created and came to mean using media platforms such as Myspace,

Facebook, and Twitter to connect and interact with friends, family, or even complete

strangers. Websites are created and put online each day, with many of them possessing

hidden threats that the average person does not think about. A key feature that was

created for vast amount of utility was the use of location-based services, where many

websites inform their users that the website will be using the users’ locations to enhance

the functionality. However, still far too many websites do not inform their users that

they may be tracked, or to what degree. In a similar juxtaposed scenario, the evolution

of these social networks has allowed countless people to share photos with others online.

While this seems harmless at face-value, there may be times in which people share photos

of friends or other non-consenting individuals who do not want that picture viewable to

anyone at the photo owner’s control. There exists a lack of privacy controls for users

to precisely define how they wish websites to use their location information, and for

how others may share images of them online. This dissertation introduces two models

that help mitigate these privacy concerns for social network users. MoveWithMe is an

Android and iOS application which creates decoys that move locations along with the

user in a consistent and semantically secure way. REMIND is the second model that

performs rich probability calculations to determine which friends in a social network

may pose a risk for privacy breaches when sharing images. Both models have undergone

extensive testing to demonstrate their effectiveness and efficiency.

vii



Chapter 1

Introduction

Smartphones have become a strong driving force in what we do every day. From schedul-

ing out the entire day to playing games in-between classes to pass time, it is hard to

imagine what they cannot do that is useful for us. Since the introduction of the smart-

phone, there has been an explosion in the creation of mobile applications and websites,

and it shows no signs of slowing down anytime soon. These applications, or apps, and

mobile websites have allowed users to connect with each other in a way that was hard to

foresee before the time. Apps such as Facebook and Instagram allow users to ”friend”

or ”follow” each other, which allows them to stay up-to-date with the other with what

they post online, including any images they share or places that they check-in at. As

we continue to be driven into a more technologically advanced society, we can easily

imagine a world depicted in 1.1, in which people are connected to many things around

them - constantly uploading and downloading images, menus, etc. from the cloud.

1.1 Location-Based Services

One powerful feature developed years after the introduction of the smartphone was

Location Based Services (LBSs). These services allow mobile apps or websites - hereon

generalized to ”mobile apps” - to tap into Application Programming Interfaces (APIs)

which allow them to retrieve semantic locations, GPS coordinates, or even the current

speed of users using the app or website. At first glance, this feature seems incredible -

and it undoubtedly is - but it does not come without threats that many people may not

1
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Figure 1.1: A Smart City

foresee. First of all, there are numerous mobile apps that do not inform the user that his

or her location is being used, even when he/she may not want the location being used.

Without this knowledge, users are left even more in the dark about privacy risks that

exist when using LBSs. While some researchers and developers have tried to enhance

the privacy controls users can utilize, or even create more settings for better control,

the current privacy controls are too loose for mobile apps and many threats are still

prevalent. For example, an adversary that learns a few locations from an unsuspecting

user may learn the user’s daily movement pattern, hobbies, political affiliations, and

medical problems - and that is only from a simple profiling threat that can be performed

just by observing a semi-coarse area that the user travels to.

1.2 Image Sharing

In a similar, but different, scenario, these mobile apps have further enabled millions of

users to connect with each other by sharing images online. This online sharing allows

friends of users to live vicariously through one another or help them imagine being ”in

the moment.” While most of this user-generated content may be harmless and used

primarily for self-recognition and gratification, there are some risks associated to them.

The photos may very well depict the social circles of friends, which in itself could be a
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privacy breach, but also the images may explicitly disclose privacy breaches such as if

an image is of a child or an easily identifiable house or location. Furthermore, friends

of users that share the photos may be granted the permission to share images and

greatly increase the privacy risk of the friends in the photo. Even though many of the

popular mobile apps allow users to choose whom they would like to share the photos

with, the re-sharing via friends to friends allow the photos to reach a wider audience

than anticipated.

Figure 1.2 illustrates such a simple breach that may happen by this image re-sharing. In

the example, Alice wanted to share an image with her friends, but not with Mary. But

as one can see from the illustration, due to Alice’s friends re-sharing her image to their

friends, we observe that the image eventually reaches Mary from a couple of sources.

Figure 1.2: An Example of Privacy Breach Due to Image Propagation

Such privacy risks caused by sharing from friends to friends have been aware by many

[1–4]. Some propose monitoring approaches to check the privacy violation during each

sharing event [1, 2]. Most employ [5–9] clustering techniques to classify users based

on their privacy preferences, profile similarities, social network topology, image content

and metadata, in order to identify risky users and recommend better privacy policies.

However, to the best of our knowledge, none of the existing works leverages the image

sharing history and develops probability models to provide a straightforward view of the

sharing consequence.
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1.3 Our Proposals

Privacy breaches from image sharing share a common connection with privacy risks from

mobile app LBSs in that they can be caused from the lack thereof fine-tuned privacy

controls. The latter forms privacy risks from the non-existence of privacy controls that

allow users to carefully define how they want their location used. The former, however,

comes from non-existence of deconfliction algorithms within image sharing platforms.

The privacy preferences of friends, family members, and strangers can differ - even

when they are depicted in the same photo. People have a variety of personalities and

preferences when it comes to sharing a photo depending on what it means to the person;

having a co-owned photo of multiple people can certainly cause problems when the digital

owner decides how to share that image. While in many cases it may be a courtesy that

the photo owner discuss with the other parties whether to post a photo or not, but that

takes more effort and time, making this route less traveled.

In this dissertation, we will discuss how we tackle such difficult problems, such as privacy

risk estimation in image sharing networks, by digging into big data regarding sharing

history. By analyzing and modeling the rich information of image sharing history, we

build a sophisticated probability model that aggregates image disclosure probabilities

along different possible image propagation chains and loops. We then present users

with the direct evidence of the potential scope of sharing risk, which allows the users

to make informed decisions when setting privacy preferences. This proposed system is

named REMIND (Risk Estimation Mechanism for Images in Network Distribution), and

would be a great add-on that could be adopted by social networking providers such as

Facebook.

Many researchers have proposed several strategies to mitigate the risk of users’ location

privacy when visiting location-based services [10–16]. These strategies range from using

access control mechanisms to control location disclosure to service providers, employing

spatial cloaking or k-anonymity techniques, to generating dummy trajectories. While

many of these strategies perform well under certain scenarios and conditions, they are

not satisfiable for continuous location disclosure or queries from the user; that is, the

user is continuously requesting location services throughout the day, not intermittently

a few times a day. Even the works that generate dummy trajectories fall short due to
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randomly generating the dummies that can be defeated through the use of data mining

techniques such as sequential pattern mining, as reported in [13].

To overcome the limitations of previous works, this dissertation will also introduce a

location-privacy preservation mobile app, called MoveWithMe. This iOS and Android

application generates a number of decoys that move with the user like real humans

and serve as a distraction to the service providers. These decoys, however, differ from

prior decoy generation algorithms in that they have their own moving patterns which

include favorite places, daily schedules, social behaviors, etc. Unlike previous dummy-

based approaches which only generate dummies in the nearby region and the same city

where the real user is located, our decoys may be in the same city as the user, or in

different cities of different countries in order to further confuse the attackers about the

locations of the real user. Factors such as GPS error and changing of speed are also

taken in consideration when generating the decoys. Even if adversaries were to utilize

data mining tools on the decoys, they would not be able to easily identify which of the

trajectories are decoys and which is the user.

Figure 1.3: An Example Scenario in the MoveWithMe System

Figure 1.3 helps illustrate how MoveWithMe operates when there is a real user (say

Bob) and four decoys deployed. With the activated MoveWithMe system running in

the background, the decoys continuously move throughout the day as real humans. In

the example, Decoy1 will follow a postman’s daily routine and may visit many houses,

Decoy2 is a lawyer who may visit clients during the day, and Decoy3 and Decoy4 will

move based on their profiles as a teacher and a student, respectively. As time passes,

when Bob has been to his research lab and a fast food restaurant, his decoys may have

visited residential areas, other schools, hotels, pizza places, parks, etc. Whenever Bob

visits a location-based service website such as Yelp, the MoveWithMe app will intercept

Bob’s request before it goes out to the location-based service, mix Bob’s request with

other simulated requests from the four decoys, and then send five requests altogether
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to Yelp. Even if Bob continuously accesses the same location-based service, the service

provider will still have a hard time to discover Bob’s locations out of five trajectories

that demonstrate different moving patterns, jobs, social behaviors, etc.

The rest of this dissertation is organized as follows. Chapter 2 reviews background

research related to LBS work, as well as image privacy work. Chapter 3 discusses our

first work, MoveWithMe, including the algorithm and testing results. Chapter 4 outlines

the second work, REMIND, and its’ associated algorithm and testing results. Lastly,

Chapter 5 concludes the dissertation and provides an overview of future work.



Chapter 2

Background Overview

Since the introduction of smartphones and boom in created mobile applications, there

have been thousands of risks and flaws with the apps that went undiscovered for awhile.

Upon the first instances of discovery of these risks to mobile users, researchers from all

over have begun arduous work on determining what conceived the flaws and risks, as

well as diving in to remedy the situations. Over the last decade, a great bound of work

has been performed on Location-based Service applications and image-sharing scenarios

with the intention to protect mobile users from risks unknown to them. Below discusses

some of the novel work done in the respective fields, but also highlights the importance of

MoveWithMe and REMIND to the social networking realm. While the works presented

helped to increase knowledge in these areas and protect users from various situations,

we will discuss why the works fall short of protecting users from point-of-views that we

draw attention to.

2.1 Location-Based Service Related Research

Various approaches have been proposed to preserve location privacy, which can be clas-

sified into four main categories: (i) spatial-temporal cloaking based approaches; (ii)

dummy-based approaches; (iii) differential privacy based approaches; and (iv) encryption-

based approaches.

7
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2.1.1 Spatial-Temporal Cloaking

The key idea of spatial-temporal cloaking is to generate a cloaking region that contains

the user’s real location and k−1 other users. In this way, the service provider would not

be able to distinguish the k users in the same region and hence users achieve k-anonymity.

The idea was first introduced by Gruteser et al. [17] and later has been extended by

many [18–23] with different ways of generating the cloaking regions. Although these

kind of approaches can hide the user’s exact location, the coarse location information

of the user such as the user’s moving trend is still not well-protected. For example,

even though the attackers cannot know the exact location of the user’s home, it is still

possible for them to know which city the user lives, and the approximate trajectory of

the user by connecting the cloaking regions. Lin et al. [24] propose a remedy solution

that transforms all the real locations to a new domain, which fully prevents the leak of

the exact and continuous locations but can only support limited types of queries such

as queries on the friends’ locations. The main limitation of the approach is that it

only supports location-based services that query on moving objects but not any static

objects like restaurants. More recently, Zang and Bolot [25] propose to publish shorter

trajectories at a coarse granularity to prevent attackers from correlating information

obtained from call detail records with the users’ true locations. However, such published

trajectories will have little data utility.

2.1.2 Dummy-based Approaches

Dummy-based approaches generate dummies and send fake locations along with user’s

real location to the service provider so as to protect user’s location privacy. For example,

Niu et. al [12] propose dummy swapping and dummy selection strategies. Xue et al.

[26] propose to place multiple virtual probes to pinpoint user location from fake GPS

locations. Zhang et al. in [27] propose two dummy-POI selection algorithms so as to

support the queries of top-k POIs. Fei et al. in [28] propose to divide users into groups,

select dummies based on groups, and then share the returned results from the service

provider. However, these dummies do not have continuous movement patterns which

can be easily discovered by attackers who analyze dummies collected at different time

stamps. As a step further, Lei et al. [13] propose two schemes to generate dummies

that exhibit long-term movement patterns. Wang et al. in [15] propose a fog structure
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to store partial information and generate dummy trajectories. However, they did not

consider the geographical constraints. As a result, the generated dummy trajectory may

be off road or at places that are not accessible by real humans. Later, Hara et al. [14]

added the consideration of geographical constraints during the dummy generation. Liu

et al. [29] based on existing dummy generation schemes, filters out the dummies that

can be identified by taking into account of the spatiotemporal correlation. Hayashida

et al in [16] propose a dummy generation method which can estimate user-movement

based on the visiting points inputted by the user. However, these approaches still lack

the consideration of dummies’ behavior rationale. Their generated dummies do not have

daily routines. Such random behavior of dummies can be easily distinguished from real

human trajectories by existing data mining techniques.

