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ABSTRACT

The existence eyeglasses in human faces cause real challenges for ocular, facial,

and soft-based (such as eyebrows) biometric recognition due to glasses reflection, shadow,

and frame occlusion. In this regard, two operations (eyeglasses detection and eyeglasses

segmentation) have been proposed to mitigate the effect of occlusion using eyeglasses.

Eyeglasses detection is an important initial step towards eyeglass segmentation.

Three schemes of eyeglasses detection have been proposed which are non-learning-based,

learning-based, and deep learning-based schemes. The non-learning scheme of eyeglasses

detection which consists of cascaded filters achieved an overall accuracy of 99.0% for VI-

SOB and 97.9% for FERET datasets. The learning-based scheme of eyeglass detection

consisting of extracting Local Binary Pattern (LBP), Histogram of Gradients (HOG) and

fusing them together, then applying classifiers (such as Support Vector Machine (SVM),

Multi-Layer Perceptron (MLP), and Linear Discriminant Analysis (LDA)), and fusing the
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output of these classifiers. The latter obtained a best overall accuracy of about 99.3% on

FERET and 100% on VISOB dataset. Besides, the deep learning-based scheme of eye-

glasses detection showed a comparative study for eyeglasses frame detection using dif-

ferent Convolutional Neural Network (CNN) structures that are applied to Frame Bridge

region and extended ocular region. The best CNN model obtained an overall accuracy of

99.96% for ROI consisting of Frame Bridge.

Moreover, two schemes of eyeglasses segmentation have been introduced. The

first segmentation scheme was cascaded convolutional Neural Network (CNN). This scheme

consists of cascaded CNN’s for eyeglasses detection, weight generation, and glasses seg-

mentation, followed by mathematical and binarization operations. The scheme showed

a 100% eyeglasses detection and 91% segmentation accuracy by our proposed approach.

Also, the second segmentation scheme was the convolutional de-convolutional network.

This CNN model has been implemented with main convolutional layers, de-convolutional

layers, and one custom (lamda) layer. This scheme achieved better segmentation results

of 97% segmentation accuracy over the cascaded approach.

Furthermore, two soft biometric re-identification schemes have been introduced

with eyeglasses mitigation. The first scheme was eyebrows-based user authentication

consists of local, global, deep feature extraction with learning-based matching. The best

result of 0.63% EER using score level fusion of handcraft descriptors (HOG, and GIST)

with the deep VGG16 descriptor for eyebrow-based user authentication. The second
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scheme was eyeglass-based user authentication which consisting of eyeglasses segmenta-

tion, morphological cleanup, features extraction, and learning-based matching. The best

result of 3.44% EER using score level fusion of handcraft descriptors (HOG, and GIST)

with the deep VGG16 descriptor for eyeglasses-based user authentication.

Also, an EER enhancement of 2.51% for indoor vs. outdoor (In: Out) light set-

tings was achieved for eyebrow-based authentication after eyeglasses segmentation and

removal using Convolutional-Deconvolutional approach followed by in-painting.
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CHAPTER 1

INTRODUCTION

There is a wide scale integration of biometric authentication in mobile devices.

Mobile devices allow users to access their financial and personal information using bio-

metric authentication system. Any authentication system could identify users according

to the following parameters:

1. Thing you possess: The user has a thing which facilitates the access through the

authentication system. For example, a house key to access your home.

2. Thing you know: The user should remember certain characters of phrase which

is required for access when the authentication system ask about it. For example

password.

3. Thing you have: The user posses different physical and behavioral modality which

are unique and could be used to identify people known as Biometric. For example

Face, eye-print, iris, gait, signature.

The biometric allows the secure access by establishing the user identity based on

”how you are” rather than ”what you possess” or ”what you know” [6].
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1.1 Types of Biometric Traits

There are different types of biometric traits which are used in an authentication

system. Some of these traits are based on a physiological characteristic such as the face,

iris, eye-print. While the other biometric traits are based on a behavioral characteristic

such as gait, signature, and voice. Moreover, there are some other biometric traits which

could be used to support the above traits are called soft biometric. The soft biometric

also could be used to continuous and passive authentication biometric system. Figure (1)

shows a samples of these biometric traits. In addition, there are no biometric traits without

challenging or drop-back, for example, iris trait could not be acquisition using an ordinary

camera, and it required a close distance IR sensor to capture it. Moreover, face trait may

be effected by aging [7].

1.1.1 Physiological Traits

This type of biometric traits based on a physiological characteristic which already

exists in the human body such as the face, fingers, and palm. The usage of these traits

dramatically increases with the mobile devices such as smartphones and the requirement

of biometric secure access for business and personal information. There are many physi-

ological traits which are still effectively involved in security applications such as the face,

iris, ear, eye-print, palmprint.

Face trait is considered the first hard biometric which has a non-intrusive trait,

and it contains the other biometric traits such as eyes and ears. Also, this trait could be

captured from distance and extracted from video frames. Therefore this biometric trait is

2



Figure 1: An Examples on Biometric Traits

used in surveillance and criminal identification applications [8].

The fingerprint is considered as a long time, unique, and stable hard biometric

trait which made up of ridges, discriminative texture pattern (such as loop and whorl),

and minutia which represents the ridge ending and ridge bifurcation. However, capturing

a good quality of fingerprint still a difficult operation due to the sensors quality and the job

nature of some people which have an indistinct texture of fingerprint such as worker [9].

The ear has a universal shape biometric trait and could be captured from distance

and side profile, so that makes the traits useful in surveillance application in which people

are running and have a side profile [10].

In addition, the iris is one of the best discriminative traits which has a donut shape

region with furrows and ridges. However, this trait should be captured in Near Intra-Red
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(NIR) high-resolution sensors [11]. Recent researches showed the possibility to imple-

ment an iris-based biometric system by acquiring the iris modality in light color setting

or by creating a particular illumination environment [12].

Moreover, there is a non-facial part trait which forms the inner part of palm is

called palmprint. This trait has a rich texture consists of ridges, minutia, lines, and delta

points which enable this trait to be a unique trait [13].

In addition, there is another non-facial trait which forms the outer part of the finger

is considered as a knuckle print. This trait has a baseline texture and could be captured by

low-cost sensors, however, knuckle print suffered from illumination variation, rotation,

and translation [14]. Table (1) shows the comparison of different hard biometric traits

with respect to their advantages and challenges [15].

1.1.2 Behavioral Traits

The behavioral traits are another biometric traits that have been used in an authen-

tication system. This type of traits depends on the behavioral characteristics of the human

beings. These biometric behaviors are related to some measurements or responsibilities

of human that help to identify subjects or group of subjects according to their behaviors.

Some of these behavioral traits will discuss in this section such as Gait, and voice [16].

Gait represents one of the good behavioral traits in the biometric system since it

could be acquired from a distant distance for still images or video streams. Also, this

trait required a daylight light condition to identify people correctly. In addition, gait

trait depends on the shape and gesture of subject walking style and it could be used in
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surveillance applications as well could be involved with other biometric traits [17].

Signature is considered as an instance of individual verification. The signature

trait depends on two main features which are static features, and dynamic features. The

static features such as orientation, coordinates, writing angle, the shape of the constructed

curve, and the number of breakpoints. While the dynamic features such as pen pressure,

pen speed, and writing time. The signature trait could be used in different applications that

required personal verification such bank checking and financial payment [18], however,

this type of trait could be spoofed and forged easily so that some banks moved their

verification process to mobile eye-print and periocular region modalities.

Voice is one of the naturally common behavioral of the human. Voice trait depends

on several natural features to identify people such as voice texture, nasal tone, cadence,

and speech influence. however, this trait could be imitated and faked easily due to its weak

feature mentioned above, and a voice similarity between people [19]. Table (2) shows the

comparison of different behavioral biometric traits with respect to their advantages and

challenges.

1.1.3 Soft Biometric Traits

Soft biometric is considered in most cases as a descriptive trait [20] that identify

people by creating a description label. This description label could be skin tone, human

height, gender, ethnicity, body weight, fat measurement, the gist of an eyebrow, and the

shape of eyeglasses. These labels could be combined with each other such as gender

trait and ethnicity or could be fused with another hard physiological trait such as body
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weight and fingerprint [21]. One of the main advantages of soft biometrics that it could

be used to identify people based on the human description, Also less computation and

memory usage by comparing with other hard physiological traits such as face [22]. Also,

the soft biometric traits are not used only for personal identification; also it could be used

Surveillance Environment [23].

Human weight was used as a soft biometric by fusing this trait with hard biomet-

ric such as a fingerprint to identify people by photoplethysmographic signals as a novel

approach [24] [21]. Besides, soft biometric also called ancillary user information such as

gender, human hight, eye color had been used for user authentication by fusing this infor-

mation with fingerprint or face [25]. Moreover, ethnicity detection [26] could be used as

a good supporter of primary biometric by fusing this personal information with the ocular

region to identify people. Figure 2 shows a nice example of ethnicity support with Iraqi

(middle-east ethnicity) person (Figure 2 (a)) that is so similar to the real suarez (a famous

score player) as shown in figure 2 (b) [1].

The bifurcation of gender for people to obtain the descriptive label of sexual cat-

egories of male and female. These sexual labels could support the authentication system

based on hard physiological traits if this system fail in verification process. For example,

two workers people was verified using authentication system based on fingerprint, and

both of them in different sexual categories. In this case the sexual label could help to

verify these people [27].

Eyebrow represents a biometric facial part that it exist naturally above the ocular

region. Also, eyebrow is one of recent biometric trait that both genders male and female
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Figure 2: An Examples on ethnicity trait that support ocular recognition. [1]

poss it. Some of the novel studies considers this trait as a stand-alone biometric trait for

biometric authentication system [28], [29], [30]. In addition, eyebrow could be consid-

ered as a soft biometric that could be used when the primary biometric is missing due to

occlusion or eye half-closed for ocular recognition system according to some studies [31].

Another advantage of eyebrow trait that it give a trade-off between computational com-

plexity and identification accuracy in comparison with face and other facial biometrics.

The reason of mentioned advantage is related to a geometric fact that the region of eye-

brow represents one-sixth of the full face region, and there is some searchers show this

trade-off comparison with their reported results [28], [12].

Facial and ocular recognition systems have a real problem cased by eyeglasses.

This is because eyeglasses reflection, shadow, and frame occlusion. Moreover, eyeglasses

detection, segmentation, and removal will mitigation this occlusion problem that affect
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the primary biometric recognition with facial the ocular regions. However, the eyeglasses

detection and segmentation could be used to get a novel soft biometric trait, eyeglasses.

The gist scene of eyeglasses, and the texture of eyeglasses material could be used as a

stand-alone trait to identify people that wear eyeglasses for a short time passive authenti-

cation. In addition, the eyeglasses trait could be fused with other primary hard biometric

trait such as face or ear for long time authentication.

1.2 Modes of Biometric Operation

The biometric system could be divided into three main modes which are enroll-

ment, verification, and identification. Each of these modes has its requirement and spe-

cific operations. Any biometric system should start with enrollment operation to obtain

the user information to the system. This personal information could be any modality or

biometric traits such as the face, iris, or eyebrow. Next, the features will be extracted

from these modality or trait and store in the system database as a template to be used

in the next biometric operation. The verification or identification is the next operation

that will operate after enrollment. In these two operations, the descriptors of the query

modality or biometric trait are matched with the stored templates from the enrollment

operation [32], [33].

1.2.1 Enrollment

This operation involves the enrollment or registration of a person to the system

database. Enrollment consists of different steps 3 which are modality acquisition, quality
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Figure 3: The block diagram of enrollment mode.

checking, preprocessing, feature extraction, and template storing. The modality or bio-

metric trait is acquired as a region of interest (ROI) using different computer vision and

cascaded classifiers such as viola-johns [34] or facial deep learning landmarks [35]. Next,

the quality of acquired ROI will check with respect to a specific threshold, if the quality

of ROI does not satisfy the requirement, then the modality or trait will be acquired again.

Then, the features will be extracted and sorted as a template in the system database [36].

1.2.2 Verification

Verification is defined as one-to-one (1:1) system verification which the system

match the identity of individual claim with its corresponding template. The result of the

matching operation is the similarity score which represents the amount of similarity or

distance between the claim and the corresponding template. Moreover, the matching is

applied to the extracted feature of the biometric trait for the individual claim with the

feature of the corresponding template. Then, the individual is considered as a genuine
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Figure 4: The block diagram of verification mode.

user if the matching score is above a certain predefined threshold and the claim is verified

for this subject. Otherwise, this subject is considered as impostor user, and this subject is

denied for access [37], [32]. Figure 4 shows the block diagram of this biometric mode.

1.2.3 Identification

This biometric mode is considered as one-to-many (1 : N ) system identification

which the system match the identity of individual claim with all (N ) stored templates.

Also, the system attempt to determine whether the identity of the individual exists in the

system database. In that case, if the matching score is above the predefined threshold,

the claimed user is considered as identify user or genuine user. Otherwise, this user is

considered as impostor user [37], [32]. Figure (5) shows the block diagram of this mode.
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Figure 5: The block diagram of identification mode.

1.3 Performance Analysis of Biometric System

The performance of any biometric system affected by different variation parame-

ters such resolution of acquisition sensor, occlusion of wearable object such eyeglasses,

variation of light condition such as indoor/outdoor settings, pose profile of individuals

such high/low poses, user cooperation in different biometric modes (section 1.2). In that

case, all mentioned variation parameters made the performance of any biometric system

not to be a perfect system, that is never to be 100% accuracy. Therefore, the measure-

ments for performance evaluation is required in different biometric operation or modes.

These measurements represent the amount of system accuracy and sometimes represents

the error amount due to a specific variation or computation.

There are different types of rates by which the biometric system is evaluated which
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are [38]:

1. False Rejection Rate (FRR)

This rate also called as Type I error. Type I error or false reject happens if the

genuine user is verify or identify as an impostor user due the similarity score is

below the predefined threshold. The rate is computed using equation (1.2).

FAR =
false reject attempts made by genuine users

Total number of attempts
. (1.1)

2. False Acceptance Rate (FAR)

This rate also called as Type II error. Type II error or false acceptance occurs when

the impostor user is recognized as a genuine user due to the similarity score is above

the predefined threshold. Therefore, FAR or False Match Rate (FMR) represent

the probability of incorrect access of unauthorized individual made by a biometric

system. The rate is computed using equation (1.2).

FAR =
false sucessful attempts made by genuine users

Total number of attempts
. (1.2)

3. Equal Error Rate (EER)

EER is the obtained value where the False Reject Rate (FRR) is equal to the False

Acceptance Rate (FAR). This value could determine the accuracy level of the bio-

metric system is reciprocal manner. In that case, a low value of EER represents a

high value of accuracy level for a particular biometric system. Also, EER value is

calculated using the Genuine Acceptance Rate (GAR) as shown in equation (1.3)

with False Acceptance Rate (FAR) in the same manner.
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GAR = FRR− 1. (1.3)

4. Failure to Enroll Rate (FTE)

Sometimes the biometric system locks the generation ability to create or register

multiple copies of templates for a particular modality or biometric trait of one or

more individual. There are different reasons for this failure such as the absence of

biometric features for a particular individual, and the sensor could not be acquired

an excellent image quality during the enrollment, the protocol of enrollment, and

the long-term enrollment.

5. Failure to Acquire Rate (FTA)

This rate represents the inability of the biometric system to acquire, detect, or locate

the required region of interest (ROI). This is because of the low quality of images,

and the adaptive threshold of the quality is checking for extracted ROI.

1.4 Challenges associated to Biometrics in Mobile Environment

Many challenges associated to biometric systems in the mobile environment such

as the occlusion of wearable objects (i.e. eyeglasses, sunglasses, hat, and earrings), im-

ages acquired in different light conditions (i.e. indoor versus outdoor light settings), dif-

ferent profile or poses during “selfie” images.

13



1.4.1 Eyeglasses Occlusion

Eyeglasses occlusion represents a large factor for face and ocular recognition.

The reasons for this effect are the frame occlusion, light reflection on eyeglasses, and the

shadow due to frame and glasses. Furthermore, inaccurate eye pair detection may happen

due to the presence of eyeglasses which cover the ocular and periocular region of the face.

A significant amount of literature shows that the face recognition depends on eye pair

detection for face registration and alignment. Moreover, the performance of ocular and

periocular recognition systems may degrade due to occlusion of these important biometric

region by eyeglasses [39], [40], [12].

1.4.2 Lighting variations

Most of the acquisition process in biometric system demands high-quality im-

ages, and keeping the original characteristic of biometric feature for a modality or trait,

to satisfy this requirement, a sufficient source light condition is preferred in visible and

infrared. Further, high performance for the biometric system could be obtained using con-

trolled light condition database. In a mobile environment, it is difficult to obtain a good

control over light condition. To mitigate this problem, some research studies suggest to

applied some computer vision filter such as CLAHE to soften this problem [41], [42].

