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A B S T R A C T

Following the work of Shapley on the Shapley value [16], and further work of Owen [14],

we offer an alternative formulation of and path to and through the work of Weber in

his paper on efficient but not symmetric cooperative games [21]. We accomplish this

by offering alternative conditions to replace the standard axiomatic assumptions. This

is accomplished by introducing conditions, “reasonableness” and “efficiency” on the

output of the games themselves, and using this to find properties of the linear maps that

describe the games themselves. This results in a special class of linear maps for which

any other “reasonable, efficient” map can be written as a convex combination of special

ones.

viii



C H A P T E R 1

I N T R O D U C T I O N

Wait a minute, wait a minute, wait
a minute, gentleman. There’s no
sense in running too far ahead of
ourselves.

James Frazier
Angels with Dirty Faces (1938)

1.1 History and Applications

1.1.1 The initial work

In Shapley’s 1953 work, entitled “A value for n-person games,” Lloyd Shapley established

an important idea in the theory of collaborative games. In Shapley’s own words, “the

possibility of evaluating games is therefore of critical importance.” A player in the game

needs to know their prospects, what they might receive compared to what they might

produce on their own. Shapley’s work set forth an axiomatically based way to do just

that.
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1.1.2 Applications and iterations

Since its first appearance, the Shapley value has been utilized in numerous contexts.

One context in which the Shapley value appears is in social network analysis. A per-

son or organization might want to know who is the most important, or most influential

in a network. In social contexts, one might want to impartially find the leader of a com-

munity or rank the importance of members of a team. In a strictly economic sense, this

could be used to target demonstrations or free samples of products, or used to target

advertising dollars to the “taste makers” of a network. More detail regarding these ideas

can be found in the work of Gómez et al., Narayanam and Narahari, Papapetrou, Gionis,

and Mannila [8, 13, 15], and more generally the seminal work of Myerson [12] on “Graphs

and Cooperation in Games.”

Additionally, the Shapley value has been used in more general economic and political

applications. Mertens has a compact writeup, “Some Other Economic Applications of the

Value” [10] which discussed some of these applications, such as taxation and redistribu-

tion, and economies with fixed prices. Additionally, for voting games, the Shapley-Shubik

power index builds on the ideas of the Shapley value to measure the power of each vote

in voting games [17], something of interest to the field of political science among other

fields.

In many, if not all, cases in a usable context, the computations necessary to calculate

this information are numerous, if not computationally prohibitive. As such, many ap-

proximation schemes have appeared, as seen in the papers by Owen, Fatima, Wooldridge,

and Jennings and Castro, Gómez, and Tejada in 1971/72, 2008 and 2009 respectively [14,

7, 3]. Algorithms using linear and polynomial techniques have been considered, among

others.

With all of this activity, one might question Shapley’s initial axioms. What is the

fairness that his axioms describe? There have been many explorations of variations of the
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Shapley value concept, such as probabilistic values and indices of power as summarized

in “Variations on the shapley value” of Monderer and Samet [11]. What happens when

an axiom is weakened or removed? In Weber’s paper of 1988, “Probabilistic values for

games,” there was an initial investigation of some of these ideas for the probabilistic

value view of the Shapley value. My research attempts to cover some of the same ideas in

a different, more general context with alternative assumptions placed on the allocations.

For other explorations of Weber’s work, Derks [4] offers another proof.

1.2 Review

To begin, we must first familiarize ourselves with the notion of an n-person cooperative

game in the style of Shapley [16], or for a more modern presentation see the exposition

of Maschler, Solan, and Zamir [9]. In this chapter, and the ones following, a cooperative

game can be characterized as the following sections describe.

1.2.1 Game Theory necessities

To understand our results, one needs a background of the generalities of (cooperative)

game theory.

Characteristic functions of games

We begin with a set of players N = {1,2,3,4, . . . ,n}, who may or may not be cooperat-

ing with one another. For convenience, we denote games with this number of players

|N |-player games, or more commonly n-player games. With our set of players, we now

endeavor to find a convenient way to mathematically express the possible gains that var-

ious subsets of players would receive if they collaborated. To accomplish this, we utilize

characteristic functions.

3



Definition 1.2.1. Given an n-player cooperative game, with players coming from the set

N , we characterize the game in terms of possible collaborations, via its characteristic

function v , where

v :P (N ) →R≥0

or, alternatively the domain is {0,1}|N |, i.e. in each situation, either a player is partici-

pating in a collaboration, or not, and the characteristic function assigns some value, or

“gains” to this collaboration.

Now, we wish to obtain new information about these characteristic functions. First

off, one may view them as a vector, with each entry in the vector corresponding to a

member T ∈P (N ), applying some logical ordering scheme to the vector, such as increas-

ing cardinality from the top to bottom of the vector. This vector view of a characteristic

function will be useful in the considerations to come.

A characteristic function can exhibit several useful properties, described below.

Definition 1.2.2 (Monotonicity). A characteristic function v is called monotone if given

sets S and T , with S ⊆ T , then

v(S) ≤ v(T ).

Given Definition 1.2.2, we wish to go further, and find a set of monotone characteris-

tic functions that characterize all monotone characteristic functions. Ideally, we would

be able to construct any monotone characteristic function as a positive linear combina-

tion of members of some set of representatives. To accomplish this goal, we reduce our

problem to one more manageable, as seen in Chapter 2. We also interest ourselves in the

following definitions.

Definition 1.2.3 (Superadditivity). A characteristic function v is called superadditive if

for all S,T ⊂ N , if S ∩T =∅, then

v(S ∪T ) ≥ v(S)+ v(T ).

4



In many practical examples, superadditivity is assumed, as in some way, this implies

the collaboration is “worth it”, and what one would receive has the potential to be better

than what one could do on ones own, or in a smaller group.

Definition 1.2.4 (Subadditivity). A characteristic function v is called subadditive if for

all S,T ⊂ N , if S ∩T =∅, then

v(S ∪T ) ≤ v(S)+ v(T ).

Remark. One can observe that monotonicity is a generalization of superaddditivity, as-

suming v(S) ≥ 0 for all S.1 All superadditive characteristic functions are monotone, how-

ever, not all monotone characteristic functions are superaddititve. C

Indeed. Suppose we have a superadditive characteristic function, v . Thus, by definition

v(S ∪T ) ≥ v(S)+ v(T )

for all S and T with S ∩T =∅. Thus, we can clearly see that v is monotone. This because

v(S ∪T ) ≥ v(S)+ v(T ) ≥ v(S)

hence, under relabeling

v(A) ≥ v(B)

for B ⊂ A. �

Simple Games

A concept that will prove integral to our arguments is those of simple games. In short a

simple game is one made up of 0 and 1.

Definition 1.2.5. A game v is simple if it only takes on the values 0 and 1.

1This is contrary to [21], where they do not assume that the characteristic functions take on non-
negative values, and hence, superadditive does not imply monotone.
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We tend to call simple games by a slightly different name, binary characteristic func-

tions. This can be attributed to their makeup as functions, having an output of 0 or

1.

Shapley’s value and the Collaborative Game

With this information about the game, we now shift focus to that of allocating the spoils

of the collaboration to each player. Typically, this solution is viewed as a vector, φ(N ; v)

and the gains assigned to each player are denoted φi (N ; v) for player i . One can call

this φ an allocation. The familiar Shapley value is one such allocation. To arrive at the

Shapley value, we need to familiarize ourselves with his axioms for a “fair” solution φ to

the problem of dividing spoils.

Axiom 1.2.1 (Efficiency). A solution φ is efficient if for every coalitional game (N ; v)

∑
i∈N

φi (N ; v) = v(N ).

Namely, the total gains over the set of all players, v(N ), is divided in some way be-

tween them.

Definition 1.2.6. Let (N ; v) be a coalitional game, and let i , j ∈ N . Players i and j are

symmetric if for every coalition S ⊆ N \
{
i , j

}
v (S ∪ {i }) = v

(
S ∪{

j
})

.

Note. Essentially, if two players contribute the same, they will get the same payoff. In

the real world, experience and expertise also factor into this calculation. This is, however

somewhat difficult to quantify mathematically. C

Axiom 1.2.2 (Symmetry). A solution φ is symmetric if for every coalitional game (N ; v)

and every pair of symmetric players i and j in the game:

φi (N ; v) =φ j (N ; v)

6



Note. Of course, this seems reasonably fair, but how does one determine similarity in

real life? Does experience and expertise play a factor when collaborating with others?

What about time of arrival for each player? C

Definition 1.2.7. A player i is called a null player in a game (N ; v) if for every coalition

S ⊆ N , including the empty coalition one has

v(S) = v(S ∪ {i })

Logically, if a player contributes nothing to all collaborations, then, they should not

expect to receive anything from the collaboration.

Axiom 1.2.3 (Null player property). A solution φ satisfies the null player property if for

every coalitional game (N ; v) and every null player i in the game,

φi (N ; v) = 0.

Axiom 1.2.4 (Additivity). A solution φ satisfies additivity if for every pair of coalitional

games (N ; v) and (N ; w), φ(N ; v +w) =φ(N ; v)+φ(N ; w).

An alternative axiom can replace Null player property and additivity

Axiom 1.2.5 (Marginality, to potentially replace Axioms 1.2.3 and 1.2.4). A solution φ

satisfies marginality if for every pair of games (N ; v) and (N ; w) with the same set of

players, and for every player i , if

v(S ∪ {i })− v(S) = w(S ∪ {i })−w(S) ∀S ⊆ N \ {i }

then

φi (N ; v) =φi (N ; w).

Putting together all of our axioms, we can finally obtain the Shapley value.

Theorem 1.2.1 (Shapley value). There is a unique solution φi (N ; v) satisfying efficiency,

addativity, the null player property, and symmetry. This is the Shapley value.

7



Definition 1.2.8. The Shapley value is given by the equation

φi (N ; v) = ∑
S⊆N \{i }

|S|!(|N |− |S|−1)!

|N |! (v(S ∪ {i })− v(S)) .

Note. This indeed satisfies all the axioms, and is unique. One can think of it as a weighted

average. C

The Shapley value can also be determined via a path integral calculation using a multi-

linear extension of v as described by Owen [14]. This idea led, somewhat tangentially, to

the formulation and results of this dissertation.

Note. This Shapley value is computationally intensive in practice. Hence, thereare many

approximation schemes, including but not limited to [3, 7, 14]. C

1.2.2 Analysis background

In the proofs of our results, we invoke several analytical results. So, to make the explana-

tions clear, we present the results and concepts from functional analysis we shall draw

from.

Extreme Points

We familiarize ourselves first with the concept of extreme points.

Definition 1.2.9. Let X be a vector space, and suppose K is a subset of X . A point x ∈ K

is an extreme point of K if it does not lie on a line segment in K . To be more explicit, x

cannot be written as a (generalized) linear combination of distinct values in K .

We shall denote the set of extreme points of K ex(K ). Typically, we consider convex

K .

Another way to view the definition of an extreme point x, following Bowers and

Kalton [2], is if u and v are elements of K such that x = (1− t )u + t v for some t ∈ (0,1),

8



then x = u = v . Namely, we cannot write an extreme point as the convex combination of

two distinct points in the set.

In our explorations, we shall see several examples of extreme points. In a basic sense,

extreme points follow our intuition. However, one must still be careful, as in some cases

they do not.

Example. The extreme points of the following polygons are the dots appearing on the

vertices. Take note, that not every vertex is necessarily an extreme point.

Metrizable topological vector spaces

Following the exposition by Aliprantis and Border [1], we explore some facts about metriz-

able topological vector spaces, that will also be useful in proving our results. (Although,

we do not need the full power of any of the statements.)

Definition 1.2.10. A neighborhood base at 0 is a collection of sets B of neighborhoods

of 0 with the property that if U is any neighborhood of 0, there exists a B ∈B such that

B ⊂U .