2.1.3 Differential Privacy

The differential privacy based approaches add noise to the users’ real data so that the

service providers would not know the true user locations. Andrés et al. apply Laplacian

noise to location data in a discrete Cartesian plane in [30]. Users are able to adjust

the level of desired privacy, which in turns increases the number of noises added to the

location data. Xiao et al. [31] propose to adjust the privacy protection levels based on

users’ location profile and mobility history. Differential privacy is also used in [32], in

which Ngo and Kim reduce the average size of cloaking regions generated by the Hilbert

curve. Chen et al. propose LISA in [33], which does not rely on a trusted third party for

anonymization. LISA’s core algorithm is based on unobservability along with a Kalman

filter to adjust noise to location data. Although these differential based approaches can

obfuscate the user’s locations, the noises that are added to the location data still need

to be limited to ensure the service quality. That means the adversaries will still be

able to know the city where the user lives, the approximate user trajectories, the time

pattern of the user’s daily routine, and hence be able to profile the user. Moreover,

by observing non-sensitive contexts, the adversary may also be able to infer the user’s

sensitive information as pointed out in [34].
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2.1.4 Encryption-based Approaches

The encryption-based approaches aim to fully preserve the location privacy by encrypt-

ing the location data and conducting queries directly on the encrypted data. One rep-

resentative work is by Ghinita et al. [35] who propose a framework to support private

nearest neighbor queries based on Private Information Retrieval (PIR). In [36], Li and

Jung devise a privacy-preserving location query protocol (PLQP) in which the locations

of users are shared based on a condition-matching system. Location data is encrypted

using Paillier encryption to ensure that adversaries cannot intercept transmitted data.

Guha et al. [37] introduce a privacy-preserving framework which provides a cloud-

based matching service to return attributes and their values in an encrypted fashion.

Puttaswamy et al. [38] propose to encrypt location coordinates before sharing which

ensures that only designated users can decrypt the location information. Huang et al.

[39] use smartphones to perform secure multi-party computation over users’ location

data. Wei et al. in [40] propose a system named MobiShare to support the location

sharing among trusted friends and untrusted strangers while preserving user’s location

privacy. Combining oblivious transfer (OT) and private information retrieval, Paulet et

al. [41] aim to enable efficient processing of location-dependent queries. Based on the

improved homomorphic encryption, Zhu et al. [42] present a query framework in which

users can query LBS results in a polygon range without leaking the information of the

query polygon. These encryption-based approaches can provide a strong privacy guar-

antee of user’s location information. However, to support the encryption-based features,

the current architecture of the LBS server and client have to be significantly changed,

which may not be easily deployed in the near future due to the capital cost involved.

2.1.5 Miscellaneous

Another thread of work which is related but orthogonal to our work is the query privacy

preservation during continuous location-based services [43]. For example, instead of

preserving location privacy, Pingley et al. propose a user-centric approach to preserve

the privacy of the location-based queries. The main idea is to generate fake queries with

different service attributes so that an adversary cannot associate a query with a user’s

ID. One limitation as reported is that it was difficult to maintain the diversity of queries

with longer trajectories.
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Although there have been extensive studies on location privacy theories, very few efforts

have been devoted to developing real mobile apps for users to actually control their

locations. Existing applications are mostly preliminary. For example, in [44], Hornyack

et al. develop a system which returns a fixed location and phone number at all times.

While this can ensure good privacy for the user, the user will never be able to enjoy

most utilities of the location-based services. Shokri et al. [45] devise an interesting

collaborative approach that allows peer users to form MobiCrowd. When a user needs

to contact a location-based service, his/her request will not be directly sent to the server

but be routed through the MobiCrowd. In this way, the location-based service provider

will not know who sent the query. However, such strategy falls short when there are

not enough users nearby. Most recently, Fawaz et al. [11] conducted a detailed risk

analysis of the use of mobile apps in terms of location privacy leak. They propose an

app called LP-Doctor which allows users to adjust the amount of location information

to be disclosed to various apps. However, the service providers which have been granted

the permission to access the locations can still track the users.

2.1.6 Summary

Compared to existing works on location-privacy-preserving mobile apps, our proposed

MoveWithMe is unique in the following aspects. First, it is not constrained by the

people density and can be used at any time and any place. Second, it guarantees the

user experience and service quality in that the user is able to obtain the same query result

without performing extra steps. Third, it introduces very little overhead as evaluated

in our experiments.

It is worth noting that the initial idea of having a MoveWithMe system was first pre-

sented in our prior poster [46] which, however, has a very simple decoy generation

algorithm and a simple app implementation that mainly relies on the Android plat-

form’s location mocking. In this dissertation, we have made the following significant

improvement. We designed a much more sophisticated decoy generation algorithm. We

developed a new app framework that is able to automatically capture and modify the

data packets between users and service providers in the back end so as to automate

the location mocking process which had to be done manually in our prior work. Our

app can now be deployed both on Android and iOS platforms. Moreover, we conducted
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a whole new set of experiments including the evaluation of the use of advanced data

mining techniques as an attack to our proposed system.

2.2 Image Privacy Related Research

Moving on from reviewing location-based service research, we share a view of the work

done in the realm of image privacy. The work of REMIND shares similar goals of privacy

protection with existing works on privacy policy recommendation systems, privacy risk

estimation, and privacy violation detection in social networks. However, our proposed

probability-based approach is unique in that it has not been explored in the past. More

details are elaborated in the following.

2.2.1 Privacy Policy Recommendation Systems

There have been many privacy policy recommendation systems [5–8, 47, 48]. They

typically utilize certain types of machine-learning algorithms to analyze users’ profiles,

historical privacy preferences, image content and metadata, and/or social circles, in

order to predict privacy policies. Instead of relying on social circles and clustering social

contexts, another thread of work looks into the image content and metadata directly

[9, 49–51]. In order to even better capture the users’ privacy preferences, there is a new

trend of hybrid approaches which combine knowledge learned from both social contexts

and the image content [52, 53]. For example, Squicciarini et al. [52] propose to utilize

community practices for the cold start problem in new users and image classification

based approaches for users with long privacy configuration history. Yu et al. [53] consider

both content sensitiveness of the images being shared and trustworthiness of the users

being granted to see the images during the fine-grained privacy settings for social image

sharing.

2.2.2 Privacy Breaches from Re-sharing

Since the work of REMIND considers the privacy breach caused by friend-to-friend

sharing, we review works that also examine this aspect. Li et al. [54] present a gen-

eral discussion of privacy exploits, such as leakage of employment information, through



Background Overview 13

friend-to-friend sharing. Akcora et al. [1] propose a risk model that estimates the risk

of adding a stranger as a new friend. They cluster users based on their profile features,

privacy settings and mutual friends. Our approach is different from theirs in terms of

both goals and approaches. We aim to estimate the risk that an image may be seen

by an unwanted person, while they aim to estimate whether a stranger could be added

as a new friend. We define probability models while they use clustering techniques.

Another work on malicious user identification is by Laleh et al. [2] who analyze social

graphs using the assumption that malicious users show some common features on the

topology of their social graphs. This work is also different from ours regarding goals

and approaches. More related to our work, Kafali et al. [3] propose a privacy viola-

tion detection system called PROTOSS, which checks and predicts if the users’ privacy

agreements may be violated due to the friends of friends sharing. Their approach is

based on semantic checking and rule reasoning. The potential limitation is that the

privacy violation prediction is likely to report lots of false positives in a well-connected

social network since the system presumes that the sharing would happen as long as the

two users are connected in the social network. In our work, our proposed probability

model not only models social network topology but also the image sharing statistics to

provide more refined and accurate predictions. Later, Kökciyan et al. [4] also propose a

monitoring approach which utilizes agents to keep checking whether the current sharing

activity (e.g., by a friend of the owner) violates the privacy requirements of the content

owner. Unlike this approach that relies on agents to continuously monitor the sharing

events, our approach aims to prevent the potential privacy breach at the beginning of

the sharing.

2.2.3 Privacy Scores

Similar to REMIND which provides an image disclosure probability for users, there

have also been some other types of privacy scores being proposed to help enhance users’

privacy awareness. Many of these privacy scores [55–57] are defined based on image

sensitivities, privacy settings and users’ positions in the social network. Unlike these

existing privacy scores, our work calculate the privacy risk from a different angle – the

image sharing history.
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2.2.4 Information Diffusion

Another related area of research is information diffusion. The works on information

diffusion [58–60] study how information may be propagated in the social network, finding

the most influential nodes (i.e., the nodes that can distribute information to a large

number of nodes) or possible reactions to information sharing. Compared to these

information diffusion models which have the information propagation graph as their

output, our work takes the historical information propagation as the input and then

calculates the privacy disclosure risk based on that.

2.2.5 Image Policy Conflicts

Lastly, there have been works on resolving image policy conflicts among multiple users.

Hu et al. [61] formulate an access control model to capture the essence of multiparty

authorization requirement and employ a voting scheme for decision making when shar-

ing photos. Such and Criado [62] propose a set of concession rules that model how users

would actually negotiate to reach the common ground. Kökciyan et al. [63] propose

PriArg (Privacy for Argumentation) where agents help reach sharing consensus by ne-

gotiation. Similar to PriArg, Kekulluoglu et al. [64] propose PriNego that can follow

two different negotiation strategies to help agents agree to share faster. In addition,

there have also been general approaches for integrating access control policies of col-

laborating parties [65] which, however, requires the users to clearly specify how these

policies should be combined.

2.2.6 Summary

Compared to all the existing works on image privacy preservation, our work distinguishes

itself in two main aspects. First, to the best of our knowledge, it is the first time that

the large volume of image sharing statistic data is being considered and sophisticated

probability models being built for privacy risk estimation. Second, compared to existing

approaches which usually recommend policies based on relatively fuzzy logics, REMIND

offers a direct and quantitative view of the risk of sharing so that the users could make

more informed decisions regarding the image sharing. That is, we calculate, within a

social network of varying size, the probability that different users will be able to view
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an image if one particular user decides to share it. In this way, it gives users an insight

into just how vulnerable their photo is, and the probability someone they do not desire

to view their photo will end up seeing it.



Chapter 3

Location Privacy: MoveWithMe

The goal of the MoveWithMe system is to prevent the service provider from profiling a

user who is using the location-based services. The main idea is to conceal the real user’s

trajectory among a group of carefully generated decoys’ trajectories. In what follows,

we first present our threat model and then give an overview of the proposed system,

followed by the detailed algorithms of each component in the system.

3.1 Threat Model

In our work, there are two main parties: (i) Location-based service providers; (ii) Smart-

phone users who request for location-based services.

We assume that the smartphone users connect to the Internet via certain VPN (Virtual

Private Network) or anonymity network TOR (The Onion Router) so that the location-

based service providers cannot use the IP address attached to the service request to

pinpoint a user’s location.

We consider two types of location-based service providers:

• Precise location collectors: Some location-based services collect users’ precise loca-

tion information such as the GPS coordinates or other forms of data which could be

used to reveal the user’s exact locations (e.g. embedded accelerometer, gyroscope,

etc. [66]). For example, navigation apps need the user’s exact locations to calcu-

late the correct routes; the IoT (Internet-of-Things) device management platforms

16
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may need to know the user’s precise locations to trigger certain location-based

functions.

• Coarse location collectors: Some location-based services only need coarse location

information such as the zip code. For example, weather forecasting services just

need to know which city a user is located.

These adversaries may attempt to seek users’ private information in the following ways:

• The adversary profiles the users’ daily routines and preferences by analyzing the

users’ accurate locations or coarse locations collected from the users’ service re-

quests. Specifically, if the user accesses the location-based services intermittently,

the adversary will obtain the user locations as disconnected spatial points on the

map. If the user uses the service continuously, the adversary will obtain the user’s

trajectories or moving trends. In either case, the adversary can learn the time

patterns of the users’ movement by analyzing the timestamps associated with the

location information.

• The adversary may try to link accounts of the same user in different location-based

services, combine the collected location information from different accounts, and

obtain a more complete trajectory information of the user.

• The adversary may exploit many tools such as advanced data mining tools and

statistical tools to try to filter out the fake locations/trajectories that the users

intend to use to obfuscate their true locations.

We assume that the adversaries can only passively receive location information provided

by users. That means the adversaries are not able to control the user’s mobile device or

directly pull the user’s location information without users’ permissions. Our proposed

approach will be robust against these attacks.

3.2 System Overview

The MoveWithMe system consists of five main components:
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• Decoy Simulator: The decoy simulator component takes movement patterns

and social profiles as inputs to generate real-time trajectories of the decoys. The

decoys’ trajectories also consider moving speed and possible stay time as well as

GPS errors in order to mimic real human behavior as much as possible. In order to

ensure the consistency of the decoys’ movement and better protect user’s location

privacy, this component is constantly running in the background even when the

real user is not using a location-based service or is not moving.