1.4.3 Poses in “selfie” images

There are different profiles of poses for “selfie” images that acquired by a mobile

device such as horizontal poses (i.e., right and left poses), and vertical poses (i.e., high,
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medium, and low poses). The horizontal poses have more impact on some of the biometric

traits such as eyebrow. However, the biometric could select one eyebrow (such as right),

and leave the other one. Also, most of the “selfie” images have vertical poses rather than

horizontal poses. In case of vertical poses, the low pose affects the acquisition process to

obtain some of the biometric traits such as blood vessels in scalar portion [43].

1.5 Limitation of Biometric in Mobile Environment

There are different types of limits that have a valuable impact on any biometric

system. The sources of these limitations are related to the acquisition process, the match-

ing/classification process, or the biometric trait itself. Some of these limitation is shown

bellow [33], [19]:

1. Inter-class similarity: This limitation happens because of the overlapping of ex-

tracted feature which corresponding to multiple different enrolled subjects. FAR

could a good indicator for this limitation.

2. Intra-class variations: The main reason for this limitation is the variation in illumi-

nation and pose during the acquisition process. Lifespan and aging (i.e., face aging)

are another reason for the intra-class variation.

3. Noisy acquired Data: The noisy data occurs mainly in the acquisition process due to

an unsuitable configuration for sensors, or due to temporal variation caused by long-

term matching. Noisy data may affect the matching process and cause incorrect

identification in a biometric system.
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4. Object occlusion: Occlusion for some biometric traits affect on trait acquisition and

matching processes. Some of these objects naturally exist such hair, and another

object unnaturally exists eyeglasses.

5. Spoofing attaches: Spoofing in the mobile environment occurs when someone cre-

ates a fake physical trait of another subject such a facial image of another subject

and try to spoof the biometric system during the recognition process.

6. Non-universality: Some individual does not have a particular biometric trait. For

example, most the worker have a weak or poor fingerprint.

7. Facial Plastic Surgery: This new limitation represents a significant problem in the

recognition process for the face-based biometric system. This limitation happens

because the impostor user depends on plastic surgery with facial characteristics

such as facial shape, eyes size, eyebrows shape, nose, and chin.

8. Hormone Replacement: Another new limitation achieve by a medical operation on

the hormone inside the human body to change the gender. This limit affects the

biometric system which uses face and or gender biometric trait.

1.6 Multimodal Biometric and Level of Fusion

1.6.1 Multimodal Versus Unimodal Systems

Mainly, there is two type of biometric system namely, unimodal and multimodal.

Unimodal use one biometric trait while the multimodal use of more than one modality or

fused biometric traits. Different limitations may affect the unimodal-based system such
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noisy data, a limited degree of freedom, intra-class variation, and spoof attack. The previ-

ously mentioned problems that are related to the unimodal-based biometric system could

be enhanced by involving a different source of biometric information such as different

biometric traits.

Multimodal biometric system mitigates the disadvantage of the unimodal-based

system by involving multiple sources of biometric information. In that case, the impostor

user can not spoof multiple biometric traits of the genuine user at the same time. Also,

if one of biometric information is noisy, then the other information (i.e., other biometric

traits) can compensate for the noisy one. Moreover, a different type of biometric traits

can increase the degree of freedom and raise the performance of the biometric system.

1.6.2 Fusion Levels

Different biometric traits can be fused at acquisition level, feature level, matching

level, rank level and decision level as listed below:

1. Acquisition level: The data from a different sensor can be normalized and fused

to obtain new data for the same enrolled individual in the biometric system. An

example of this level, a fingerprint can acquire using different sensors such finger

scanner sensor and solid state sensor.

2. Feature level: The features of a different trait for each user extracted separately.

Then, these features are concatenated, normalized, and stored as a template in the

database of the biometric system. For example, Local Binary Pattern (LBP) feature

of an eyebrow and Binarized Statistical Image Feature (BSIF) of iris could be fused
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together.

3. Match score level: The match score of different modality can be fused to obtain one

final score. For instance, the match score of a right eyebrow could be fused with

the match score of a left eyebrow to form the final score of both eyebrows.

4. Rank level: This fusion is compatible with different identification classifier. A rank

assigned for each enrolled identity and the fusion involve many rands with each

identity. In that case, a new rank determined from these many ranks, and this will

support the final decision of the classifier.

5. Decision level: Fuse the decision of different recognized trait by voting. For exam-

ple, a biometric system identifies people using face, iris, eyebrow. Then, for each

modality has its own decision (thresholded score) namely, [1, 0, 1] for face, iris,

and eyebrow respectively in visible light. In that case, fusion could be applied by

majority voting to obtain one on the final decision.

1.7 Motivation and contribution of this work

The occlusion of a wearable device such eyeglasses has a real impact on the perfor-

mance of ocular and periocular biometric system. Also, eyeglasses detection represent the

first step of eyeglasses segmentation. In this work, eyeglasses detection using a different

approach (non-learning based, learning based) was introduced. Besides, eyeglasses seg-

mentation have been implemented using different deep learning models with cascaded and

non-cascaded models. Moreover, two authentication system have was introduced namely
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eyebrows-based user authentication, and eyeglasses-based user authentication. Both of

these biometric system used for continues and short-team authentication. Also, an en-

hancement has been applied to these authentication systems using eyeglasses in-painting

and removal.

1.7.1 Eyeglasses Detection and Segmentation using Deep Learning

Different approaches have been introduced for eyeglasses detection and segmen-

tation is the summary of the contribution for this part (as it will be explained in details in

the next chapters):

1. Eyeglasses detection:

• Non-Learning based Approach: This approach was implemented by apply-

ing cascaded computer vision filters such as CLAHE filter, Sobel filter, and

binary thresholding filters.

• Leaning based Approach: This approach was implemented using classifi-

cation classifiers such as Support Vector Machine (SVM), Multi-Layer Per-

ceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic Discriminant

Analysis (QDA).

• Deep Leaning Approach: This approach was implemented using (18) squeezed

model of Convolutional Neural Networks (CNN) applied into two different re-

gions namely, frame bridge region, and extended ocular region.

2. Eyeglasses Segmentation:
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• Cascaded Convolutional Network: This approach involved two Convolu-

tional Neural Networks (CNN). The first one for eyeglasses detection, and

weight generation to be used in the second network. The second network uses

the generated weight with convolutional layers and upsampling layers.

• Convolutional and Deconvolutional Network: This approach was imple-

mented using deep learning network consist of convolutional, deconvolutional,

and a user-defined custom layer.

1.7.2 User Authentication using Eyebrows and Eyeglasses

Two user authentication systems have been implemented using soft-biometric traits

namely, eyebrows and eyeglasses. Different local and global descriptors have used to ob-

tain the binary, gradient direction, and the shape of these modalities. Also, non-learning

based and learning based matches have been evaluated in this work.

1.7.3 Soft-Biometric Enhancement with Eyeglasses Removal

Eyeglasses in-painting and removal was applied after predicting the eyeglasses

masks using deep learning approach. The experimental results was evaluated before and

after eyeglasses mitigation.

1.8 Outline of Dissertation Topics

Chapter (1) gives an introduction to the biometric system, Modes fo biometric

operation, perform analysis for a biometric system, challenges associative to biometric

mobile-based, biometric limitation, multimodal biometric with fusion levels, motivation
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and contribution.

Chapter (2) provide background on machine learning classifier, and feature de-

scriptors on computer vision.

Chapter (3) shows schemes for eyeglasses detection, and eyeglasses segmentation

using a non-leaning-based, and learning-based method.

Chapter (4) introduce a user authentication using two soft biometric traits which

are eyebrows and eyeglasses. This authentication implemented for short-term and contin-

uous biometric system.

Chapter (5) gives a conclusion and future work for eyeglasses mitigation, soft-

based authentication, and the usage of deep learning in biometric systems.
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Table 1: The comparison of different hard biometric traits with respect to their advantages
and challenges

Modality Advantage Challenges
Face Most common. Face pose and illumination

Non-intrusive Facial expressions
Could be capture using cheap
sensors

Aging effect

Widely acceptable traits
Fingerprint Unique and discrimiative Getting good quality of figger-

prints
Lesser cooperation in acquistion
Could be capture using cheap
sensors

Ear Non-intrusive Illumniation variation
Could be capture using cheap
sensors

Pose and translation

Universal shape Hair and eye rings occlusion
Highly accepatable traits

Iris Highly discriminative Illumination variation
Unique texture Eyelid and eyelash occlusion
Highly discriminative Illumination variation

Specular reflection
Off-angle iris recognition

Palmprint Could be capture using less cost
sensors

Illumniation variation, rotation,
and translation

Dicriminative and unique feature Problem of occlusion
Knuckleprint Naturally protected Illumniation variation, rotation,

and translation
Could be capture less cost sen-
sors
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Table 2: The comparison of different behavioral biometric traits with respect to their
advantages and challenges

Modality Advantage Challenges
Gait Non-Instrusively. Background, and clothes varia-

tion.
Could be acquired from dis-
tance.

Nature of walking surface.

Good user acceptance.
Signature Good individuals acceptance Aging, and emotion variation.

Nature of writing surface
Voice Well Individual acceptance Aging, and emotion variation.

Medical issues that are related to
voice quality
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CHAPTER 2

BACKGROUND IN MACHINE LEARNING AND COMPUTER VISION

2.1 Introduction to Machine Learning

Machine learning is an approach that supply systems the ability to learn and im-

prove its knowledge from the subset of data, validate this knowledge, and generate the

final decision with unseen data. Besides, machine learning can be divided into super-

vised, semi-supervised, unsupervised algorithm as listed below [44]:

• Supervised learning: The algorithm learns from example input (train subset) alone

with desired output (also it called labels or target), after training the algorithm, the

classifier can generate the final output by providing unseen examples (test subset).

Also, the evaluation can be made by comparing the final output and the label of

unseen examples. Predicting of heart ischemia is an application of this learning.

• Semi-supervised learning: The algorithm learns from both labeled and unlabeled

training data. This learning algorithm is used when the label acquisition required

a relevant source to obtain it. Protein sequence classification is an example of this

learning since the inferring process for protein function required intensive task by

a human.

• Unsupervised learning: The algorithm learns from unlabeled training data, and it
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can not validate the output for unlabeled test data. However, it can provide the in-

ferences from the whole dataset to describe hidden structures. Clustering approach

is an example of unsupervised learning such audio recording clustering for micro-

phone surveillance system.

2.1.1 Machine Learning Applications

In recent days, Machine learning has grown rapidly and become one of primary

source of information technology in our life. Dramatically, the amount of data increase

rapidly, so it is crucial to involve a smart analysis of these data for participating in technol-

ogy development in smart devices and mobile phones. Machine learning could be found

in many aspects of our life. One of the known machine learning application is web page

ranking. This application can be defined as an operation that sends a query to a search

engine implemented by a particular machine learning method and returning the relevant

pages to that query. Another widely used application for machine learning is security

application. This application can be used as an access control for financial and personal

information. Since most people nowadays use a mobile device such as smartphones or

tablet to access their information, the machine learning involves inside these devices to

deploy this job. Another application is named entry recognition which performs an identi-

fication for entries such place, title, names inside documents. For instance, modern e-mail

clients such as Apple’s mail posses the ability to identify the address in mail filling than

in the address book of smartphone [45].
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Figure 6: The role of machine learning in biometric.

2.1.2 Role of Machine Learning in Biometrics

Machine learning plays an important role in the different aspect of biometric sys-

tem 6. There are many applications of machine learning in a biometric system such as

facial part detection, wearable object detection and segmentation, and making the final

decision of biometric system [46].

Face and facial part detection are one of the important applications for ROI pre-

pare. There are different approaches to ROI detection using machine learning such as

viola-johns [34], and Dlib landmarks and face detection [35].

Another application of machine learning is the detection of a wearable object such

as sunglasses and eyeglasses. This could be implemented using different classifiers such

as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Linear Discrimi-

nant Analysis (LDA), and Quadratic Discriminant Analysis (QDA) [47]. This will be

explained in details in Chapter 3.
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Moreover, any biometric system output the decision at the final stage for verifi-

cation and identification. At this stage, the biometric system link or match the feature

of the acquired sample with the feature of a query sample to obtain the final decision

for a specific identity. In that case, the matching operation could be implemented us-

ing a non-learning based method by calculating the distance between the acquired and

query feature. However, machine learning could be considered a good match between the

acquired feature (training set), and the query feature (test set) [48].

2.1.3 Deep learning and Biometrics

Deep learning is a machine learning with computational model consists of multi-

ple processing layers which poss the ability to process raw data such as voices or images

in a different level of representation and abstraction [49].

Deep learning has a dramatic development and involved in different applications

in our life due to several reasons. The first reason is the hardware evolution in computa-

tional devices such as Graphical Processing Unit (GPU) which posses multiple cores for

computation. For example, a GPU GTX 1090 Ti has streaming pascal Multiprocessors for

a total of 3840 CUDA cores. Also, the ability of Convolutional Neural Networks (CNNs)

to process raw data such as image matrix due to convolutional layers inside CNN. While

the traditional machine learning such Multi-Layer Perceptron (MLP) need an extracted

features to process it. Also, the deep learning has different data representation and ab-

straction for each stage (layer). For instance, the heat map image could be obtained from

the activation layer after convolutional layer while the output categories could be acquired
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Figure 7: The steps of object detection using DCNN. [2]

from full connected layers [50].

There are different biometric applications used deep learning as a machine learn-

ing which are object detection, object segmentation, feature extraction, and feature match-

ing. Object detection is one of the biometric application which uses deep learning ma-

chine. In this case, deep learning model consists of two main parts which are the con-

volutional layers part and the full connected layers part (MLP part). The convolutional

part is responsible for the feature extraction from the raw data while the full connected

part will classify these features into categories [2]. Figure(7) shows an example for object

detection steps using deep learning machine [2].

The second biometric application which uses the deep learning machine is object

segmentation. A machine learning could classify any image in pixel level (pixel by pixel

classification) which is called semantic image segmentation. The semantic segmenta-

tion could be applied in different computer vision applications such as understanding the

whole imaging scene, inferring the relations between objects inside the image, remov-

ing the impact of object occlusion such as eyeglasses from the important biometric region

such as ocular region, and extracting biometric trait such as eye region from facial images.
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In general, DCNN is not enough to localize and segment objects inside image accurately,

research combine DCNN with other machine learning task such as fully connected (CRF)

[51] to obtain more accuracy in semantic image segmentation. In the same manner, other

research follows the core DCNN segmentation model by pre-trained CNN model such as

Visual Geometry Group (VGG16) [52].

Another exciting application of deep machine learning for a biometric system is

feature extraction. It is essential to find the best-extracted features for biometric trait

obtained from sensors such as facial images, voice, and human behaviors. Also, the

conventional features of computer vision showed un-relenting progress to develop the ac-

curacy of biometric systems [53]. Besides, the deep models such as Google networks,

and VGG networks introduce new significant progress with the development of computer

hardware such as GPU. This progress of deep models outer-perform the conventional fea-

tures descriptors. Pre-Trained DCNN models such as VGG16, VGG19, AlexNet, ZFNet,

LeNet-5, ResNet and GoogleNet used to extract micro-structure features from the image

scene. These pre-trained models vary in their architectures which are consist mainly of

stages of the convolutional, and max-pooling layer that allows it to filter the information

at a different level. For instance, VGG16 (figure(8)) is a pre-trained CNN model con-

sists of (16) layers involving mainly five stages of convolutional and max-pooling layers,

three stages of fully connect (MLP) layers, with one softmax layer for classification. In

that case, the convolutional and max-pooling layers are used for feature extraction by

obtaining the information from the last max-pooling layer with a pre-trained model.

In addition to feature extraction, feature matching could be obtained using deep
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Figure 8: The architecture of VGG16 Model. [3]

models. In that case, the deep learning models could act as a feature comparison between

the deep feature template which is acquired and stored during the enrollment process and

the input query during verification or identification process. In a traditional biometric

system, the feature matching process obtained using distance function such as Euclidean

distance while the deep learning models could match features using fully connected layers

which are Multi-Layer Perceptrons (MLP) and usually called learning distance metrics.

An excellent example for this application is MatchNet. This network consists of three

main parts which are feature network, metric network, and MatchNet training [4].

Figure (9) shows the architecture of MatchNet network [4] which consists of five

convolutional layers, three max-pooling layers, three fully connect layers, and one soft-

max layer. In that case, the convolutional layer and max-pooling layer were used for

extracting the deep features while the fully connected layer and softmax layer was used
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Figure 9: The architecture of MatchNet Model. [4]

for feature matching.

