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I
The “Real” Scientific Revolution; 14th Century England’s Contribution to Modern

Scientific Though

By Lauren De Angelis ‘12

At first glance, the fourteenth century truly appears to be calamitous. Famine, disease, 
war, and poor leadership plagued England to the point where one must wonder if anything 
positive emerged from this time period. These bleak descriptions, however, fail to depict society 
writ large because they ignore indisputable advancements and achievements in medieval society, 
arguably the most important being science.

Often, history asserts that the thinkers of the Renaissance, such as Galileo, Kepler, and 
Copernicus, are the forerunners of modern scientific inquiry because they used experimentation 
and mathematics to explain natural phenomena. However, M.A. Hoskin and A. G Molland 
argue, ““The Scientific Revolution” of the seventeenth century cannot adequately be assessed 
without an appreciation of the achievements and limitations of those.. .on whose shoulders 
Galileo and his contemporaries stood.”1 It is necessary then to study those natural philosophers 
that worked feverishly in the scientific field during the fourteenth century because it was then 
that the real birth of scientific thought occurred. Experimentation, mathematical formulae, and 
observational analyses were integral parts of an emerging scientific method from which later 
scientists worked. This paper will thus focus on the important legacy of scientific works 
introduced at Merton College, Oxford, which became a microcosm of scientific discovery that 
inaugurated the modem era of science.

The origins of scientific thought in Europe lay in the early twelfth century, when 
cathedral schools emerged as a predecessor to universities. It was in this environment that ideas 
emerged regarding the possibility of change explained by ‘“a common course of nature.’”'1 
Curiosity was evidently emerging across Europe as individuals sought to learn about the world, 
which stimulated the translations of ancient texts. There was difficulty doing so because most 
texts by figures such as Aristotle, Euclid, and Plato were only available in Arabic translations. 
Although these languages were lost in the West, universities that cropped up in Spain were 
centers of Arabic study. Thus scholars, such as Adelard of Bath, Plato of Tivoli, Robert of 
Chester, and Gerard of Cremona, traveled there and began to work with these texts and translate 
them into Latin."1 These translations provided a vital foundation for the rise of medieval 
universities.
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Universities became centers of learning in thirteenth century medieval Europe where 
scholars discussed and disputed newly translated ancient texts. Curricula 
used by Western universities, which led to the development of a Master of Arts, focused mainly 
on courses in logic, physics, astronomy, and mathematics. Translated works studied incorporated 
many of Aristotle’s logical and scientific works, including Physics, On the Heavens and World, 
Meteorology, and On Generation and Corruption. The study of mathematics mainly consisted of 
Euclid’s Element and Boethius’ Arithmetic" These texts inspired and influenced scholars to 
openly discuss whether or not the ancients were in fact correct. One can see their influence best 
at Oxford’s Merton College, a center of scientific thought in the fourteenth century.

The origins of Merton College arguably date to the eleventh century with the teaching 
and scholarship of Adelard of Bath, a man often described as “'the greatest name in English 
science before Robert Grosseteste and Roger Bacon.’”v Adelard’s historical significance lay in 
the fact that he was one of the few Western individuals to translate important classical works. 
One such work was Euclid’s Elements, which as previously stated, was a key text for the study 
of mathematics at medieval universities. This is merely one example of the substantial amount 
of translating he contributed to the academic advancement of rising universities.vi His 
translations also proved beneficial in his own writings, the most famous being his Questiones 
Naturales, which was a scientific work dealing with the natural sciences This work was a 
composite of the expanded knowledge he received from these translations.

Adelard was also a renowned teacher in England during the tenth century. He was an 
early forerunner to key figures that played an important role in the Mertonian scientific tradition. 
Although there is very little biographical information regarding Adelard’s life, one discovers his 
teaching career through fragmented notes in some of his contemporaries’ works. For example, a 
text used at Trinity College lists him as one of three major geometers in England.viii Charles 
Burnett states, “He was evidently the key figure at the beginning of a scientific movement that 
developed in England throughout the twelfth century and culminated in the work of Robert 
Grosseteste in the early thirteenth century.”IX He was truly an innovator during his time, and 
impacted how scholars in England viewed and understood the natural sciences.