Theorem 1.2.2. A Hausdorff topological vector space is metrizable if and only if zero has

a countable neighborhood base.

Theorem 1.2.3. In a complete metrizable locally convex space, the closed convex hull of a

compact set is compact.

Note. Rn certainly has a countable neighborhood base at 0. It is also complete. C

The Krein-Milman Theorem

The Krein-Millman Theorem, of functional analysis, is yet another result we shall utilize

in our processes.

9



Theorem 1.2.4 (Krein-Milman). Suppose E is a locally convex Hausdorff topological vec-

tor space. If K is a nonempty compact, convex subset of E, then

K = co (exK )

where ex is the set of extreme points, and co is the closed convex hull. In particular, ex(K ) 6=
∅

The proof of the Krein-Millman Theorem is non-constructive, however, the power of

this result allows us to prove some results more intuitively.

1.3 Contributions of the dissertation

In the paper [21], Weber gave many results on the theory of probabilistic values for games.

One in particular is the fact that one can characterize games that are efficient without

symmetry, i.e. random order values, as probabilistic values [21, Theorems 12 and 13]. In

this dissertation, we offer an alternative idea and path to the results in the world of these

non-symmetric games, with the results below.

Note. These results were inspired by the papers [14, 16] and without knowledge of [21],

until later on in idea development. The main difference between this paper, and the

one of Weber is we begin with more restricted, but reasonable assumptions, the Krein-

Millman theorem is used in the proof of the main result, and properties of allocations

themselves are looked into individually, rather than the whole process at once. C

While the following is not hard to prove, it inspired our consideration of monotone

characteristic functions.

Result 1 (Theorem 2.1.2). Any monotone characteristic function (v(S) ≤ v(T ) for S ⊆ T ),

can be written as a positive sum of the extreme points of the set of monotone binary char-

acteristic functions (simple games).

10



First, consider the notion of an allocation of value, a function φ of N and v that takes

its values in R|N |. This φ gives some of the gains of a collaboration of players to each

individual player, i.e. φi (N ; v), the i th component of the vector φ(N ; v) is given to player

i .

In the proof of our main result, two of our results come to the forefront, along with our

new conditions. We set forth an equivalent way to view efficiency (
∑

i φi (v, N ) = v(N )),

and introduce the notion of reasonableness for an allocation, namely that the inequality

min
S:i∉S

{v (S ∪ {i })− v(S)} ≤φi (N ; v) ≤ max
S:i∉S

{v (S ∪ {i })− v(S)}

is satisfied for all monotone v .

The first of these results is the pairing of elements in a matrix of an allocation. To un-

derstand this result, one must view an allocation as a matrix, which is possible due to lin-

earity. Each entry in an allocation A can be referred to by the player i (row) and the set of

players S, associated with the column. Of course, we use the same ordering for columns

as we use for the rows of the characteristic functions. We denote each entry by Ai ,S . In

this notation the amount allocated to a player i is φi (v, N ) = Ai · v =∑
S⊂N Ai ,S v(S).

Result 2 (Theorem 3.2.7 and Theorem 3.2.10). Given a player (row) i of a reasonable al-

location viewed as a matrix, the elements in each row pair off in the following manner:

1 ≥ Ai ,S∪{i } =−Ai ,S ≥ 0

for sets S with S ∩ {i } =∅.

This allows us to prove many fundamental results, including allowing one to find the

extreme points of the so called “reasonable” allocations. It turns out that they are well

behaved, specifically these extreme points are the “special” allocations. The special

allocations can be constructed given the set chain

∅= M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ M|N |−1 ⊂ M|N | = N

11



with |Mm+1 \ Mm | = 1. Player Mm+1 \ Mm = {i } is assigned the “gains”

φi (N , v) = v(Mm+1)− v(Mm)

by the allocation.2

Result 3 (Lemma 3.3.3). The extreme points of the set of all reasonable, efficient alloca-

tions are precisely the special allocations.

When we combine all our work together, we obtain our main result.

Result 4 (Theorem 3.4.1). Any reasonable, efficient allocation can be written as a convex

combination of the special allocations, more strongly,

An allocation is reasonable and efficient if and only if the allocation lies within the convex

hull of the special allocations.

Following the main result, we observe some further more generalized results.

Result 5 (Proposition 4.1.4). If A is reasonable and efficient for superadditive character-

istic functions (v(S∪T ) ≥ v(S)+v(T ) for S∩T =∅), then it is a convex combination of the

special allocations.

Namely, we can obtain the results above looking only at superadditive characteristic

functions. One can even go further, as described in Chapter 4.

2A terse way to define the special allocations would be to say that these are those reasonable, efficient
allocations viewed as a matrices, with a −1 and 1 in each row.
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C H A P T E R 2

A V I E W O F C H A R A C T E R I S T I C F U N C T I O N S

What I say is that, if a fellow really
likes potatoes, he must be a pretty
decent sort of fellow.

A. A. Milne

2.1 Monotone Characteristic Functions

and their Extreme Points

We wish to be able to characterize the monotone characteristic functions with a finite

subset. Ideally, we would like a basis. If we can find the extreme points of the set with

v(N ) = 1 we will have done just that, and will have a spanning set for which any monotone

characteristic function can be written as a positive linear combination of the extreme

points.

Theorem 2.1.1. The set of extreme points of the monotone characteristic functions with

v(N ) = 1 are the monotone characteristic functions with entries consisting of either 0 or 1,

or the monotone binary vectors, which in turn are simple games.

13



Proof. Let us begin with our set of proposed extreme points, which can be characterized

as the set of v with the property that each entry is either 0 or 1, and v is monotone. One

can build these in column vector form by picking a member P ∈P (P (N )), and placing a

1 in the rows corresponding to a set in P and all supersets of that set, and a 0 in all other

rows. Now, let us suppose our process does not yield all possible extreme points. Namely,

suppose we have an extreme point vex not yielded by the prior process.1 Necessarily,

this new extreme point of our set has a smallest set S ∈ P (N ) for which vex(S) 6= 0 and

vex(S) 6= 1. Let us choose

ε< min


1− vex(T ) for all T such that S ⊆ T, vex(T ) < 1

vex(S)

.

By construction, we can add ±ε to S’s place and to each superset T with vex(T ) < 1,

without having any entry in the vector of vex become larger than one or less than 0.

Additionally, as S ⊆ T , vex(S) ≤ vex(T ). As this is the case, when the addition occurs, we

obtain

vex(S)±ε≤ vex(T )±ε.

This is true for any T1 and T2 both supersets of S, with T1 ⊆ T2, and both Ti satisfying

the condition vex(Ti ) < 1 as well. Suppose we have such T1 and T2. As vex is monotone,

originally, vex(T1) ≤ vex(T2). Therefore, vex(T1)± ε ≤ vex(T2)± ε. So, from this vex we

can obtain two monotone characteristic functions, v+ε and v−ε, obtained by adding or

subtracting ε as above. Both v+ε and v−ε are monotone characteristic functions with

v(N ) = 1. From this we obtain a contradiction, 1
2 v+ε+ 1

2 v−ε = vex . This contradicts the

assumption that vex was an extreme point. Therefore, our set is exhaustive and contains

all the extreme points of the monotone characteristic functions with v(N ) = 1.

1This monotone characteristic funtion, if it exists would be quite vexing. . .

14



Remark. This statement allows us to write any monotone function with

v(N ) = 1

as a generalized convex combination of the set of extreme points of the monotone char-

acteristic functions with v(N ) = 1. Further, one can write any monotone characteristic

function as a positive sum of these extreme points by dilating the set of all monotone

functions with v(N ) = 1, as seen in the following example. C

Example. Let us take the characteristic function for a three player game i.e. N = {1,2,3}

in vector form 

{}

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

{1,2,3}



=



0

.2

.3

.1

.4

.3

.4

.5


Certainly, this is monotone, or one can quickly verify. For n = 3, the extreme points of

the set of all characteristic functions with v(N ) = 1 are

0

0

0

0

0

0

0

1



,



0

0

0

0

0

0

1

1



,



0

0

0

0

0

1

0

1



,



0

0

0

0

0

1

1

1



,



0

0

0

0

1

0

0

1



,



0

0

0

0

1

0

1

1



,



0

0

0

0

1

1

0

1



,



0

0

0

0

1

1

1

1



,



0

0

0

1

0

1

1

1



,



0

0

0

1

1

1

1

1



, (conti nued)
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(conti nui ng )



0

0

1

0

1

0

1

1



,



0

0

1

0

1

1

1

1



,



0

0

1

1

1

1

1

1



,



0

1

0

0

1

1

0

1



,



0

1

0

0

1

1

1

1



,



0

1

0

1

1

1

1

1



,



0

1

1

0

1

1

1

1



,



0

1

1

1

1

1

1

1



and



1

1

1

1

1

1

1

1


To write our characteristic function as a positive sum of the previous vectors, we proceed

as described below. First, one finds the set with smallest cardinality with a nonzero

value in its vector place. If there are multiple such choices, we choose the place with

the smallest value among the collection of sets with smallest cardinality. To proceed, we

then subtract a scalar multiple of the appropriate vector, found by taking our current

vector and making all nonzero entries 1 (certainly an extreme point), and multiplying

by the value in place of the set chosen above. As our characteristic function is already

monotone, this vector is also monotone and this is certainly possible.

0

.2

.3

.1

.4

.3

.4

.5



− .1



0

1

1

1

1

1

1

1



=



0

.1

.2

0

.3

.2

.3

.4
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One iterates this process, being careful to never make any entry negative.

0

.1

.2

0

.3

.2

.3

.4



− .1



0

1

1

0

1

1

1

1



=



0

0

.1

0

.2

.1

.2

.3



→



0

0

.1

0

.2

.1

.2

.3



− .1



0

0

1

0

1

1

1

1



=



0

0

0

0

.1

0

.1

.2



→ (conti nued)

(conti nui ng ) →



0

0

0

0

.1

0

.1

.2



− .1



0

0

0

0

1

0

1

1



=



0

0

0

0

0

0

0

.1



→



0

0

0

0

0

0

0

.1



− .1



0

0

0

0

0

0

0

1



=



0

0

0

0

0

0

0

0


Thus, unwrapping what we have just done,reversing the process, we obtain

0

.2

.3

.1

.4

.3

.4

.5



= .1



0

1

1

1

1

1

1

1



+ .1



0

1

1

0

1

1

1

1



+ .1



0

0

1

0

1

1

1

1



+ .1



0

0

0

0

1

0

1

1



+ .1



0

0

0

0

0

0

0

1



.
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Table 2.1: Number of Monotone Characteristic Vectors

n count of characteristic vectors

1 2
2 5
3 19
4 167
5 7,580
6 7,828,353
7 2,414,682,040,997
8 56,130,437,228,687,557,907,787

As mentioned, one can do this in general, leading to the following result.

Theorem 2.1.2. Any monotone characteristic function, can be written as a positive sum of

the extreme points of the set of monotone binary characteristic functions (simple games).

In general, one might be curious how many of these monotone binary vectors or

“extreme points” there are for various numbers of players, and how fast this number

grows. This is a well studied sequence, the Dedekind Numbers (with various offsets) see

for example [18, 19], or Table 2.1.
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C H A P T E R 3

A L L O C A T I O N S O F V A L U E

Life isn’t fair. It’s just fairer than
death, that’s all.

William Goldman
The Princess Bride

3.1 An introduction to allocations

The Shapley value is a very specialized concept, and the given axioms might be too

specific in some situations. From this point forward, we see if we can generalize the

idea of division of total value v(N ) among the players in N , while reducing the number

of required axioms. In addition, we shall see what properties we can determine based

on these axioms. We call an alternative way of splitting the spoils, with fewer axiomatic

assumptions an allocation of value, or allocation. So, certainly the Shapley value can be

viewed as an allocation.