2.2 Feature Descriptors in Computer Vision

Any biometric trait such as a face, iris, or eyebrow could be acquired as raw data,

and this data could be represented as a specific number of features such as binary, cate-

gorical, or continues. A feature is the equivalent phase of the biometric trait or modality

which could be stored as template or input query in a biometric dataset. However, there

are some challenges related to find the best data representation or feature which is related

to different parameters such environment nature (i.e., mobile environment), sensor type

(i.e., NIR sensor for iris), biometric trait type (i.e., physical or behavioral traits), and other

parameters [54, 55].
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2.2.1 Important Considerations for Feature Extraction

To achieve a good performance of features matching for a biometric system, the

following preprocessing operations and considerations should be covered [54]:

• Standardization: Suppose there are two characteristic biometric traits such as the

hight and width of human face measured in millimeter, and centimeter respectively.

In that case, these traits should be standardized in order to use it with the biomet-

ric system, so both of these traits should a unique unit measure to have a resealable

matching or fusion. Also, a statistical standardization (also called Z-score standard-

ization) could be applied on the extracted feature that depends on the mean µi and

standard deviation σi of feature fi, so the standardized feature f ′
i could be obtained

using this equation f ′
i = (fi − µi)/σi.

• Normalization: In order to obtain an efficient features from image x with n pixels

with different intensities, it is better to divided the image by the total number of

count (image distribution) into to have a normalized and uninformed the image

before the feature extraction x′ = x/||x||. This operation will allow the feature to

be dependable from image size.

• Scaling: A binary scaling could be applied on the extracted feature to scale the

feature between two specific range (i.e., zero and one). This scaling depends on the

minimum mini and the maximum maxi of the values of the features. The scaled

feature f ′
i could be obtained using this equation f ′

i = (f
′
i −mini)/(maxi−mini).

• Signal Enhancement: Signals with different dimensions such voice (1D signal),
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gray image (2D signal), and colored image (3D signals) have a common noise met-

ric called signal-to-noise ratio SNR = PowerSignal/PowerNoise which could be

improved by reducing the amount of noise via applying some preprocessing such

filters, background remove, de-noising [56], or morphological image analysis [57].

• Extraction of Structured Features: Structured features could be extracted using

specific convolutional kernels via deep models. These features could achieve a

significant improvement to the biometric system and possess good representation

for the raw data.

• Reduction: Some of the local features or deep features have a very high dimen-

sion (feature size) which contain a redundant representation for the raw data; also

it caused a time-consuming for features matching. Therefore, data reduction tech-

niques could be used to avoid the above problems. For instance, Principal Com-

ponent Analysis (PCA) and Multidimensional Scaling (MDS) are a common tech-

nique for data reduction.

• Discretization: The operation that involves converting the continuous data into

finite discrete data. In that case, the features will be understandable and simplified.

There are different categories of feature descriptors such local, global, and deep

features as explained in next sections.
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2.2.2 Local Image Descriptors

Local image descriptors are obtained from image locally by dividing the whole

image into parts (sub-images or cells) in repeated form, then these features could be en-

coded in a specific representation (such as histogram) to be invariant to image transfor-

mation such as translations, rotation, scaling, and affine [58].

Three parameters should be applied on feature extraction for local features to ob-

tain a good quality features which are repeatable, precise, and distinctive. The feature

extraction should be repeated locally to every part of the image (image cells), and these

features should be computed accurately for each cell. Also, these features should be

unique on different images in which it could be distinctive during the matching process.

To extract a local feature, distinctive key points should be located inside the image, then

the regions around these key points should be defined. Consequently, the region content

should be normalized, then the descriptor could be computed inside these regions [59].

There are some common local image descriptors which are widely used by bio-

metric researches as shown below:

• Histogram of Oriented Gradient (HOG): This image descriptor was first time

introduced and applied on detection problem, namely, pedestrian detection in still

images by two researchers Bill Triggs and Navneet Dalal [60]. After that, other

research shows more work which leads to human, animals, and vehicle detection

not only for still images but for videos and films [60]. Figure (10) shows a visual-

ization of HOG. HOG operation involved different steps. First, the image is divided

into small square parts called (cells), then the gradient histogram is computed and
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Figure 10: The HOG visualization

normalized for each cell, and finally, the descriptor is return [61].

• Local Binary Pattern (LBP): This descriptor is considered as the best image de-

scriptor to recognize texture pattern in images. It was originally introduced by

Ojala [62] which was applied on images with multiresolution grayscale. In that

research, LBP shows a robust work against rotation and multi-resolution scale to

classify images with different textures. Figure (11) shows the steps of LBP op-

eration which starts to divide an input image into (N ) blocks, and the descriptor

operates labels the 3x3 neighborhood inside each block. Then, LBP operator cre-

ate a binary threshold mask (Mth) by comparing the centric value (gcenter) of the

3 × 3 cell (Mcell) with each value in this cell (gi), if (gcenter <= gi) a 1 label will

be assigned. After that, the binary threshold mask (Mth) is multiplied by the bi-

nary weighted mask (Mw) to produce the resulted pattern (Mp). The resulted mask

value is summed to form one value in the histogram of a certain block. Moreover,
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Figure 11: The Steps involved in LBP feature extraction.

the histogram of each N block is concatenated to form the final histogram of LBP.

2.2.3 Global Image Descriptors

These descriptors poss the capability of generalizing a representation for an entire

image as a single vector which may describe the color, texture, and shape of an image.

In contrast, local image descriptors which are operated on different image division (im-

age blocks or cell), and are used to calculate the feature at different points of interest to

recognize objects inside the image. Global image descriptors show a more robust and suit-

able performance on similarity image applications such as Google Similar Image (GSI)

application, in this case, the images could be pre-filtered using text similarity [63].

There are some common global image descriptors which are widely used by bio-

metric researches as shown below:

• GIST: Oliva and Torralba [64] introduced this global image descriptor. In their
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Figure 12: The visualization of GIST image descriptor.

work, they proposed a recognition model to recognize the scenes for real-world ap-

plications. This model computes the image representation (they called it Spatial

Envelope) at very low dimension by passing the segmentation, region, and individ-

ual object inside the scene. In that case, the spatial envelope model could show

certain information such as identity or shape of the object, and probable semantic

category. GIST descriptors use a 32 Gabor filters with 4 scales, and 8 orientation.

Then, these features maps are divided into 16 region, and for each region, the av-

erage of these features is calculated. After this, a concatenation of 16 averaged

feature with 32 features map is applied to produce a GIST feature vector of size

16 × 32 = 512 [65]. Moreover, GIST shows a robust performance in different ap-

plications such as classification of traffic scenes [66], web-scale image search [67],

object recognition [68]. Figure (12) shows a visualization for GIST image descrip-

tor.
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Figure 13: The visualization of SURF image descriptor.

• Speeded-up Robust Features (SURF): This image descriptor was first introduced

on 2006 by Herbert Bay [69]. SURF is considered as an updated work of previous

image descriptor named Scale Invariant Feature Transform (SIFT) in which some

enhancements applied into SIFT to introduce another faster and robust descriptor

over SIFT. First of all, SURF localize the interesting point inside the image using

the Hessian detector which is a matrix calculation of convolution of Gaussian sec-

ond order derivative with image I at a point x. On another side, SIFT uses Laplacian

of Gaussian (LoG) with Difference of Gaussians (DoG) instead. Then, the SURF

descriptor is calculated at the interesting point using Haar wavelet quickly using

integral images [70]. Also, this descriptor could be used in different applications

such as forgery detection [71]. Figure (13) shows a visualization of this descriptor.
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Figure 14: The visualization of deep image descriptor.

2.2.4 Deep Learning Image Descriptors

Recently, the deep image representation shows a robust and outer-performance

over the handcraft descriptors such as local and global image descriptors which were

mentioned in the previous sections (section 2.2.2, and section 2.2.3). Deep CNN models

have been used for image retrieval to extract a micro-structure feature using the con-

volutional layers. A pre-trained CNN-based model used to obtain deep features using

cascaded convolutional and max-pooling layers. In this case, these CNN-based models

usually acquired local features from the input image using networks which were previ-

ously trained on big dataset such as ImageNet [72]. Moreover, the deep features could be

used in different applications such as visual tracking [73], and image classification [74].

Figure (14) shows the visualization of deep image descriptor.

There are some common pre-trained CNN models for deep image descriptors
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which are widely used by biometric researches as shown below [75]:

• VGGNet: The Visual Geometry Group Networks (VGGNet) was first introduced

by developed by Simonyan and Zisserman [75] in 2014. Two models were intro-

duced VGG16 and VGG19 which have 16 and 19 layers respectively. The filter

size which used in the convolutional layer was 3 × 3, and these two models have

been trained in 4 GPU for 2-3 weeks. Moreover, the VGGNet was implemented

with 138 million parameters trained on ImageNet dataset. Also, the VGG16 model

is the common and preferred model for feature extraction since it shows a robust

performance in different light variation [76]. The standard size of input image for

this model is 224 × 244 × 3, and feature size is 7 × 7 × 512 = 25, 088 (see figure

(8)).

• ResNet: The Residual Neural Network (ResNet) model was first implemented by

Kaiming He who introduced a novel model with skip connection (gated recurrent

units) which could give features with huge batch normalization [77]. Also, this

model was implemented with 50 layer; however, this model had a lower complexity

comparing with VGGNet [72].
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CHAPTER 3

EYEGLASSES DETECTION AND SEGMENTATION

3.1 Introduction to Eyeglasses Detection and Segmentation

Mobile devices are playing a significant role in daily life, not only for communica-

tions but also for entertainment, work, or social networks. Along with the rapid increase

in smart-phone applications, the number of sensitive data that these devices are accessing

is also increasing (e.g., bank accounts, personal e-mails, photographs etc.). Thus there’s

a need to protect the access to such sensitive data and services. Biometrics is natural, and

secure alternative mechanism over passwords for such protection [78], [79].

In this regard, smartphone devices show a dramatic advancement in the technol-

ogy. Also, these devices pose advanced sensors such as cameras and microphones which

allow usage of biometrics as a means of access control [40]. In this context, face and

ocular biometrics have received significant attention. This is because this biometrics can

be acquired using the regular RGB camera of the smartphones.

Face biometrics is one of the most popular and widely adopted biometric traits due

to being natural and non-intrusive. General face recognition pipeline consists of image

acquisition, face detection, image pre-processing, feature extraction and matching. Face

detection consists of detecting the facial region of interest (ROI) from the image. Then

the detected face is preprocessed to account for intra-class variations such as those caused

by lighting and pose, followed by a feature extraction and matching [80].
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Figure 15: (A) reflective glasses, (B) shadow, and (C) dark images causing challenges in
accurate eyeglasses detection. The upper and lower facial regions have been masked to
preserve volunteers’ privacy (VISOB database).

The challenges associated with face recognition can be attributed to factors such as

pose, facial expression, illumination variations and the presence of intervening structural

components such as eyeglasses among other things [80], [39]. These challenges have

attracted researchers from various backgrounds such as psychology, pattern recognition,

computer vision, and computer graphics.

Eyeglasses are considered as a confounding factor of face recognition systems.

This is because eyeglasses due to frame occlusion and reflections may cover a signif-

icant part of the face over the ocular region. Furthermore, the presence of eyeglasses

may cause inaccurate eye pair detection, a detrimental outcome given that most of the

face recognition systems depend on precise eye pair detection for accurate face detection

and registration, Occlusion of the ocular and periocular regions, due to the presence of

eyeglasses may result in degraded biometric performance given the importance of these

regions [39], [40], [12].

To mitigate the effect of eyeglasses, researchers have been working on eyeglasses

detection [81], [5], [82], [83], [84], localization, and removal [85]. Accurate eyeglass

detection is an important first step towards its localization and removal. The challenges
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associated with accurate eyeglasses detection are due to reflections, shadows, and dark

images due to low lighting or skin tone (Figure 15).

3.2 Previous Work on Eyeglasses Detection and Segmentation

Fernández et al., [81] proposed a detection scheme for eyeglasses using a learning-

based approach. In this paper, a local feature extraction method which is the local binary

pattern (LBP) and Supports Vector Machines (SVM) which achieve a detection accuracy

of 98.65% on the LFW database.

Wu et al., [5] proposed AdaBoost approach for detecting eyeglasses with Support

Vector Machine (SVM); also two feature extraction has been in this work which are Haar

and Gabor features. Their experimental have been evaluated on the FERET database that

showed an overall correct detection accuracy in the range of 95.5% to 98.0%.

Jing et al., [82] combined edge information which includes the strength and orien-

tation with geometric features (like convexity, symmetry, smoothness, and continuity with

a deformable contour) for eyeglasses scheme. The proposed scheme has been applied on

a subset of frontal face images, reporting on eyeglasses detection rate of 99.5%.

Wu et al. [83] obtained the 3D plane of eyeglasses frame using the Hough trans-

form with three dimensions that have been applied to stereo face images. The highest

accuracy of eyeglasses frame detection was 80%.

Jang et al., [84] used the probability to detect the existence of eyeglass frame by

calculating the likelihood of eyeglasses using edge information via computing Fisher’s

criterion value on the different region inside the inter-ocular area. Fisher’s value gives a
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cue to detect the eyeglasses existence. This work has been evaluated on Olivetti Research

Ltd (ORL) database which contains a 10 images for overall a 40 subjects. The resulted

fisher’s values ranged from 4.9 to 9.6.

Mohammad et al., [86] proposed two schemes for eyeglasses detection, namely,

non-learning based approach (consists of multiple filters applied on the frame bridge re-

gion), and learning based approach with two levels of fusion (feature level and deci-

sion level). The reported accuracy of 99% for VISOB database, and 97.9% for FERET

database with non-learning based, also an overall detection accuracy of 100% for VISOB

database, and 99.3% for FERET database with learning based.

Table (3) summarizes the previous work on eyeglasses detection. As can be seen,

most of the existing work used either non-learning based or a learning-based method

using traditional classifiers such as Multi-layer Perceptron (MLP) or Support Vector Ma-

chine (SVM). Most of the proposed approaches were evaluated on in-house datasets. The

reported results vary between 80% to 100

On another hand, some researchers have been worked on eyeglasses removal. Ta-

ble (4) shows the summary of the previous work on eyeglasses segmentation. The exis-

tence eyeglasses segmentation approaches used a classical method of computer vision and

data reduction such as Principle Component Analysis (PCA) to achieve their goal. Also,

the primary motivation of eyeglasses segmentation work is to improve the performance

of a facial recognition system.
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Chenyu Wu [85] proposed an image editing approach based on intelligent (Markov-

Chain Monte Carlo) and face synthesis system to detect, locate, and remove eyeglass au-

tomatically from the frontal face image. The reported result shows a 90.3% of mean error

for eyeglasses localization for eyeglasses be removed applied to their in-house database,

and FERET database.

Du et al. [88] proposed a novel eyeglasses removal scheme by detecting the eye-

glasses region first on frontal facial images, then the region synthesized by recursive error

compensation of PCA reconstruction. Their scheme produces an image that does not

contain eyeglasses trace or the shadow, and eyeglass reflection. authors reported a Root

Mean Square (RMS) error of 7.5% to 5% between captured eyeglasses facial images and

reconstructed facial images.

Wong et al. [89] proposed two reconstructed algorithms based on a fusion of ther-

mal infrared (IR) images and visible images. The first eyeglasses removal algorithm based

on visible information to remove eyeglass from a thermal facial image, and the second one

based on the refined visible information. The result of the reconstruction algorithm shows

an accuracy of correct reconstructed of 88% on Equinox and DHUFO dataset.

Cheng et al. [90] proposed an eyeglasses removal using morphological operations.

They found the mask of eyeglasses by applying a dilation operation followed by image

binarization after spitting the eyeglasses into two regions (right, and left). Then they filled

the two selected blobs to remove the eyeballs, the resulted eyeglasses mask the left white

area. The removal of eyeglasses may fail when the driver’s head rotate over 30 degrees.

Jia et al. [91] suggested an algorithm for eyeglasses detection and removal based
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on phase congruency and progressive inpainting. They constructed an elliptical model on

the upper part of the face to shield eyes using prior information of facial feature; they

detected the eyeglass frame texture via phase congruency. The final step of this algorithm

is progressive inpainting to remove the eyeglasses frame from a face. This algorithm

shows an improvement of 5% on facial recognition rate after removing the eyeglass frame

in CAS-PEAL database.

Heo et al. [92] implemented an approach via two levels of fusions, data fusion,

that fuse visual and thermal infrared (IR) images), and decision fusion, that combines

the matching scores of individual face recognition modules. They detected the eyeglasses

region in the thermal images by a fitting method as an ellipse shape, and then they replaced

with a template of eye pattern to enhanced the data fusion. The reported results show an

improvement of face recognition after glasses removal on the thermal face and data fusion.