Within Oxford University, Merton College emerged as a center for the scientific 
community that built on the work of Adelard and others. Walter de Merton, the founder of the 
college, intended to make “his College a foundation for encouraging learning amongst the 
secular clergy as distinct from the religious orders. He was raising up a rival to the monastic 
system.”x This mission caused a religious struggle at Oxford that led to a fringe group breaking 
off in order to study science. That religious group was the Grey Friars, a branch of the 
Franciscans who were named for their rough, grey robes. It would be these men who became 
extremely influential members in the field of science.

The general mission of the Franciscans was merely to imitate Christ in word and deed. 
Their founder, St. Francis of Assisi, never envisioned his followers as educators in any sense; 
however education was blossoming. It did not seem practical for the friars to remain uneducated 
and in jeopardy of lagging behind their lay counterparts. Robert Grosseteste, one of the prolific 
teachers of the Grey Friars even warned “them plainly that walking in ignorance meant walking 
in shame.”xi In order to achieve this secular education, the Grey Friars had to fight an ideological 
battle because they were only allowed to study theology; those that wanted a degree in the arts 
were viewed rebellious.

These radical friars moved away from strict theological study and instead toward 
practical study of natural science. One will see the great contributions they made to the scientific
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community thanks to the unique climate at the Merton School during the twelfth and thirteenth 
centuries.

Robert Grosseteste was an early forerunner who began scientific work at Oxford in 1214 
and lectured the infamous Franciscans studying at the University. Grosseteste wrote various 
commentaries on Aristotelian works, including the Posterior Analytics and Physics. Within these 
commentaries, Grosseteste declared that “The object of...science...was thus to discover and 
define the form or ‘universal’ or ‘nature’, in the sense of principle, origin, cause of behavior and 
source of understanding, which could become the start of demonstration."xii He accepted the 
opinion of Aristotle that universals could in fact be abstracted from particular instances; 
however, these instances produced, in Grosseteste’s opinion, a hierarchy of certainty on whether 
or not the universal could be known.

Grosseteste valued the study of science in order to understand nature and even divided 
science into three categories: physics, mathematics, and metaphysics. It should be noted that 
Grosseteste asserted that mathematics was the only certain science whereas others left room for 
error, misunderstanding, and confusion.xiii Despite the uncertainty inherent in two of the 
branches, he studied all three avidly and contributed many findings to the scientific community. 
His impact was evident in his creation of an early scientific method and his work with 
mathematics, and optics.

Grosseteste spent a significant amount of time establishing a proto-scientific method. In 
natural sciences Grosseteste held that “in order to distinguish the true causes from other possible 
causes, at the end of composition must come a process of experimental verification and 
falsification.”xiv Essentially one must rely on experiment, analysis, and experience in order to 
come to a conclusion. For Grosseteste it was important to eliminate any possible causes of a 
particular problem. His scientific method was based on two important arguments: the uniformity 
of nature and the principle of economy. The former basically held that all like things in nature 
will act the same. The latter assertion is based on Grosseteste’s statement that it “is better which 
is from fewer because it makes us know more quickly.”xv In simpler terms, his theory on 
economy asserts that which is the simple explanation is more appealing than one that is more 
complicated. These scientific principles proved quite influential to scientists, such as Roger 
Bacon and William of Ockham.

Before moving on to his students and followers, it is valuable for one to gain an 
understanding of the practical findings Grosseteste made with his scientific forethought. One 
area where he particularly shined was in optics. Prior to the thirteenth century, there was little 
knowledge or understanding of optics; Adelard of Bath did not even have access to important 
Greek and Arab works.XVI By the time Grosseteste was writing he did have crucial translations, 
including Euclid’s Optica and Aristotle’s Meterologica. Although modern-day scholars of optics 
and physics would scoff at Grosseteste’s incomprehensible descriptions of light, its value lay in 
the fact that understanding optics was approached from a mathematical point of view for the first 
time.xvii

Grosseteste asserted in Concerning Lines, Angles, and Figures that “all causes of natural 
effects must be expressed by means of lines, angles, and figures, tor otherwise it is impossible to 
grasp their explanation.”XViii For Grosseteste, these natural effects were essential to the study of 
optics. He believed that light was the first ‘corporeal form of original materials and was 
responsible for motion and causation, which had the power to act in the universe and affect 
change. He called this the “multiplication of species;” a simple way to explain this is through 
example. If light travels to something and illuminates it, then that light is multiplied and has
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moved through the body in intervals. The light is now what Grosseteste would call a “species” 
because it has emanated from the object and has multiplied. For him, this process formed the 
basis for studying optics because it is the visible reaction that can be examined.XIX