• Request Interceptor: When the user accesses a location-based service, the re-

quest interceptor component will analyze the request based on the pre-defined

intercepting rules. Specifically, this component will first check if the request con-

tains location information, and what type it is. Then, it will take the decoys’

locations from the decoy simulator component, generate several requests for de-

coys, mix the simulated requests with the user’s real request, and send them to the

service provider altogether. Upon receiving the response from the service provider,

this component will filter out the response to the decoys’ requests and display only

the response to the user’s request. By intercepting the communication between

the user’s mobile phone and the service provider, this component is able to prevent

the service provider from identifying the real user request.

• Service Monitor: When the user is accessing a location-based service, the request

interceptor component will hand over the request record to the service monitor

component. The service monitor component will record each location request

from the service provider and notify the user about his/her location usage.

• Location Recorder: This component is in charge of storing both the real and

fake location information in a historical trace database in order to ensure the

consistency during the decoy generation and adjust the decoy profile generation

parameters if needed. By analyzing the historical trajectories and with the help

of Google Places API, we can find out the user’s moving pattern, daily schedule,

social behaviors, favorite places, etc., which are useful for generating new patterns

and profiles for decoys to better meet the user’s needs.

• Trajectory Display: This function is for the user to visualize his/her real trajec-

tories and the decoys’ trajectories so that he/she may adjust the privacy settings

if needed.
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Figure 4.1 gives an overview of how the components in the MoveWithMe system are

cooperating with each other and interacting with location-based services. In particular,

to obtain the protection from MoveWithMe, the smartphone user just needs to open

the MoveWithMe app before visiting any location-based service websites. If the service

monitor detects that a location-based service requires the user’s phone to upload the

user’s location information, the MoveWithMe app will automatically send a mixed group

of the real user request and the fake requests based on the decoys’ locations to confuse

the service provider.

The MoveWithMe app needs two permissions from the user, which are the permission

to access the Internet for accessing Google Maps API, and the permission to access GPS

location. Note that compared to many apps in the Google Play Store and Apple App

Store, the number of permissions requested by our app is relatively minimal.

3.2.1 Decoy Pattern and Profile

In the MoveWithMe system, we model the decoys’ social and travel behavior patterns

and personalized profiles as follows:

Definition 1. A decoy’s social and travel behavior pattern is in the form of 〈PID, T ,M,P〉,

which describes when and where a decoy may be and in what travel mode:

• PID is the unique ID of the pattern.

• T contains the types of places a decoy may visit. It is defined as a matrix

[〈Typei, Randi,Meani, Devi〉]n, where Type denotes the type of a place such as
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Figure 3.1: The Framework of the MoveWithMe System
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“home”, “friend’s home”, “university” and “restaurant”, Rand indicates whether

this is a fixed type (F) (e.g., home) or a randomly selected type (R) (e.g., restau-

rant), Mean and Dev are the mean and deviation of the length of time that a

decoy may stay at this type of place, and n (n > 0) is the total number of place

types that a decoy may visit.

• M depicts the travel modes that a decoy may take under different situations.

Specifically, M is a matrix in the form of:

[〈Dis mini, Dis maxi, Pdi, P ti, P bi, Pwi〉]m, where Pd, P t, Pb, and Pw are re-

spectively the probabilities of four travel modes (driving, public transit system,

bicycling, and walking) that a decoy may take when the estimated travel distance

is in the range of [Dis min,Dis max), and m (m > 0) denotes the total number

of travel modes in this pattern.

• P defines the transition probabilities between different types of places in a week. For

the wth day in a week (let 1 to 7 denote Monday to Sunday respectively), Pw is a

set of probability matrices in the form of [〈Time sti, T ime edi, [PTypej ,T ypek ]n×n〉]q,

where PTypej ,T ypek indicates the probability that a decoy may transit to Typek when

it leaves a place of Typej during the time period [Time st, T ime ed), n is the total

number of place types, and q (q > 0) is the total number of transition probability

matrices.

Definition 2. A decoy’s personalized profile is in the form of 〈FID,SP,MB,G〉, which

is an instantiation of the decoy’s social and travel pattern.

• FID is the unique ID of the profile.

• SP is a set of specific places a decoy may visit. SP is defined as a matrix

[〈Namei, Typei, Lati, Lngi, [Wsw]7〉]s, where Name is the name of the place, Type

is the type of the place defined by the decoy’s pattern, Lat and Lng are the lati-

tude and longitude of the place respectively, [Wsw]7 is the weekly schedule where

SP i.Wsw denotes the probability of the place i being visited by a decoy when it

decides to visit SP i.T ype on the wth day of the week, and s (s > 0) is the total

number of places that a decoy may visit.

• MB depicts the moving behaviors of a decoy. It is in the form of

[〈Modei, Speed fi, Speed devi〉]t, where Mode is the travel mode, Speed f is the
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Type Rand Mean (minutes) Dev
home F 180 60

university R 45 15
restaurant R 60 30

Types of places: 𝓣

Dis_min
(km)

Dis_max
(km)

Pd
(driving)

Pt
(transit)

Pb
(bicycling)

Pw
(walking)

0 0.5 0 0 0.2 0.8
0.5 10 0.4 0.3 0.2 0.1
10 100 0.8 0.2 0 0
100 1000 1.0 0 0 0

Travel modes: 𝓜

Time_st Time_ed Probability Matrices

00:00 08:00
1.0 0 0
1.0 0 0
1.0 0 0

08:00 11:30
0.2 0.6 0.2
0.8 0.1 0.1
0.5 0 0.5

11:30 13:30
0.2 0.2 0.6
0.4 0 0.6
0.5 0.5 0

… … … … …

Transition probabilities: 𝓟
		𝓟1 ~ 5 (Monday ~ Friday):

PID: Pattern_Student_0001

		𝓟6 (Saturday), 𝓟7 (Sunday):
Time_st Time_ed Probability Matrices

00:00 10:00
1.0 0 0
1.0 0 0
1.0 0 0

10:00 13:00
0 0.1 0.9

1.0 0 0
1.0 0 0

… … … … …

Figure 3.2: An Example of a Social & Travel Behavior Pattern

speed factor (Speed f > 1.0 means a decoy may move faster than others and vice

versa), and Speed dev depicts the velocity stability of the decoy.

• G defines the GPS parameters of a decoy under different travel modes. G is in

the form of [〈Modei, Accuracyi, Accuracy devi, Update ti〉]g, where Mode is the

travel mode (besides the travel modes defined above, we introduce a new mode non-

moving so as to simulate the GPS error when a decoy is not moving), Accuracy,

Accuracy dev, and Update t are respectively the positioning accuracy, the devia-

tion of accuracy, and the update interval of the decoy’s simulated locations.

The decoys’ patterns and profiles are used to depict human-like decoys with different

behaviors. Here, the social and travel behavior pattern refers to a high-level description

of daily activities and travel patterns of a group of people, while the personalized profile

refers to specific places and moving behaviors of a decoy. In particular, a social and travel

behavior pattern describes possibly different behaviors of a kind of people on different

days of a week. For example, many people usually go to work during weekdays, but stay

at home or go to the supermarket/theater on weekends. With this type of social pattern,

at the same time of 14:00, a person’s location may be at a company on Monday while

at a supermarket on Sunday. Another example of social behavior pattern for hospital
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Name Type Latitude Longitude
Weekly Schedule

Mon Tue Wed Thu Fri Sat Sun
Home home 40.71996 -73.95637 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NYU university 40.72938 -73.99711 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Subway restaurant 40.73149 -73.99416 0.1 0.1 0.5 0.5 0.5 0.3 0.3
KFC restaurant 40.73225 -73.98541 0.8 0.8 0.0 0.0 0.0 0.3 0.3
DQ restaurant 40.73682 -73.99624 0.1 0.1 0.5 0.5 0.5 0.4 0.4

Specific places: 𝓢𝓟

Mode Speed_f Speed_dev
driving 0.9 5.0
transit 1.0 1.0

bicycling 1.1 0.5
walking 1.2 0.01

Moving behaviors:	𝓜𝓑

GPS parameters: 𝓖

FID: Profile_Alice

Mode Accuracy (meter) Accuracy_dev Update_t (second)
driving 1.0 0.3 2.0
transit 3.0 0.5 2.0

bicycling 2.0 0.5 3.0
walking 2.0 0.5 3.0

non-moving 1.0 0.2 5.0

Figure 3.3: An Example of a Decoy’s Profile

staff may be a little different, whereby their work schedule may include night shifts and

weekends. In addition, social and travel patterns may also need to include other factors

such as the travel mode since some people may prefer bicycling for short distance while

some may just drive all the time. By composing different patterns and profiles, we can

general different kinds of decoys. Figure 3.2 shows an example of a social pattern for a

decoy, and Figure 3.3 shows an example of a decoy’s profile.

The decoy’s patterns and profiles can be obtained via various means, such as user input,

common knowledge or results from mining real trajectory datasets. In this work, we

assume that a set of patterns and profiles are already been generated, and leave the

pattern and profile generation in the future work.

3.2.2 Decoy Simulator

The decoy simulator component takes a set of social and travel behavior patterns and

personalized profiles as the inputs and then simulates a set of corresponding decoys. For

each decoy, there are several steps to simulate its movements:
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3.2.2.1 Initialization

In our system, a decoy is described by a pair of pattern and profile. For example, as

shown in Figures 3.2 and 3.3, the combination of “Pattern student 0001” and “Pro-

file Alice” depicts a student Alice who is studying at New York University (NYU). The

decoy simulator will load the pattern and profile during the initialization phase.

3.2.2.2 State Transition

We model the movements of a decoy as a set of state transitions. For example, if the

decoy Alice left home, went to NYU in the morning, and went to the Subway after

class at noon, the states and transitions will then be “home”, “home→ NYU”, “NYU”,

“NYU → Subway”, “Subway”. Formally, we employ the probabilistic automaton to

model the decoy’s transitions among different places:

Definition 3. A probabilistic automaton [67] is a tuple 〈S,Σ, s, F,M〉, which describes a

machine that is in one of the finite states at any given time, and whose state changes

according to the transition probabilities with respect to a sequence of input symbols:

• S = {s1, ..., sn} defines a finite set of states.

• Σ denotes a finite set of input symbols.

• s denotes an initial state.

• F defines a set of designated final states.

• M defines the transition probability function from S × Σ to [0, 1]n.

In our system, the set of states S equals to SP (a set of specific places defined by the

decoy’s personalized profile), and the state si indicates that a decoy is staying at a place

i. As for now, the set Σ equals to {≥}, where “≥” indicates that the stay time of a

decoy at a state is larger or equal to the estimated stay time t. If a decoy stays at

home at the beginning of a day, the initial state s will be home. Since we mainly use

the probabilistic automaton to simulate the transition among different specific places

(states) under different conditions (input symbols), the final states F in our system is

set to an empty set.
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Since the probability matrices in the decoy’s pattern only depict the transit probabilities

among different types of places, to implement the probabilistic automation, we also need

to calculate the transition probabilities among a set of specific places. Let M(i, b, j)

denote the probability that a decoy transits from the place (state) i to the place j when

the input symbol is b. Equations 3.1 and 3.2 show how to calculate M(i, b, j).

M(i, b, j) =
{
f(i, j) b = “ ≥ ”

(1 ≤ i, j ≤ s,

b ∈ {≥})
(3.1)

For any i and j (1 ≤ i, j ≤ s), we have:

f(i, j) = Pw(t).PTypei,T ypej × SPj .Wsw (3.2)

Where Typei and Typej are the types of place i and j, respectively.

Now we can use the probabilistic automaton to simulate the transitions of places. For

example, if we want to simulate the decoy’s movement at 10am on Friday (w = 5), we

first retrieve the transition probability matrix from its pattern in Figure 3.2, which is

the following:

P5(8 : 00− 11 : 30).P =


0.2 0.6 0.2

0.8 0.1 0.1

0.5 0.0 0.5


Given the above probability matrix which only describes the transition probability be-

tween the place types, we further calculate the transition probabilities between the five

exact places (as shown in Figure 3.3) that the decoy may visit. The transition prob-

abilities are represented as M≥ and Figure 3.4 illustrates the probabilistic automaton

constructed based on M≥.
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Figure 3.4: An Example of the State Transition Diagram

M≥ =



0.2 0.6 0.1 0.0 0.1

0.8 0.1 0.05 0.0 0.05

0.5 0.0 0.25 0.0 0.25

0.5 0.0 0.25 0.0 0.25

0.5 0.0 0.25 0.0 0.25


Each time the decoy arrives at a place with Typei, the simulator will generate its stay

time tstay following the Gaussian distribution and the parameters in its pattern compo-

nent T , as shown in Equation 3.3.

tstay = Gaussian(TTypei .mean, TTypei .dev) (3.3)

When the decoy stays at the place equal to or longer than tstay, the simulator will take

“≥” as the input symbol to the probabilistic automaton and find out the next place that

the decoy may visit.

3.2.2.3 Movement Simulation

From the previous state transition phase, we obtain the places that the decoy will visit.