The experimental analysis is performed on the NIST and Equinox dataset.

Wong et al. [93] implemented a removal method for eyeglasses based on Active

Appearance Model (AAM). They extracted the eyeglasses region using AAM search for

the texture and color information. Then synthesized the facial image via PCA reconstruc-

tion. Their results show a 5% improvement on face recognition after eyeglasses removal.

Park et al. [94] created a removal method based on a recursive PCA reconstruction

that applied on a color frontal facial image to generate a glasses and obtain reconstruction

image for compensation. The reported results evaluated on KFDB database which show

a 10% improvement over previous PCA reconstruction work.

Park et al. [95] proposed a glass removal based on recursive error compensation
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using PCA reconstruction by first extracting glasses region via color and shape infor-

mation; then they generated a natural looking of a facial image without glasses using

recursive error compensation of PCA reconstructed. This paper shows an enhancement

of 5% for facial recognition after removing the eyeglasses.

Table (4) summarizes previous work on eyeglasses segmentation. As can be

seen, existing eyeglasses segmentation approaches used classical computer vision meth-

ods (such as Markov-Chain) along with data reduction schemes such as Principal Com-

ponent Analysis (PCA) for eyeglasses segmentation. The performance of the proposed

eyeglasses segmentation was evaluated using performance enhancement on existing fa-

cial recognition systems. The reported results of facial recognition improvement range

between 5% to 10%.

3.3 The Proposed Approaches on Eyeglasses Detection and Segementation

Three main categories of eyeglasses detection have been proposed which are non-

Learning-based, learning-based, deep learning-based. Next sections explain in details

these approaches from a low level to a high level.

3.3.1 Non-Learning-Based Eyeglasses Detection

The first proposed scheme uses Viola-Jones to detect ocular ROI using facial ge-

ometric information, followed by glass detection (Figure (16)). Figure (17) shows the

Viola-Jones [96] based ROI detection using geometric information. In this scheme, the

maximum width (Wmax) has been calculated using the maximum of (w1) and (w2) (see

Figure 17) as detected by Viola-Jones. The minimum width (Wmin) is estimated in the
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Figure 16: The block diagram for our non-learning based scheme.

same fashion. Further, the minimum width (Wmin) was divided by the maximum width

(Wmax) to estimate the ratio (Wr) as explained in equation (3.1).

Wr =
Wmin

Wmax

(3.1)

Other facial parts, such as the nose and the eyebrows were used as alternative

landmarks to detect the ocular ROI when the earlier ROI finder fails due to reflection on

glasses, as shown in Figure (18).

Under-exposed images are mitigated by applying CLAHE [3] to grayscale image.

After that, Sobel filter is applied [97], and the gradients (Gx) and (Gy) are estimated.

Further, the threshold for glass detection is selected in an adaptive manner based on the
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Figure 17: Viola-Jones based nose detector applied to eye pair region estimation; (A)
original face, (B) detected nose region, and (C) detected eye pair region using facial geo-
metric information.

Figure 18: Viola-Jones based nose detector applied for eye pair region estimation; (A)
original face, (B) detected nose region, and (C) detected eye pair region using facial geo-
metric information.
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Figure 19: The proposed non-learning-based eyeglasses detection approach on sample
images (A) with and (B) without eyeglasses (VISOB database).

illumination and skin tone, as shown in Figure (19).

3.3.2 Learning-Based Eyeglasses Detection

The learning-based scheme consists of three main steps (a) ROI detection, (b)

Local Binary Pattern (LBP) and Histogram of Gradient (HOG) based feature extrac-

tion from the ROI, and (c) applying supervised learning using Support Vector Machine

(SVM), Multi-Layer Perceptron (MLP), and Linear Discriminant Analysis (LDA) [98],

[99], [100], [101], then fusing the output of these classifiers, as shown in Figure (20).

For ROI detection, a facial landmark localization was used using Dlib-ml library

[35] instead of Viola-Jones and generated 68 landmarks for localizing eyeglasses region

and the that of eyeglasses bridge using the location of the nose, ear, and eyebrows (see

Figure (21)). The Dlib’s 68 landmarks seem to be more robust than Viola-Jones in the

presence of reflection or over and underexposure.
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Figure 20: The block diagram of learning based eyeglasses detection scheme.

Figure 21: ROI detection using landmarks from Dlib (A) normal condition, (B) dark
condition, (C) reflection, (D) no eyeglasses in office light, and (E) no eyeglasses in low
light condition.
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Figure 22: The block diagram of the glass detection approach using different CNN mod-
els.

3.3.3 Eyeglasses Detection using Squeezed CNN

In this work, two regions of interest (ROIs) was cropped using Dlib library [35].

These ROIs are the frame bridge (the majority part of the nose), and the extended ocular

region (see Figure 22).

Next, these images have been normalized, randomized, shuffled, and divided into

three datasets namely, training, validation, and test set. Training and validation sets are

used to train and validate different CNN models. The test set is used to evaluate their

accuracy. Table 5 shows nine different Convolutional Neural Network (CNN) models

created using different kernel size, kernel numbers and number of convolutional layers.

The last seven CNN model represents the squeezed model over the first two CNN models.

The first CNN model (Mod-01) has been designed with six 2D convolutional lay-

ers, the number of channels (filters) are (26, 16, 16, 16, 16, 16), and the size of each

channel (filter) is (5 × 5). The benefit of these convolutional layers is to extract the mi-

crostructure feature from the ROI. Also, this model contains two fully connected layers

for detection. While the second CNN model (Mod-02) has been implemented with four
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2D convolutional layers, the number of filters are (26, 16, 16, 16), and the size of each

filter is (5× 5).

The rest seven squeezed CNN models have been designed with two fully con-

nected layers, filter (channel size) of 3 × 3. However, the primary structure different

between these squeezed CNN model is the number of channels for each 2D convolutional

layer.

Model (Mod-03-S) has six 2D convolutional layer with filter numbers of (26, 16,

16, 16, 16, 16), while Model (Mod-04-S) has four 2D convolutional layer with filters

number of (26, 16, 16, 16), Model (Mod-05-S) has only two 2D convolutional layer with

filters number of (26, 16). The last four squeezed models (Mod-06-S, Mod-07-S, Mod-

08-S, and Mod-09-S) have only one 2D convolutional layer with filters number of (16, 6,

3, 1) channels respectively.

These models have been squeezed to reduce the size of the model and the weight

(network parameters) as shown in Figure 23, and Figure 24 for frame bridge based ROI,

and the extended ocular region as ROI, respectively.

Figure 25 shows the number of operations which represent the training time cost

for different implemented models that have been applied to two different ROIs namely,

frame bridge and extended ocular region. The highest number of operations are in Mod-

02 in both ROIs which are 85.56 and 509.02 million operations respectively, while the

lowest number of operations are in the mod-09-s model for frame bridge ROI (8.66 million

operations), and mod-07-s for extended ocular ROI (18.79 million operations). Also, the

accurate and reasonable cost is mod-06 in both ROIs. However, a GeForce GTX 1070
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Figure 23: Total parameters and network size (KB) for different CNN models using Frame
Bridge as ROI.

Figure 24: Total parameters and network size (KB) for different CNN models using ex-
tended ocular region as ROI.
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8GB Turbo GPU has been used to train these model with a speed of 6.5 TFlops. The

cost (number of operations) have been calculated using the equations listed below [10].

Equation 3.2 calculate the floating point operations per second (FLOPS1) for Multi-

layer Perceptron (MLP) or Fully connected (FC) layer, max-pooling, and convolutional

layers. Equation 3.4 calculate the FLOPS2 of batch layer. Also, equation 3.4 calculate

the FLOPS3 of rectifier linear unit (Relu) layer.

FLOPS1 = InputSize× LayerParameters (3.2)

FLOPS2 = InputSize× (LayerParameters+ 6) + 4 (3.3)

FLOPS3 = InputSize× FilterNumber × 2 (3.4)

3.3.4 Cascaded CNN for Eyeglasses Detection and Segmentation

The proposed eyeglasses detection and segmentation uses cascaded convolutional

neural networks (CNNs). Also, the primary motivation for this proposed approach is to

prepare a trained CNN for eyeglasses segmentation. Moreover, this approach consists

of four main stages, namely region of interest (ROI) detection, cascaded CNNs for eye-

glasses detection, weight generation, and glasses segmentation, followed by mathematical

and binarization operations (Figure ??).

The ocular regions of interest (ROI) are cropped using Dlib library [35] that de-

tects 68 coordinates from an input face image.
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Figure 25: The number of operation for different CNN models using frame bridge and
extended ocular region as ROIs.
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3.3.4.1 CNN Architecture

The second stage of the proposed scheme was implemented leveraging the first

CNN to generate the trained weights for the next CNN, and this network (CNN-01) is

also used as eyeglasses detector. The CNN-01 was designed to deal with large-scale

images to learn the weights of the microstructure features of those images. Table 6 details

the architecture of CNN-01. The CNN-01 layers are then defined as follows:

1. The input ocular image of size 120× 480× 3 is fed to the first convolutional layer

which is constructed with 26 filters of size 5× 5 and 2× 2 stride to extract a micro-

structure feature from the input image. This convolutional layer is followed by the

rectified linear unit (ReLU), 2× 2 stride max pooling, and drop-out layer.

2. The output of first drop-out layer of size 30 × 120 × 26 is fed to the second con-

volutional layer which is implemented with 16 filters of size 3× 3 and 2× 2 stride

for the second level of feature extraction. This convolutional layer is followed by a

rectified linear unit (ReLU), 2× 2 stride max pooling, and drop-out layer.

3. The output of second drop-out layer of size 7× 30× 16 is flattened to 3360 and is

fed to two fully connected layers which contain 16, and 2 neurons with ReLU as

activation layers.

4. The final layer is a soft-max activation layer which is used to obtain the probability

of eyeglasses existence.
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Figure 26: The block diagram of detailed architecture of the cascaded CNNs for eye-
glasses detection and segmentation.
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Figure (26) shows CNN architecture for eyeglasses detection (CNN-01) and the

second CNN in our proposed network is the (CNN-02) network. This network was de-

signed to generate sixteen heat maps from the up-sampling layer (last layer) for eyeglasses

segmentation. Table 7 summarizes the CNN-02 architecture. The CNN-02 is consisting

of the following:

1. The input ocular image of size 120× 480× 3 is fed to the first convolutional layer

which is constructed with 26 filters of size 5× 5 and 2× 2 stride to extract a micro-

structure feature from the input image. This convolutional layer is followed by a

rectified linear unit (ReLU), 2× 2 stride max pooling, and drop-out layer.

2. The output of first drop-out layer of size 30× 120× 26 is fed to the second convo-

lutional layer which is implemented with 16 filters of size 3× 3 and 2× 2 stride for

second level feature extraction. This convolutional layer is followed by a rectified

linear unit (ReLU), 2× 2 stride max pooling, and drop-out layer.

3. The output of second drop-out layer of size 7× 30× 16 is fed to up-sampling layer

to construct a sixteen heap map images of size 120 × 480 × 16. This network was

used with the trained weights from the previous network, CNN-01.

3.3.4.2 CNN Training and Testing

The proposed (CNN-01) model was trained on input ocular images with and with-

out eyeglasses existence with a batch size of 128 using Adam optimizer [102] with an

initial learning rate of 0.006. The weights were initialized using Gaussian distribution
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with variance scaling to the size of the weight matrix. Also, The data have been labeled

as 0, 1 for non-glasses, and glasses respectively for CNN-01 network training. Then, the

saved (CNN-01) model and its weights were supplied into (CNN-02) model for frame

prediction using input ocular image with eyeglasses existence.

3.3.4.3 Post-processing and Mask Generation

The summation and the averaging operations were applied to the output of CNN-

02 to combine the sixteen heat map images into one. Then, a zero-one normalization and

binarization operations were applied to the sum and average images to generate the seg-

mentation mask for glasses. The normalization is essential to scale the values of resulting

images from CNN-02 to standard binary scale.

3.3.5 Convolutional-Deconvolutional CNN for Eyeglasses Segmentation

Figure 27 shows the overall operations for the second scheme of eyeglasses frame

segmentation. This scheme consists of six main stages, namely ROI extraction, frame

in-painting, CNN model application, mask clean-up, segmentation and frame removal.

The ocular regions of interest (ROI) are cropped using Dlib landmark [35] as

explained in the previous session. A convolutional deconvolutional neural network has

been implemented as mentioned in the next section.

3.3.5.1 CNN Architecture

Table 8 and Figure 28 show the details architecture of Convolutional Deconvolu-

tional Neural Network. This network is defined as following:

60



Figure 27: The block diagram of the proposed scheme of glasses segmentation using
convoluational-deconvoluational neural network.

Figure 28: Detailed architecture of the convolutional deconvolutional neural network for
eyeglasses segmentation.
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1. The input ocular image of size 120× 480× 3 is fed to the first convolutional layer

which is constructed with 26 filters of size 5 × 5 and 2 × 2 stride to extract micro-

structure features from the input image. This convolutional layer is followed by a

rectified linear unit (ReLU), 2× 2 stride max pooling, and drop-out layer.

2. The output of first drop-out layer of size 30 × 120 × 26 is fed to the second con-

volutional layer which is implemented with 16 filters of size 3× 3 and 2× 2 stride

for the second level of feature extraction. This convolutional layer is followed by a

rectified linear unit (ReLU).

3. The output of ReLU of size 15 × 60 × 16 is fed to the De-convolutional layer of

2× 2 strides followed by ReLU layer.

4. A rectified input of size 30× 120× 16 is fed to up-sampling layer of 2× 2 strides

followed by ReLU layer.

5. The resulted input of size 60×240×16 is fed to the De-convolutional layer of 1×1

strides followed by ReLU layer.

6. The final layer is Lamda (customized) layer which is customized to satisfy four

main operations which are the summation of the sixteen heat maps, apply Gaussian

low pass filter, applying Otsu’s binarization, finding the loss metric using inter-

section over the union between the predicted binary mask and the reference target

binary mask.
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3.3.5.2 CNN Training and Testing

The model has been designed to predict the binary mask for the in-painted test set,

and the real glasses images after training and validating the proposed model with more

than 3 million images. The predicted binary mask is post-processed using open area and

connected components based morphological operations.

3.3.6 Database Information

3.3.7 Visible Ocular Biometric Database (VISOB)

This database consists of eye images of 550 healthy adult subjects obtained using

three smart-phones: Oppo N1, Samsung Note 4, and iPhone 5s. Participants were asked

to take a “selfie” via front-facing cameras of the phones in two sessions that were about

10 to 15 minutes apart. The distance between the camera and volunteers face was 8 to 12

inches apart [103].

For each session, the images were taken in three indoor lighting conditions: bright,

normal and dim. For volunteers wearing eyeglasses, each capture was repeated with and

without eyeglasses.

3.3.8 Face Recognition Technology Database (FERET)

The FERET database [104] was collected between August 1993 and July 1996 in

15 different sessions. The database contains 1564 sets of facial images, the total number

of images are 14,126 images from 1199 subjects and 365 duplicate sets of images. The

second set of images are duplicate set in which a person already in the database and was
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usually taken on a different day. This database contains both grayscale and color images.

The number of frontal face images from the FERET database is 1978 from 989 subjects,

where 233 wore eyeglasses.

3.3.9 In-pained Eyeglasses Frames for Eyeglasses Segmentation

The cropped ocular region has been in-painted with the best purchases (200)

frames in which (100) male glasses and (100) female glasses has been collected from

different websites of eyeglasses stores. The glasses have been registered inside the ex-

tended ocular region using the Dlib landmarks of eyebrows, eyes, and nose.

Figure 29 shows in-painted databases (VISOB, FERET01, and FERET02) which

have been divided, trained, validated, and evaluated using the proposed CNN model. In

next stage, the three databases have been concatenated which consists more than 4.1 mil-

lion images, divided as 80% (3301280) training set, 15% (619040) validation set, and 5%

(4269) testing set for the CNN model. The reason for the small test set since we have

tested the model with a large number of real glasses (not in-painted glasses).

3.4 Results of Eyeglasses Detection and Segmentation

The mentioned VISOB and FERET databases were used for performance evalua-

tion of the proposed glass detection schemes. For VISOB, we randomly selected 20491

samples with and without glasses and 2274 samples with and without glasses, for training

and validation, respectively, of the proposed scheme. The performance evaluation was

done on unseen 1456 samples with and without glasses. For FERET, we randomly se-

lected 1467 samples with and without glasses and 620 samples with and without glasses,
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Figure 29: The In-Painting (FERET1, FERET2, VISOB, and Concatenated) databases.
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Figure 30: The bar graph showing the performance of the proposed eyeglasses detection
approach on VISOB database. The maximum overall obtained accuracy is 99.0%.

for training and validation, respectively, of the proposed scheme. The performance eval-

uation was done on unseen 616 samples with and without glasses.