The first thing we notice is the fact that these allocations φ can be viewed as lin-

ear maps, assuming we adopt Axiom 1.2.4 (Additivity). As such, they can be viewed as

|N |×2|N | matrices. This view works quite well with the vector view of the characteristic

functions discussed previously. Thus, we assume that Axiom 1.2.4 holds in all of our
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further considerations. It is helpful to note that in our considerations, N is fixed, so φ can

be viewed as a function of v only. We also often make the identification between φ and

its matrix counterpart. The majority of our results are proved using this identification.

Inspired by the ideas presented by Owen [14], one can consider the path integrals

along the edges of the region of integration, rather than the main diagonal (correspond-

ing to the Shapley value). One may quickly see that the resulting allocations are well

behaved. They can be defined via set chains of the players in N , specifically set chains

that contain all players introduced one by one. More formally, allocations are “special” if

they are the allocations described below.

Definition 3.1.1. A special allocation φ is an allocation that assigns marginal contribu-

tions directly to players in the following way. Given a set chain

∅= M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ M|N |−1 ⊂ M|N | = N

with |Mm+1 \ Mm | = 1, player Mm+1 \ Mm = {i } is assigned the “gains”

φi (N , v) = v(Mm+1)− v(Mm).

Thinking about this in matrix form we can see there is strong matrix allocations are

“special” structure here as well. Using the set chain made up of Mm , with m = 0 to m = |N |
starting with M0 =∅ with the restriction for all integer m between 0 and |N |−1 that

|Mm+1 \ Mm | = 1

we see this means that we are adding a single player to M j at each step in the chain. This

corresponds with the matrix of the allocation directly, namely for m from 0 to |N |−1, we

interpret the set chain as follows: in the row for player Mm+1 \ Mm = {i }, we place a −1 in

the column associated with Mm and a 1 in the column associated with Mm+1. Looking

at this, one might see why such allocations are “special”.

We quickly see that there are nice consequences of viewing the allocation as a matrix.
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The sum of elements in the first column is −1 and the sum of elements in the last column

is 1. All other columns sum to 0. The sum of the absolute value of the row elements is 2,

and additionally the sum of the absolute value of the interior column elements (not in

the first or last column) is 2 as well. We will see all these consequences appear again, in

more general context.

These chains are in turn in one to one correspondence with the set of all permutations

of |N | letters, which we can use to find the number of such allocations, as seen in Table 3.1

on page 27.

With this new terminology, we endeavor to build something similar to what we had

for characteristic functions for the allocations. Namely, can we build a representative set

of allocations from which we can write any allocation? It turns out, we can do so for so-

called “reasonable, efficient” allocations, and it turns out that this set of representatives

is the set of all the special allocations.

3.1.1 Efficiency in allocations

We offer a slight generalization of Shapley’s efficiency useful to out situation to begin

Axiom 3.1.1. An allocation φ with matrix A to be efficient if

n∑
i=1

φi (N ; v) = v(N )− v(∅)

for all monotone v , where φ j (N ; v) = A j · v , with A j denoting the j th row of A.

Note. For most practical applications, we can assume that v(∅) = 0. With this assump-

tion, we will divide all the spoils, even those present when no work is done by any player,

among those participating in the game. Thus, we could think of efficiency as

n∑
i=1

φi (N ; v) = v(N )− v(∅) = v(N ).
C

This is of course closely related to Axiom 1.2.1 (Efficiency).
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It turns out that the row-wise sum properties we observed in the special allocation’s

matrices are true of any efficient one.

Lemma 3.1.1. Column-wise, the sum of all the row elements in each column of the matrix

of an efficient allocation is

(−1,0, . . . ,0,1).

Proof. Suppose we have a n player game, with set of players N . Let us also suppose we

have an efficient allocation φ, with matrix A. By definition,

A · v =φ(N ; v)

for all v , with φ j (N ; v) being the allocation of value to each player. Taking this informa-

tion, we can now multiply both sides of the equality by a row univector of length n, and

obtain

[1, . . . ,1]A · v = [1, . . . ,1]φ(N ; v).

Now, taking the right hand side, we notice

[1, . . . ,1]φ(N ; v) =
n∑

j=1
φ j (N ; v).

Via efficiency,
n∑

j=1
φ j (N ; v) = v(N )− v(∅).

Of course,

v(N )− v(∅) = [−1,0, . . . ,0,1]v.

Putting all of this together,

[1, . . . ,1]A · v = [−1,0, . . . ,0,1]v.

As this is true for all v , we obtain

[1, . . . ,1]A = [−1,0, . . . ,0,1].
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Therefore, the sum of the rows of A is what we require.

Note. The converse of this result is trivially true, namely if the sum of all the row elements

in each column is

(−1,0, . . . ,0,1)

then the allocation is efficient. C

3.1.2 Reasonableness in allocations

We begin our study in earnest by by proposing a new axiom, “reasonableness”.

Axiom 3.1.2. An allocation φ with matrix A reasonable1 if for all monotone v ,

min
S:i∉S

{v (S ∪ {i })− v(S)} ≤ Ai · v =φi (N ; v) ≤ max
S:i∉S

{v (S ∪ {i })− v(S)} , (3.1)

where the maximum and minimum are taken over all S, with i ∉ S.

Why one might say this is “reasonable” is clear. A logical player in a game would

not expect to get less than the smallest contribution they make to a group. In the same

way, an impartial observer of a game would not expect a player to receive more than the

maximum contribution a player made to any collaboration.

It turns out that these reasonable allocations have numerous useful properties, and

indeed, along with efficiency let us get a result analogous to the one we had for charac-

teristic functions for allocations of value.

Lemma 3.1.2. Given a player m, there exists a monotone v so

min
S:m∉S

{v (S ∪ {m})− v(S)} = max
S:m∉S

{v (S ∪ {m})− v(S)} .

1This condition clearly implies several other conditions sometimes used in the explorations of alloca-
tions, namely Weber’s dummy axiom, and the null-player property (Axiom 1.2.3). Recall, the dummy axiom
is a generalization of the null player property. A player m is dummy in the game if

v(S ∪ {i }) = v(S)+ v({i }) for all S ⊂ N \ {i }.

The dummy axiom is simply if player i is a dummy in the game v , then φi (v) = v({i }).

23



i.e., the inequalities in Axiom 3.1.2 are equalities.

Proof. To begin, take m to be a given player in your game. We wish to build a binary

characteristic function (or simple game) vm so the minimum is equal to the maximum.

We construct vm as follows: If m ∈ S for each place, put 1 in that place, if not, place a 0.

By construction, this is monotone. Also by construction, the difference

vm (S ∪ {m})− vm(S) = 1

for all S with S ∩ {m} =∅.

Note. This tells us φm(N ; vm) = 1, and φl (N ; vm) = 0 for l 6= m. C

Lemma 3.1.3. The characteristic functions constructed in Lemma 3.1.2 are both superad-

ditive and subadditive, as defined in Definitions 1.2.3 and 1.2.4.

Proof. Let us handle this for player m. The cases for other players follow identically.

Observe, via the proof of Lemma 3.1.2, we have

min
S:m∉S

{v (S ∪ {m})− v(S)} = max
S:m∉S

{v (S ∪ {m})− v(S)} .

Via the body of the proof, we know vm (S ∪ {m})− vm(S) = 1 for all S \ {m}. So, we wish to

show that v(S ∪T ) = v(S)+ v(T ) for S ∩T =∅. Suppose that we have two disjoint sets as

described. There are two cases to deal with, m ∈ S ∪T and m ∉ S ∪T .

To begin, let us consider the first of those possiblilites. Without loss of generality

m ∈ S. Thus, by our construction we have v(S) = 1 as m ∈ S and v(T ) = 0 as m ∉ T , as S

and T are disjoint. Of course, v(S ∪T ) = 1 as well. So, we have 1 = 1+0, an equality.

Now, consider the second of the two possibilities. As m ∉ S ∪T , m ∉ S and m ∉ T .

Thus, v(S) = 0, v(T ) = 0 and v(S ∪T ) = 0. So, we have 0 = 0+0, another equality.

Proposition 3.1.4. The convex combination of two reasonable allocations is again rea-

sonable.
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Proof. Suppose φ1 and φ2 are reasonable, and by definition satisfy the inequality in

Axiom 3.1.2. By that definition, for j ∈ {1,2}

min
i∉S

{v (S ∪ {i })− v(S)} ≤φ
j
i (N ; v) ≤ max

i∉S
{v (S ∪ {i })− v(S)}

We now consider the reasonableness of the convex combination tφ1(N ; v)+(1−t )φ2(N ; v).

Certainly,

t min
i∉S

{v (S ∪ {i })− v(S)} ≤ tφ1
i (N ; v) ≤ t max

i∉S
{v (S ∪ {i })− v(S)}

and

(1 − t )min
i∉S

{v (S ∪ {i })− v(S)} ≤ (1 − t )φ j
i (N ; v) ≤ (1 − t )max

i∉S
{v (S ∪ {i })− v(S)} .

So, adding the above together, noting t + (1− t ) = 1 leaves us with

min
i∉S

{v (S ∪ {i })− v(S)} ≤ tφ1
i (N ; v) + (1 − t )φ2

i (N ; v) ≤ max
i∉S

{v (S ∪ {i })− v(S)} .

Therefore, tφ1 + (1− t )φ2 is reasonable as we wished.

Lemma 3.1.5. Given a matrix of a reasonable allocation A with each row only containing

a single -1 and a single 1 and the rest of the entries all being 0, if a -1 falls in the column

for a set S, then the associated 1 in that row must fall in a superset of S, S ∪T , where

|T |− |S ∩T | > 0.

Proof. Suppose to the contrary, we have an allocation matrix A, for which the ordering

is in reverse, namely the −1 is in S ∪T and 1 in S, in the row associated with player j .

Build vS as the monotone function with vS(S) = 0 and vS(S ∪T ) = 1 for all T such that

S ∩T 6=∅. This function is monotone by construction. When we utilize our map A to

determine how to split the spoils, there is an immediate contradiction. For the player j ,

φ j (v) = −1. This contradicts the fact that reasonable allocations do not assign players
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negative spoils. At the very worst, for a monotone binary game v ,

0 ≤φi (v, N ) ≤ 1

which is non-negative.

3.2 Extreme points of the reasonable efficient allocations

By observation, with small sets of players one might infer that the special allocations

are the set of extreme points for the reasonable, efficient allocations, see for example

Appendices B and C. We now proceed to provide a proof of this assertion in general.

3.2.1 Special allocations and sets

To begin, recall we defined each special allocation based on a strictly increasing (by

exactly one member at each step) chain of sets. For example, the following special allo-

cation matrix for the game with 3 players,
−1 1 0 0 0 0 0 0

0 −1 0 0 1 0 0 0

0 0 0 0 −1 0 0 1


ordered usually, as follows

[∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}]t ,

is associated with the chain of sets

∅⊂ {1} ⊂ {1,2} ⊂ {1,2,3}.

This idea of set chains and their connection to the special allocations will prove integral

to our following arguments. Additionally, it allows us to see the cardinality of the set of all

special allocations quite quickly, as we know that the number of these chains corresponds
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Table 3.1: Number of special allocations

n Number of special allocations

1 1
2 2
3 6
4 24
5 120

directly to the number of permutations of n letters. This is summarized, with some

explicit values in Table 3.1.

To prove our result, we will suppose we have an extreme reasonable, efficient allo-

cation not listed in the set of all special allocations. We must show this is impossible.

To obtain this result, we must first note that any reasonable, efficient allocation has the

following properties.

3.2.2 Structural constraints on reasonable efficient allocations

Each reasonable, efficient allocation has many properties, as demonstrated previously,

and shown explicitly in Appendices B and C. Via those requirements, we can find even

more structure that will help us reach our result. To begin, we will find the row-wise

paring of elements. To make the proof more clear, the following notation is introduced.