The movement simulation will generate the detailed path between these places. A

straightforward approach is to calculate the routes between these places (stay points)

and then choose the positions along the routes. However, such an approach will result

in constant moving speed and precise positions, which may be easily identified as fake

trajectories by attackers. Figure 3.5 illustrates this problem. Figure 3.5 (a) is a real

user’s daily trajectory recorded obtained from a smartphone’s GPS. Figure 3.5 (b) is a
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(a) real user                (b) naive approach            (c) our approach

Figure 3.5: Comparison of Real Trajectories and Fake Trajectories

fake trajectory passing by the same stay points and is obtained using the aforementioned

naive approach, from which we can see that this fake trajectory is very smooth.

In order to make the decoy’s trajectory look similar to a real human’s trajectory, the

movement simulation takes the following steps:

Step 1 (Determine travel mode): The simulator will first calculate the distance d

between the origin placei and the destination placej , and then find the distance range in

the travel mode matrix M (Figure 3.2) that satisfies Mk.dis min ≤ d <Mk.dis max

or closest to d when d does not fall in any range. Next, based on the probabilities of

each travel mode within this distance range, i.e. Mk.Pd,Mk.P t,Mk.P b, andMk.Pw,

the simulator generates a travel mode for the decoy. For example, if the distance be-

tween the decoy’s current location to the next place is 4 km, the 2nd row in M will

be selected since its distance range is between 0.5 km and 5 km. The corresponding

probabilities for driving, public transit system, bicycling, and walking are 0.4, 0.3, 0.2

and 0.1, respectively, which means the decoy may be more likely to drive than to walk.

Step 2 (Obtain route): Once the travel mode m is determined, the simulator will send

out a request using Google Directions API to obtain the route from (SP i.Lat,SP i.Lng)

to (SPj .Lat,SPj .Lng) at the travel mode m. The obtained route includes the estimated

travel time and a series of segments and timestamps. If no result could be returned by

the Google Directions API, the simulator will try a different travel mode such as driving

until getting a route.

Step 3 (Speed obfuscation): Given the length and the travel time of the segments

returned by the Google Directions API, we can further calculate the moving speeds of the

decoy at these segments. However, the speeds obtained in this way (denoted as Speedsegi
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) may contain too many constant speeds for a sequence of continuous road segments,

e.g., “60 km/h”, “60 km/h”, ..., “60 km/h”. This does not look like real human whose

traveling speeds are never so constant. Also, constant speeds form unique patterns that

can be easily caught by data mining tools. To simulate the decoy’s moving speed in a

better way, we multiply Gaussian noise γi = Gaussian(MBm.speed f,MBm.speed dev)

to the directly computed segment speed.

Decoy Speedsegi = Speedsegi × γi; (3.4)

Step 4 (Geographic position obfuscation): Not only can we not use the speeds

directly calculated from the optimal travel route as discussed above, we should not use

the exact optimal route for the decoy either. This is because real GPS positions are never

100% accurate and trajectories formed by real GPS positions are not as smooth as the

optimal route. To mimic the real human’s trajectory, we currently simulate the GPS

accuracy rate based on the decoy’s travel mode m, which could be extended to a more

complicated model that includes weather conditions or other factors. For each position

on the optimal travel route (denoted as pos = 〈latitude, longitude〉), we first generate a

GPS accuracy rate α = Gaussian(0, Gaussian(Gm.accuracy,Gm.accuracy dev)). Then,

we randomly generate an angle β and add it to the position pos:

Decoy.latitudei = posi.latitude+ α · sin(β)

Decoy.longitudei = posi.longitude+ α · cos(β)
(3.5)

Finally, the decoy’s positions are published at an interval Gm.update t to simulate the

GPS module which has different updating rates under different circumstances.

Figure 3.5 (c) shows the decoy’s trajectory obtained by our approach, where we can see

that it behaves more like a real human than the optimal route in Figure 3.5 (b).

3.2.3 Request Interceptor

The request interceptor component is in charge of analyzing user’s requests, mixing

the real locations and the decoys’ locations when sending out the location-based service

requests to the service providers. There are four steps to realize the request interception:
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1. Detect the location information leakage: The interceptor checks each of

the user’s service request. This is achieved by intercepting the requesting URL.

Specifically, we first override the function “shouldOverrideUrlLoading” of class

“WebViewClient” in Android, and the function “shouldStartLoadWith” of class

“UIWebView” in iOS. We define a set of regex (Regular Expressions) rules to de-

tect if a URL contains location information. For example, if the requesting URL

is “https://abc.xyz/key=ab&lat=34.123&lng=-91.456”, our defined regex rule “

lat=(.*?)&lng=(.*?)” will be able to extract the latitude and longitude in this

URL. If it is confirmed that the requesting URL contains the user’s location infor-

mation, the interceptor will ask the service monitor to keep a record of the location

usage and invoke the following decoys’ request generation.

2. Generate decoys’ requests: The interceptor obtains decoys’ current locations

from the decoy simulator, and then generates service requests for the decoys in the

same form of the user’s real service request. For example, if the user is looking for

nearby Italian restaurants, and the requesting URL is “https://abc.xyz/food/italia

n/lat=34.123&lng=-91.456”, the requests from the decoys will also be looking for

restaurants near the decoys’ locations but the restaurants’ types may be different

such as Mexican restaurants. For example, the decoy’s requesting URL would be

“https://abc.xyz/food/mexican/lat=40.12&lng=-80.34”.

3. Send out mixed requests: After generating the decoys’ requests, the interceptor

mixes them with the real user’s request and send all the requests out to the ser-

vice provider by calling the function “decoyWebView i.loadUrl(decoyUrl i)” and

“mainWebView.loadUrl(userUrl)”.

4. Filter returned responses: Upon receiving the responses from the service

provider, the query results corresponding to the user’s real request will be dis-

played in the main webview to the user. The responses that are related to the

decoys’ requests will return to the decoys’ webviews which will be invisible to the

user unless the user wants to monitor the decoys’ activities and clicks a switch

button in our interface to switch to the decoys’ query result page.

With the support of the decoy simulator component, the request interceptor can act as a

middle ware between the user and the service provider to protect user’s location privacy

without reducing the quality of service.
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(a) (b)

Figure 3.6: Service Monitor

3.2.4 Service Monitor

Upon receiving the detection results from the request interceptor, the service monitor

component will first inform the user when his/her location information is being requested

by the service provider. Meanwhile, it will keep the record of these accesses. Specifically,

when the user taps the ”Service Monitor” button on the phone screen, our app will

display a list of the current services that require location information. For example,

Figure 3.6 (a) shows the notification that the website is uploading user’s precise geo-

location information, and Figure 3.6 (b) shows the services a user has visited and the

corresponding types of location information that have been uploaded to the service

providers. The purpose of these two additional features aims to draw user’s attention

to the location-based services that have collected their location information, and let the

users be aware of potential privacy risks that they may not notice before.

3.2.5 Location Recorder

The location recorder component is currently in charge of storing the user’s real trajec-

tories and decoys’ fake trajectories.

A potential usage of these stored historical trajectories is to provide flexible and adaptive

privacy protection. Specifically, the system can present a report about the similarity

between the trajectories of a decoy (decoyi) and the user u to the user. Based on the
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user’s input, the decoys’ social and travel patterns and profiles may be changed to reach

the desired similarity, i.e., adjust decoys’ profiles to make decoys perform more (or less)

similar to the user. There are several ways to do the similarity calculation. For example,

we can directly compare the types of places visited by a decoy with that of the real user;

or we can consider also the stay time and transition time during the comparison. This

feature is optional and can be turned off without affecting the other functions. Since the

focus of this work was only on decoy generation and request interception, this component

was simply modeled.

3.2.6 Trajectory Display

The trajectory display component aims to help users visualize their real trajectories as

well as decoys’ trajectories. In this sense, the users may possibly feel more secure.

We utilize the Google Maps API to display trajectories. When viewing the trace, the

users’ real location will be automatically placed with a blue map-marker and lines, so

that users can visualize the other reported locations compared to their origins. Lines

with different colors are connecting locations based on the movement from one place to

the next. An example of this trajectory display feature is presented in Figure 3.8 in the

experimental section.

3.3 Privacy Analysis

We now discuss the privacy protection achieved by our proposed MoveWithMe system.

Recall that in the threat model (Section 3.1), we consider two types of user location

information: (i) precise location such as coordinates provided by GPS; (ii) coarse location

such as postal code. Service providers may utilize collected location information to learn

the user’s points of interests. The more precise the location is and the more frequent the

user accesses the same service, the respective service provider would have more chances

to infer the user’s personal information such as hobbies, religions, health status, and

political stance.

With the aid of our proposed MoveWithMe system, the user will be able to prevent the

service provider (or attackers who compromise the server) from knowing his/her true
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Table 3.1: Location-Based Services Tested

Service Services Location
Providers Tested Information

Yelp Search nearby bars Geo-location

TripAdvisor Search nearby restaurants Geo-location

Google Arts & Search nearby museums Geo-location
Culture & exhibitions

Hotwire Search nearby hotels Geo-location

McDonald’s View nearby stores Geo-location

Airbnb Search nearby homes Address

Aol. Weather View weather forecast Address

KFC Search nearby stores Postal Code

Movietickets Search nearby theaters Postal Code

profile. This is because the user’s service requests are now accompanied by a group of

decoys’ service requests. More importantly, these decoys have different profiles (e.g.,

daily schedule, personal interests) from the real user. For example, if the real user is a

student, one decoy may behave like a full-time worker, another decoy may be a part-

time worker. Moreover, our decoys behave like the real human so that even advanced

data mining tools cannot tell which trajectory belongs to a decoy (as shown in our

experiments). As a result, the service provider will receive seemly multiple users’ service

requests and hard to tell what are the real users’ true interests.

It is worth mentioning that for the users to gain such privacy protection from the Move-

WithMe system, they need to connect to the Internet via certain VPN or anonymity

network TOR so that the service provider cannot identify the users’ real locations by

analyzing the original IP address. Also, the users should not directly use the location-

based services to consume third-party services, such as reserving a restaurant through

the TripAdvisor’s website, which would lead the users’ true locations since decoys are

not allowed to purchase anything. Users are suggested to only use the location-based

services to browse the needed services, and then directly go to the website of the desired

service for the purchasing operations.

3.4 Experimental Study

We have implemented the proposed MoveWithMe system as mobile apps both in Android

6.0 and iOS 11.3, and conducted a series of experiments to evaluate the effectiveness of
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the system. In terms of effectiveness, we examine three aspects: (i) we tested various

location-based services to see if the requests generated from decoys are also received and

responded by the service providers; (ii) we check if the decoys’ trajectories are consistent

with the designated social patterns as time evolves; (iii) we utilize data mining tools to

see if fake trajectories can be identified out of the real trajectories. The devices used for

testing include a Samsung Galaxy S4, a Samsung Galaxy S6, a Google Nexus 5X, and

an iPhone 7. Unless noted, the results are from Google Nexus 5X.

3.4.1 Effectiveness Testing

In the experiments, we evaluate the effectiveness of the MoveWithMe app when the user

is visiting the popular location-based services as shown in Table 3.1. These websites can

be classified into three categories. The first category of the websites needs the user’s

precise geolocation information (latitude and longitude) to perform the services, such

as Yelp, TripAdvisor, and Google Arts & Culture. The second category of the websites

would submit the user’s address information, such as Airbnb and Aol. Weather. The

third category of websites such as KFC and Movietickets use the postal code to locate

user.

In the experiments, we first use our MoveWithMe app to test whether or not the above

websites receive the real user’s location and the decoy’s locations. The real user’s location

is in Rolla, MO. Figure 3.7 (b), (c), and (d) shows the query results from the Yelp

when the user inquiries nearby restaurants. We can see that these query results are

not restaurants near the user’s real location (i.e., Rolla), but the results with respect

to the decoys’ locations at Chicago, Kansas, and Atlanta. That means MoveWithMe

has successfully fed fake locations to Yelp. Note that the requests of those decoys are

performed in the background automatically. For the user, he/she will browse the Yelp

website in the foreground as usual without any interruption. As presented in Figure

3.7 (a), the user will obtain the restaurant information regarding his/her real location.