3.4.1 Results of Non-Learning-Based Eyeglasses Detection

Figure 30 shows the performance of the proposed non-learning based eyeglasses

detection approach on VISOB database. The eyeglasses detection accuracy is ascer-

tained as a percentage of correctly classified ROI, correct non-glasses detection rate,

correct glasses detection rate, and the overall accuracy; representing the True Positive

Rate (TPR), True Negative Rate (TNR), and overall performance, respectively. It can be

seen (Figure 14) that the best performances are obtained when the adaptive threshold used

to detect eyeglasses varies in the range [0.062, 0.066] with an overall accuracy of about

99.0%.
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Figure 31: The bar graph showing the performance of the proposed eyeglasses detection
approach on FERET database. The maximum overall obtained accuracy is 97.9%.

Figure 31 shows the performance of the proposed approach on the FERET database

using our proposed method. The best performance of 97.9% accuracy for non-eyeglasses,

100% for eyeglasses, and 97.9% of the overall performance with adaptive threshold was

obtained.

Table 9, shows a comparative evaluation of our proposed eyeglasses detection ap-

proach with an existing study [5] reporting their best results on FERET database. As can

be seen, our method performs very well on challenging mobile VISOB database (Figure

14), and on FERET database (Figure 15) higher eyeglasses detection accuracy and no

eyeglasses detection accuracy over [5].
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Figure 32: The bar graph showing the performance of the Learning based eyeglasses
detection approach on VISOB database. The maximum overall accuracy is 100%.

3.4.2 Results of Learning-based Eyeglasses Detection

Figure 32 shows the performance of the proposed learning based eyeglasses de-

tection approach on VISOB database. Again, the eyeglasses detection accuracy is as-

certained as percentage of correctly classified ROI, correct non-glasses detection rate,

correct glasses detection rate and the overall accuracy, representing True Positive Rate

(TPR), True Negative Rate (TNR), and overall performance, respectively (Figure 32).

Figure 33 shows the performance of the proposed approach on the FERET database

using an adaptive threshold for eyeglasses detection. The best performance obtained is

99.2% accuracy for non-eyeglasses detection, 100% for eyeglasses detection, and 99.3%

for overall performance using SVM and fused classifiers.

Table 10 shows the performance of learning-based scheme for SVM, MLP, LDA
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Figure 33: The bar graph showing the performance of the learning based eyeglasses de-
tection approach on FERET database. The maximum overall accuracy is 99.3%.

and their fusion. SVM outperformed all other classifiers with an overall accuracy of

100%. Two level of fusion has been used in this scheme. At first level, feature fusion

has been applied to concatenate LPB features with HOG features. At the second level,

the output of SVM, MLP, and LDA have been fused at the decision level for majority

voting. The proposed fusion classifier outperforms existing learning-based schemes based

on individual features such as LBP [81].

3.4.3 Results of Squeezed CNNs for Eyeglasses Detection

Figure 34 shows the first evaluation results of nine different CNN models that

have been applied on frame bridge region (the majority part of the nose region). The

best results were obtained with the squeezed CNN model (Mod-06-S) with 99.97% of
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Figure 34: Evaluation of different CNN models using Frame Bridge as ROI.

True Positive Rate (TPR), 98.31% of True Negative Rate (TNR), and 99.96% of overall

accuracy. This CNN model has a 5746 of total parameters (trainable, and non-trainable

parameter), and 40.1 KB of network size (the file size of model and weights). The lowest

result is obtained with the CNN model (Mod-01) with 99.96% of TPR, 93.62% of TNR,

and 97.17% of overall accuracy. This CNN model has a 39878 of total parameters, and

211.2 KB of network size.

Figure 35 shows the evaluation results of nine different CNN models when applied

to the extended ocular region (Figure 1). The best result has been obtained with the

squeezed CNN model (Mod-06-S) with 99.95% of TPR, 99.33% of TNR, and 99.82% of

overall accuracy. This CNN model has a 26578 of total parameters (trainable, and non-

trainable parameter), and 122KB of network size (the file size of model and weights).
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Figure 35: Evaluation of different CNN models using extended ocular region as ROI.

The lowest result has been obtained with the CNN model (Mod-01) with 99.96% of TPR,

93.62% of TNR, and 97.17% of overall accuracy. This CNN model has a 40838 of total

parameters, and 216.3 KB of network size.

3.4.4 Results of Cascasded CNN for Eyeglasses Detection and Segmentation

The first cascaded network CNN-01 (section 3.3.4), was trained, validated, and

tested using VISOB dataset with 16, 000 epochs and Adam optimizer. To evaluate CNN-

01 (the weight generator, and eyeglasses detector), we randomly selected 23, 826 samples

for training, and 1, 191 samples for validation, both with and without glasses. The perfor-

mance evaluation of CNN-01 was done on unseen 1, 192 samples with 587 eyeglasses and

605 images without eyeglasses. We obtained an overall 100% glass detection accuracy
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Figure 36: The performance of CNN-01 for eyeglasses detection.

(in Figure 36 using confusion matrix).

To evaluate CNN-02 (section (3.3.4)), an intersection over union (RatioSum || Avg

in Equation 3.5) was used as metric for eyeglasses segmentation. That perform pixel-wise

operations between the target masks and the masks generated by the CNN.

RatioSum || Avg =

∑
RefN

⋂
OutN∑

RefN
⋃
OutN

(3.5)

In equation (3.5), RefN is the N target frame masks, OutN is the N CNN output

images after summing or averaging, RatioSum is the ratio of summing output masks,

and (RatioAvg) is the ratio of averaging output masks. The first ratio (RatioSum) in

Equation 3.6 is intersection over union for the output mask after applying the summa-

tion operation on heatmap images obtained using Equation 3.5. While the second ration
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(RatioAvg) represents the intersection over union for the output mask after applying the

averaging operation on heat map image.

The overall segmentation accuracy obtained using Equation 3.6 represents the av-

erage of two ratios.

OverallRatio =
RatioSum +RatioAvg

2
(3.6)

Using these metrics, 91% segmentation accuracy was obtained (see Equation 3.6).

Figure 37 shows sample eyeglasses segmentation masks obtained using cascaded

approach, for ocular images under different lighting conditions. As mentioned previously,

factors such as glasses with heavy reflections, thin frames, dim images, frame shadow, an

absence of some part of the frame, and frameless glasses affect eyeglasses segmentation

accuracy. Our proposed network obtained decent segmentation results for many of these

challenging cases (see Figure 38).

3.4.5 Resutls of Convolutional Deconvoluational Neural Network

To evaluate the convolutional deconvoluational Neural Network, equation 3.5, and

equation 3.6 have also been used. Using these matrices, 97% segmentation accuracy was

obtained.

The test evaluation has been implemented using two different test sets. The first

test set is the 5% of unseen images of conducted on the in-painted version of FERET01,

FERET02, VISOB and the concatenation of them. The second test set is the unseen

real eyeglasses images of VISOB dataset. Also, the in-painting process was implemented
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Figure 37: Example of eyeglasses segmentation obtained using cascaded approach, for
ocular images under different lighting conditions.

Figure 38: Sample results of eyeglasses segmentation using cascaded approach for chal-
lenging factors such (A) reflection, (B) reflection along with thin frames, (C) dim image
with reflection, (D) frame shadow, (E) absence of the lower part of the frame, and (F)
frameless glasses.
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Figure 39: Predicted masks (B) of eyeglasses frames (A) for test set of in-painted FERET
database using convolutional-deconvolutional approach.

using the geometric of facial parts (eyebrow, ear, and nose) supported by Dlib library [35].

Figure 39 shows sample results of predicted masks of the eyeglasses frame fin

in-painted eyeglasses version of FERET database. As can be seen, CNN predicted a most

challenging skinny frame shown in the first row. Figure 40 shows the predicted mask of

eyeglasses frames on the in-painted version of VISOB dataset. As can be seen, different

eyeglasses shapes and frame thickness have been predicted precisely. Figure 41,and 41

shows the frame mask prediction for real eyeglasses from subset of VISOB dataset.

3.4.5.1 Eyeglasses Removal using In-painting

Figure 43 shows a sample of eyeglasses segmentation using convolutional de-

convolutional approached mentioned above to obtained the predicted mask of eyeglasses

frame followed by in-painting operation.

75



Figure 40: Predicted masks (B) of eyeglasses frames (A) on test set of in-painted VISOB
database obtained using convolutional-deconvolutional approach. approach.

Figure 41: Predicted masks (B) of eyeglasses frames (A) on test subset of real eyeglasses
obtained from VISOB dataset using convolutional-deconvolutional approach.
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Figure 42: Predicted masks (B) of eyeglasses frames (A) on test subset of real eyeglasses
obtained from VISOB dataset using convolutional-deconvolutional approach.

Figure 43: Eyeglasses frame removal using in-painting after frame prediction convolu-
tional deconvoluational approach.
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Table 3: Summary of previous work on eyeglasses detection
Ref. Method Database Subjects Images Accuracy
[81] LBP and SVM LFW database 5749 13233 98.65%
[5] AdaBoost, Haar,

Gabor, and SVM
FERET 989 1978 95.5%-

98%
[82] Convexity, symme-

try, and smoothness
with deformable
contour

In-house 419 1257 99.50%

[83] Hough Transform In-house 19 512 80%
[84] likelihood probaility

of edge information
ORL 40 400 Fisher

value of
4.9-9.6

[86] Cascaded Filters,
LBP, HOG, SVM,
MLP, LDA, and
QDA

FERET + VI-
SOB

989 + 550 1978 +
120000

97.9%-
100%

[87] Squeezed models of
CNNs

FERET + VI-
SOB

989 + 550 1978 +
120000

94.6%-
99.9%
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Table 4: Summary of previous work on eyeglasses segmentation
Ref. Method Database Subjects Images Accuracy
[85] Markov-Chain

Monte Carlo
In-house +
subset FERET

274 + 20 548 + 40 Mean Error
= 90%

[88] Recursive error
compensation of
PCA

In-house 130 260 RMS Error
= 7.5%-5%

[89] Reconstructed algo-
rithms

Equinox and
DHUFO

33 1320 Correct Re-
constucted
88%

[90] Morphological oper-
ations

In-house
(video frame)

4 3500 Fail with
rotation

[91] Phase congruency
and progressive
inpainting

In-house +
CAS-PEAL

30 + 40 60 + 80 Improvement
of 5% on
facial
recognition
rate

[92] Two level of fusion Equinox 90 3244 Face
success
rate=97%

[93] Active Appearance
Model (AAM)

In-house 20 600 5% Im-
provement
on face
recognition

[94] Recursive PCA re-
construction

KFDB 33 264 10% Im-
provement
of face
recognition

[95] Recursive error
compensation

KFDB 33 264 10% Im-
provement
of face
recognition

79



Table 5: The structure of the nine proposed CNN models.
Model Name No of Conv2D No. of Channels Filter size No. of FC
Mod-01 6 26, 16, 16, 16, 16, 16 5× 5 2
Mod-02 4 26, 16, 16, 16 5× 5 2
Mod-03-S 6 26, 16, 16, 16, 16, 16 3× 3 2
Mod-04-S 4 26, 16, 16, 16 3× 3 2
Mod-05-S 2 26, 16 3× 3 2
Mod-06-S 1 16 3× 3 2
Mod-07-S 1 6 3× 3 2
Mod-08-S 1 3 3× 3 2
Mod-09-S 1 1 3× 3 2

Table 6: Detailed architecture of the proposed CNN-01 network for weight generation
and eyeglasses detection.

Layer Output Shape #Parameters
Input 120× 480× 3 -

Conv2D 60× 240× 26 1, 976
Relu 60× 240× 26 -

Maxpooling 30× 120× 26 -
Dropout 30× 120× 26 -
Conv2D 15× 60× 16 10, 416

Relu 15× 60× 16 -
Maxpooling 7× 30× 16 -

Dropout 7× 30× 16 -
Flatten 3360 -

Fully Connected 16 53, 776
Fully Connected 2 34

Soft-Max 2 -
Total Parameters 66, 202
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Table 7: Detailed architecture of the proposed CNN-02 network for glasses segmentation
Layer Output Shape #Parameters
Input 120× 480× 3 -

Conv2D 60× 240× 26 1,976
Relu 60× 240× 26 -

Maxpooling 30× 120× 26 -
Dropout 30× 120× 26 -
Conv2D 15× 60× 16 10,416

Relu 15× 60× 16 -
UpSampling 30× 120× 16 -
UpSampling 60× 240× 16 -

Output 120× 480× 16 -
Total Parameters 12, 392

Table 8: Detailed architecture of the proposed Convolutional DeConvolutional network
for glasses segmentation

Layer Output Shape #Parameters
Input 120× 480× 3 -

Conv2D 60× 240× 26 1, 976
Relu 60× 240× 26 -

Maxpooling 30× 120× 26 -
Dropout 30× 120× 26 -
Conv2D 15× 60× 16 10, 416

Relu 15× 60× 16 -
DeConv2D 30× 120× 16 6, 416

Relu 30× 120× 16 -
UpSampling 60× 240× 16 -

Relu 60× 240× 16 -
DeConv2D 120× 480× 16 6, 416

Relu 120× 480× 16 -
Lamda 120× 480× 1 -
Output 120× 480× 1 -

Total Parameters 25, 224
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Table 9: Comparative assessment of the proposed approach with existing study in [5]

Method Name eyeglasses
[%]

No eye-
glasses
[%]

Overall [%]

Proposed Method on
VISOB

100 98.7 99.0

Proposed Method on
FERET

100 97.9 97.9

Bo el al., [5] on
FERET

97.1 97.7 97.2

Table 10: Overall accuracy of the proposed learning based schemes for eyeglasses detec-
tion using three different classifiers i.e., SVM, MLP, LDA and their fusion.

Classifier Database EyeGlasses
[%]

No Eye-
Glasses
[%]

Overall [%]

SVM VISOB 100 100 100
SVM FERET 99.2 100 99.3
MLP VISOB 100 100 100
MLP FERET 99.2 100 99.3
LDA VISOB 93.5 75.0 89.7
LDA FERET 99.2 100 97.9
Fused Classifier VISOB 100 100 100
Fused Classifier FERET 99.2 100 99.3
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CHAPTER 4

USER AUTHENTICATION USING SOFT-BIOMETRIC

4.1 Introduction

With the modern mobile technology revolution, the increasing number of individ-

uals are using their smartphone for sensitive applications and transactions. However, mo-

bile phones are misplaced, lost and stolen more than other computing devices. Therefore,

efforts have been directed at the development of biometrically secure mobile access and

transactions [105]. The use of biometric technology in mobile devices has been referred

to as mobile biometrics, encompassing both the sensors that acquire biometric signals

and software algorithms for their verification. According to Acuity Market Intelligence

forecast1, mobile biometric revenue is expected to surpass 33 billion dollars by 2020,

not just for unlocking the device but to approve payments and as a part of multi-factor

authentication services.

The eyebrow is one of the novel biometrics that naturally exists in the human face

for all genders. Studies have shown the potential of eyebrows as stand-alone biomet-

rics for recognizing individual [106–108]. Other studies have considered eyebrows as a

soft-biometric trait to be used when a primary biometric trait is unavailable due to oc-

clusion and eyes half-closed for ocular biometrics [109]. Eyebrow region offers the best

1http://www.acuity-mi.com/GBMR Report.php
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trade-off between computational complexity and accuracy in comparison to face or ocu-

lar biometrics. This is because the eyebrow region is one-sixth of the full face region and

existing studies suggest a minimal drop in recognition accuracy of eyebrows over face

biometrics [12, 106].

This paper aims to develop a method of user authentication using eyebrows for

smartphone devices. This is the first large-scale study evaluating the potential of eyebrows

biometric for mobile user authentication. The advantage of eyebrow based mobile user

authentication include:

1. Eyebrows can be extracted using the front facing RGB camera available in the mo-

bile device.

2. Eyebrow is computationally efficient and offers fast throughput. Therefore, it can

also be employed as a primary or soft-biometric trait in combination with primary

biometrics traits such as face and ocular region.

3. Eyebrows can also be employed for continuous user authentication [110] to ensure

that the user primarily authenticated is still the user under control of the device.

To this aim, local Histogram of Oriented Gradients (HOG) [60] and global GIST [67]

descriptors are evaluated as features extracted from eyebrow ROIs and used with support

vector machine (SVM) for user authentication. Experimental results suggest minimum

Equal Error Rate (EER) of 3.23% and Area under Curve (AUC) of 0.9916 obtained from

score level fusion using (GIST) [67] descriptor obtained from left and right eyebrows.
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Besides, comparative evaluation with the existing methods [111] is conducted by evalu-

ating the proposed method on FERET dataset. The experimental results suggest minimum

Equal Error Rate (EER) of 1.08% and Area under Curve (AUC) of 0.9990 obtained using

score level fusion of left and right eyebrows with HOG [60].