Grosseteste also attempted to understand the idea of refraction of light, which he then 
applied to his study on the rainbow. He explained refraction as:

the ray incident at unequal angles deviates from the rectilinear path that it had in the first 
substance, which would be maintained if the medium were uniform. And this deviation is 
called refraction of the ray.xx

This definition when applied to experimentation helped him argue against the Aristotelian 
opinion of the rainbow, which was based on reflection. In order to prove Aristotle’s theory 
wrong, Grosseteste explained the shape of the rainbow through observation. He declared:

“Nor can a rainbow be produced by the reflection of the rays of the sun.. .because if that 
were so the shape of all the rainbows would not be an arc.. .Therefore rainbows must be 
produced by the refraction of rays of the sun in the mist of a convex cloud"xxi

According to Grosseteste, the convex cloud had multiple layers in it, which would allow the light 
to be refracted multiple times, thus producing the shape of a spectrum of colors.xxii He explained 
that if it were reflection, then the rainbow would appear bigger and higher when the sun was 
higher in the sky. Similarly, it would be smaller and lower when the sun was closer to Earth. He 
observed the changes in the rainbow at different times of day to justify his claim relying solely 
on experience and experimentation. He noticed that if the sun was rising or setting, the rainbow 
would be semicircular and larger. At any other point in the day, however, it appeared only part of 
a semicircle and much smaller.xxiii

Grosseteste also established a theory of color, which would explain why there were 
variations of color in the rainbow. He asserted that it was due to the amount of rays of light; the 
more rays present allowed for brighter colors, whereas fewer rays displayed only the darker 
colors on the light spectrum. Although his theory regarding the rainbow was not wholly correct 
because he ignored reflection altogether and attributed the shape of the bow to the denser clouds, 
he nevertheless tried to methodically explain phenomena, which was a great scientific 
improvement. He reduced the problem down to simple terms and then experimented using math 
and observation. This set the stage for Grosseteste’s followers, namely Roger Bacon.

Roger Bacon was a member of the fringe group of Franciscan friars at Oxford, and a 
student of Robert Grosseteste; thus, it is unsurprising that he understood science in a similar way. 
He pursued his education with great intensity and was suspected of heresy for the new ideas he 
had concluded during his studies. Eventually, Pope Clement IV commanded Bacon to write 
down his ideas in what became his most famous work, the Opus Maiusxxiv The discussion on 
Roger Bacon will mainly focus on his scientific findings in the Opus Maius because it is 
arguably his most prolific scientific work.

Bacon had two aims when writing the Opus Maius: to show how philosophy could be 
practically utilized and to reform how those in the thirteenth century learned based on the 
relative importance of the sciences.xxv In this treatise, he presented his work in almost an 
encyclopedic format whereby he broke down different subjects into parts. The most applicable 
sections to this paper are Part IV and V, which discuss the importance of mathematical 
knowledge and how to apply mathematical principles to the study of astronomy, optics, and even
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motion. One will see in his work that he valued experimental science and above all mathematics 
to explain phenomena present in the world.

In Part IV, Bacon wasted no time in establishing the preeminence of mathematics above 
all the sciences. He opens with the following statement:

Of these sciences the gate and key is mathematics.. .Neglect of this branch now.. .has 
destroyed the whole system of study of the Latins.. .he who is ignorant of this cannot 
know the other sciences nor the affairs of the world.xxvi

He believed that this area science was of utmost importance to study for many reasons, including 
an individual’s innate capability to understand its logic and the ease that one can comprehend it. 
According to Bacon, it is most important because “we are able to arrive at truth without 
error. . .since in this subject demonstration by means of a proper and necessary cause can be 
given. ”xxvii Mathematics allows one to work out problems and access their validity through trial 
and error. The ability to do so was crucial to Bacon because he valued these methods as the basis 
of arriving at true knowledge. This understanding of thirteenth century science was extremely 
similar to his teacher, Robert Grosseteste, who likely imparted the value of experiment and 
observation to his student.