Definition 3.2.1. Each entry in the matrix of an allocation can be referred to by a player

and set, given A, we denote each entry by

Ai ,S

where i denotes the player (row), as before, and S denotes the column associated.

Note. Definition 3.2.1 allows us to prove things independent from the ordering of the

sets making up the columns of our matrices. Thus, if we can prove the statement that

follows for a single row, we have it for all rows. C
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This allows us to write the payout to any specific player simply, as

φi (v, N ) = Ai · v = ∑
S⊂N

Ai ,S v(S),

recalling Ai is the i th row of A, and the sum is taken over all S ⊂ N .

3.2.3 Truncations of characteristic functions

Definition 3.2.2. We call a set S minimal in the sense of the characteristic function if

v(S) > 0 and there exists no set T ( S with v(T ) > 0.

Definition 3.2.3. A truncation2 of a characteristic function v is the characteristic func-

tion w such that w(S) = 0 for some minimal S, and w(T ) = v(T ) for T 6= S.

Remark. We call S the truncating set. C

Lemma 3.2.1. If v is monotone, then any truncation of v is monotone.

Proof. Suppose v is a monotone characteristic function. Then, we know v(T ) ≥ v(S) for

all S ⊆ T by definition. Let us let w be a truncation of v , with truncating set St . Recall,

v(T ) = w(T ) for all T 6= St , and our inequality stands without much work for the majority

of our places. However, we must concern ourselves of the cases when St appears, as

v(St ) > w(St ) = 0. This is no obstacle for T with St ⊂ T , as

w(T ) = v(T ) ≥ v(St ) > w(St )

and

v(St ) > w(St ) = 0 = v(S) = w(S)

for S ⊂ St . Recall, of course, the truncating set is minimal, and there are no subsets with

w(S) > 0. Therefore, any truncation of v is again monotone.
2This is similar in spirit to Weber’s deletion [21, Section 6]. The language truncation remains as we are

thinking of these characteristic functions as vectors.
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Lemma 3.2.2. If v is superadditive, then any truncation of v is superadditive.

Proof. Suppose v is a superadditive characteristic function. Then, we know v(S ∪T ) ≥
v(S)+ v(T ) for all S and T with S ∩T =∅, by definition. Let us let w be a truncation of v ,

with truncating set St . Recall, v(T ) = w(T ) for all T 6= St , so the inequality stands without

much work for the majority of our places. However, we must concern ourselves with the

cases when St appears, as v(St ) > w(St ) = 0. Note, however

w(St ∪T ) = v(St ∪T ) ≥ v(St )+ v(T ) > w(St )+w(T )

if T 6=∅, and the statement is trivial if T is empty. Therefore, any truncation of v is again

superadditive.

Remark. The truncations are not neccesarily subadditive. Our inequality is

v(S ∪T ) ≤ v(S)+ v(T ).

In this case, if v(S) = v(T ) = 0, it is not necessarily the case that v(S ∪T ) = 0. Consider

the following subadditive vector see previously (with ordering

(∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3})

[0,1,0,0,1,1,0,1]t .

Now we look at a truncation.

[0,0,0,0,1,1,0,1]t .

For this vector, we notice v(1,3) = 1. Importantly, notice v(1) = 0 and v(3) = 0. Substitut-

ing into our inequality, we quickly run into an issue, namely,

v({1}∪ {3}) = 1 ≤ 0 = v({1})+ v({3}),

which is clearly false. C
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Definition 3.2.4. A pair truncation of the characteristic function v is two successive

truncations of v with truncating sets S and S ∪ {p} respectively, for a player p with p ∉ S.

Lemma 3.2.3. A pair truncation w of a binary characteristic function v with marginal

contribution of player p equal to 0 with truncating sets S and S ∪ {p}, where S is any

minimal set with p ∉ S, retains the same 0 marginal contribution for p.

Proof. To begin, let us take a characteristic function v with the marginal contribution of

p equal to 0. Take the pairwise truncation of this v with the truncating sets S and S ∪ {p},

as described, where S is any minimal set with p ∉ S. Recall for v , v(S) and v(S ∪ {p}) = 1.

Prior to pair truncation, we note that, for sets T ∩ {p} =∅, v(T ∪ {p})− v(T ) = 0, as the

marginal contribution of p is 0. Naturally, following the pair truncation, w(T ∪{p})−w(T )

is still equal to 0 for all sets T . For all the unchanged places, this is clear, and for the two

changed places, rather than seeing 1−1 = 0 for the case of T = S, our truncating set, we

now observe 0−0 = 0.

Note. This of course works on the characteristic functions one can construct following

Lemma 3.1.2 for player m, and they all have the same (zero) marginal contribution for

any player p ∈ N \ {m}. C

3.2.4 Extensions of characteristic functions

Definition 3.2.5. Given a characteristic function vM on the set M ( N , we can extend it

to a characteristic function vN on N by setting

vN (S) = vM (S ∩M).

Lemma 3.2.4. If a characteristic function vM on M ( N is monotone, then its extension

vN to N is also monotone.
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Proof. As vM is monotone, we have

vM (T ) ≥ vM (S)

for all S and T with S ⊂ T . For the extension, we note, as S ⊂ T , S ∩M ⊂ T ∩M

vN (T ) = vM (T ∩M)

≥ vM (S ∩M)

= vN (S),

and therefore, the extension is also monotone.

Lemma 3.2.5. If a characteristic function vM on M ( N is superadditive, then its exten-

sion vN to N is also superadditive.

Proof. As vM is superadditive, we have

vM (S ∪T ) ≥ vM (S)+ vM (T )

for all S and T with S ∩T =∅. For the extension, we note

vN (S ∪T ) = vM ((S ∪T )∩M)

= vM ((S ∩M)∪ (T ∩M))

≥ vM (S ∩M)+ vM (T ∩M)

= vN (S)+ vN (T ),

and thus, the extension is also superadditive.

Lemma 3.2.6. For the extensions of characteristic functions M = N \ {i }, the inequalities

in the definition of reasonableness taken for player i are equalities and

φi (N ; v) = 0.
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Proof. This is clear, as

v(S ∪ {i }) = v(S)

by the definition of an extension, and by the definition of reasonableness.

3.2.5 Pairing behavior in the rows of a reasonable allocation

In the following theorem, we establish a strong condition on the reasonable allocations,

specifically their matrix counterparts. To our main result, this theorem serves as an

integral component.

Theorem 3.2.7 (Pairing of row elements). Given a player (row) i of a reasonable alloca-

tion’s matrix A, the elements pair off in the following manner:

Ai ,S =−Ai ,S∪{i }

for sets S with S ∩ {i } =∅.

Proof. To obtain this result, we consider a player i . (Any other player’s information can

be obtained identically.) Starting off, we consider the characteristic function of all 1s on

N \ {i }. From this characteristic function, we can create a sequence of truncations

v0, v1, v2, v3, . . . , vK−1, vK = 0̄

such that for every set S ⊂ N \ {i } is the truncating set with v(S) > 0 at some point in this

finite sequence. To obtain the pairings, we must first extend these v j to the set N ,

w0, w1, w2, w3, . . . , wK−1, wK = 0̄,

say. Make a note, the marginal contribution of player i is always 0 for all of these ex-

tensions. Note also the extension w j of a truncation v j is a pair truncation of w j−1. So,

finally to obtain all of the pairings, we multiply our map A by each w j in turn. Then, we

observe, by the following clever manipulation of specific characteristic functions, we can
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obtain all pairings. To begin, we note, Ai ·w j = 0 for all w j , and we proceed to subtract

Ai ·w j+1 = 0 from Ai ·w j = 0. Observe the result of this subtraction Ai · (w j −w j+1) = 0

when expanded gives us

Ai ,S + Ai ,S∪{i } = 0,

by construction, where S is the truncating set for v j+1. More succinctly,

Ai ,S =−Ai ,S∪{i }.

Thus, we have all pairings, as required.

Alternative proof of Theorem 3.2.7. Another view of the proof can be seen in the follow-

ing fashion. Construct the following superadditive v , given S with S ∩ {i } =∅

vS
a(T ) =


1 if S ⊂ T

0 else

and

vS
b (T ) =


1 if S ( T \ {i }

0 else.

Observe, vS
a is superadditive trivially, as

vS
a(Q ∪R) ≥ vS

a(Q)+ vS
a(R)

for Q and R with Q ∩R =∅. This can quickly be seen as S ⊂Q or S ⊂ R, but not both. So,

at the very worst, 1 ≥ 1+0 or 1 ≥ 0+1.

Notice vS
b is a pair truncation of vS

a , by construction, as it zeros out the S and S ∪ {i }

places precisely. Thus, vS
b is also superadditive. vS

a also has the property that the marginal

contribution of player i is 0, observe, by construction, for Q with Q ∩ {i } =∅,

vS
a(Q ∪ {i })− vS

a(Q) =


1−1 = 0 if S ⊂Q

0−0 = 0 if S 6⊂Q

.
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Recall, i ∉ S by our initial choice of S. So, to obtain the pairing for Ai ,S and Ai ,S∪{i }, we

observe

φi (N ; vS
a) = Ai · vS

a = 0

φi (N ; vS
b ) = Ai · vS

b = 0.

However, using this to our advantage, notice

0 =φi (N ; vS
a)−φi (N ; vS

b )

= Ai · (vS
a − vS

b )

= Ai ,S + Ai ,S∪{i }.

Rearranging,

Ai ,S =−Ai ,S∪{i }, (3.2)

as we wished. Repeating this process for all S ⊂ N \{i } gives us all the pairings we desire.

To illustrate this in more explicit terms, consult Figure 3.1 for a view of the n = 3

player game, or Appendices C.2 and C.2.1 for a more explicit construction of the pairing.

3.2.6 Bounds on the matrix elements

Lemma 3.2.8. Given a row i of a reasonable allocation’s matrix A, for nonempty S, with

S ∩ {i } =∅

0 ≤ Ai ,S∪{i } ≤ 1

and

0 ≥ Ai ,S ≥−1.

Namely, the non-negative entries fall in the columns associated with sets S ∪ {i } and the

associated non-positive entries fall in the columns associated with S.
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Proof. Using techniques seen in the proof of Theorem 3.2.7, we can make short work of

this statement. Consider

vS
b (T ) =


1 if S ( T \ {i }

0 else

as seen previously, and

vS
c (T ) =


1 if S ( T

0 else.

Note, vS
c is a truncation (not a pairwise truncation) of the vS

a from the superadditive proof

of Theorem 3.2.7. Hence, it is superadditive. The only difference between vS
b and vS

c is

vS
b (S ∪ {i }) = 0, while vS

c (S ∪ {i }) = 1. Recall, with vS
b , the marginal contribution of player i

is always 0. Note, also, for vS
c , the marginal contribution of player i falls between 0 and 1,

as the only difference from vS
b occurs at the place associated with S, which results in

vS
c (S ∪ {i })− vS

c (S) = 1−0 = 1

rather than 0. Now, to use this to our advantage, we note

φi (N ; vS
b ) = Ai · vS

b = 0.

and

0 ≤φi (N ; vS
c ) = Ai · vS

c ≤ 1

via reasonableness. However, there is little difference between Ai · vS
b and Ai · vS

c , notice

Ai · vS
c − Ai · vS

b = Ai ,S∪{i }. (3.3)
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So, we may conclude

0 ≤φi (N ; vS
c )−φi (N ; vS

b ) ≤ 1

0 ≤ Ai · vS
c − Ai · vS

b ≤ 1

and utilizing Equation (3.3),

0 ≤ Ai ,S∪{i } ≤ 1 (3.4)

as we wished to show. By the pairings, we obtain

0 ≤−Ai ,S ≤ 1,

i.e.

0 ≥ Ai ,S ≥−1 (3.5)

again, as we wished to show.