Similarly, in Figure 3.7 (e), the user is searching nearby things to do in Rolla using an

iOS device. As presented in Figure 3.7 (f), the first decoy in Chicago is querying things

to do at the same time. We observe the similar performance of MoveWithMe for other

websites that provide location-based services. Due to the space constraints, we do not

include the screenshots here.
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(a) Real user in Rolla City (Android)         (b) Decoy in Chicago City (Android)

(c) Decoy in Kansas City (Android)          (d) Decoy in Atlanta City (Android)

(e) Real user in Rolla City (iOS)                 (f) Decoy in Chicago City (iOS)

Figure 3.7: Effectiveness Testing

Next, we ran the MoveWithMe system for a whole day and compare the historical

trajectories of the real user and decoys. Figure 3.8 (a) and (b) show the results. We

can see that it is hard to tell which trajectory is fake since the decoy also follows the

speed limit, the human’s schedule like lunch break and going back home at night. In

addition, we also observe that the decoy’s movement pattern is quite different from the

user, which means the MoveWithMe app can effectively help prevent the service provider

from profiling the user.
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(a) Decoy in Atlanta                                   (b) Real user in Rolla

Figure 3.8: Historical Traces of Decoys and the Real User

After that, we test if the fake trajectories generated by the MoveWithMe app can prevent

the data mining tools’ detection more effectively than other randomly generated dum-

mies. We select three commonly used data mining algorithms: DecisionTree, KNN, and

GaussionProcesses. Each algorithm is trained by using 1000 real trajectories extracted

from the GeoLife trajectory dataset [68–70] and 1000 fake trajectories from our Move-

WithMe app. For each trajectory, n sample points are randomly selected to simulate the

number of daily visit to the same service provider. The features used for training include

various aspects of a trajectory, which are the minimum segment length, the maximum

segment length, the average segment length, the minimum speed, the max speed, the

average speed, and the standard deviation of speed. For comparison, we also generate

another set of fake trajectories that are formed by randomly selected locations around
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the real locations in the GeoLife trajectories with less than 1km distance deviation.

During the testing, we mix 500 real GeoLife trajectories with 500 fake trajectories.

As shown in Figure 3.9, the detection rate of randomly generated dummy trajectories

is also very high (around 95%). This is because the moving patterns of the random

dummies are much different from real humans. Compared to random dummies, the

decoys generated by our MoveWithMe system are much harder to be correctly classified

by the data mining algorithm. The detection accuracy of our decoys is only around

60% to 70%, slightly higher than a random guess (50%). Note that this detection

rate is achieved when we give the service provider advantages by assuming that they

have correctly labeled 1000 of our decoy trajectories as fake trajectories during the

training. When the service provider uses the random dummies for training, their ability

of detecting our decoys drops to 45%.

More formally, let k be the number of decoys in the MoveWithMe app, and p be the

accuracy of the real trajectory classification. We can calculate the possibility for the

service provider to precisely distinguish the real trajectory and rule out the fake tra-

jectories as P = pk+1. For example, even if p equals to 70% while k equals to 10, the

chance for the service provider to precisely distinguish the real trajectory is only 1.98%.

This demonstrates that our MoveWithMe can effectively protect user’s location privacy

even when the service provider is trying to identify the real trajectories using advanced

data mining tools. In addition, we also vary the number of daily visits to the same

service provider from 25 to 200 (denoted by the number under the algorithm name in

the figure). When there are fewer daily visits (e.g., 25), the detection rate is lower. The

reason is straightforward that the less frequent use of the same service, the less location

information the service provider will collect from the user.

3.4.2 Response Time Testing

The second round of experiments aims to evaluate the response time of the proposed

MoveWithMe app. We vary the number of decoys (the value of k) from 0 to 5 (k = 0

means accessing location-based services without our MoveWithMe app’s protection). In

each instance of a run, we perform 10 different queries and record the response time for

each query. Then, we calculate the average response time of the 10 queries.
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Figure 3.11: Response Time on Different Smartphones

Figure 3.10 reports the average response time with respect to each service and the

aggregated average response time of all the services (denoted as “AVE.”). From the

figure, we can observe that the response time of the services slightly increases with

the increase of the number of decoys. This is because the requests sent by decoys in

the background take a bit of bandwidth. Since the decoys do not need to download

the images and videos when sending requests, the impact on the response time is still

negligible. Overall, the wait time is similar to the wait time for connecting a phone call,

and hence we expect it to be acceptable for users who care about their location privacy.

The minor fluctuation among the response time is mainly caused by the continuous

generation of decoys’ locations.

We also compare the time performance of MoveWithMe app running in four different

brands of smartphones: Samsung Galaxy S4, Samsung Galaxy S6, Google Nexus 5X,

and iPhone 7. Figure 3.11 shows the average response time for each service when there

is 0 decoy (k=0) and 5 decoys (k=5), respectively. We can see that the MoveWithMe

app incurs very little delay for all the services tested. Note that the difference of the

response time among different services is mainly caused by the network condition and
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the service providers’ servers.

3.4.3 Network Data Usage Testing

The third round of experiments aims to evaluate the network data usage. We tested two

scenarios. In the first scenario, we simulate user’s daily activities. For each round in the

first scenario, we search nearby bars, banks and gas stations in Yelp, restaurants and

’things to do’ in TripAdvisor, hotels in Hotels.com, museums in Google Arts & Culture,

stores in McDonald’s, and then search movies and theaters in MovieTickets. In the

second scenario, we refresh the lists of coffee & tea in Yelp, restaurants in TripAdvisor,

stores in McDonald’s, and theaters in MovieTickets 10 times respectively, and record

the data usage.
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Figure 3.12: Network Data Usage

As presented in Figure 3.12, since the decoys need to forge multiple requests related to

their locations while the user is browsing the location-based service websites at the same

time, it is not surprising to see that the data usage increases with the increase of k (the

number of decoys). However, the extra network data usage is very little, which is only

10% more in the first scenario and 18% more in the second scenario while k equals to

5. This is because the decoys do not need to download the images and other large files

when sending requests. The service requests from decoys are mainly text contents which

do not consume much bandwidth.
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3.4.4 Battery Consumption Testing

In the end, we study how the MoveWithMe app affects the battery consumption of

the smartphones. We tested two different scenarios. In the first scenario, we compare

the total battery consumption with and without running our MoveWithMe app for a

duration of 60 minutes. Note that even running in the background, our MoveWithMe

app is still generating several decoys’ locations continuously to prepare for the use at

any time. As presented in Figure 3.13, our MoveWithMe app consumes only 0.5%

more battery at the end of the 60 minutes of testing (k=5). The experimental results

indicate that MoveWithMe’s decoy simulation algorithm is very efficient. Recall that

the decoys’ profiles only need to be generated once and then the follow-up generation of

fake locations is fast.

In the second scenario, we compare the battery consumption with (k>0) and without

(k=0) the MoveWithMe app’s protection. Specifically, in a time period of 60 minutes,

we simulate 10 rounds of user access to each service, i.e., browsing all the nine service

websites every 6 minutes. Figure 3.14 reports the battery consumption results. As

expected, with the MoveWithMe app running, the smartphone consumes energy slightly

faster than just browsing location-based websites without MoveWithMe. However, the

additional battery needed for the MoveWithMe app (k=5) is less than 4%, which is

almost negligible and hard to be noticed by the user. The same pattern is demonstrated

for other smartphones as shown in Figure 3.15.
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3.5 Summary

In this chapter, we presented a novel location privacy-preserving mobile app–MoveWithMe–

to help smartphone users protect their location privacy when they need to frequently

expose their locations to location-based services. The MoveWithMe system performs

a sophisticated decoy simulation algorithm and automatically generates decoys at the

runtime and sends service requests along with the user’s real request to the service

providers. Our proposed algorithm ensures that these decoys act consistently like real

human beings as time passes, making it very hard for the service provider to identify

the real user from the group of decoys and profile the real user even by using advanced

data mining technologies. By evaluating the prototypes of the proposed MoveWithMe

system against a variety of location-based services on various smartphones, we found

that the MoveWithMe system is very effective. It is believed that by using our system,

users will be able to gain greater privacy when accessing location-based services while

still enjoying their full utilities.



Chapter 4

Image Privacy: REMIND

In the this chapter, we will discuss that not only are location-based services a threat

to social networking users, but that there are also threats when sharing images online.

Our proposed system, REMIND, will be detailed to show how it can be used to remedy

online sharing threats. When it comes to social networks, the utility is abundant and

allows people to be able to do things they never thought possible - but the risks are also

prevalent. As discussed in the previous chapter, the risks can pertain to location-based

services in which users’ locations may be exploited by adversaries for some gain. In this

chapter, our proposed work, REMIND, will offer a solution to the privacy risks related

to online image-sharing on sites such as Facebook or Instagram.

4.1 An Exploratory User Study

This user study aims to examine the need of the REMIND system by investigating

how a typical user would react if the user knows that sharing with someone may cause

Table 4.1: Questions about Uses of Online Social Networking

Question Options

How many photos do you have in your social
accounts?

0 to 50, 51 to 100, ..., 201 to 300, more

How many contacts do you have in your
social account?

0 to 10, 11 to 50, ..., 301 to 500, more

How often do you upload photos? Everyday, a few times a week, ..., a few
times a year, rarely

Do you often designate a group of people
when sharing photos?

Yes, No (I usually make my photos public)

40
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a privacy breach with different disclosure probabilities. The user study has received

the IRB approval from the university. The research is conducted in an anonymous form

which means we do not record any information about the participants that could be used

to identify them. We created an online survey which asked for demographic information,

photo sharing preferences, and then presented users with various sharing scenarios. In

what follows, we first describe the demographics information of people who participated

in the user study, and then analyze the results of the users’ responses.

The user study involves 114 users who are recruited online. There are 33 females and 79

males. Their ages range from 18 to over 50. The study consists of two parts. The first

part collects demographics and data about online social networking habits, as shown in

Table 4.1. The second part collects participants’ reactions regarding privacy settings

when they know the probabilities of their photos being seen by unwanted people.

From the response, we see that all of the 114 users have at least one social media account

with about 71% of them have more than 2 accounts. This is consistent with current data

on social network usage. When asked how often they shared images on social media,

more than half of the participants confirmed that they share regularly (i.e., either a few

times a week or a few times a month), and 6% admitting they share images every day.

Over half of the participants estimate having shared a total of 50 to over 200 images.

To understand how conscious the participants were about the privacy of their images,

we asked them whether they often designate a group of people that they would like to

share when uploading a photo. Although about 72% of participants answered yes, we

can see there is still a significant percentage (28%) of users who simply make their per-

sonal photos public. We note that there is no statistical correlation between number of

accounts or frequency of sharing with users’ privacy habits, confirming that users appear

unwilling (or unable) to set own privacy settings regardless of the amount of content

actually disclosed online. Moreover, even users who set up the privacy configurations

during the photo sharing, they still may not have the knowledge what would be the

final audience of their images if their friends re-share the received images. To get an

idea of how much of an impact the social network connections can make on a user’s

privacy, we asked how many contacts each user had in their social media accounts. 53%

of the participants claim to have between 100 to 500 contacts while 21% claim to have

more than 500 contacts. Imagine that even half of those contacts sharing the images

they see to their own additional contacts, we can see how quickly an image can spread
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which may result in undesired privacy breach that the photo owners do not anticipate.

Here, we note that frequency of posting is negatively correlated with amount of content

posted (Pearson= -.223, p<0.5), but again there is no statistically significant correlation

between users’ frequency of managing sharing settings with number of friends.

In the second part of the study, subjects were presented with three different scenarios. In

the first scenario, the photos to be shared are about the photo owner doing an extreme

sport that the photo owner does not want his/her close family members to worry about.

In the second scenario, the photos are about the photo owner who is doing some crazy

stuff in a party and only wants to share with close friends. In the last scenario, the

photos show the photo owners in funny costumes which are intended to only share with

family members instead of co-workers or managers at work. The first two scenarios

are designed to capture the case single-owner content decision making processes, and

the last scenario is about multi-owner decision making. For each scenario, we present

sample photos to the participants to help them better understand the scenarios. Then,

we ask whether they would consider excluding a person from their initial sharing lists

if they know there is 90%, 50%, or 10% chance that the photo may be disclosed to

unwanted people by that person. Table 4.2 reports the percentage of participants who

responded positively that they would change their initial privacy settings as suggested.