Bacon’s math is extremely difficult to understand, but his findings are not. Therefore, one 
must concentrate on his scientific conclusions, and not the math behind them, in order to truly 
appreciate his great accomplishments. For example, in the area of optics, he attempted to explain 
vision and optics to a greater extent than his predecessors had. He explained sight using the 
multiplication of species theory, which is reminiscent of Grosseteste. He declared, “lines along 
which multiplication of species occurs do not have length alone.. .but all of them also have width 
and depth,” which provides for visibility of an object; If something lacks width, depth, or length, 
then it cannot be seen.xxviii He explained that these objects, however, could only be seen through 
intromitted rays coupled with visual rays from an individual’s eyes.xxix He essentially 
synthesized and built off of what other scientists, such as Aristotle and Alhazen, had already 
said; however, he believed his explanation was correct after examining all materials and 
knowledge available to him.

Another interesting endeavor presented in Bacon’s Opus Maius was his attempt to plot 
places using longitude and latitude. He was able to do so by overcoming some of the difficulties 
that occurred when representing the earth on a flat plane.xxx He tried to describe the shape of the 
world through the use of diagrams. He first explained that the habitable world from east to west 
was “much more than half the circumference of the Earth, and more than the revolution of one 
half of the heavens.XXXI From this mathematical supposition, he thus introduced his idea of 
longitude and latitude. His method essentially entailed drawing a line parallel to the equator and 
reading off its value on the colore, which are the celestial circles that pass through the both 
equinoxes and solstices. He then plotted longitude using a meridian that went through a 
particular city and then used that meridian to compare its location at the equator.xxxii

This method allowed for him to use arcs and circles to better describe coordinates on a 
flat map. Although there were issues and complications that Bacon did not take into 
consideration because of the lack of technology and knowledge on the subject, his attempt was 
significant because he was one of the first individuals who used math to try and create a world 
coordinate system centuries before it was correctly used. The use of coordinates to plot not only
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land, but also celestial regions was examined in the fourteenth century by Richard Wallingford 
and later by Galileo during the Renaissance.

Finally, Part V of Bacon’s work dealt with the issue of whether or not a vacuum exists. 
Aristotle previously asserted that a vacuum could not possibly occur for various reasons because 
the laws that govern the natural world would not apply. One of his most prominent arguments 
against a void lay in the fact that bodies that weighed different amounts would, in the absence of 
resistance, fall at the same time; this simply was not logical to Aristotle.xxxiii Bacon, however, 
tried to refute this Aristotelian argument. In his Opus Maius, Bacon understood the possibility of 
a vacuum in mathematical terms. He claimed, “For a vacuum rightly conceived of is merely a 
mathematical quantity extended in the three dimensions, existing per se without heat and cold, 
soft and hard.. .and without any natural quality.”xxxiv Bacon did not prove the existence of a 
vacuum, but merely the possibility of that existence, which Aristotle denied. Bacon’s work 
would later inspire Dumbleton to discuss the idea of a vacuum.

Prior to moving on to the fourteenth century Mertonian scholars known as the Oxford 
Calculators, one final figure must be noted. That figure is William of Ockham whose 
“importance in the history of science comes partly from... improvements he introduced into the 
theory of induction, but much more from the attack he made on contemporary physics and 
metaphysics.”xxxv His ideas regarding induction were based on two ideas. The first explained 
that only certain things in the world could be gained through the senses, which he called 
substances. Ockham called this “intuitive knowledge.”XXXVi Everything else not included in 
intuitive knowledge was not real and represented concepts or qualities.

The second idea is one that he is most famous for: Ockham’s razor. Simply put, the best 
explanation is the simplest because it removes any superfluous information that impedes 
knowing what is real.xxxvii Ockham’s razor was not an original thought, but actually echoes 
Grosseteste’s theory of economy. Using these two ideas, Ockham proposed that “in most cases a 
singular contingent proposition cannot be known evidently without many apprehensions of 
single instances.”xxxviii It was possible, however, to arrive at the best possible answer by 
removing all false suppositions. Ockham applied these aforementioned ideas when he analyzed 
the physics of motion.