Note. Via this lemma, we have the signs of nearly all of the matrix entries. The only

missing are, for row i Ai ,∅ and Ai ,{i }. This is covered by Lemma 3.2.9 below. C

Lemma 3.2.9. Given a reasonable, efficient allocation matrix A, we have 1 ≥ Ai ,{i } ≥ 0 for

all players i , and hence, by the pairing −1 ≤ Ai ,∅ ≤ 0.

Proof. We can utilize the information we have gained thus far to infer this informa-

tion. First, recall that −1 ≤ A j ,{i } ≤ 0 for all j 6= i , via the pairings, as by the previous

Lemma 3.2.8, 1 ≥ A j ,{i , j } ≥ 0. More specifically,

0 ≥ ∑
j 6=i

A j ,{i } ≥−1.

This is indeed the case, as if not, we shall reach a contradiction. Let us assume that

∑
j 6=i

A j ,{i } ≤−1.
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Via the pairings, we can follow each of the nonzero elements in the sum up the chain to

A j ,{i , j } and there must be a paired positive value there, for each j . Their sum, even though

they might not remain in the same column remains more than 1. In columns {i , j } for

each of these j , there must be a negative contribution to make the column-wise sum 0.

(It is possible there might be a splitting between two or more rows. Keep in mind no entry

can exceed 1 in absolute value by Lemma 3.2.8 at this point, if we have any entry greater

than 1 in absolute value, we have a contradiction. The sum, of course must remain 0.)

Each of those entries pairs off with a superset in the same row. We can continue this

process until we reach the set of all players N . In this column, we have the tail of every

(possibly split up) chain we traveled along, and due to the pairing of the elements, the

overall sum is greater than or equal to 1 (as each chain must carry at the very least all

of its value along, even if it splits or combines along the way due to the pairings). This

contradicts reasonableness, and thus we have that
∑

j 6=i A j ,{i } ≥−1 as we wished. Noting

this, we see that it is imperative that Ai ,{i } must be greater than or equal to 0 and less

than or equal to 1, as, via efficiency, the sum of all elements in the column {i } is 0 by

Lemma 3.1.1. More explicitly, ∑
j 6=i

Ai ,{ j } + Ai ,{i } = 0

so

Ai ,{i } =−
(∑

j 6=i
Ai ,{ j }

)
and

0 ≤ Ai ,{i } ≤ 1.

Clearly, as a result, −1 ≤ Ai ,∅ ≤ 0 via the pairings.

So, we now have the signs for all of the row elements, and we can summarize our

results in the following convenient way.

37



Theorem 3.2.10. Given a reasonable, efficent allocation with matrix A, for player i ,

1 ≥ Ai ,S ≥ 0 if i ∈ S

−1 ≤ Ai ,S ≤ 0 if i ∉ S

Proof. Refer to Lemmas 3.2.8 and 3.2.9.

We utilize some of the ideas found in the proof of Lemma 3.2.9 to get more general

results, along with Theorems 3.2.7 and 3.2.10. So, as a consequence of these results, we

can find another important fact for our reasonable, efficient allocations.

Lemma 3.2.11. Each column of a reasonable, efficient allocation matrix can contain no

more than a sum of −1 of negative elements and a sum of 1 in positive elements.

Proof. Suppose the contrary, that there is a sum of more than -1 of the negative elements

in one column. Our aim is to show this is not possible. Let us assume that this overflow

of negatives occurs in the column {i , j }, in rows l , . . ., and m, say. Now, via the pairing, we

can follow each of these chains up, there must be a paired positive value in Al ,{i , j ,l }, . . .,

and Am,{i , j ,m} respectively, and their sum remains more than 1. In columns {i , j , l }, . . .,

and {i , j ,m}, there must be a negative contribution to make the column-wise sum 0. (It

is possible there might be a splitting between two or more rows. Keep in mind no entry

can exceed 1 in absolute value, if we have any entry greater than 1 in absolute value, we

have a contradiction. The sum, of course must remain 0.) Each of those entries pairs off

with a superset in the same row. We can continue this process until we reach the set of all

players N . In this column, we have the tail of every (possibly split up) chain we traveled

along, and due to the pairing of the elements, the overall sum is greater than or equal to

1 (as each chain must carry all of its value along). This contradicts reasonableness.

The case of two or more positive values with sum greater than 1 is handled nearly

identically, one just starts the chain at this point, noting the sum of the column must
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be 0, and thus, there must be elements summing to greater than −1 in the column to

compensate.

Therefore, we have what we set out to show, each column can contain no more than

a sum of −1 of negative elements and a sum of 1 in positive elements.

Lemma 3.2.12. For a reasonable allocation φ with matrix A, the partial row-wise sum

satisfies the equality ∑
S:i∉S

Ai ,S∪{i } = 1.

Proof. Recall, from Lemma 3.1.2, we know there exists a vi for which

φi (N , vi ) = 1

by the squeezing of the reasonableness condition. This vi is precisely the one with a 1 in

all places with i ∈ T . Now, noting that

φi (N , vi ) = Ai · vi =
∑

S:i∉S
Ai ,S∪{i },

we obtain the result we desire.

Corollary (to Lemma 3.2.12). For a reasonable allocation φ with matrix A, the partial

row-wise sum satisfies the equality

∑
S:i∉S

Ai ,S =−1.

Indeed. This is clear, as the sum
∑

S,S⊂N Ai ,S = 0. �

Remark. For a reasonable, efficient allocation with matrix A, the sum over all players i of

the elements Ai ,S ≥ 0 with cardinality of S a fixed integer between 0 and |N | is
∑

i Ai ,S =
1.3 C

3This is similair to the implicit result alluded to in the proof of [21, Theorem 13].
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Indeed. This is seen similarly to Lemma 3.2.11. Note, via efficiency, the sum

∑
i

Ai ,∅ =−1.

Using this via the pairings, we know that this travels up, and we obtain the sum

∑
i

Ai ,{i } = 1.

Recall, via Theorem 3.2.10, This is the result we wish for |S| = 1, as the only elements

Ai ,S ≥ 0 with the cardinality of S being 1 are the Ai ,{i }. To obtain the rest of our results, we

utilize strong induction. Suppose that

∑
i ,|S|=l

Ai ,S = 1

for Ai ,S ≥ 0 and S up to cardinality k. To see this for S of cardinality k +1, we invoke the

pairings, and efficiency. Via efficiency, in the columns where Ai ,S ≥ 0, |S| = k reside, there

are some A j ,T ≤ 0 with |T | = k and j ∉ T such that the sum of the column is equal to 0.

As we have all of the positive elements in our sum, this search finds all of the negative

elements in the columns as well. The sum of all of these found elements is −1, as the

sum we started with was 1. If we apply the pairings to our newfound negative sum, and

travel up, we obtain what we wish, namely,

∑
j

A j ,T∪{ j } = 1,

exactly as we wished. �

3.3 Extreme points, and the reasonable efficient allocations

In the journey to prove the thesis result, we find the following lemma integral to our

arguments as well.
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Lemma 3.3.1. For an allocation φ with matrix A, if for all players i ,

Ai ,S is


≥ 0 if i ∈ S

≤ 0 if i ∉ S

. (3.6)

and for T with T ∩ {i } =∅

Ai ,T =−Ai ,T∪{i } (3.7)

and ∑
T

Ai ,T∪{i } = 1, (3.8)

then the allocation φ is reasonable.

Proof. To begin, by Equations (3.7) and (3.8), we have that
∑

T Ai ,T =−1, and all elements

of the matrix are determined. To check for reasonableness, note

φi (N ; v) = Ai · v

=∑
S

Ai ,S · v(S)

=∑
T

Ai ,T∪{i } (v(T ∪ {i })− v(T ))

with T ∩ {i } =∅ by our map and Equation (3.7). By Equations (3.6) and (3.8), we note

that φi (N ; v) is a generalized linear combination of the marginal contributions of each

player, as all the elements in the sum are greater than or equal to 0 and sum to 1. Trivially,

a generalized convex combination lies between the

min
T :i∉T

{v (T ∪ {i })− v(T )} and max
T :i∉T

{v (T ∪ {i })− v(T )} .

Thus, the allocation is reasonable, as required.

Lemma 3.3.2. The converse to Lemma 3.3.1 is also true.

Proof. For the reverse, suppose matrix A and its associated φ is reasonable. In part, this

now equates to showing that the only possible choices for elements satisfy Equations (3.6)
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to (3.8). The pairings, we note, can be found utilizing the results of Theorem 3.2.7. Iden-

tically, the partial row sum in Equation (3.7) is obtained via Lemma 3.2.12. Both of these

theorems use only the satisfaction of the reasonability condition in the body of their

results. Taking note that we have the pairings, we can obtain almost all the signs we wish

via Lemma 3.2.8. However, in our proofs above, we cannot obtain the signs of Ai ,∅ and

Ai ,{i } without efficiency. However, if we allow ourselves to utilize non-superadditive, yet

monotone vectors, we can get the remaining signs we wish. To prove Ai ,∅ ≤ 0 for all

players i , one can observe, via multiplying the map A by the characteristic function

v = [1,1,1, . . . ,1,1,1]t ,

focusing on the i th row,

Ai ,∅ + Ai ,{1} + Ai ,{2} + ·· · + Ai ,{1,2} + ·· · + Ai ,N \{n} + ·· · + Ai ,N \{1} + Ai ,N = 0

by reasonableness. Similarly, we obtain

1 ≥ Ai ,{1} + Ai ,{2} + ·· · + Ai ,{1,2} + ·· · + Ai ,N \{n} + ·· · + Ai ,N \{1} + Ai ,N ≥ 0

by using the definition of reasonableness, Axiom 3.1.2, along with the vector

v = [0,1,1, . . . ,1,1,1]t .

This is evident due to the fact that each player must receive no less than 0 and no more

than 1, based on the marginal contribution bounds, given the fact our characteristic

function is monotone. Combining these two facts, one quickly sees that

−1 ≤ Ai ,∅ ≤ 0, (3.9)

as required. 1 ≥ Ai ,{i } ≥ 0 is immediately picked up via the pairings. Therefore, we have

the last piece of needed info, Equation (3.6).

Lemma 3.3.3 (Extreme points of the reasonable, efficient allocations). The extreme
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points of the set of all reasonable, efficient allocations are contained within the set of

special allocations.

Proof. We prove this using the matricies of the allocations. Suppose first we have a

reasonable, efficient allocation matrix A that is an extreme point, but is not a member

of the set of all special allocations. Our aim is to reach a contradiction. To begin, via

efficiency, and Lemma 3.1.1, we know there is at least one entry in the first column that

is negative, in the i th row, say. Starting at this entry, we build a set chain as introduced

in Section 3.2.1 by utilizing the row-wise pairings of Theorem 3.2.7. Given our choice of

negative element in the first column, Ai ,∅, by the pairings, we know there is a positive,

and equal in absolute value, entry in Ai ,{i }. Calling upon efficiency yet again, for the

internal columns, we know that the sum of all the entries is equal to 0. Thus, there exists

at least one negative element in row j , say, A j ,{i }. This entry in turn has a paired entry in

a superset {i , j }, A j ,{i , j }. Continuing this process, we can continue to build a set chain to

represent this path through the allocation. The set chain would appear as something of

the form

∅⊂ {i } ⊂ {i , j } ⊂ {i , j ,k} ⊂ ·· · ⊂ N .

If, at all stages the at least one player was exactly one player, we have a contradiction.