All responses are positively correlated with a Pearson coefficient of 0.734 (case 90% and

50%) and 0.33 (50% to 10%), and p<0.05. From the table, we can clearly observe an

increasing trend of privacy concerns when the relationship between the photo owner and

the possible viewer becomes loose. Specifically, 61% of participants said they would not

share with a person if there is 90% chance that the photo may be disclosed to their close

family members who are not in the initial sharing list; the percentage jumps to 78% when

there is 90% chance of disclosure to the photo owner’s friend who is not supposed to

see the photo; the percentage further increases to 85%. When it is about the disclosure

to others, users tend to be less concerned about privacy within close social circles. The

second observation is that the percentage of participants who agree to change the privacy

settings decreases with the disclosure probability. For example, when there is only 10%

chance of disclosure to undesired people, only around 30% of people chose to restrict

the privacy settings in the first two scenarios. There is still a high percentage (68%) of

people who would like to prevent their manager from seeing the photo even if there is

only 10% chance of disclosure.
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Table 4.2: User Response to Different Scenarios

Privacy Breach Probability 90% 50% 10%

Scenario 1 (Single-owner photo, undesired disclosure to close fam-
ily member)

61% 57% 34%

Scenario 2 (Single-owner photo, undesired disclosure to friend) 78% 73% 31%

Scenario 3 (Multi-owner photo, undesired disclosure to manager) 85% 80% 68%

To gain early evidence of the potential usefulness of our REMIND system, at the end of

the user study, we directly asked the participants if they would like to have such kind

of privacy breach reminder provided by social websites. 75% of participants responded

that they are interested in using this kind of system. More specifically, majority of the

people who usually set up privacy settings (72% of all the participants) are interested

in receiving privacy reminders, while a small percentage of this group of people said no,

which is probably because they may think they have already configured their privacy

settings very privately. Among the group of the people who claimed rarely to configure

privacy settings, a small percentage of this group show interests in using the REMIND

system which indicates that the users started being aware of privacy issues even through

this quick user study. We feel that with the REMIND system in place in the real

social networks, it will gradually help enhance public awareness in privacy problems,

and eventually help people gain more privacy protections.

4.2 Problem Statement and Assumptions

Our work is developed based on the assumption that online social networking providers

have full knowledge of their own social network graphs, users’ profiles including privacy

preferences, and their users’ image sharing history.

We consider the image sharing problem in a finite social network as defined below.

Definition 4.1. (Social Network) A social network is defined as an undirected graph

G(Ξ, R), where Ξ is the set of the users in this social network, and R is the set edges

connecting pairs of users who have relationship with each other, i.e., R = {(ui, uj)}

where ui, uj ∈ Ξ.

Each user can specify a group of people in the same social network who are allowed to

access the shared image. The privacy policy is formally defined as follows.
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Definition 4.2. (Image Privacy Policy) An image privacy policy is in the form of

Pol = {img, u, U+}, where u is the image owner, and U+ is the group of people who

are allowed to access user u’s image img.

Our work aims to compute the disclosure probability (as defined in Definition 4.3) that

the shared image may be seen by people who are in the photo owner’s contact list but

are not included in the photo owner’s original sharing list. The reason to focus on the

users who are in the image owner’s contact list is because this is the explicitly specified

group of people who the image owner clearly knows whether or not to share the image

with. In other words, the image owner has the greatest privacy concerns regarding the

group of users if they are not included in the sharing list. For example, if Alice would

like to share photos of her extreme sport activities with her college friends but not her

parents as she does not want them to be worried. The photos may eventually reach a

wider audience, such as other college students not specified in Alice’s original sharing

list, but Alice may not care about those strangers as long as her parents do not receive

the photos from others.

Definition 4.3. (Image Disclosure Probability) Let uo denote the owner of an

image img, and Uo denote the set of users in uo’s contact list. Let Pol = {img, uo, U+
o }

denote the corresponding privacy policy for image img. The image disclosure probability

Puo⇒ut is the probability that user uo’s image may be seen by a target user ut, where

ut ∈ U−, and U− = Uo/U
+ which is the set of the users who are not in the sharing list.

4.3 The REMIND System

We propose a REMIND (Risk Estimation Mechanism for Images in Network Distribu-

tion) system that presents the image owner a privacy disclosure probability value that

indicates the risk of his/her image being viewed by an unwanted person. The REMIND

system not only works for photos with single owners, but can also be utilized to help

resolve privacy differences in multiple users depicted in the same image. Figure 4.1 gives

an overview of the data flow in the REMIND system.

First, the REMIND will identify the list of people who the image owner uo does not want

to share image with, i.e., U−o , by analyzing the policies associated with the image. Note
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Figure 4.1: An Overview of REMIND System

that for an image with multiple users, e.g., uo1 , uo2 , ..., uon , this step will return a set of

U−oi whereby the U−oi is the list of people that user uoi does not want to share the photos

with. The second step is to conduct the risk analysis for each user in U−o . We will first

extract the sub-network connected to the owner(s) of the photo and then calculate the

image disclosure probability for the image owner(s) with respect to the users (ut) in U−o .

If the computed disclosure probability Puo⇒ut is above certain threshold (e.g., 80%), the

REMIND system will issue an alert to the image owner uo regarding this. The alert will

clearly indicate through which user who is in the original sharing list, user ut may have

the chance of Puo⇒ut to view the shared image. If the photo has multiple users in it,

the REMIND system will conduct a policy harmonization process which combines all

the alerts and suggests a possibly smaller group of users to share in to avoid undesired

image disclosure. In what follows, we will elaborate the detailed algorithm for each step.

It is worth noting that the disclosure probability of an image is calculated with respect

to the historical sharing information of the same category of images. This is because

different types of images may have different levels of privacy concerns. For example,

photos which are categorized as “funny” are more likely to propagate throughout a
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much larger portion of the social network than photos which are categorized as “normal

daily life”. To obtain categories of images, images can be easily classified based on their

content [9, 51]. For the ease of illustration, the subsequent calculations and examples

are referring to the images of the same category.

4.3.1 Propagation Chain Model

As aforementioned, our goal is to calculate the probability that the photo owner’s contact

who is not in the original sharing list may view the shared photo via friend-to-friend

sharing chains. We model such sharing propagation as an image sharing graph as follows.

Definition 4.4. (Image Sharing Graph) An image sharing graph is a directed graph

SG(Ξ, SR, Ψ), where Ξ is the set of users in the social network, and SR is the set of

ordered pairs of users SR = {〈ui, uj〉} which indicates that user ui shares some images

with user uj , Ψ is the set of detailed image sharing information including the origin

of the image and the number of shares received. Specifically, Ψ = {ψuo:ui→uj} where

ψuo:ui→uj denote the number of images originally owned by uo and are shared by user

ui with uj .

Figure 4.2 illustrates a portion of the image sharing graph in a large social network.

Let us take user uo’s photo sharing propagation as an example (highlighted red in the

Figure 4.2: An Example of Image Sharing Graph
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Figure 4.3: Single Photo Propagation Chains

figure). Assume that user uo has 1000 photos of her own. She shares 800 out of 1000

with her contact u1, denoted as “uo 800/1000” on the edge from uo to u1. User uo also

shares 500 her own photos with user u4 who forwards 20 of the received photos to u3 and

400 to u1. Now user u1 has uo’s photos from two sources. It is possible that u1 shares

400 photos out of the 800 shares that she directly received from uo with u2, and another

200 photos out of the shares that she received from u4 with u2 too. Correspondingly,

we see two pieces of sharing information on the arrow from u1 to u2. Next, u2 further

shares 10 of uo’s photos from those sent by u1 with u3. In addition, uo also shares 10

out of 1000 photos directly with u3.

Based on the image sharing graph, we proceed to discuss how to compute the image

disclosure probability Puo⇒ut , i.e., the probability that user uo’s photo may be viewed

by user ut through the sharing propagation chains. Let us start from the simplest case

(Figure 4.3(a)) when there is only one intermediate user connecting the photo owner uo

and the target user ut. The probability Puo⇒ut can be computed by Equation 4.1.

Puo⇒ut = Puo⇒ui · Puo(ut|ui) (4.1)

In Equation 4.1, Puo⇒ui is the probability that uo may share photos with ui which can

also be denoted as P (ui|uo), and P (ut|ui) is the probability that ut may receive uo’s

photos from ui when ui has uo’s photos. Specifically, let No denote the original number

of photos that user uo possess, let No−i denote the number of photos that user uo shares
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with ui, and let Ni−t denotes the number of uo’s photos that ui further shares with ut.

Puo⇒ui can be easily computed by No−i

No
, and Puo(ut|ui) can be computed by Ni−t

No−i
. Then,

we have the following:

Puo⇒ut =
No−i
No
· Ni−t
No−i

=
Ni−t
No

Next, we extend the above case to the scenario when there are multiple users in a single

chain as shown in Figure 4.3(b). The probability that uo’s photos may reach the target

user ut via multiple users (sharing routes) of sharing can be computed by Equation 4.2.

Puo⇒ut = Puo⇒ui · Puo(ut|ui+n)
n∏

j=1

Puo(ui+j |ui+j−1) (4.2)

At the end, we extend the probability formula to the generic scenarios (as shown in

Figure 4.4) when there are multiple propagation chains between the photo owner uo and

the target user ut. The final probability Puo⇒ut is given by Equation 4.3, where Pck

denotes the sharing probability from the chain containing ut’s direct parent uk, and m

denotes the total number of sharing propagation routes.

Puo⇒ut = 1−
m∏
k=1

(1− Pck)

= 1−
m∏
k=1

(1− Puo⇒uk
· P (ut|uk) · α) (4.3)

In Equation 4.3, the image disclosure probability Puo⇒ut is computed by aggregating

disclosure probabilities from various sharing routes. Specifically, Pck is the probability

that ut may receive uo’s photos from the propagation chain ck. On the chain ck, uk

is the ut’s direct sender, and hence Pck is the product of the probability Puo⇒uk
that

uk receives uo’s photos and the probability P (ut|uk) that uk forwards the photos to ut.

Here, α is a random factor which aims to model some abnormal behavior of user uk that

uk usually does not forward the photo to ut suddenly decides to do so in rare cases. To

achieve this, the random factor α will bring the forwarding probability P (ut|uk) to 1 at

a very low chance (i.e., 0.1%) in the probability estimation process. Next, 1−Pck is the

probability that ut will not obtain uo’s photos from the chain ck. Then,
∏m

k=1(1− Pck)
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Figure 4.4: A Generic Photo Propagation Model

is the probability that ut will not receive uo’s photos from any of the m propagation

chains. Finally, by negating the previous probability, we obtain the probability that ut

may have access to uo’s photos.

4.3.2 Disclosure Probability Calculation

In the previous section, we have discussed how to calculate the image disclosure prob-

ability given the possibly multiple sharing routes. The next step is to identify these

sharing routes in the social network. However, the real social network is very complex

which may contain a huge number of paths between two users. The critical question

here is: “Is it possible to compute such image disclosure probability in practice?” The

answer is positive. Even though the paths connecting two users in the social network

may be huge, the number of active sharing chains is not. This is based on an important

observation that people’s interests in sharing others’ photos typically decrease as the

relationship with the photo owner becomes farther away. For example, Alice shares her

photo of her first surfing with her roommate Kathy. Kathy further shares the photo

with her friend Mary in the same college who may also know Alice with the thought

that Mary may be surprised to see Alice is doing extreme sports. It is likely that Mary

may share the photo again with other friends who may also know Alice. However, the

sharing is likely to stop when it reaches a person who barely knows Alice.
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Based on the above observations, we can extract a sub-network that is closely related to

the photo owner before the probability calculation. The sub-network is formally defined

as personal image sharing graph in Definition 4.5.

Definition 4.5. (Personal Image Sharing Graph) Given an image sharing graph

SG(Ξ, SR, Ψ), the personal image sharing graph of a user uo is PSG(Ξo, SRo, Ψo) which

satisfies the following two conditions:

(1) Ξo ⊆ Ξ, Ro ⊆ R, and Ψo ⊆ Ψ;

(2) ∀ uj ∈ Ξo, ∃ψuo:ui→uj .

The first condition in the personal image sharing graph’s definition ensures that PSG is

a sub-graph of the entire image sharing graph. The second condition ensures that only

the users who received photos from uo are included in this PSG. For example, reconsider

the social network shown in Figure 4.2. We can extract the personal image sharing graph

for uo as shown in Figure 4.5.

Figure 4.5: User uo’s Personal Image Sharing Graph

Assume that the image owner uo shares a new photo with only u4. The red dotted arrows

in Figure 4.5 indicate that u1 and u3 are uo’s contacts but are not in the sharing list of

this photo. We now proceed to calculate the probability that two other uo’s contacts,

i.e., u1 and u3, may also view the image.

Puo⇒u4 = 1

Puo⇒u1 = Puo⇒u4 · P (u1|u4)) = 1×400
500=0.8

Puo⇒u2 = Puo⇒u1 × 200
400 = 0.8×0.5=0.4
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Puo⇒u3 = 1− (1− Puo⇒u2 · P (u3|u2))· (1− Puo⇒u4 · P (u3|u4))

= 1 - (1 - 0.4× 10
200)(1 - 1× 20

500) = 0.048

From the above example, we can see that even though uo did not directly share the

photo with u1, there is still 80% chance that u1 may view the photo shared from other

channels. On the other hand, there is very little chance (5%) that u3 may see the photo.

To calculate these probabilities, the sequence of the node visit in the personal image

sharing graph is important. The calculation sequence is u1, u2 and u3 in the example. If

we follow another computation order such as u3, u1 and u2, we will obtain only part of

the probability values for u3, before u2 is calculated. Once u2’s probability is known, we

will have to adjust u3’s probability value. This is obviously inefficient especially in large-

scale social networks. Therefore, we need to ensure that the parent nodes’ probabilities

are computed first. However, identifying the calculation order is not trivial due to the

complicated interconnections among nodes in the social network that may create sharing

loops. To efficiently and correctly calculate and aggregate the disclosure probabilities,

we formally model the problem as the probability serialization (Definition 4.6).