Eyeglasses can also be used as a soft-biometric trait for short-term user authen-

tication. Soft biometric could be divided into three categories namely, facial traits (such

eyebrow, eye color , hair color, and skin color), body traits (such as height, weight, leg

length, and arm length), and accessories (such as eyeglasses, cloth color, hat color, hat

shape) [112].

4.2 Previous Work

Juefei-Xu et al., [106] used eyebrows trait as a stand-alone modality for biometric

system. In this work, three different transformations involved which are Walsh-Hadamard

(WHT), Discrete Cosine Transform (DCT), and Discrete Fourier Transform (DFT) with

Local Binary Pattern(LBP). Also, L1 norm used as a distance measure. This work evalu-

ated on the FRGC-02 dataset, and the reported results show a verification rate of 8.2% at

a false acceptance rate of 0.1%.

Li et at., [111] design an approach for eyebrows localization and identification

using a Fast Fourier Transform (FFT) with the fast matching template. Their result shows

a verification performance of 98%. Also, Li et at., [113] implemented an eyebrows-based

recognition system using a Hidden Markov Model (HMM) and localized the eyebrow
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trait using a manual polygonal shape. The obtained result was 92.60% for a small in-

house dataset of 27 subjects.

Yujian et al., [114] implemented an eyebrows identification that matches the ac-

quired features with query features which extracted using Discrete Fourier Transform

(DFT) for 32 subjects in-house dataset. The best identification accuracy was 93.75%.

Guo et al., [115] evaluated three different descriptors namely, Gradient Orientation

(GO) histogram, LBP and SIFT applied on 30 subjects dataset for eyebrow recognition.

The results vary between 77% and 80% for right and left eyebrow respectively.

Le et al., [111] implement an eyebrow segmentation and recognition system using

an Active Shape Model (ASM) with a 2D profile along with F-measure. The best result

was a 99.4% of performance accuracy evaluated on MBGC dataset.

Jun-Bin et al., [116] extracted the eyebrow features with biorthogonal-wavelet

and matched the features using Radial Base Function (RBF) kernel inside Support Vector

Machine (SVM). Their FAR of 29.58% and FRR of 8.22% applied on 100 subjects in-

house dataset.

Youg et al., [108] investigate the performance of eyebrow recognition using a

sparse weight of Sparsity Preserving Projection (SPP). Their accuracy was 92.50% and

80.63% applied on open eyes and closed eyes respectively for 32 subjects in-house dataset.

Bharadwaj et al., [109] implemented a novel eyebrow-based biometric system us-

ing GIST descriptor and LBP and matched the histograms of these descriptors applied

to the UBIRIS-02 dataset. Their accuracy was 70.82% and 63.77% for GIST and LBP

respectively.

86



Table (11) shows the summary of the previous work on user authentication using

eyebrow biometrics. Most of the existing approaches used a traditional computer vision

descriptors such as Local Binary Pattern (LBP) with Fourier transform applied on an in-

house database. The reported results vary between 70% to 98

4.3 Proposed Work of User Authentication

Two approaches of user authentication were implemented using different soft-

biometric traits. The first biometric trait used is eyebrows which represent a facial soft-

biometric which naturally exist in the face. The second trait is the eyeglasses which

represent an accessory based soft-biometric trait which could be used to identify users

that wear glasses.

4.3.1 Non-Learning Eyebrows-based User Authentication

The proposed approach is divided into three steps as shown in Figure 44. As the

first step, the region of interest (ROI), right and left eyebrow, has been cropped from

VISOB dataset using Dlib library [35].

Next, ten local descriptors namely Rotated Local Binary Pattern (RLBP), Com-

pleted Local Binary Pattern (CLBP), Local Ternary Pattern (LTP), Local Oriented Statis-

tical Information Booster (LOSIB), Locally Uniform Comparison Image Descriptor (LU-

CID), Local Phase Quantization (LPQ), Local Binary Pattern (LBP), Binarized Statistical

Image Feature (BSIF), Pattern of Oriented Edge Magnitudes (POEM), and Histogram of

Oriented Gradients (HOG), are extracted as features (descriptors) from these ROIs at four

scales (2 to 5 times of the original size).
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Figure 44: The block diagram of the proposed Non learning-based method for user au-
thentication based on eyebrows.

Then, these features are matched, individually and in combination, using a pair

of enrollment and test ROIs using Euclidean distance. Fusion of these descriptors is

done at score level using a simple sum rule. The evaluation of the proposed approach

is done using the Equal Error Rate (EER), the area under the curve (AUC) and ROC

Curves. Besides, a global (GIST) descriptor has been evaluated using non-learning based

matching for eyebrows as ROI.

4.3.2 Learning Eyebrows-based User Authentication

Figure 45 shows the overall steps of user authentication based on eyebrows. The

eyebrow which represents the region of interest (ROI) was extracted from a “selfie” face

image using a pre-trained facial landmark detector [35]. Then, descriptive features were

extracted from the left and right eyebrows using deep, local and global descriptors along

with Support Vector Machine (SVM) training and classification. The VGG16 feature

vector was obtained from the last max pooling layer of size (3 × 10 × 512) and was
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flattened to (1 × 15360). After that, the flattened vector was reduced using Principal

Component Analysis (PCA) to a size of (1× 1600) as shown in figure (46).

Deep descriptor (VGG16), global descriptor (GIST), and global descriptor (HOG)

have been used and described as follows:

• VGG16: is a convolutional neural network (CNN) which consists of 16 layers, and

it developed by Visual Geometry Group (VGG) at Oxford University, also it called

(OxfordNet) [117]. Figure (46) shows the VGG16 network for eyebrow feature ex-

traction. This network has 14 convolution and ReLU layers, 4 max-pooling layers,

3 fully connected and ReLU layers, and 1 softmax layer for object classification.

Also, the VGG16 was trained with ImageNet which is a Large-Scale Hierarchical

Image dataset [?]. For feature extraction, the required feature vector was obtained

from the last max pooling layer and was reduced using PCA.

• GIST: a GIST descriptor [67] was implemented using a convolution method for

the image with 32 × 32 filter size of Gabor at 4 scales and 8 orientations. The

convolution produced 32 feature maps of the same size of the input image. Then

these features were split into 16 regions each (by a 4 × 4 grid), and feature values

within each region are averaged. These 16 averaged values of all 32 feature maps

were concatenated to form 16 × 32=512 GIST descriptor. Figure (47) shows the

output image obtained by applying GIST on the extended ocular region (eyeglasses

frame) ROI.

• HOG: This descriptor was computed by dividing the image window into small

89



Figure 45: The block diagram of the proposed learning-based method for user authenti-
cation based on eyebrows.

cells, for each cell collecting a local 1-D histogram of gradient directions or edge

orientations over the pixels of the cell [60]. The combined histogram entries form

the representation. In this approach, the ROI was divided into 16 × 16 cells size,

then the histogram of gradient orientation was computed within these cells. This

operation formed a concatenated histogram of size 3600 from the ocular region

(eyeglasses frame) of size 120 × 480. Figure (47) shows the output obtained on

applying HOG on the eyebrow ROI.
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Figure 46: Detailed architecture of the VGG16 CNN network for eyebrow features ex-
traction

Figure 47: The block diagram of the proposed approach on eyeglasses based user authen-
tication.
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Figure 48: Detailed architecture of the VGG16 CNN for eyeglasses features extraction

4.3.3 Learning Eyeglasses-based User Authentication

Figure 47 shows the overall of the proposed approach for user authentication based

on the eyeglasses frame. This approach was implemented with six main stages, namely,

Region of Interest (ROI) extraction, eyeglasses frame prediction, mask clean-up, frame

segmentation, features extraction, and learning-based classification.

The extended ocular region (ROI) was cropped using geometric information of

eyebrows, and nose. These geometric coordinates were calculated using Dlib library [35].

Then the ROI was used in the proposed approach for eyeglasses frame prediction (men-

tioned on section 3.3.5). The predicted frames were cleaned using a morphological oper-

ation based on the opening area with binary eight neighbors connected components.

Consequently, the cleaned frame was multiplied by the RGB channels of the orig-

inal ROI (extended ocular region) to form the colored image of the eyeglasses frame (fig-

ure 47). The local and global feature descriptors were extracted from the colored image
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of the eyeglasses frame, namely, Histogram of Oriented Gradient (HOG), GIST descrip-

tors, respectively. Then, the extracted features were used for the Support Vector Machine

(SVM) training and classification to authenticate the subjects based on his/her eyeglasses

frame shape. Further, deep features were extracted using VGG16 convolutional Neu-

ral Network (CNN) as shown in figure (48). The VGG16 feature vector was obtained

from the last max pooling layer of size (3) and was flattened to (1 × 23040). After that,

the flatted vector was reduced using Principal Component Analysis (PCA) to size (1).

We evaluated deep descriptor (VGG16), global descriptor (GIST), and local descriptor

(HOG) for eyeglasses based user authentication.

4.4 Results

4.4.1 Experiments Conducted

To evaluate the efficacy of eyeglasses detection, eyeglasses segmentation, and user

authentication, the following experiments were conducted:

1. Evaluating of different local image features, and global GIST feature using the

proposed non-learning-based approach on Eyebrow based user-authentication.

2. Evaluating the mitigation of eyeglasses impact using the proposed learning-based

approach on Eyebrow based user-authentication.

3. Evaluating segmented learning eyeglasses-based user authentication.

4. Evaluating the score level fusion of learning eyebrows-based and learning eyeglasses-

based User authentication.
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Figure 49: ROC of ten local descriptors for non-learning eyebrow-based user authentica-
tion applied on ROI consisting of (A) left eyebrow, and (B) right eyebrow and the fusion
of the best descriptor (HOG) for ROI consisting of left and right eyebrow.

The experiments have been evaluated using different light settings such as indoor

(In), outdoor (Out), and all combined conditions (All).

4.4.2 Non-Learning Eyebrow-based User Authentication

The proposed approach is evaluated (Experiment (1) in section 4.4.1) on Visible

Ocular Biometric Database (VISOB) dataset [103]. Figure 49 (A) shows ROC Curves

of ten local descriptors pertaining to left eyebrow. Also, figure 50 shows AUC and EER

values of left eyebrow for these descriptors. As it can be seen AUC ranges from 0.75 to

0.90, and the EER ranges from 31.7% to 16.6%.

Similarly, Figure 49 (B) shows the ROC Curves of these ten local descriptors for

left eyebrow. Also, figure 51 shows AUC and EER values for these descriptors. It can be

seen that AUC ranges from 0.74 to 0.88, and the EER ranges from 32.7% to 19.4%. HOG
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Figure 50: EER and AUC values for these ten descriptors for non-learning eyebrow-based
user authentication applied on ROI consisting of left eyebrow.

descriptor obtained the best result with AUC of 0.88, and EER of 19.4%. HOG descriptor

obtained the best result with AUC of 0.90, and EER of 16.6% even for left ROI. Further,

a fusion of HOG for left and right eyebrow region reduced the EER to 15.32% at score

level. As a part of future work, a fusion of local and global descriptors will be evaluated

at feature and score level for further performance enhancement.

Figure 52 shows the evaluation of right and left eyebrows with GIST feature using

non-learning eyebrow-based for user authentication. As it can seen (Figure 52 (A)), an

EER of 13.92% has been obtained from left eyebrows. while, an EER of 13.75% has been

obtained from right eyebrow (Figure 52 (B)).
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Figure 51: EER and AUC values for these ten descriptors for non-learning eyebrow-based
user authentication applied on ROI consisting of right eyebrow.

Figure 52: ROC of global (GIST) descriptors for non-learning eyebrow-based user au-
thentication applied on ROI consisting of (A) left and (B) right eyebrows.
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4.4.3 Learning Eyebrows-based User Authentication

The most experiments (Experiment (2) in section 4.4.1) of eyebrows-based user

authentication evaluated in different light settings showed that the deep feature (VGG16)

descriptor out-performed the other global (GIST) descriptor and local (HOG) descriptor

in most experiments of eyeglasses presence.

Table (12) shows Equal Error Rate (EER) Area Under Curve (AUC), and decid-

ability (d´ ) obtained for eyebrow ROI across indoor and outdoor lighting conditions for

iPhone without presence of eyeglasses (Experiment (1) in section 4.4.1). The best EER

of 1.26%, AUC of 0.9972, and decidability of 4.2358 was obtained using a fusion of left

and right eyebrow ROIs in indoor lighting condition (In:In) using a fusion of descriptors.

While, the worst EER of 6.39%, AUC of 0.9798, decidability of 3.1317 were obtained for

the fused eyebrow in indoor versus outdoor settings (In:Out) using fused of the descriptor.

Figure (53) shows the EER evaluation with different light condition for eyebrow

without eyeglasses existence. In this case, the GIST descriptor performs better than other

descriptors in most light setting cases.

Table (13) shows EER obtained for eyebrow ROI across indoor and outdoor light-

ing conditions for iPhone in presence of eyeglasses (Experiment (2) in section 4.4.1). The

best EER of 0.63%, AUC of 0.9942, and decidability of 5.6802 were obtained with the

fusion of left and right eyebrow ROIs in indoor light condition (In:In) using the fused

descriptor. While, the worst ERR of 12.25%, AUC of 0.9323, and decidability of 2.4168

were obtained using fused eyebrow in indoor versus outdoor setting (In:Out) using the

fused descriptor.
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Figure 53: Test evaluation using comparison of EER with different light conditions for
VISOB database, iPhone device, eyebrow without eyeglasses existence.
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Figure 54: Test evaluation using comparison of EER with different light conditions for
VISOB database, iPhone device, eyebrow with eyeglasses existence.
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Figure 55: Test evaluation using comparison of EER with different light conditions for
VISOB database, iPhone device, eyebrow with eyeglasses removal using in-painting.

Figure (54) shows the EER evaluation with different light condition for eyebrow

with eyeglasses existence. In this case, VGG16 descriptor performs better than other

descriptors in most light settings (except for All versus All (All:All) light setting).

Figure 55 show example of ocular region with eyeglasses and after segmentation

and removal. Table 14 shows EER enhancement of 2.51% for indoor vs. outdoor (In:Out)

light settings, and the worst EER enhancement of 0.09% for indoor vs All (In:All) lighting

conditions were obtained for eyebrow-based authentication after eyeglasses segmentation

and removal using convolutional-deconvolutional approach followed by in-painting. The

convolutional-deconvolutional approach is used because of its superiority over cascaded

CNNs-based approach for eyeglasses segmentation.
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Table (15) shows EER obtained for eyebrow ROI across indoor and outdoor light-

ing conditions for OPPO without the presence of eyeglasses (Experiment (2) in section

4.4.1). The best EER of 2.03%, AUC of 0.9947, and decidability of 4.1548 were obtained

with the fusion of left and right eyebrow ROIs in all light conditions (All:All) using the

fused descriptor. While, the worst EER of 4.27%, AUC of 0.9866, and decidability of

3.4608 were obtained using fused eyebrow in indoor versus outdoor settings (In:All) us-

ing fused descriptor.

Figure (56) shows the EER evaluation with different light condition for eyebrow

without eyeglasses existence. In this case, VGG16 descriptor performs better than other

descriptors in most light setting cases.

Table (16) shows EER obtained for eyebrow ROI across indoor and outdoor light-

ing conditions for OPPO without the presence of eyeglasses (Experiment (2) in section

4.4.1). The best EER of 2.71%, AUC of 0.9975, and decidability of 4.1271 were obtained

with the fusion of left and right eyebrow ROIs in indoor light conditions (In:In) using the

fused descriptor. While, the worst ERR of 13.01%, AUC of 0.9283, and decidability of

2.1298 were obtained using fused eyebrow in indoor versus outdoor setting (In:Out) using

the fused descriptor. Overall, VGG16 outperformed all the other descriptors (GIST and

HOG) in all the light settings in the presence of eyeglasses.

Figure (57) shows the EER evaluation with different light condition for eyebrow

with eyeglasses existence. In this case, VGG16 descriptor performs better than other

descriptors in most light setting cases.
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Figure 56: Test evaluation using comparison of EER with different light conditions for
VISOB database, OPPO device, eyebrow without eyeglasses existence.
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Figure 57: Test evaluation using comparison of EER with different light conditions for
VISOB database, OPPO device, eyebrow with eyeglasses existence.
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Figure 58: Test evaluation using comparison of EER with different light conditions for
VISOB database, iPhone device, eyebrow with eyeglasses removal using in-painting.