Recalling Lemma 3.2.11, each column can contain no more than a sum of −1 in nega-

tive elements and a sum of 1 in positive elements. If there was only a single choice in

each case, as the sum of the first column must be −1, that forces Ai ,∅ = −1. In turn,

Ai ,{i } = 1. Continuing, it must be the case that A j ,{i } =−1. Following this along the chain,

we know every element we touched was either a −1 or 1 by the pairings and efficiency

(Lemma 3.1.1). More precisely, it was a special allocation already, a contradiction. There-

fore, we know that at in at least one instance when we were building our chain, we had

two choices of elements (either both positive, or both negative, distinct from the element

we started with), in row l and m, say. If, in our initial chain, we chose row l , we can make

a secondary set chain by choosing row m at the juncture and following this alternative
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path. More explicitly, for some T with T ∩ {l ,m} =∅ and l 6= m, our two set chains would

contain the links

T ⊂ T ∪ {l }

for the first set chain, and

T ⊂ T ∪ {m}

for the second set chain, respectively. Thus, we have two distinct set chains. From these

two distinct set chains, we can find the associated special allocation matrices Sa and Sb ,

say. These special allocations will be used to demonstrate that our assumed extreme A is

not. Following the same ideas we did in the case of the characteristic functions, we wish

to find a way to modify our A in small ways on either side, both modified matrices still

reasonable, with a convex combination of the matrices equal to A itself. To do this, we

choose an ε in the following way:

ε< min


AMm+1\Mm ,Mm+1

1− AMm+1\Mm ,Mm+1 AMm+1\Mm ,Mm+1 6= 1

where Mm and Mm+1 are consecutive elements in the set chains we have defined above.

First, notice AMm+1\Mm ,Mm+1 > 0 by construction. Notice also, as we have assumed A is not

a special allocation, and have excluded the entries AMm+1\Mm ,Mm+1 6= 1 from consideration

in ε, we have 0 < ε< 1. By this choice of ε, we claim that one can both add and subtract

εSa ±εSb without compromising the reasonableness of the map. To see this, consider

A± (εSa −εSb)

alongside Lemma 3.3.1. We note by our choice of ε, the signs of each element of A±(εSa−
εSb) are unchanged. Trivially, we satisfy the pairings for T with T ∩ {i } =∅ as A, Sa and

Sb do as well, and addition and subtraction of matrices with the pairings produces other

matrices satisfying the pairings. Finally, we note that each row in ±(εSa − εSb) makes a

contribution of 0 to the row sum of A′ = A± (εSa −εSb), and the sum
∑

T A′
i ,T∪{i } = 1, as,
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in net, all that is done is an addition and subtraction of ε to the sum. Thus, all of the

requirements of Lemma 3.3.1 are fulfilled, and we can conclude that A′ is reasonable.

Clearly, as A, Sa and Sb are efficient, the sum A′ = A ± (εSa − εSb) is efficient as well

utilizing Lemma 3.1.1 and its converse. Thus, we have two additional derived reasonable,

efficient maps, Aa and Ab , with

Aa = A− (εSa −εSb)

Ab = A+ (εSa −εSb).

Notice

A = 1

2
Aa + 1

2
Ab .

This contradicts the assumed extremeness of A. Therefore, we can conclude that the

extreme points of the set of all reasonable, efficient allocations are contained within the

set of special allocations.

Note, it is clear from the definitions that each special allocation is an extreme point.

So, as a result, we may state the following.

Theorem 3.3.4. The extreme points of the set of all reasonable, efficient allocations are

precisely the special allocations.

3.4 Reasonable efficient allocations and the convex hull of

the special allocations

With all of the machinery we have established, we can now prove a nice property of

the special allocations, namely any reasonable, efficient allocation can be written as a

positive (generalized) linear combination of the special allocations. We now prove the

main result of the thesis.
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Theorem 3.4.1. Any reasonable, efficient allocation can be written as a convex combina-

tion of the special allocations, more strongly,

An allocation is reasonable and efficient if and only if the allocation lies within the convex

hull of the special allocations.

Proof. We prove this for the matrix A of an allocation φ. If A lies within the convex hull of

all special allocation matrices, it is clear that our proposition is true based on the inherent

properties of special allocations explored in Proposition 3.1.4, in particular.

Conversely, suppose we have the set of all reasonable, efficient allocations, R, say.

Our goal is to show that R is identical to the convex hull of the special allocations. First,

we know that the set of all reasonable, efficient allocations is compact, as R is finite

dimensional over R, and each entry of the matrix of a reasonable, efficient allocation is

bounded (by −1 and 1 inclusive via Theorem 3.2.10.) As a result, we have a closed and

bounded set, and under our conditions, this results in a compact set via the Heine-Borel

theorem. From our prior exploration in Proposition 3.1.4, we know that R is convex. Via

Lemma 3.3.3, we know that the extreme points of R are precisely the set of all special

allocations, S , say. Putting these facts together, we may conclude, by Theorem 1.2.4

(Krein-Milman) that

R = co(exR)

= co(S )

This is nearly what we wish to show. Note, S is a finite set and is also bounded, hence

closed, thus one can make the last conclusion, that the closure of the convex hull is the

convex hull itself, via the theorems and definitions in Section 1.2.2. Therefore,

R = co(S )

= co(S ) ,
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and we now have what we set out to prove. Any reasonable, efficient allocation lies within

the convex hull of the special allocations.

We now have both directions of our proof, and so, we can think of the special allo-

cations as a spanning set of sorts for the set of reasonable, efficient allocations. More

specifically, any such allocation is in the cone made up of the special allocations. Viewing

things this way lets us prove several more results.

3.5 Consequences of the main result

With the knowledge gained through Theorem 3.4.1, we can now prove even more proper-

ties of the reasonable, efficient allocations.

Theorem 3.5.1. Given a reasonable, efficient allocation matrix A, the sum of each interior

column (not first or last) in absolute value is 2.

Proof. This is trivial to see in the case of the special allocation matrices. To obtain the

general result, we must see that the result holds for a convex combination of two reason-

able, efficient allocations that satisfy the condition already.4 Observe, the column-wise

sum, of two such allocation matrices, P and Q for column S.
(
P1,S ,P2,S , . . . ,Pn−1,S ,Pn,S

)t

and, similarly
(
Q1,S ,Q2,S , . . . ,Qn−1,S ,Qn,S

)t . By our assumption,

n∑
i=1

|Pi ,S | = 2

n∑
i=1

|Qi ,S | = 2

for S 6=∅ and S 6= N . Now, taking the convex combination of the columns, we obtain

(
tP1,S + (1− t )Q1,S , . . . , tPn,S + (1− t )Qn,S

)t .

4As any reasonable allocation can be written as a (generalized) convex combination, this gives us our
result.
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We note

n∑
i=1

|tPi ,S + (1− t )Qi ,S | ≤
n∑

i=1
t |Pi ,S |+ (1− t )|Qi ,S |

= t
n∑

i=1
|Pi ,S |+ (1− t )

n∑
i=1

|Qi ,S |

= t ·2+ (1− t ) ·2

= 2

by the triangle inequality and properties of the absolute value. Now, one must argue that

this inequality is necessarily an equality. Recall, the triangle inequality is an equality if

both numbers are non-positive or non-negative. By Lemma 3.2.8 we see that Pi ,S and

Qi ,S necessarily are both non-positive or non-negative. So the triangle inequality is a

triangle equality, and we have the equality we desire.

Theorem 3.5.2. The sum of each row of an allocation’s matrix in absolute value is 2.

Note. We could have proved this without our main result, however, it is presented here

with similar in spirit results. C

Proof. Recall, via Lemma 3.2.8, the elements summed in Lemma 3.2.12 are all non-

negative. Similarly, the sum in the corollary is of all non-positive numbers. As a result,

∑
S:i∉S

|Ai ,S∪{i }| = 1

and ∑
S:i∉S

|Ai ,S | = 1.

Hence, ∑
S
|Ai ,S | = 2.

Remark. We can now recognize “un-reasonable” allocations quite easily. If the row sums

of the absolute value of the elements of the matrix of the allocation are not equal to 2 and
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if the column sums of an interior column are not equal to 2, we can immediately notice

it is unreasonable. C
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C H A P T E R 4

C O N S E Q U E N T I A L PA R A L L E L R E S U LT S

Intuition is no proof. . .

Lieutenant Doolittle
John Carpenter’s Dark Star (1974)

With slightly different assumptions, we can get the same results, in a broader context.

4.1 Superadditivity as a replacement for monotonicity

To get similair results for superadditive functions, we need only add the following axioms,

Axiom 4.1.1. The value of v(∅) = 0.

Remark. This is of course true for superadditve functions, and is not so much an axiom,

but a consequence of the definition of superadditivity. If v(∅) > 0, we reach a contradic-

tion, as v(S) = v(S ∪∅) ≥ v(S)+ v(∅). C

Typically, one would assume Axiom 4.1.1, if one wants to divide all “produced” among

the players of the game. This was mentioned when we first defined efficiency in Ax-

iom 3.1.1.

Axiom 4.1.2. The sum of all elements in each row is of the matrix of the allocation φ is 0.
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Note. The choice of the first column is arbitrary, due to the fact that v(∅) = 0 via Ax-

iom 4.1.1, or its following remark. Thus, without loss of generality, Axiom 4.1.2 always

holds, as we can pick the value in the first column to make the sum work. C

To first proceed, let us get an idea what we can do with superadditive characteristic

functions.

Proposition 4.1.1. The set of all superadditive binary characteristic functions (superad-

ditive simple games) form a spanning set for the monotone binary characteristic function

with v(∅) = 0.

Proof. If we look at the linear span of superadditive binary v , they do form a spanning

set for all monotone v with v(∅) = 0. We can see this by viewing them in the following

way. Consider all of the “monotone” set chains,

∅⊂ {i } ⊂ {i , j } ⊂ {i , j ,k} ⊂ . . . ⊂ N ,

adding a single player in each subsequent set in the chain. This set chain, can of course

be associated with a special allocation, but it can also be associated with a superadditive

characteristic function vsa ,1 following the steps below. Place a 1 in all of the places

associated with each non-empty set in the chain, and a 0 in all others. This is trivially

superadditive, as

vsa(S)+ vsa(T ) ≤ vsa(S +T )

by construction for S ∩T = ∅. Notice also, we can truncate this vsa , starting the as-

signment of ones at any point midway through the set chain still yields a superadditive

characteristic function. Recall, superadditive implies monotone in our considerations.2

However, the reverse direction is easily seen to be false, there are certainly monotone

characteristic functions that are not superadditive. To see that these are within the linear

1This is not one of our previously named superadditive characteristic functions.
2We can not, however, easily obtain a result stating the extreme points of this set, unfortunately. See

Section 4.3 for details.
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span of the superadditive characteristic functions, we can follow a constructive process

detailed below. Given a monotone v , there is at least one set with smallest cardinality.

Take all of the chains starting with these minimal sets, and add together their associated

characteristic functions, call it vk , say. Notice, if there were more than one set of small-

est cardinality, vk is no longer a binary vector, or simple game. To fix this, we subtract

off a truncation of the characteristic function associated with our set chains, starting

where our vector has a place containing a value more than 1, being careful that we do not

subtract anything from a place with a 1 in it, as this would break our monotonicity. We

continue this process, for the vector v − vk , updating vk as we proceed, and after finitely

many steps v = vk and we are done.

Definition 4.1.1 (Axiom 3.1.2, redux). Assuming Axiom 4.1.2, An allocation is reason-

able for superadditive characteristic functions if

min
S,i∉S

{v (S ∪ {i })− v(S)} ≤φi (N ; v) ≤ max
S,i∉S

{v (S ∪ {i })− v(S)} (4.1)

is satisfied for all superadditive v .

Note. Recall for an allocation φ with matrix A, we have φi (N ; v) = Ai · v . C

Proposition 4.1.2. If a map is efficient for all superadditive characteristic functions v, and

we assume Axiom 4.1.2 holds, then it is efficient for all monotone characteristic functions.