Definition 4.6. (Probability Serialization) Let PSG(Ξo, SRo, Ψo) be the personal

image sharing graph of a user uo. The probability serialization process aims to identify

a serialization ordering of node visits which minimizes the node visits and ensures that

each node’s disclosure probability is calculated correctly. The probability serialization

ordering is in the form of ui �ui+1� ...� ui+k, where ui ∈ Ξo, 〈ui, ui+1〉 ∈ SRo, and

ui �ui+1 denotes ui’s probability will be computed before ui+1’s probability.

To conduct the probability serialization, we first analyze various sharing scenarios and

classify them into two main categories as shown in Figures 4.6 and 4.7, respectively.

For clarity, the figures do not include the detailed sharing amounts while the arrows in

the figures only indicate that there are some photos belonging to uo being forwarded to

others.

Case 1 depicts the scenario when the disclosure probability of a user needs to be calcu-

lated after all its parent nodes have been computed. Specifically, as shown in Figure 4.6,

the photo owner uo shares photos with his friend u1 but not u4. User u1 then forwards

some of the photos to u2. User u2 further shares the photos with u3. Moreover, the
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three users u1, u2 and u3 all forward some of the uo’s photos to user u4. In this case,

the probability that uo’s photos may be seen by u4 depends on the the disclosure prob-

abilities of u1, u2 and u3 which need to be computed first. The appropriate calculation

order of this case is u1 �u2 �u3 � u4.

Figure 4.6: Sharing Scenario Case 1

Figure 4.7: Sharing Scenario Case 2

Case 2 depicts the scenario when there is a sharing loop. Specifically, user u1 forwards

uo’s photos to u2, u2 forwards the photos to u3, and then u3 to u4. Without knowing

that u1 has already seen uo’s photos, u4 forwards the photos received from u3 to u1,

thus creating a sharing loop. In this case, even though u4 is also u1’s immediate parent,

u1’s disclosure probability does not depend on u4 since u4 is sharing what u1 originally

sent out. The appropriate serialization ordering of this case is u1 �u2 �u3 � u4.

Based on the above classification, we now proceed to present a generic probability cal-

culation algorithm. We employ two main data structures to facilitate the probability

serialization. The first structure is a priority queue which stores the uncomputed nodes

that have been visited so far. The second structure is a link list that stores the set of

uncomputed parent nodes of each uncomputed node. The probability calculation takes

the following steps (an outline of the algorithm is shown in Algorithm 1):

1. Initialization: Starting from the photo owner node uo’s initial sharing list, we

look for the children nodes of the users in the sharing list and add them into the

priority queue.

2. Checking current node in the priority queue: Then, we examine the node

in the priority queue one by one. Let ui denote the node in the priority queue
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Algorithm 1 Probability Calculation Algorithm

1: Input: Image sharing graph
2: Output: Disclosure probabilities of uo’s friends
3: Extract uo’s personal image sharing (PIS) graph
4: for each user ui in uo’s sharing list do
5: Initialize Prob[ui]=1
6: Add ui to priority queue
7: end for
8: while priority queue is not empty and U−o is not computed do
9: ui = priority queue.pop()

10: for each parent uj of ui do
11: Pij= chain probability (Equation 1)
12: Prob[ui]=Prob[ui]*(1-Pij)
13: end for
14: if all of ui’s parents are computed then
15: Prob[ui]=1-Prob[ui]
16: Remove ui from priority queue
17: end if
18: for each ui’s direct friend uc do
19: if uc is not in priority queue then
20: Add uc to priority queue
21: else
22: Break Loop between ui and uc
23: end if
24: end for
25: end while

that is under consideration. For any node in the priority queue, its probability is

finalized only after all its parent nodes’ probabilities are computed. Therefore, we

check if all of ui’s parents’ probabilities have already been computed. If so, we

compute the probability of ui, remove it from the priority queue and perform the

probability propagation routine. In the case that at least one parent node of ui

whose probability is not yet computed, we will just keep ui in the priority queue.

In both cases, we will proceed to perform the expansion routine for ui.

3. Probability propagation: Given a node ui whose probability is just computed,

we will set the parent flags of all the nodes that take it as the parent to “computed”

and calculate a partial probability for these nodes by plugging ui’s probability to

Equation 4.1.

4. Expansion: This step is to expand the sharing chain by considering ui’s children

nodes. If ui has a child node uc which has not been visited yet, uc will be added

to the priority queue and uc’s parents including ui will be added to the uc’s parent
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Figure 4.8: An Example of Sharing Graph

list. If some of the uc’s parents’ probabilities are known, their parent flags are

set to “computed”. After the expansion, the algorithm goes back to the second

step to check the next node in the priority queue. In the case that uc has already

been stored in the priority queue, that means a sharing loop between ui and uc is

detected. We will then give ui a special flag which means the loop-breaking routine

is pending until there is no more new node to be added to the priority queue.

5. Breaking the Loop between ui and uc: Up to this point, all of the ui’s parents

should already be in the priority queue. We will compute uc’s probability by using

any partial probability that ui has so far. Note that the partial probability that

ui possesses is definitely from sources other than uc, so it is important to factor

them into uc’s probability calculation. Once uc’s probability is computed, we will

remove it from the priority queue, perform the probability propagation and then

check the next node in the priority queue (i.e., go back to the second step).

To have a better understanding of the above probability calculation algorithm, let us

step through the following example as shown in Figure 4.8. This example shows the

image propagation from user uo. In particular, uo shares a new photo with u1 but not

two other friends u4 and u5. This example combines the two types of sharing scenarios

including multi-parent relationship and multiple sharing loops.

Figure 4.9 presents how the information is updated in the priority queue and the parent

lists throughout the probability calculation. The first black rows in the tables represent

the priority queue at different steps, while the second rows represent the parent lists.

At the beginning, the child node (u2) of the user (u1) who is in the photo owner’s

sharing list is added to the priority queue. Since uo shares the photo directly with u1,
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Figure 4.9: An Example of Probability Serialization

the probability that u1 views the photo is 1. We start evaluating the first node in the

priority queue, i.e., u2. Since u2 has another parent u5 whose probability is unknown

at this moment, we hold on the calculation of u2’s probability and continue expanding

the sharing networks from u2. As a result, u2’s children nodes u3 and u4 are added

to the priority queue too. Since u3 and u4 also need to wait for their parent nodes to

be computed, the expansion continues whereby u3’s children (i.e., u5 and u6) and u4’s

children (i.e., u7) are added to the priority queue. Next, we encounter the node u5 whose

child u2 already exists in the priority queue. That means we detect a sharing loop that

involves u2 and u5. In this case, we give u5 a special mark indicating that we will revisit

u5 at a later time. We continue the network expansion from u6 to its child u8.

Up to this point, all nodes whose probabilities can be computed should have been re-

moved from the priority queue. It is time to deal with the sharing loops. Specifically,

we locate the node u5 which has a special mark due to the sharing loop. Then, we find

the node u2 in the priority queue which has u5 as a parent. Since the loop starts from

u2 and goes to u5, it is not necessary to include u5’s probability during u2’s calculation.

Therefore, we go ahead to calculate u2’s probability without considering u5. Once u2’s

probability is obtained, it “unlocks” its children nodes u3 and u4 whose probabilities are

ready for calculation too. Next, we can calculate the probabilities of u3 and u4’s children

nodes which are u6 and u7. Finally, we can compute u5. Note that the calculation stops

here without calculating u8 because all of uo’s contacts in the non-sharing list have been

computed. The complete probability calculation ordering is u2�u3 �u4 �u6 �u7 �u5

(indicated by the circled number on top of each node in the figure).
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The above probability calculation algorithm provides the calculation ordering for all

the users that are in the photo owner uo’s personal image sharing graph. It is worth

noting that the efficiency of probability calculation can be further improved by stopping

the calculation for a node if its current probability is already higher than the decision

threshold. For example, if through currently explored sharing chains, the disclosure

probability is as high as 99%, it is not necessary to keep checking remaining sharing

routes.

The complexity of our probability calculation algorithm is O(n) as each node in the

personal image sharing graph is first visited once during the personal image sharing

graph extraction and then calculated once in the priority queue. It is worth noting

that the probability calculation works the same for different categories of images. When

multiple categories of image information is available through the image classification

tool, we still just need to construct one image sharing graph for each user. The only

difference will be the information stored at each node in the sharing graph. Specifically,

on each node, there will be multiple tuples, each of which corresponds to a category of

image sharing statistics. Since an image only belongs to one category, the calculation of

a single image will only access its corresponding statistic information at the nodes, and

hence there will not be any impact on the calculation efficiency.

4.3.3 Privacy Harmonization among Multiple Users

In the previous sections, we have discussed how to handle a photo with a single owner.

Indeed, the risk estimation algorithm can be easily extended to address the policy har-

monization issues occurring in a photo with multiple owners. It is common that different

users may have different privacy preferences regarding the same photo. Consider the ex-

ample when there is a group photo of Alice, Bob and Mary. Alice would like to share the

photo with her family members only, while both Bob and Mary would like to share the

photo with their close friends. It is possible that some of Bob and Mary’s close friends

are also Alice’s friends who will be able to view Alice’s photo although Alice’s initial

intention is to share only within her family. Our goal is to estimate the risk of privacy

breach due to such difference. Our system will calculate the disclosure probability of the

photo being seen by people who are in Alice’s contact list but not her family members
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due to the sharing activities from Bob and Mary. We will present the estimated risk to

all the photo owners so that they can refine their privacy policies.

In order to achieve the above goal, instead of calculating disclosure probabilities for an

individual photo owner as discussed in the previous sections, we need to calculate the

following disclosure matrix.

Definition 4.7. (Disclosure Matrix) Let u1, ..., un denote the group of people de-

picted in a photo img, and Pol1, ..., Poln denote the policies belonging to each photo

owner, respectively. The disclosure matrix is defined below, where uij ∈
⋃n

w=1 U
+
w /{u1, ...un}.

ui1 ui2 ... uik


u1 P (U−1 |ui1) P (U−1 |ui2) ... P (U−1 |uik)

u1 P (U−2 |ui1) P (U−2 |ui2) ... P (U−2 |uik)

... ... ... ... ...

un P (U−n |ui1) ... ... P (U−2 |uik)

The main idea underlying the disclosure matrix is to check the potential privacy breach

that may be caused by the union of the groups of people in all the photo owners’ sharing

list. After the calculating the disclosure matrix, we will identify and suggest the photo

owners to remove potentially high-risk sharing activities. The following is an illustrating

example.

Suppose that a photo has three owners: u1, u2 and u3. The sharing lists in the photo

owners’ policies are the following:

Polu1 = {u1, u2, u3, u4, u5}

Polu2 = {u1, u2, u3, u4, u6}

Polu3 = {u1, u2, u3, u5, u7}

The corresponding disclosure matrix considers the unions of the sharing list excluding

the photo owners themselves who are assumed to have full access to the photo. Assume
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that we obtain the probabilities as shown in the following:

u4 u5 u6 u7


u1 0.1 0.9 0.05 0

u2 0.1 0.95 0.8 0.1

u3 0 0.85 0.2 0.3

From the above disclosure matrix, we can see that P (U−1 |u5), P (U−2 |u5), and P (U−3 |u5)

are very high (i.e., above a given privacy threshold), which means the risk that people

in the non-sharing lists of all the photo owners may see this photo due to the further

propagation from u5. Therefore, our REMIND system will suggest all the photo owners

to remove u5 from their sharing list. In addition, user u2’s sharing with with u6 may

cause potential privacy breach for him/herself, thus, we would suggest u2 to remove u6

from the sharing list. If all the users agree with suggestions, the policy harmonization

will result in the following new policies:

Pol’u1 = {u1, u2, u3, u4}

Pol’u2 = {u1, u2, u3, u4}

Pol’u3 = {u1, u2, u3, u7}

4.4 Experimental Study

In this section, we present our experimental studies that evaluate both effectiveness

and efficiency of our proposed approach. Specifically, we conducted user studies to

see how people would react when presented a probability score of their privacy breach

as computed by our system. The goal is to validate the usefulness of our proposed

REMIND system. Next, we tested the performance of our system by using real social

network datasets with various sharing scenarios. The second set of experiments aims to

validate the efficiency of our proposed system.
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4.4.1 Effectiveness Study

While we have implemented a prototype of the proposed REMIND system, we could

not evaluate it in the real social network settings since its deployment in the real world

requires the installation at the service provider side, e.g., installed as an additional

function by Facebook or Twitter, so as to gain the access to the image sharing history.