In his Treatise on Motion, Ockham asserted, “that no other thing is required in addition to 
body and place,” which explained the basis of his understanding of motion. XXXIX His definition 
essentially asserted an object’s motion was ite continuous existence from one instant to the next 
of a permanent body. This understanding of motion actually led to a primitive definition of 
inertia, which he explained as:

The moving thing in such a motion (i.e projectile motion), after the separation of 
the moving body from the prime projector, is the very thing moved according to itself and 
not by any separate power, for this moving thing and the motion cannot be distinguished.
xl

This definition was the foundation from which future scientists, such as Jean Buridan and later 
Isaac Newton, formed their definitions of impressed force. Also, one sees Ockham’s influence in 
the work of the Oxford Calculators explained the physics of motion using mathematical 
principles.

Tracing the research and work of earlier scientific figures in England and more 
specifically at Oxford illustrates that as early as the twelfth century strides were being made to
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explain the world using reason, logic, and of course mathematics. It was thus a transitional 
period whereby these men took the philosophical explanations of ancient writers and tried to 
either prove or disprove them using experimentation and observation. The strides these natural 
philosophers made in science did not halt in this generation; rather they set the example for 
future scholars who utilized their scientific approaches, and actually expanded on them by 
mathematically analyzing natural phenomena using more complex mathematical formulae. The 
work of the Mertonian scholars in the fourteenth century evidently shows this advancement, and 
also serves to support that there was indeed growth during this turbulent time.

The first prominent Mertonian of the fourteenth century was Thomas Bradwardine who 
became a fellow at Merton College in 1323 and stayed in residence there until 1335. One of his 
first works written at Merton College was the Geometria speculativa, which was a compilation 
of Aristotle’s works on geometry. Although this treatise was used as a textbook for students, and 
held no original findings, it nevertheless is an important text in Bradwardine’s scholarship. 
Through the analysis and compilation of Aristotelian texts, he was able to form his own opinion 
on proportions, which he understood to be based on a logical division of ratios.xli This analysis 
formed the basis of his most influential work, Tractatus de Proportionibus, which was an 
original discourse that attempted to resolve the problems he saw in how Aristotle related 
velocity, force, and resistance.

Bradwardine’s Tractatus de Proportionibus “performed a crucial service to the 
development of mechanics, for in it we find the juncture of two important traditions of 
mechanics, the philosophical and mathematical.” When writing this work, Bradwardine sought 
to discover a mathematical function that would explain Aristotle’s law of motion that “velocity 
was proportional to the power of the mover divided by the resistance of the medium.”xliii There 
was an issue, however, that “if the power was smaller than the resistance it might fail to move 
the body at all.”xliv Aristotle never explained that problem; however, later writers reasoned that 
the velocity was proportional only to the excess of power when compared to resistance. When 
the power was greater than one, motion would occur.xlv Reason was not enough for 
Bradwardine, which led to his mathematical treatise.

In order to explain Aristotle’s principle mathematically without any discrepancies, he 
first detailed all necessary mathematical definitions, properties, and types of proportions. For 
instance, he focused on explaining rational and irrational proportions and how each applied to 
the different branches of mathematics.xlvi He even went as far as breaking down all possible 
structures for proportions. He then used these mathematical principles to explain correctly how 
change in velocity correlates to the force and resistance. The resulting theory is as follows: “The 
proportion of the speeds of motions varies in accordance with the proportion of motive to 
resistive forces, and conversely... This is to be understood in the sense of geometric 
proportionality.”xlvii Using this proportional explanation, Bradwardine improved on the 
Aristotelian theory by avoiding its inherent pit falls. If force is greater than resistance, then 
motion occurs; if resistance is equal to or greater than the force, movement is not possible. Thus, 
Bradwardine’s principle remained in line with the discourse of the day, but branched out using 
mathematical analysis to avoid any intellectual attacks on his work.xlviii

The mathematical and scientific jargon used in Bradwardine’s treatise is not easily 
appreciated by the modern scholar; however, it proved instrumental to other natural philosophers 
who sought to “reduce all motion to local motion and to explain their variation according to the 
Bradwardine function.” The Mertonian scholars, which included William Heytesbury, John 
Dumbleton, and Richard Swineshead, indeed did extensive work using Bradwardine’s theory,
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resulting in the revolutionizing of the study of dynamics and kinematics. Each man contributed 
greatly to this revolution; however, the scholarship is conflicted on the chronology of their 
works. Therefore, this paper will analyze individually the contributions of each scholar in the 
following order: William Heytesbury, John Dumbleton, and Richard Swineshead.