Proof. We prove this by viewing the allocation as a matrix. To deal with efficiency, we

look at the sums of the column elements, and ensure they add up to

(−1,0, . . . ,0,1)

following our note following Lemma 3.1.1. This, as seen in Lemma 3.1.1, depends on this

being true for all v , which we can shorten to monotone v thanks to our prior work. This

time, however, we can consider only superadditive v via Proposition 4.1.1. So, following
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the results in the proof of Lemma 3.1.1, we obtain all the sums of column elements except

the first −1. This −1 is given to us by the assumption that the row-wise sum is 0. Hence,

as the sum of all the rows, save the first element in each row is 1, this forces the entries in

the first column to sum to −1. Thus, we have efficiency via the superadditive v only.

If we have a matrix of a reasonable allocation, we can also find the pairings while

checking only the superadditive vectors by the following proposition.

Proposition 4.1.3. Given an allocationφ, reasonable for superadditive characteristic func-

tions, with matrix A, and assuming Axiom 4.1.2, the row-wise pairing in the matrix can

be determined by using only superadditive characteristic functions.

Proof. Certainly, as we have seen previously, the row-wise pairing of elements can be

determined by superadditive characteristic functions and their truncations, save the

Ai ,∅ =−Ai ,{i } (4.2)

pair. Thus, we need only check a subset of the superadditive characteristic functions to

obtain all but the n pairings mentioned in Equation (4.2). Following our prior method

of proof, we need the vector [1,1, . . . ,1,1]t to obtain the last pairings above. This is not

superadditive, as v(∅) > 0. However, this vector is simply a convenient way to ensure

that the sum of each row is 0. Supposing Axiom 4.1.2 holds, observe that the sum of all

of the elements in the row is 0. However, all of the other elements in each row sum to 0

in pairs, except Ai ,∅ and Ai ,{i }. Thus, we immediately gain the final pairing, for when we

take the row sum, it collapses to the two elements,

Ai ,∅+ Ai ,{i } = 0,

we need only re-arrange and obtain the final pairings,

Ai ,∅ =−Ai ,{i }.
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Note. The pairing alone is not sufficient to show reasonableness, we would additionally

need that ∑
S

Ai ,S∪{i } = 1

for S without i and Ai ,S∪{i } ≥ 0 for the same S. Then, certainly A is reasonable. C

Notice, with no modifications whatsoever that Lemma 3.3.3 holds. Additionally, with

the background above, we have Theorem 3.4.1 as well, replacing reasonable with rea-

sonable for superadditive characteristic functions, as the argument does not depend on

superadditive or monotone v in the slightest.

Proposition 4.1.4. If φ is reasonable and efficient for superadditive characteristic func-

tions, then it is a convex combination of the special allocations.

Proof. This is mainly a direct consequence of Lemma 3.3.3 and Propositions 4.1.2 and 4.1.3.

Suppose we have a matrix A of the allocation φ that is reasonable for superadditive char-

acteristic functions. By Proposition 4.1.2 we know that the same efficiency constrains

are satisfied. Further, by Proposition 4.1.3 we have the pairings we seek. Finally, via

Lemma 3.3.3 we see that the extreme points of the reasonable, efficient allocations are

the special allocations. To complete the result, we apply Theorem 3.4.1, with the prior

results on reasonable for superadditive characteristic functions v and the proof is com-

plete.

With this result, we note the following corollary.

Corollary (to Proposition 4.1.4). Given an efficient allocation, reasonable for superaddi-

tive characteristic functions implies reasonableness.

Indeed. We can trivially observe that if something lies within the convex combination of

the special allocations, then it is reasonable by the vanilla version of Theorem 3.4.1. �

Note. This is quite nontrivial. If one attempts to prove this fact from first principles it is

difficult, if not impossible. C
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Proposition 4.1.5. Assuming Axiom 4.1.2, reasonableness implies reasonable for super-

additive characteristic functions.

Proof. This is trivially the case. If one satisfies reasonableness for all monotone v , Equa-

tion (4.1) is certainly satisfied for all superadditive v .

We conclude by distilling our results into the following Theorem.

Theorem 4.1.6. An efficient allocation is reasonable if and only if it is reasonable for su-

peradditive characteristic functions.

4.2 Further exploration

We note that our results here can be generalized further, in both directions. Namely,

all of the results we have seen can be made less stringent. In all of our reasonability

discussions, we have used only a small set of superadditive characteristic functions,

vS
a(T ) =


1 if S ⊂ T

0 else

vS
b (T ) =


1 if S ( T \ {i }

0 else

vS
c (T ) =


1 if S ( T

0 else

.

Our results hold if we are reasonable and efficient for the set Vabc containing all vectors

of this type.

Further, as long as our general set of vectors contains this set of vectors, we can

establish a version of reasonableness, and obtain the results once again.
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4.3 An open problem

A problem that one might naturally consider, after the discussion of monotone character-

istic functions in Chapter 2 and the discussion of superadditive characteristic functions

above, the extreme points of the superadditive functions with entries between 0 and 1.

Open Problem 4.3.1. Determine the extreme points of the superadditive characteristic

functions with entries between 0 and 1.

Some progress has been made towards answering this question, by Derks [6] and

Spinetto [20], among others.

Also consider Derks [5].
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A P P E N D I X A

T A B L E S W I T H I N T E R E S T I N G I N F O R M A T I O N

Mentioned in several places in the paper, is the number of monotone binary characteris-

tic functions (simple games), as well as the number of special allocations. Both of these

numbers depend only on the number of players in the game. We compare these two

sets of numbers in Table A.1. Notice, the number of monotone characterisitc functions

rise quickly in comparison to the number of special allocations. If one looks in depth

at the sequences, these sequences are only known up to a decidedly finite number of

players [18, 19]. Luckily, for more practical purposes this is not an impediment to the

usefulness of our results.
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Table A.1: Number of monotone binary characteristic functions (simple games) com-
pared to the number of special allocations

Players
Count

Monotone binary characteristic functions Special allocations

1 2 1
2 5 2
3 19 6
4 167 24
5 7,580 120
6 7,828,353 720
7 2,414,682,040,997 5,040
8 56,130,437,228,687,557,907,787 40,320
n open computational problem n!
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A P P E N D I X B

C O N S T R U C T I V E P R O O F F O R A T W O P L A Y E R

G A M E

B.1 Context

B.1.1 Constraints

From our previous work, we have that any reasonable, efficient allocation is subject to

many constraints. In the case of small numbers of players, we can get a more intuitive

picture of what occurs by invoking the same arguments on the matrix of the allocation,

alongside the reasonableness and efficiency conditions. The constraints determined by

reasonableness and efficiency applied to the matrix in Figure B.1 for a two player game

are seen in Figure B.2.

x0 x1 x2 x3

y0 y1 y2 y3




∅ {1} {2} {1,2}

Figure B.1: Matrix with labeled elements
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B.1.2 Tight bounds for each entry

We wish to manipulate what we have to give us more information about our variables,

and in turn get as good a bound as possible on each entry. To begin, we manipulate the

inequalities, to see what the bounds of each xi and yi are.

If we combine Equation (B.5) and Equation (B.13), we obtain

0 ≤ x2 +1 ≤ 1

Rearranging, we see

−1 ≤ x2 ≤ 0. (B.15)

Following an identical process, we can obtain

−1 ≤ y1 ≤ 0. (B.16)

by combining Equation (B.6) and Equation (B.14). We obtain

−1 ≤ x0 ≤ 0

from Equation (B.5) and Equation (B.7), and proceeding identically,

−1 ≤ y0 ≤ 0

is obtained from combining Equation (B.6) and Equation (B.8). So, via this process, we

have the bounds on almost all entries.

Using the last few pieces of information available to us, we can pick up bounds on

the last two missing matrix entries, noting that

x1 =−y1

by rearranging Equation (B.10) and doing the same for Equation (B.11) provides the
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x0 x1 x2 x3

y0 y1 y2 y3




∅ {1} {2} {1,2}

Figure B.3: Matrix with shading reflecting shared bounds

equality

y2 =−x2.

When combined with Equation (B.16) and Equation (B.15), respectively, we obtain

0 ≤ x1 ≤ 1

and

0 ≤ y2 ≤ 1.

So, to summarize, we have our bounds for all of the members of the matrix displayed

visually in Figure B.3, with those highlighted in red falling in between −1 and 0, and those

highlighted in green between 0 and 1.

These inequalities provide useful information, however, we wish to see that reason-

able, efficient allocations are the convex combinations of the special allocations. For this,

we must proceed further.

B.1.3 Connecting the dots to Theorem 3.2.7

When looking into the equalities, through trying to find the bounds on x1 and y2, we see

that these equalities have much information to impart. It can be found from this point

that one can obtain the row-wise pairings wished.

To begin, if you combine Equation (B.7) and Equation (B.13), one can see the compli-

mentary equality

x0 +x2 =−1. (B.17)
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Similarly, when one combines Equation (B.8) and Equation (B.14), one can again see the

complimentary equality

y0 + y1 =−1. (B.18)

With these equalities, along with our original equalities, we can find the information

we desire by adding the equalities together. One always wants to simplify, so we would

only consider adding equalities where we can simplify the sum with a third equality.

Starting off, if we add Equation (B.13) and Equation (B.14), we obtain

x1 +x3 + y2 + y3 = 2

Recalling Equation (B.12), we can simplify this to

x1 + y2 = 1. (B.19)

Similarly, we add Equation (B.17) and Equation (B.18). This leaves us with

x0 +x2 + y0 + y1 =−2.

Recalling Equation (B.9) lets us simplify to

x2 + y1 =−1. (B.20)

This works in our favor, as we now have relationships between the second and third

columns of our matrix.

Continuing on with this method of inquiry, if one adds Equation (B.13) and Equa-

tion (B.18), one can observe that

x1 +x3 + y0 + y1 = 0

And, if one adds Equation (B.14) and Equation (B.17), it can be immediately seen that

x0 +x2 + y2 + y3 = 0.
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x0 x1 x2 x3

y0 y1 y2 y3




∅ {1} {2} {1,2}

Figure B.4: Matrix with shading reflecting column and row cross connections

Taking the above in turn with Equation (B.10) and Equation (B.11), we obtain

x3 + y0 = 0 (B.21)

and

x0 + y3 = 0, (B.22)

which give us the other cross terms. We arrange the data in matrix form in Figure B.4,

with the sum of the green elements = 0, the red elements = 0, the blue elements = 1 and

finally the purple elements =−1.

However, we want x0 and x1, x2 and x3, y0 and y2, y1 and y3 paired together, respec-

tively. Luckily, one can accomplish this quickly by playing the same game as before with

the cross terms. Adding Equation (B.19) and Equation (B.22) we obtain

x0 +x1 + y2 + y3 = 1.

Further combination with Equation (B.14) leaves us with

x0 +x1 +1 = 1.

So, of course, we have

x0 +x1 = 0,

or

x1 =−x0. (B.23)

This is one of the pairings we desire. Adding Equation (B.19) and Equation (B.21) we
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obtain

x1 +x3 + y0 + y2 = 1.

further combination with Equation (B.13) leaves us with

1+ y0 + y2 = 1.

So, of course, again we simplify to

y0 + y2 = 0,

or

y2 =−y0. (B.24)

Another pairing we desire obtained. Now all that remains is to tie x2 and x3, y1 and y3

together. With what we have already, we can complete this quickly. Take Equation (B.7)

and combine with the newly minted equality Equation (B.23) to obtain

x2 +x3 = 0

or

x3 =−x2, (B.25)

while Equation (B.7) with Equation (B.23) gives us

y1 + y3 = 0

or

y3 =−y1. (B.26)

With these last two equalities, we have all the pairings we wish. Summarizing visually in

Figure B.5, we have where each colored element is equal to the opposite of its identically

colored twin.
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x0 x1 x2 x3

y0 y1 y2 y3




∅ {1} {2} {1,2}

Figure B.5: Matrix with shading reflecting equal to opposite relationships

Automation via Matrices

We note all of the information that we used to obtain the pairings above came from the

equalities, rather than the inequalities. Thus, all that is needed to obtain the pairings is

a means to solve simultaneous equations. One well known way of solving simultaneous

equations is via an augmented matrix. Converting our equalities into one gives us:

1 1 1 1 0 0 0 0 0

0 0 0 0 1 1 1 1 0

1 0 0 0 1 0 0 0 −1

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 1

0 1 0 1 0 0 0 0 1

0 0 0 0 0 0 1 1 1
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and, preforming the requisite row operations to get it in row echelon form, we obtain

1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 −1 0

0 0 1 0 0 0 0 −1 −1

0 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 −1 −1

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0



.