Thus, we built a simulated social network environment and conducted an A/B test as

follows.

• Environment A is the one without the REMIND system which is similar to the

existing social networks where people share images as usual. Specifically, a user is

presented with an image and corresponding background story of the image so that

the user can feel more personal about the image. Then, the user is asked to select

one or more groups of users that they would like to share the image. We provide six

common groups for the users to choose, which are close family members, relatives,

close friends, friends, co-workers, and boss. This mimics the common practice in

the real social networks.

• Environment B is the one with the REMIND function. The difference from En-

vironment A is that after the same user chose the group of people to share, we

present the probability of privacy breach (if higher than a threshold say 90%) to

the user and ask if they would like to change their initial privacy settings.

We recruited another 88 participants on campus and online. There are 65 males and 23

females, 84% of whom are between 18 to 30 years old. All of the participants have at

least one social media account and have experience of sharing photos.

Through the simulation, we have the following interesting findings. The adoption of the

risk reminder depends on both the type of the image to be shared and the initial sharing

list that the user has chosen. In general, the more sensitive the image is, the higher the

chance the user will accept the REMIND system’s recommendation of changing their

original privacy settings. For example, the images that depict funny or crazy moments

are typically considered sensitive and usually shared with close family members and

friends. For such kind of images, when there is an alert about potential disclosure to the

user’s boss, 71.4% of the participants chose to accept the REMIND system’s suggestion

of removing the person who may cause this breach from the share list.
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When the images are less sensitive such as vacation photos, the decisions of whether

accepting the privacy alert split. Some users still care about the privacy breach to the

people who are not in the original sharing list, but some do not. The decisions are now

related to whom are not in the original sharing list. Participants seem to treat friends and

co-workers similarly, and close friends and close family members similarly. Specifically,

when the user initially shares the image with close friends, 50% of them do not care if

the image may also be viewed by close family members. When the user initially shared

the image with friends, 46% of them do not care if the image may also be viewed by

their co-workers. In addition, there is clear impact of how close the relationship is to

the photo owner. When the photo owner shares the vacation photos only with close

family member, 70% of them are concerned when their photos may be viewed by their

relatives who they did not include in the sharing list. When the photo owner shares

their party photos with close friends, 73% of them will try to avoid privacy leakage to

their co-workers.

To sum up, among total 366 privacy alerts issued in our simulated social networking

environment, more than 50% are accepted by the participants, which means more 50%

of privacy configurations can be improved. This shows the potential of adoption of our

REMIND system in the real world.

4.4.2 Efficiency Study

We now proceed to evaluate the efficiency of our approach. Since our probability model

looks into large-scale historical image sharing data and convoluted social networks, it is

critical that the disclosure probability can be computed in a real-time manner to provide

the users an immediate reminder when they are uploading new photos.

To examine the efficiency, we test our approach in real social networks released by

Facebook and Twitter [71]. Table ?? presents the statistics of the two social networks,

and Figures 4.10 and 4.11 depict the network graphs where the black dots represent

users and lines represent the connections between users. We can observe that these real

social networks are very complicated and nothing close to uniform distribution.

Since current social media sites only release the social network connections, but not

the image sharing statistics yet, we simulate a variety of scenarios in terms of image
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Figure 4.10: Facebook Network

Figure 4.11: Twitter Network

Table 4.3: Real Social Network Datasets

Dataset Facebook Twitter

Total number of nodes 3,908 81,306
Total number of edges 168,194 1,768,149
Average degree 43 21
Maximum degree 293 1635

sharing on these real social networks as described in Definition 4.4. It is worth noting

that although the image sharing statistic information is synthetic, it does not affect

the efficiency test since the social network topology is real and our sharing parameters

cover a wide range of possible sharing scenarios. Specifically, we first generate a random

number of photos ranging from 100 to 1000 for each user. Then, for each user, we
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randomly select a subset of his/her friends to share certain percentage of the photos,

and the size of this subset is varied in the following experiments. The receivers of the

shared photo will forward a random number of received photos to a random number of

their friends. In this way, the photos are propagated in the social network similar to

the real world scenario. We control the propagation by setting the maximum number of

hops to forward the photos since a personal photo may not be interesting to people who

have almost no relationship with the photo owner. We vary the number of people in

the initial sharing list. We also vary the speed of image sharing convergence as a photo

may becomes less interesting to people who are farther away from the photo owner.

Besides real social networks, we also test the synthetic networks with more than 20

million nodes to evaluate the scalability of our algorithm. The following subsections

elaborate the detailed experimental settings for each round of experiments and report

the corresponding results. All the experiments were conducted in a computer with Intel

Core i7-7700K CPU (4.20 GHz) and 16GB RAM.

4.4.2.1 Effect of the Number of Propagation Hops

In the first round of experiments, we evaluate the effect of the number of image propaga-

tion hops ranging from 1 to 5. When there is only one hop, the photo owners share the

photos with their direct friends and their friends will not forward the photos to anyone

else. When there are five hops, the photos will be forwarded by the photo owners’ friends

to the friends’ friends until 5 hops. The reason to choose maximum 5 hops is based on

the “six degrees of separation” theory [72] that any two users can be connected through

5 acquaintances, and we choose one degree less to avoid the photos being propagated

in the whole social networks which loses the privacy protection sense. Moreover, in

social network, the average degree of separation is only 3.5 as reported by a study [73].

Therefore, we chose 3 hops as the default values for the subsequent tests.

Figure 4.12 reports the average time taken to compute the disclosure probability of a

photo owner’s friend who is not in the initial sharing list. We can observe that the

calculation takes less than 1s in all cases for both the Facebook and Twitter datasets.

The efficiency could be attributed to the extraction of the personal sharing graphs as

well as the probability serialization algorithm, both of which help reduce the amount of

users (nodes in the social network) to be examined and calculated. Moreover, we also



Image Privacy: REMIND 63

Figure 4.12: Effect of the Number of the Hops

observe that the calculation time increases when the photos are propagated through more

hops. The reason is that the more hops, the more users may receive the shared photos,

resulting in various sharing chains and loops which takes time to calculate. Actually,

the average disclosure probability of the friends who are not in the initial sharing list

also increases with the hops.

4.4.2.2 Effect of the Number of Friends in the Initial Sharing List

In this round of experiments, we fix the image propagation hops to 3 and vary the

number of friends in the initial sharing list from 50 to 200. As shown in Figure 4.13,

the average time to calculate the disclosure probability for a user in both datasets can

be done in just a few milliseconds.

Figure 4.13: Effect of the Size of the Initial Sharing List

This again proves the efficiency of our algorithm. In addition, we also observe that the

calculation time increases with the size of the sharing list. This is because the more

people in the initial sharing list, the wider audience the photos may reach, which leads
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to a complicated sharing graph. As a result, there may be more ancestor nodes to be

computed before finalizing a user’s disclosure probability. Note that the wider audience

also means the corresponding increase in the average disclosure probabilities.

4.4.2.3 Effect of the Sharing Convergence Speed

We also evaluate the effect of the sharing convergence speed. We simulate this by

decreasing the number of friends to share the photos at each hop. Specifically, the

statistic sharing information is generated by allowing each user to share the photos with

75 friends. For each friend who received the photo, he/she forwards the photo to a

smaller number of friends, e.g., 20% less of the previous hop. The sharing stops when

reaching the 3rd hop. Figure 4.14 shows the average probability calculation time for

each user. Observe that the calculation time decreases when the sharing convergence

speed increases. This is because the number of people in the sharing list at each hop

decreases, and hence the overall size of the sharing graph decreases too. In other words,

the smaller the scope of the sharing, the faster the calculation.

Figure 4.14: Effect of Sharing Convergence Speed

Also, the smaller the sharing scope, the lower the average disclosure probabilities. For

example, let us take a closer look at the probability distribution of the Facebook dataset.

When the convergence speed is decreasing by 20% per hop, there are about 80% of people

in the photo owner’s personal image sharing graph (including those in the initial sharing

list) may see the photo with probability higher than 0.9 (denoted as “Slow convergence”

in Figure 4.15); when the convergence speed is faster (i.e., 60%), the number of people

with high disclosure probability drops to 50% (denoted as “Fast convergence” in Figure

4.15).
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Figure 4.15: Probability Distribution

4.4.2.4 Large-Scale Testing

Finally, we evaluate the scalability of our proposed algorithm by using synthetically

generated large-scale datasets. Figure 4.16 shows the average probability calculation

time for an image when the total number of nodes in the synthetic social network

increases from 1K to 20M. The number of hops for the image propagation is set to

the default value 3, and each user forwards the images to 15 randomly selected friends.

From the figure, we can observe that the calculation time only increases slightly with

the total number of nodes in the social network. This again indicates the advantage of

our proposed personal sharing graph which does not increase due to the increase of the

social network size. In other words, as long as the user’s contacts and image sharing

behavior stay the same, the calculation scope (i.e., extracted personal sharing graph)

is similar for the user no matter the user is in a small social network or a large social

network. This result also demonstrates the scalability of our approach.

Figure 4.16: Effect of Total Number of Nodes in the Social Network

In addition, we also examine an extreme case when there are a small number of users

with an extremely large number of contacts in the social network. To simulate this
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scenario, we randomly select 10,000 users from a 100K-node social network to be the

contacts of the photo owner who then randomly selects 1% (100 users) of his contacts

to share the images. Among the selected 1% of his contacts, we again randomly select

a user to have 10,000 contacts while other contacts only have a few hundred contacts

as that in Facebook. We simulate this for 3 hops of propagation and then test the

calculation time. The average time to calculate the disclosure probability to a person

takes just 6ms. Since the number of contacts who are not in the initial sharing list of

the photo owner is large, the total time to calculate the disclosure alert for an image

for the photo owner takes about 58s. The calculation time may be further shortened by

considering the use of parallel computing for the multiple contacts at the same time, for

which we will explore as our future work.

4.5 Summary

In this chapter, we presented a novel risk reminder system that offers the social network

users a quantitative view of their image sharing risks due to friend-to-friend re-sharing.

Our proposed REMIND system is based on a sophisticated probability model that mod-

els the large-scale image sharing statistic information and captures the complicated

sharing propagation chains and loops. Our system also addresses the policy harmo-

nization challenges in multi-owner photos. We have carried out performance studies to

validate the effectiveness and efficiency of our approach.
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Conclusion

The widespread use of smartphones has enabled people across the world to interact

immensely with applications that range from banking and games to air travel. Of par-

ticular interest, though, are the social networking apps. These may allow users to tap

into location-based services and/or share photos to other users online. While these two

specific actions may be harmless from the users’ perspective, there are associated risks

that hide within these uses.

This dissertation has gone over many of the common risks for LBSs, and explained in

detail the risks that may occur when sharing images online. The first system discussed

in the dissertation was MoveWithMe - a novel smartphone application available for

Android and iOS that can help protect against attacks from apps that use LBSs. The

app generates smart decoys that behave like a real human would, moving at appropriate

speeds for the area, and ensuring semantic protection by neglecting to reveal the same

semantic place type a user visits or even a similar pattern. The second work proposed in

this dissertation was REMIND, a risk estimation mechanism for social networking sites.

By quantifying the risk probability associated with sharing images to certain people,

REMIND is able to show the user in a definitive way just how risky sharing to certain

users may be. Then, the user can make a more knowledgeable decision whether or not

to share to people. A discussed policy harmonization aspect to REMIND can also be

utilized to resolve conflicts in sharing preferences between multiple owners of a single

photo when sharing online, so as to help ensure that the privacy of each person in an

image is protected appropriately.

67
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In a world that is advancing every day and showing no signs of slowing down, especially

in the technology realm, it is of utmost importance to continue considering privacy

and security. There is abundant evidence that when privacy and security is not taken

into consideration when advancing technology, the users suffer in various ways - privacy

breaches, profiling, tracking, etc. While MoveWithMe and REMIND are two methods

that can be used to help protect against adversarial threats, there are many more un-

thought of ways and research must continue to ensure users are protected and their

privacy is kept.

5.1 Future Research Directions

While MoveWithMe and REMIND are nearly finished systems, there are more ways to

test their effectiveness, usefulness, and efficiency. In the future, we can try fine-tuning

MoveWithMe to take into consideration current traffic conditions on the decoys’ routes

in order to adjust travel times. By doing this, it can greatly help prevent adversaries

from looking up the traffic conditions themselves in areas and filtering by that method.

For the REMIND system, a further enhancement to this can be to discuss with service

providers such as Facebook or Twitter to see if collection of anonymized image sharing

history is available for research. If so, this could help provide us a way to run real-world

scenario tests on real data to get the most accurate results for disclosure probability

calculation. Running these tests could then help us to refine REMIND to be better and

add more functionalities that could address any issues not already covered.
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