Figure 58 show example of ocular region with eyeglasses and after segmentation

and removal. Table 17 shows EER enhancement of 2.16% for indoor vs. outdoor (In:Out)

light settings, and the worst EER enhancement of 0.14% for indoor vs All (In:All) lighting

conditions were obtained for eyebrow-based authentication after eyeglasses segmentation

and removal using convolutional-deconvolutional approach followed by in-painting. The

convolutional-deconvolutional approach is used because of its superiority over cascaded

CNNs-based approach for eyeglasses segmentation.

4.4.4 Results of Eyeglasses-based User Authentication

Similar to previous experiments, the results have been compared using the score

level fusion of all the descriptors (GIST, HOG, VGG16) for left and right eyebrows across

different light settings (Experiment (3) in section 4.4.1).
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Table (18) shows EER obtained for eyebrow ROI across indoor and outdoor light-

ing conditions for iPhone (Experiment (2) in section 4.4.1). The best EER of 3.4400%,

AUC of 0.9880, and decidability of 3.9726 were obtained with the fusion of left and right

eyebrow ROIs in indoor light condition (In:In) using fused descriptors. While, the worst

ERR of 17.550%, AUC of 0.8763, and decidability of 1.8797 were obtained using fused

eyebrow in indoor versus outdoor settings (In:Out) using fused descriptors. Overall, the

deep (VGG16) the outperformed other descriptors (GIST, and HOG) in most light set-

tings.

Figure (59) shows the EER evaluation of VISOB iPhone device with different

light condition for eyeglasses. In this case, VGG16 descriptor performs better than other

descriptors in most light setting cases.

Table (19) shows EER obtained for eyebrow ROI across indoor and outdoor light-

ing conditions for OPPO (Experiment (2) in section 4.4.1). The best EER of 7.690%,

AUC of 0.9616, and decidability of 2.9524 were obtained with the fusion of left and right

eyebrow ROIs in indoor light conditions (In:In) using the fused descriptor. While, the

worst EER of 18.230%, AUC of 0.8815, and decidability of 1.8268 were obtained using

fused eyebrow in outdoor versus indoor settings (Out:In). Overall, the deep (VGG16)

descriptor outperformed other descriptors (GIST, and HOG) in all light settings.

Figure (60) shows the EER evaluation of VISOB OPPO device with different light

condition for eyeglasses. In this case, VGG16 descriptor performs better than other de-

scriptors in most light setting cases.
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Figure 59: Test evaluation using comparison of EER with different light conditions for
VISOB database, OPPO device, eyebrow with eyeglasses existence.
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Figure 60: Test evaluation using comparison of EER with different light conditions for
VISOB database, OPPO device, eyebrow with eyeglasses existence.
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4.4.5 Results of Modalities Fusion

A score level fusion has been applied onto two soft biometric traits namely, fused

eyebrow modality (score level fusion of left and right eyebrow) in the presence of eye-

glasses with eyeglasses modality. The deep features (VGG16) have been fused for ROIs

(eyebrow and eyeglasses) since the VGG16 feature outperformed all other used global

(GIST) and local (HOG) descriptor for eyeglasses and eyebrows in the presence of eye-

glasses.

Table (20) shows EER obtained for fused modalities (fused eyebrows, and eye-

glasses) across indoor and outdoor lighting conditions for iPhone (Experiment (2) in

section 4.4.1). The best EER of 0.720%, AUC of 0.9944, and decidability of 6.6212

were obtained using the fusion of modalities in indoor light conditions (In:In) using fused

(VGG16) descriptor. While, the worst ERR of 14.350%, AUC of 0.9268, and decidability

of 2.4422 were obtained using the fusion of modalities in indoor versus outdoor setting

(In:Out) using fused (VGG16) descriptor for both modalities. Overall, the fused (VGG16)

for both modalities outer-performed all eyeglasses scores, and most of the fused eyebrow

scores.

Figure (60) shows the EER evaluation of VISOB iPhone device with a different

light condition for fusion of VGG16 for eyebrows and eyeglasses. In this case, the fused

descriptor performs better than other descriptors in most light setting cases.
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Figure 61: Test evaluation using comparison of EER with different light conditions for
VISOB database, OPPO device, eyebrow with eyeglasses existence.

Table (21) shows EER obtained for fused modalities (fused eyebrows, and eye-

glasses) across indoor and outdoor lighting conditions for OPPO (Experiment (4) in sec-

tion 4.4.1). The best EER of 2.570%, AUC of 0.9940, and decidability of 4.1481 were ob-

tained with the fusion of modalities in indoor light condition (In:In) using fused (VGG16)

descriptor. While, the worst ERR of 10.340%, AUC of 0.9574, and decidability of 2.4876

were obtained using fused eyebrow in outdoor versus indoor settings (Out:In) using fused

(VGG16) descriptor. Overall, the fused (VGG16) for both of modalities outer-performed

all eyeglasses results, and fused eyebrow results in different light conditions.

Figure (60) shows the EER evaluation of VISOB OPPO device with different light

conditions for fusion of VGG16 for eyebrows and eyeglasses. In this case, the fused

descriptor performs better than other descriptors in most light setting cases.
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Figure 62: Test evaluation using comparison of EER with different light conditions for
VISOB database, OPPO device, eyebrow with eyeglasses existence.
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Table 11: Summary of the previous work on eyebrow-based User Authentication.
Ref. Method

Used
Dataset Subjects Images Accuracy

[106] WHT, DCT,
and DFT
with LBP

FRGC 4003 16012 FAR= 8.2%

[111] Fast Fourier
Transform

BJUT + colored
FERET

109 + 989 1118 +
1978

97-98%

[113] Hidden
Markov
Model

In-house small 27 54 92.60%

[114] Discrete
Fourier
Transform

In-house small 32 64 93.75%

[40] GO, LBP,
and SIFT

In-house small 30 899 80%

[107] Active
Shape
Model

MBGC + AR 574 + 126 2341 +
4000

85%-76%

[116] Biorthogonal
wavelet

In-house small 50 100 FAR= 29.58%

[108] Sparsity
Preserving
Project

In-house small 32 320 92.50%

[109] GIST, and
CLBP

UBIRIS 261 11102 70.82%

111



Table 12: EER, AUC, and d´ values for eyebrow-based user authentication across indoor
and outdoor light conditions without presence of eyeglasses for VISOB-iPhone.

Experiment Feature Right Eyebrow Left Eyebrow Fused Eyebrow
EER AUC d’ EER AUC d’ EER AUC d’

In:In

GIST 2.42% 0.9938 3.6766 2.59% 0.9951 3.6903 1.64% 0.9965 4.2358
HOG 2.92% 0.9918 3.9876 3.25% 0.9911 3.8626 2.01% 0.9939 4.5062
VGG16 2.82% 0.9929 3.9422 2.99% 0.9935 3.9208 2.12% 0.9961 4.4025
Fused 1.26% 0.9972 4.9968

In:Out

GIST 8.99% 0.9601 2.6285 9.60% 0.9646 2.6287 7.84% 0.9733 2.9247
HOG 10.99% 0.9493 2.6382 9.29% 0.9621 2.6912 8.22% 0.9671 2.9166
VGG16 11.21% 0.9587 2.4917 11.00% 0.9577 2.5294 8.75% 0.9728 2.6741
Fused 6.39% 0.9798 3.1317

Out:Out

GIST 6.40% 0.9798 2.9353 5.91% 0.9837 2.9329 3.76% 0.9917 3.3695
HOG 7.96% 0.9672 2.7716 6.67% 0.9802 2.8816 4.64% 0.9889 3.2353
VGG16 6.80% 0.9769 2.8553 5.64% 0.9853 2.9274 4.32% 0.9900 3.1850
Fused 2.34% 0.9954 3.7193

Out:In

GIST 9.15% 0.9641 2.4818 8.60% 0.9658 2.5112 6.42% 0.9783 2.8303
HOG 9.33% 0.9639 2.5000 8.33% 0.9721 2.5521 5.32% 0.9846 2.8805
VGG16 9.96% 0.9625 2.3721 9.69% 0.9692 2.3655 7.28% 0.9816 2.5910
Fused 3.89% 0.9914 3.1347

In:All

GIST 8.33% 0.9653 2.9205 6.70% 0.978 2.9897 6.02% 0.9828 3.3179
HOG 9.66% 0.9622 2.9655 7.21% 0.9759 3.0613 5.74% 0.9809 3.3409
VGG16 10.55% 0.9639 2.8245 8.82% 0.9691 2.8856 7.38% 0.9789 3.0671
Fused 4.65% 0.9883 3.6186

Out:All

GIST 6.82% 0.9792 2.7446 6.99% 0.9783 2.7330 4.37% 0.9895 3.1290
HOG 8.09% 0.9691 2.6502 7.58% 0.9769 2.6989 4.84% 0.9872 3.0523
VGG16 8.34% 0.9741 2.6093 8.29% 0.9756 2.6025 6.21% 0.9858 2.8482
Fused 2.84% 0.9947 3.4193

All:All

GIST 5.78% 0.9835 2.7765 5.46% 0.9806 2.6850 3.81% 0.9878 3.6934
HOG 6.13% 0.9806 2.7759 6.53% 0.9783 2.7383 4.03% 0.9795 3.1389
VGG16 6.32% 0.9771 2.6213 6.28% 0.9788 2.6408 4.44% 0.9847 2.8694
Fused 2.77% 0.9917 3.4292
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Table 13: EER, AUC, and d´ values for eyebrow-based user authentication across indoor
and outdoor light conditions with presence of eyeglasses for VISOB-iPhone.

Experiment Feature Right Eyebrow Left Eyebrow Fused Eyebrow
EER AUC d’ EER AUC d’ EER AUC d’

In:In

GIST 5.03% 0.9868 3.0836 3.13% 0.9888 3.1882 2.36% 0.9922 3.5949
HOG 6.20% 0.9831 3.4292 3.16% 0.992 3.6807 1.80% 0.9944 4.1310
VGG16 1.10% 0.9952 5.5194 1.11% 0.9942 5.7510 0.73% 0.9948 6.7217
Fused 0.63% 0.9942 5.6802

In:Out

GIST 15.46% 0.9139 2.0461 17.79% 0.8879 1.7418 15.74% 0.9136 2.0638
HOG 14.01% 0.9255 2.3137 19.01% 0.8857 1.8831 13.80% 0.924 2.2925
VGG16 14.22% 0.9362 2.3933 16.19% 0.9184 2.3173 12.92% 0.9406 2.4681
Fused 12.25% 0.9323 2.4168

Out:Out

GIST 9.70% 0.95 2.2686 9.81% 0.9571 2.2337 6.91% 0.9667 2.5498
HOG 9.26% 0.9541 2.4138 11.86% 0.9442 2.3140 7.31% 0.9671 2.7534
VGG16 5.88% 0.9801 2.9365 5.25% 0.9802 3.0922 3.94% 0.9869 3.3221
Fused 4.54% 0.982 3.2965

Out:In

GIST 19.45% 0.9067 1.8068 20.57% 0.8307 1.3273 18.87% 0.8790 1.7566
HOG 14.18% 0.9282 2.0033 18.53% 0.9032 1.8859 13.26% 0.9473 2.2608
VGG16 15.91% 0.9237 1.9054 13.01% 0.9481 2.1345 11.38% 0.9583 2.1658
Fused 11.75% 0.953 2.3183

In:All

GIST 13.67% 0.8977 1.8218 15.45% 0.8879 1.6773 13.99% 0.8968 1.8851
HOG 14.11% 0.9157 2.2228 14.14% 0.9124 2.0517 13.08% 0.9202 2.3164
VGG16 12.05% 0.9205 2.4448 12.88% 0.9263 2.5180 11.81% 0.9246 2.5962
Fused 12.09% 0.9085 2.3364

Out:All

GIST 11.48% 0.9449 2.1808 12.35% 0.9208 1.9272 10.14% 0.944 2.3222
HOG 11.24% 0.9508 2.3285 13.49% 0.9323 2.1823 9.79% 0.9642 2.6209
VGG16 8.47% 0.9675 2.6267 7.79% 0.9761 2.8047 5.99% 0.9821 2.9577
Fused 6.85% 0.9761 2.9879

All:All

GIST 12.23% 0.9376 1.7723 12.73% 0.9391 1.8303 9.06% 0.9546 2.0379
HOG 12.94% 0.9367 1.9527 14.81% 0.9151 1.7286 10.57% 0.9449 2.0960
VGG16 11.97% 0.9442 2.0796 12.53% 0.9391 2.1188 10.12% 0.9546 2.2468
Fused 7.44% 0.9647 2.3468
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Table 14: EER for eyebrows-based user authentication across indoor and outdoor light
conditions in presence of eyeglasses and applying eyeglasses in-painting for iPhone de-
vice in VISOB dataset.

Experiment Feature EER of Fused Eyebrow
Frame Existense In-painted Frame Difference

In:In VGG16 0.73% 0.52% 0.21%
In:Out VGG16 12.92% 10.41% 2.51%

Out:Out VGG16 3.94% 3.41% 0.53%
Out:In VGG16 11.38% 10.53% 0.85%
In:All VGG16 11.81% 11.72% 0.09%

Out:All VGG16 5.99% 5.55% 0.44%
All:All VGG16 10.12% 9.93% 0.19%
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Table 15: EER, AUC, and d´ values for eyebrow-based user authentication across indoor
and outdoor light conditions without presence of eyeglasses for VISOB-OPPO.

Experiment Feature Right Eyebrow Left Eyebrow Fused Eyebrow
EER AUC d’ EER AUC d’ EER AUC d’

In:In

GIST 4.34% 0.9880 3.5123 4.40% 0.9871 3.4888 3.49% 0.9913 3.9256
HOG 4.64% 0.9835 2.7737 4.48% 0.9825 3.7951 3.59% 0.9866 4.1968
VGG16 3.22% 0.9923 3.9642 3.61% 0.9914 4.0124 2.55% 0.9952 4.3544
Fused 2.68% 0.9939 4.7011

In:Out

GIST 6.67% 0.9775 2.9150 6.62% 0.9794 2.8830 4.88% 0.9872 3.2781
HOG 9.61% 0.9585 2.5159 9.94% 0.9602 2.5565 7.23% 0.9742 2.7746
VGG16 7.44% 0.9751 2.5135 6.83% 0.9776 2.6464 4.73% 0.9867 2.7693
Fused 3.99% 0.9884 3.1950

Out:Out

GIST 3.89% 0.9869 3.3700 3.78% 0.9875 3.3592 2.87% 0.9907 3.7935
HOG 4.27% 0.9855 3.5299 4.55% 0.9837 3.5181 3.06% 0.9897 3.9398
VGG16 3.43% 0.9916 3.6569 3.13% 0.9912 3.7002 2.21% 0.9946 4.0440
Fused 2.14% 0.9932 4.4441

Out:In

GIST 6.67% 0.9775 2.9150 6.62% 0.9794 2.8830 4.88% 0.9872 3.2781
HOG 8.68% 0.9685 2.7306 7.58% 0.9687 2.7589 5.44% 0.9792 3.0603
VGG16 7.32% 0.9705 2.7022 6.94% 0.9762 2.7753 5.15% 0.9835 2.9947
Fused 3.42% 0.9887 3.5476

In:All

GIST 7.45% 0.9723 2.8249 7.05% 0.9742 2.8564 5.61% 0.9810 3.1509
HOG 8.49% 0.9653 2.8013 8.40% 0.9660 2.8515 6.68% 0.9752 3.0769
VGG16 6.73% 0.9775 2.8455 5.99% 0.9828 2.9703 4.67% 0.9879 3.1103
Fused 4.27% 0.9866 3.4608

Out:All

GIST 6.31% 0.9775 2.9552 6.40% 0.9793 2.9592 4.58% 0.9858 3.3240
HOG 7.80% 0.9713 2.8514 6.92% 0.9728 2.9051 5.30% 0.9816 3.1928
VGG16 6.29% 0.9789 2.8671 6.11% 0.9806 2.9406 4.41% 0.9875 3.1488
Fused 3.37% 0.9892 3.6404

All:All

GIST 4.77% 0.9863 3.1350 4.79% 0.9872 3.1669 3.23% 0.9916 3.6073
HOG 5.43% 0.9835 3.2198 5.23% 0.9828 3.2285 3.57% 0.9894 3.6516
VGG16 4.26% 0.9894 3.2894 4.33% 0.9898 3.3246 2.76% 0.9946 3.6348
Fused 2.03% 0.9947 4.1548
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Table 16: EER, AUC, and d´ values for eyebrow-based user authentication across indoor
and outdoor light conditions with presence of eyeglasses for VISOB-OPPO.