William Heytesbury was affiliated with Oxford beginning in 1330. His main work, Rules 
for Solving Sophisms, used proportions to explain degrees of qualities and how they applied to 
motion. The idea that qualities could be understood quantitatively was not a novel idea, but 
actually dated back to the time of Aristotle. Heytesbury understood this concept by viewing an 
object as individual parts that made up the whole. It is evident in his writings, as well as in his 
fellow Mertonian’s, that the Aristotelian understanding of quality and quantity could be 
mathematically applied to acceleration and velocity, thereby explaining different types of 
motion.xlix Heytesbury’s Rules for Solving Sophisms was one of the first works that used this 
application, which his contemporaries later referenced and improved upon.

In his treatise, Heytesbury made it clear that he was working with premises that could be 
described and explained using only logic and math. He first differentiated between uniform and 
non-uniform motion. He stated uniform motion occurs when “an equal distance is continuously 
traversed with equal velocity in an equal part of time” whereas non-uniform motion can “be 
varied in an infinite number of ways, both in respect to the magnitude, and with respect to time.”
1 Using these definitions, he formed various sophisms whereby he tried to show how velocity and 
acceleration altered each type of motion. These explanations are extremely difficult to follow, 
therefore, one needs only to note his most famous case, “The Mean Speed Theorem,” which 
elucidates how uniformly difform motion occurs.

In order to understand the aforementioned theory, one must grasp the concept of uniform 
acceleration first. Heytesbury defined this idea as an equal extension of velocity gained in an 
equal amount of time. He then applied this definition, along with that of instantaneous velocity, 
and arrived at “The Mean Speed Theorem.” Heytesbury explained that:

when any mobile body is uniformly accelerated from rest to some given degree [of 
velocity], it will in that time traverse one-half the distance that it would traverse if, in that 
same time, it were moved uniformly at the degree [of velocity] terminating that latitude. 
For that motion, as a whole, will correspond to the mean degree of that latitude, which is 
precisely one-half that degree which is its terminal velocity.

In simpler terms, Heytesbury asserted that an object that is uniformly accelerated would travel 
the same distance as one that has the same degree of velocity, as long as it is half of the final 
velocity of the accelerated object.lii Although Heytesbury’s assertion offered the true nature of 
local motion, he was not able to completely prove it. Other scholars at Merton however worked 
with this definition and attempted to arrive at a clearer conception of how to explain an object’s 
motion. Thus, one will see that the “Mean Speed Theorem was a collaborative work that is 
attributed to all Oxford Calculators.

John Dumbleton was Heytesbury’s contemporary, but his work is not often valued as 
highly because he lacked the mathematical genius for which the Oxford Calculators were 
famous; often his arguments would be weakly supported or nonexistent. This statement does not 
insinuate however that he is less important within the Mertonian tradition because his most 
famous work The Summa o f  Logical and Natural Things extensively discussed the intension and
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remission of qualities, also called latitude, and how it applies to motion. Thus, his scholarship is 
worth mentioning in this narrative on scientific discourse of the fourteenth century.

The Summa is a large compilation of treatises that are divided into ten parts; part one 
concentrates on logic and parts two through ten handle different aspects of the natural sciences. 
His greatest focus, however, was on the problems the Mertonian scholars were grappling with 
during that time, namely the function of motion and how to explain it logically.1iii Dumbleton 
explained the intension and remission of qualities through the Bradwardian understanding of 
proportionality, concluding that velocity and acceleration adhere to geometric proportionality. 
Understanding the variables of motion in such a way provided him with the basis for his 
conclusion on the measurement of local motion.liv

Part III Chapter ten of Dumbleton’s work explains, albeit convolutedly, how to measure 
local motion. He purported:

It is proved that a latitude [velocity] corresponds to its mean degree [of velocity]. It is 
demonstrated in the first place, however, that if some latitude of velocity terminated at 
rest [and uniformly acquired] is equivalent to a degree [of velocity] greater than its mean, 
then it is refuted that the less half of the latitude terminated at rest corresponds to [a 
degree of velocity] less than the mean of the same half.lv

This definition is similar to that of Heytesbury’s, but the ways in which he confirmed its validity 
differed substantially. Heytesbury used sophisms to explain the “Mean Speed Theorem,” 
whereas Dumbleton relied more on geometrical diagrams and proofs. For example, he stated, “If 
C is greater than B, then R is greater than D.”lvi Each letter represented a different part of motion, 
such as acceleration and velocity; this is merely one example of the type of math used by 
Dumbleton, which was quite complicated and extensive. Although Dumbleton made an effort to 
use geometrical proofs correctly, he never definitively arrived at the end result of the proof, 
which left his treatise substantially vulnerable to attacks. It would thus be the work of Richard 
Swineshead, perhaps the greatest of all the Oxford Calculators, that remedied the flaws of both 
Dumbleton and Heytesbury, thus producing the most advanced explanation of the “Mean Speed 
Theorem.”