Reading the information about this solution off, we see

x0 + y3 = 0 (B.27)

x1 − y3 = 0 (B.28)

x2 − y3 =−1 (B.29)

x3 + y3 = 1 (B.30)

y0 − y3 =−1 (B.31)

y1 + y3 = 0 (B.32)

y2 + y3 = 1 (B.33)

Focusing on those equations above that are equal to 0, we see from Equation (B.27)

and Equation (B.28), x0 = −y3 and x1 = y3. Combined together, this gives us x0 = −x1.

Alone, Equation (B.32) gives us y1 = −y3. We obtain the alternative equalities by com-

bining with Equation (B.7) and Equation (B.8), as we did in Equation (B.25) and Equa-

tion (B.26).
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−a a −b b

−c −d c d





∅ {1} {2} {1,2}

Figure B.6: Matrix from Figure B.5, relabeled

B.2 Theorem 3.4.1 in practice

Our final goal is to see that any reasonable, efficient allocation is indeed a convex com-

bination of special allocations. To begin, to get some insight for the two player case, we

recall that the special allocations are−1 1 0 0

0 0 −1 1

 and

 0 0 −1 1

−1 0 1 0

 .

So, a convex combination of these matrices is of the form−a a −b b

−b −a b a


where a +b = 1. When we look at this alongside Figure B.5, it is not far off from what

we already have. We just need to relate the rows. To begin, let us relabel Figure B.5, in

Figure B.6 to reflect the information we know, with new labels to compare to.

One can observe that the first row is exactly the same in Figure B.6. So, what remains

is to find that a = d and b = c. Recall, though, that we have this already from our initial

set of equalities. We have a −d = 0 via Equation (B.10) and c −b = 0 via Equation (B.11).

Rearranging, one notes this tells us a = d and b = c, exactly what we wanted. Relabeling

Figure B.6, we finally obtain Figure B.7 which demonstrates that our reasonable, efficient

allocation is precisely the convex combination of the special allocations, as we wished.
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−a a −b b

−b −a b a





∅ {1} {2} {1,2}

Figure B.7: Matrix with shading reflecting all found information
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A P P E N D I X C

C O N S T R U C T I V E P R O O F F O R A T H R E E

P L A Y E R G A M E

C.1 Context

In the three player game, we can still construct any reasonable, efficient allocation as

an explicit convex combination of the special allocations, without invoking the Krein-

Millman Theorem. To begin, let us consider the 6 special allocation’s matrices.

S1 =


0 0 0 0 0 0 −1 1

−1 0 1 0 0 0 0 0

0 0 −1 0 0 0 1 0



S2 =


0 0 0 0 0 0 −1 1

0 0 0 −1 0 0 1 0

−1 0 0 1 0 0 0 0



S3 =


−1 1 0 0 0 0 0 0

0 0 0 0 0 −1 0 1

0 −1 0 0 0 1 0 0
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S4 =


−1 1 0 0 0 0 0 0

0 −1 0 0 1 0 0 0

0 0 0 0 −1 0 0 1



S5 =


0 0 0 −1 0 1 0 0

0 0 0 0 0 −1 0 1

−1 0 0 1 0 0 0 0



S6 =


0 0 −1 0 1 0 0 0

−1 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 1


Our ability to accomplish this constructively depends on the fact that these matrices are

linearly independent, and, as a result, form a basis rather than a spanning set.

C.2 The pairing of elements

C.2.1 The pairing of elements, as in the proof

To find the pairing of the elements for row 1, following the proof, we first start with the

characteristic function on N \ {1} = {2,3}, with ordering [∅, {2}, {3}, {2,3}]t

v0 = [1,1,1,1]t

This has the truncations

v1 = [0,1,1,1]t

with truncating set ∅,

v2 = [0,0,1,1]t

with truncating set {2},

v3 = [0,0,0,1]t
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with truncating set {3}, and

v4 = [0,0,0,0]t

with truncating set {2,3}.

These five v j can be extended to characteristic functions w j on N = {1,2,3}, with

[∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}]t

order.

w0 = [1,1,1,1,1,1,1,1]t ,

w1 = [0,0,1,1,1,1,1,1]t ,

w2 = [0,0,0,1,0,1,1,1]t ,

w3 = [0,0,0,0,0,0,1,1]t ,

and

w4 = [0,0,0,0,0,0,0,0]t

are the extensions.

Now, for the pairings, we follow the process set forth in the proof. Row 1 is of course

A1 =
(

A1,∅, A1,{1}, A1,{2}, A1,{3}, A1,{1,2}, A1,{1,3}, A1,{2,3}, A1,{1,2,3}
)
.

To get our first pairing, note

A1 · (w3 −w4) = A1,{2,3} + A1,{1,2,3} = 0.

So,

A1,{2,3} =−A1,{1,2,3}. (C.1)

For the next pairing,

A1 · (w2 −w3) = A1,{3} + A1,{1,3} = 0,
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which becomes

A1,{3} =−A1,{1,3}. (C.2)

For the third pairing,

A1 · (w1 −w2) = A1,{2} + A1,{1,2} = 0,

which becomes

A1,{2} =−A1,{1,2}. (C.3)

Finally,

A1 · (w0 −w1) = A1,∅+ A1,{1} = 0,

which becomes

A1,∅ =−A1,{1}, (C.4)

and we have all the pairings we desire.

C.2.2 The pairing of elements in the style of the superadditive proof

Let us focus on player 1 once again. The four S we consider are S =∅, S = {2}, S = {3} and

S = {2,3}. For S =∅,

v∅
a = [1,1,1,1,1,1,1,1]t

v∅
b = [0,0,1,1,1,1,1,1]t

for S = {2},

v {2}
a = [0,0,1,0,1,0,1,1]t

v {2}
b = [0,0,0,0,0,0,1,1]t
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for S = {3},

v {3}
a = [0,0,0,1,0,1,1,1]t

v {3}
b = [0,0,0,0,0,0,1,1]t

and for S = {2,3},

v {2,3}
a = [0,0,0,0,0,0,1,1]t

v {2,3}
b = [0,0,0,0,0,0,0,0]t

following the definitions of va and vb for each S. Recall, our row 1

A1 =
(

A1,∅, A1,{1}, A1,{2}, A1,{3}, A1,{1,2}, A1,{1,3}, A1,{2,3}, A1,{1,2,3}
)
.

Using this to our advantage, we note

A1 ·
(
v∅

a − v∅
b

)= A1,∅+ A1,{1}

A1 ·
(
v {2}

a − v {2}
b

)
= A1,{2} + A1,{1,2}

A1 ·
(
v {3}

a − v {3}
b

)
= A1,{3} + A1,{1,3}

A1 ·
(
v {2,3}

a − v {2,3}
b

)
= A1,{2,3} + A1,{1,2,3}

and, as seen in the proof, all A1 · vS
a and A1 · vS

b above are equal to 0. Thus,

A1,∅+ A1,{1} = 0

A1,{2} + A1,{1,2} = 0

A1,{3} + A1,{1,3} = 0

A1,{2,3} + A1,{1,2,3} = 0

We simply rearrange and can obtain all the pairings we desire.
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C.3 Theorem 3.4.1 in practice

We now wish to see that any reasonable, efficient allocation matrix can be written as a

convex combination of the special allocation matrices. To form the sum, we can proceed

in a most direct way. First, consider the paired off matrix we have seen in Figure 3.1,

constructed more explicitly for row 1 above in Appendix C.2. Let us relabel, with the

relationships mentioned in the pairings to make our lives a bit easier.

A =


−a a −b −c b c −d d

−e − f e −g f −h g h

−i j −k i −l j k l


From the column-wise constraints of Lemma 3.1.1, we can determine that

−a −e − i =−1 (C.5)

a − f − j = 0 (C.6)

e −b −k = 0 (C.7)

i − c − g = 0 (C.8)

b + f − l = 0 (C.9)

c + j −h = 0 (C.10)

g +k −d = 0 (C.11)

d +h + l = 1 (C.12)
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Re-arranging (C.6) to (C.11), we obtain

a = f + j (C.13)

e = b +k (C.14)

i = c + g (C.15)

l = b + f (C.16)

h = c + j (C.17)

d = g +k (C.18)

So, to be a reasonable allocation, one must satisfy (C.13) to (C.18) If we in turn sum

q, w,r, t , y,u times each special allocation S1,S2,S3,S4,S5,S6 respectively, we obtain
−r − t r + t −u −y u y −q −w q +w

−q −u −t q +u −w t −r − y w r + y

−w − y −r −q w + y −t −u r q r +u


Setting this equal to our paired matrix, we see that this matrix shares the pairings, and

a = r + t (C.19)

d = q +w (C.20)

e = q +u (C.21)

h = r + y (C.22)

i = w + y (C.23)

l = t +u (C.24)
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and

b = u (C.25)

c = y (C.26)

f = t (C.27)

g = w (C.28)

j = r (C.29)

k = q (C.30)

(C.25) through (C.30) are fine on their own, but one must also make sure (C.19) through

(C.24) are consistent with our restrictions. Observe, using (C.25) through (C.30), we can

rewrite (C.19) through (C.24) as follows

a = r + t

= j + f (C.31)

d = q +w

= k + g (C.32)

e = q +u

= k +b (C.33)

h = r + y

= j + c (C.34)

i = w + y

= g + c (C.35)

l = t +u

= f +b (C.36)
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Notice, the sums (C.31) to (C.36) correspond directly to (C.13) to (C.18), disregarding

order. So the row-wise sums fulfill our restrictions. Thus, we have a way to construct our

reasonable, efficient allocation matrix, explicitly

A = kS1 + g S2 + j S3 + f S4 + cS5 +bS6.

This allows us to jump directly to the decomposition, or generalized convex combi-

nation, straight from the original matrix of our reasonable, efficient allocation.
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A P P E N D I X D

N O T E S O N T H E L A C K O F A C O N S T R U C T I V E

P R O O F F O R G A M E S W I T H M O R E T H A N T H R E E

P L A Y E R S

In Appendices B and C, we saw that we can constructively find the convex combination of

special allocations (via their matrices) that make up any reasonable, efficient allocation

when we have two or three players, respectively. We cannot, however do the same for any

larger number of players. This is due to the fact that, intuitively, looking at our set chains,

we have set chains that share a common subchain, which, when viewing as a matrix,

affects our ability to unambiguously compute the needed coefficients for the generalized

convex combination.

More concretely, we can see this is due to the fact that the set of special allocation

matrices is linearly independent for two and three players, while, for four players, the set

of special allocation matrices is not linearly independent. For example, we can write

S1 =



−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
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as the sum of

S2 =



−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1

0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0



S7 =



0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1


and

S8 =



0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1

0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0


in the following way:

S1 = S2 +S7 −S8 (D.1)

With the information for games with four players, we can easily see that the same is

true for all games with more players. We may add an additional row, and the requisite

missing columns to the matrix corresponding to the n −1 player reasonable, efficient

allocation, with a −1 in the column associated with the set of all players N of the n −1

player game (to zero it out), a 1 in the final column associated with the new N , the set of

all players in the n player game, and zeros everywhere else.

This is important to note, as the set of special allocations are not linearly independent,

we do not necessarily have a unique way of writing a decomposition as we do in the two

and three player cases. So, our abstract result gives us the power to say there exists

a way to decompose our allocation into a generalized convex combination of special
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allocations, but this decomposition is not necessarily unique.
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