Experiment Feature Right Eyebrow Left Eyebrow Fused Eyebrow
EER AUC d’ EER AUC d’ EER AUC d’

In:In

GIST 6.46% 0.9699 2.7389 6.28% 0.9723 2.7334 4.70% 0.9783 3.1315
HOG 5.77% 0.9724 3.1460 5.32% 0.9746 3.1890 4.33% 0.9812 3.6074
VGG16 3.24% 0.9901 3.7704 3.91% 0.9909 3.7861 2.50% 0.9931 4.1080
Fused 2.71% 0.9875 4.1271

In:Out

GIST 13.79% 0.9252 2.0244 16.04% 0.9084 1.8642 11.65% 0.9415 2.2471
HOG 20.25% 0.8667 1.5797 19.36% 0.8762 1.6844 17.08% 0.8934 1.7955
VGG16 13.63% 0.9284 2.0789 11.98% 0.9437 2.1499 9.97% 0.9506 2.2548
Fused 13.01% 0.9283 2.1298

Out:Out

GIST 12.30% 0.9384 2.1743 10.79% 0.9489 2.2496 10.01% 0.9549 2.4901
HOG 12.32% 0.9315 2.2453 11.09% 0.9400 2.2960 10.39% 0.9504 2.5670
VGG16 7.85% 0.9652 2.8290 7.21% 0.9697 2.9615 6.12% 0.9762 3.1384
Fused 7.23% 0.9675 3.0416

Out:In

GIST 13.79% 0.9252 2.0244 16.04% 0.9084 1.8642 11.65% 0.9415 2.2471
HOG 13.90% 0.9245 2.1448 12.93% 0.9297 2.0489 9.75% 0.9496 2.3935
VGG16 11.00% 0.9539 2.3904 11.08% 0.9502 2.3263 9.21% 0.9687 2.5610
Fused 7.50% 0.9618 2.7023

In:All

GIST 12.18% 0.9323 2.0814 12.29% 0.9304 2.0611 10.54% 0.9439 2.3237
HOG 14.13% 0.9205 2.1618 12.09% 0.9332 2.2823 11.02% 0.9428 2.4662
VGG16 9.96% 0.9546 2.5782 7.72% 0.9727 2.7160 6.71% 0.9751 2.8393
Fused 8.23% 0.9608 2.8005

Out:All

GIST 15.42% 0.9127 1.8907 15.35% 0.9129 1.8608 12.91% 0.9330 2.1226
HOG 14.40% 0.9163 2.0262 13.03% 0.9279 2.0186 10.76% 0.9426 2.2857
VGG16 10.60% 0.9529 2.3267 10.51% 0.9531 2.3771 8.74% 0.9662 2.5331
Fused 8.81% 0.9558 2.5776

All:All

GIST 9.13% 0.9626 2.3981 9.52% 0.9589 2.3494 7.12% 0.9719 2.7246
HOG 9.42% 0.9532 2.4410 9.22% 0.9561 2.5006 6.78% 0.9676 2.8677
VGG16 6.31% 0.9795 3.0028 6.05% 0.9835 3.0672 4.25% 0.9886 3.3470
Fused 4.35% 0.9846 3.4583
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Table 17: EER for eyebrows-based user authentication across indoor and outdoor light
conditions in presence of eyeglasses and applying eyeglasses in-painting for OPPO device
in VISOB dataset.

Experiment Feature EER of Fused Eyebrow
Frame Existense In-painted Frame Difference

In:In VGG16 2.50% 2.23% 0.27%
In:Out VGG16 9.97% 7.81% 2.16%

Out:Out VGG16 6.12% 5.16% 0.96%
Out:In VGG16 9.21% 8.32% 0.89%
In:All VGG16 6.71% 6.57% 0.14%

Out:All VGG16 8.74% 8.34% 0.40%
All:All VGG16 4.25% 4.03% 0.22%
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Table 18: EER, AUC, and d´ values for eyeglasses-based user authentication across indoor
and outdoor light conditions for VISOB-iPhone.

Experiment Descriptor Eyeglasses
EER AUC d’

In:In

GIST 6.430% 0.9800 2.9439
HOG 7.400% 0.9722 2.7629

VGG16 3.020% 0.9911 3.9989
Fused 3.4400% 0.9880 3.9726

In:Out

GIST 17.150% 0.8629 1.5220
HOG 20.060% 0.8635 1.7119

VGG16 16.640% 0.8951 2.1123
Fused 17.550% 0.8763 1.8797

Out:Out

GIST 13.410% 0.9249 1.0433
HOG 11.360% 0.9425 2.3432

VGG16 8.960% 0.9671 2.7074
Fused 8.180% 0.9607 2.8004

Out:In

GIST 19.220% 0.8906 1.6821
HOG 14.300% 0.9348 2.0134

VGG16 20.160% 0.8978 1.7973
Fused 13.930% 0.9352 2.0535

In:All

GIST 13.890% 0.8954 1.3619
HOG 16.340% 0.8844 1.6304

VGG16 13.540% 0.9304 2.3381
Fused 14.170% 0.9025 1.7878

Out:All

GIST 13.820% 0.9314 2.0214
HOG 10.680% 0.9560 2.3284

VGG16 12.200% 0.9497 2.5060
Fused 9.950% 0.9625 2.6275

All:All

GIST 16.090% 0.9118 1.7776
HOG 14.490% 0.9248 1.8995

VGG16 14.330% 0.9299 2.0717
Fused 12.220% 0.9403 2.1889
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Table 19: EER, AUC, and d´ values for eyeglasses-based user authentication across indoor
and outdoor light conditions for VISOB-OPPO.

Experiment Descriptor Eyeglasses
EER AUC d’

In:In

GIST 11.660% 0.9336 2.3766
HOG 10.350% 0.9432 2.5122

VGG16 7.760% 0.9719 3.0287
Fused 7.970% 0.9578 3.0615

In:Out

GIST 21.170% 0.8471 1.4896
HOG 19.800% 0.8663 1.6029

VGG16 13.220% 0.9393 2.0549
Fused 16.110% 0.8952 1.9123

Out:Out

GIST 14.750% 0.9094 1.9817
HOG 13.240% 0.9139 2.0072

VGG16 7.540% 0.9698 2.6935
Fused 9.150% 0.946 2.6131

Out:In

GIST 21.370% 0.8523 1.5309
HOG 22.220% 0.8503 1.5449

VGG16 17.540% 0.8916 1.7757
Fused 18.230% 0.8815 1.8268

In:All

GIST 17.010% 0.8921 1.8525
HOG 15.380% 0.9058 1.9347

VGG16 11.520% 0.9509 2.3634
Fused 12.530% 0.9274 2.3183

Out:All

GIST 20.480% 0.8612 1.5927
HOG 21.270% 0.8611 1.5995

VGG16 14.930% 0.9142 1.9524
Fused 16.950% 0.8954 1.9490

All:All

GIST 21.140% 0.9362 2.2408
HOG 11.990% 0.9351 2.2634

VGG16 8.050% 0.9700 2.7803
Fused 7.690% 0.9616 2.9524
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Table 20: EER, AUC, and d´ values for modality fusion of eyeglasses (VGG16) with
eyebrow (VGG16) with presence of eyeglasses across indoor and outdoor light conditions
for VISOB-iPhone.

Experiment Eyeglass Eyebrow Fused Modality
EER EER EER AUC d’

In:In 3.020% 0.730% 0.720% 0.9944 6.6212
In:Out 16.640% 12.92% 14.350% 0.9268 2.4422

Out:Out 8.960% 3.94% 2.750% 0.9912 3.4583
Out:In 20.160% 11.38% 11.430% 0.9591 2.1505
In:All 13.540% 11.81% 12.210% 0.932 2.6212

Out:All 12.200% 5.99% 5.860% 0.9839 3.0574
All:All 14.330% 10.12% 10.050% 0.9566 2.3234

Table 21: EER, AUC, and d´ values for modality fusion of eyeglasses (VGG16) with
eyebrow (VGG16) with presence of eyeglasses across indoor and outdoor light conditions
for VISOB-OPPO.

Experiment Eyeglass Eyebrow Fused Modality
EER EER EER AUC d’

In:In 7.760% 2.50% 2.570% 0.9940 4.1481
In:Out 13.220% 9.97% 8.900% 0.9652 2.3477

Out:Out 7.540% 6.12% 4.810% 0.9839 3.2726
Out:In 17.540% 9.21% 10.340% 0.9574 2.4876
In:All 11.520% 6.71% 6.150% 0.9803 2.8801

Out:All 14.930% 8.74% 8.760% 0.9638 2.5370
All:All 8.050% 4.25% 3.890% 0.9918 3.5240
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions For Eyeglasses Detection

Eyeglasses detection represents an important step for glasses removal. In addition,

eyeglasses cause real challenges for ocular and facial recognition due to glasses reflection,

shadow, and frame occlusion.

Three schemes for prescription eyeglasses detection have been proposed. The

first proposed scheme is a non-learning-based scheme consists of eye pair detection and

eyeglasses detection. This scheme uses Viola-Jones to detect Region of Interest (ROI)

followed by glass detection yielding an overall accuracy of 99.0% for FERET and 97.9%

for VISOB datasets. Further, the factors detrimental to the performance of eyeglasses

detection accuracy are mitigated as well. Experimental results on VISOB and FERET

database prove the efficacy of the proposed approach.

The second scheme is the learning-based scheme which consists of three main

steps (a) ROI detection, (b) Local Binary Pattern (LBP) and Histogram of Gradients

(HOG) feature extraction and their fusion, and (c) applying classifiers such as Support

Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Linear Discriminant Anal-

ysis (LDA), and fusing the output of these classifiers. The latter obtained a best overall

accuracy of about 99.3% on FERET and 100% on VISOB dataset. Moreover, SVM out-

performed all other classifiers with an overall accuracy of 100%. Two level of fusion has
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been used in this scheme. At first level, feature fusion has been applied to concatenate

LPB features with HOG features. At the second level, the output of SVM, MLP, and

LDA have been fused at the decision level for majority voting. The proposed fusion clas-

sifier outperforms existing learning-based schemes based on individual features such as

LBP [81].

The third scheme is the deep learning scheme which described a comparative

study for eyeglasses frame detection using different convolutional Neural Network (CNN)

structures that have been applied on two different regions of interest (ROI), namely, Frame

Bridge and extended ocular region. The best CNN model obtained an overall accuracy

of 99.96% for ROI consisting of Frame Bridge. The main advantage of CNN models

for eyeglasses detection over other classical approaches [47] (using feature extraction,

descriptors fusion, and classification) is that the CNN model is structured both as feature

extractor, using convolutional layers, and classifier, using fully connected layers, and both

have trainable parameters that can have parameters adapted at each epoch. As a part of

future work, eyeglasses segmentation will be applied using CNN models.

5.2 Conclusions For Eyeglasses Segmentation

Eyeglasses occlusion is considered as a real problem for facial and ocular recog-

nition due to occlusion and glasses reflection. To mitigate this problem, an eyeglasses

detection and segmentation approaches have been proposed to extract eyeglasses as a

biometric trait. In this regard, two approaches have been proposed namely, cascaded

Convolutional Neural Network (CNN), and Convolutional De-convolutional network.
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The first segmentation scheme was cascaded convolutional Neural Network (CNN).

This scheme consists of four main stages, namely region of interest (ROI) detection, cas-

caded CNN’s for eyeglasses detection, weight generation, and glasses segmentation, fol-

lowed by mathematical and binarization operations. Two CNN models have been pro-

posed for this scheme which are CNN-01, and CNN02 models. CNN-01 model has been

implemented to detect the existence of eyeglasses and generate the trained weights for the

second CNN-02 model. Also, CNN-01 model implemented mainly with convolutional,

and max-pooling layers for extracting a micro-structure feature, and fully connected with

soft-max activation layer for eyeglasses detection. In addition, CNN-02 implemented

with convolutional and up-sampling layers for eyeglasses segmentation. For this scheme,

an experimental investigation on large scale VISOB dataset shows a 100% eyeglasses

detection and 91% segmentation accuracy by our proposed approach.

The advantages of the proposed cascaded CNNs are (a) first CNN feeds the sec-

ond CNN with emphasized eyeglasses, (b) instead of training two separate models, one

cascaded model is trained for both detection and segmentation which is computation-

ally efficient, and (c) eyeglasses segmentation could be obtained using trained weights

obtained from CNN-01. Moreover, the microstructure features of convolutional layers

showed a good performance in conjunction with fully connected layers for pixel-wise

segmentation. As a part of future work, we plan to use larger scale databases and deeper

CNN’s for further performance enhancement.

The second segmentation scheme was a convolutional de-convolutional network

which consisting of six main stages, namely ROI extraction, frame in-painting, CNN
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model application, mask clean-up, segmentation and frame removal. This CNN model has

been implemented with two convolutional layers, two de-convolutional, one max-pooling,

one up-sampling layer, and one custom (lamda) layer. The last custom (Lamda) layer has

one channel. The Lamda layer has been customized to satisfy four main operations which

are summation of the sixteen heat maps, apply Gaussian low pass filter, apply Otsu’s

Binarization, find the loss metric using intersection over the union between the predicted

binary mask and the reference target binary mask.

The proposed CNN model has been trained and evaluated using a dataset consists

more than 4.1 million images, divided as 80% (3301280) training set, 15% (619040) vali-

dation set, and 5% (4269) testing set. The experimental results show a 97% segmentation

accuracy on real eyeglasses images by our proposed approach.

To recap, the reported results show that the convolutional de-convolutional ap-

proach achieves better segmentation results over the cascaded approach. In other words,

Convolution-deconvolution approach predicts the frame mask of eyeglasses better than

cascaded approach; however, the cascaded approach involved eyeglasses detection which

is required before segmentation.

5.3 Conclusions For User Authentication using Soft-Biometric

With the modern mobile technology revolution, biometrics has become a viable

alternative to PINs and passwords for secure mobile access and transactions. Recent

research has shown the potential of eyebrows as an independent biometric modality for

recognition. Eyebrows leverage the benefit of being one-sixth of the facial region, and is
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therefore computationally efficient and offer fast throughput. This work aims to exploit

the eyebrow region for mobile user authentication and to show the impact factor such as

eyeglasses existence on eyebrow-based user authentication. To this aim, Histogram of

Oriented Gradients (HOG), a local descriptor, and GIST, a global descriptor, extracted

from left and right eyebrow regions are evaluated.

Besides, we evaluated eyebrows biometrics for user authentication in smartphones.

This is the first large-scale evaluation of eyebrow-based biometric on a mobile dataset in

presence of eyeglasses. The experimental results suggest minimum EER of 3.23% on

fusing the SVM output of the left and right eyebrow ROIs using GIST descriptors for

OPPO mobile device VISOB database. Also, The experimental results suggest minimum

EER of 1.08% on fusing the SVM output of the left and right eyebrow ROIs using HOG

descriptors for FERET database. With the continuous advancement in the mobile hard-

ware technology, the proposed approach can be used as a viable device-side application

for user authentication and as a soft biometric trait. Also, this work shows the impact of

eyeglasses on eyebrow ROI mitigated using eyeglasses segmentation and inpainting.

Local, global, and deep learning features have been used as image descriptors for

user authentication under different light conditions. Also, the scores have been fused in

three stages, namely, unit fusion (right, and left fusion), features fusion (local, global,

and deep features fusion), and modality fusion (eyebrow and eyeglasses fusion). The

reported results show that the deep feature outer performed the other features (local, and

global fusion), and the feature fusion enhanced the authentication system in absence of

eyeglasses. The best result of 0.63% EER using score level fusion of handcraft descriptors
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(HOG, and GIST) with a deep VGG16 descriptor for eyebrows-based user authentication.

Moreover, the best result of 3.44% EER using score level fusion of handcraft descriptors

(HOG, and GIST) with a deep VGG16 descriptor for eyebrows-based user authentication.

Moreover, the deep (VGG16) descriptor outperforms other traditional handcrafted

descriptors (GIST and HOG) for eyebrow-based with the presence of eyeglasses and

eyeglasses-based user authentication. The fusion of eyebrows and eyeglasses modali-

ties at score level using VGG16 feature descriptor showed enhanced performance over

individual modalities.

5.4 Future Work

As a part of future work, prediction of eyeglasses frames using deep learning ap-

proach, I will use the full face to obtain the predicted frame with more deep and functional

models (consequential CNN models).

For eyeglasses in-painting, I will use a more accurate in-painting process based on

deep learning method rather than conventional method for eyeglasses removal .

As a part of future work in deep feature extraction, I will evaluate different pre-

trained CNN models such as AlexNet, VGG19, ResNet-50, InceptionV3, and MobileNet.

This evaluation should be applied to different biometric modalities such as faces, iris, and

chin using different light conditions.

In addition, I will train to fuse the deep features (such as VGG or ResNet features)

of primary modality (such face or iris) with the deep feature of soft-biometric modalities

such as eyebrows or chin.
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Also, as part of future work, I will also investigate soft-biometric prediction from

ocular and facial images captured using mobile devices such as gender and age.
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