Prior to moving on to Swineshead, one final unique topic of Dumbleton’s scholarship 
should be discussed: the possibility of the existence of a void. As previously mentioned, Aristotle 
denied the possibility of a void because it was against the laws of nature. Bacon, however, 
confronted Aristotle’s belief with a theoretical proposition that it could be explained 
mathematically. Dumbleton too worked to disprove the Aristotelian understanding like his 
forbear had. He used the movement of celestial bodies to explain his argument. Dumbleton 
stated, “to maintain contact celestial bodies would, if necessary, abandon their natural circular 
motions as particular bodies and follow their universal nature or ‘corporeity’, even though this 
involved an unnatural rectilinear movement.”lvii" Dumbleton understood the planets as needing 
one another, so if an instance occurred that broke with the laws of Aristotle, then an unnatural 
motion would occur that could not be explained by Aristotelian logic. The planets would 
necessarily cause a void in order to follow their internal nature. Dumbleton obviously never 
observed an unnatural occurrence of the planets, but it nevertheless illustrates that this 
conundrum of “nature abhors a vacuum” was still debated in the fourteenth century.lviii

The final Oxford Calculator to be discussed is Richard Swineshead who is often cited as 
the Calculator because of his treatises known as the Liber calculationum, a work that corrected
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much of the ambiguity present in Dumbleton’s Summa.lix David Lindberg writes, “Swineshead 
set down what clearly seems to be both the most brilliant application and the most brilliant 
development of Bradwardine’s function that the Middle Ages was to see.”lx Swineshead great 
achievement centers on the examination of falling bodies towards the center of the Earth, which 
proved that a body acts as a single entity and not as separate parts.

He declared in his treatise On Falling Bodies, “When an earthy body is in such a position 
that part of it is on the other side of the Centre, it is reasonable to enquire whether that part will 
resist the descent either of the whole or of the part on this side of the Centre.”lxi In this 
statement, he essentially said that once a body passes the center it becomes its own resistance, 
which would impede its motion. This resistance is contingent upon, however, whether the part 
below the center of the world is a separate entity altogether. Swineshead applied Bradwardine’s 
theory through complicated and convoluted propositions, which resulted in the conclusion that if 
the body does act as separate parts of the whole, its center could never overlap with the center of 
the world; this he declared is impossible.1xiiInstead, he purported:

the whole and the part have the same natural place and both desire it.. .the part desires the 
same place when it is part of something as it does when it is by itself.. .the part beyond 
the Centre will naturally recede from the Centre, because it is part of a while and its 
desire is part of the total desire.1xiii

Swineshead’s innovation thus clarified many of the debates his contemporaries were having 
about the motion of objects.

On Falling Bodies was not Swineshead’s only major contribution to the scientific 
disputations of the time. He also wrote extensively on the intention and remission of qualities. 
This topic had already been discussed and analyzed by the other Mertonian scholars; however, 
Swineshead’s explanation in Intension and Remission o f Qualities, Remission o f Forms, is 
arguably the clearest and proves how qualities could be understood quantitatively. He offered 
various opinions describing intension and remission, but rejected many of the one’s already in 
existence. The one he most favored however asserted that “the intension of any quality is 
measured by the proximity to the most intense degree of its latitude. Remission in this position is 
measured by he distance from the most intense degree.”lxiv Although he favored this premise, it 
was not the best explanation of the function of intension and remission, which thus drove him to 
find the answer on his own.

Swineshead extensively wrote out various propositions to show how difficult it was to 
illustrate the measurements of intension and remission; however, the three main propositions 
that best serve his purpose are as follows:

1. Whether uniform acquisition of intention follows from uniform loss of remission
2. Whether remission is increased equally proportionally and with equal velocity as 
intension is decreased
3. Whether two things which begin from zero degree of remission to acquire remission 
equally fast continue to remain equally remiss.lxv

Although he ultimately tried to negate each of these premises, he came to the conclusion that 
they were mostly correct, save one component of proposition number two. The issue that arises 
in the second premise derived from the fact that intension and remission are not the same, and
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thus cannot be proportionally compared. Swineshead provided the soundest argument that 
qualities could in fact be treated quantitatively.Ixvi

All of the Oxford Calculator’s greatly impacted the scientific community in the 
fourteenth century, which was mainly theoretically based. Therefore, much of their work did not 
contribute to many of the pragmatic problems facing those in the fourteenth century. There were 
other natural philosophers, however, associated with Merton who used scientific inquiry and 
mathematical knowledge to address practical issues and created instruments that led to 
advancement in society. One such individual was Richard Wallingford who was affiliated with 
Oxford in the early fourteenth century. The value of his work lay in his invention of the 
mechanical clock and the alboin, devices that greatly improved the study of astronomy.

Wallingford was an abbot of St. Albans, and it was in this role that he gained the 
opportunity to create the mechanical clock. He actually spent so much money on his invention 
that King Edward III complained he did not put enough resources into the church. Wallingford 
responded by frankly stating, “there would be many abbots after him who could build churches 
but none who could complete the clock.”lxvii He believed that he was the only person who could 
accomplish such a feat because he had an extensive background in mathematics and astronomy, 
fields that many religious felt threatening to their beliefs. Wallingford, however, used his 
knowledge to create many scientific works that aided him in his mechanical endeavors.

His most famous writings, Quadripartitum and Exafrenon pronosticacionum temporis, 
both demonstrate the importance of applying trigonometry when studying astronomy. He used 
this math to calculate many coordinates of stars and planets, which he then represented in his 
inventions. His clock, for instance, had the ability to track the seasons, stars, planets, and of 
course time.lxvii His device was without known precedence because it used an astrolabe-type 
design that worked in reverse of contemporary astrolabe arrangements.Ixix His other major 
invention that used theories of mathematics was the alboin, a device that plotted celestial 
coordinates; this instrument served in replacing more laborious, manual calculations. It is evident 
that Wallingford’s practical applications of math actually revolutionized how individuals 
examined the celestial region.

All of the aforementioned Mertonian scholars impacted scientific thought in substantial 
ways throughout the fourteenth century. Their work with dynamics and kinematics arguably was 
their greatest contribution because it revolutionized how natural philosophers measured and 
calculated speed. Although these men are famous for their scientific endeavors during such a 
turbulent time in history, they were not the only individuals experimenting; there were also men 
in Paris working in the area of dynamics. The two most influential natural philosophers in Paris 
were Jean Buridan and Nicole Oresme. One will see that these two individuals worked with 
similar ideas as the Mertonian scholars and left their own legacy that set the stage for the 
scientific revolution in the sixteenth and seventeenth centuries.

John Buridan was affiliated with the University of Paris and is often sited as the founder 
of the school of mechanics there.Ixxi His major contributions to this niche were his theory of 
impetus as it relates to projectile motion and his explanation on a body s acceleration in free fall. 
His elucidation on the theory of impetus built off o f  the already existing work presented in 
Ockham’s Treatise on Motion. Ockham’s work had not led to substantial work until Buridan 
because his contemporaries did not agree with him. Buridan however sought to answer the 
question of “whether a projectile after leaving the hand o f  the projector is moved by the air, or by 
what it is moved.”lxxii He believed Ockham’s premise was in fact correct, and thus tried to prove 
it using his own theories.
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Buridan falsifies each theory held by his contemporaries, such as air could propel a 
moving object, through the use of logic. He instead asserted that the mover imparted force on the 
object moved, called persistent impetus, which would cause the object to move with the same 
velocity until acted upon by an external force. A projectile, for instance, was slowed through air 
resistance and the force of gravity downward. If there were no resistance, then the object would 
theoretically project forever.

Buridan then related the quantity of matter to how far a particular object would project. 
He asserted:

I can throw a stone farther than a feather... [because] all forms and natural dispositions is 
in matter and by reason of matter. Hence, the greater quantity of matter a body contains 
the more impetus it can receive and the greater the intensity with which it can receive

Ixxiii

The more matter an object has allows for it to retain a greater amount of impetus, thus resulting 
in a greater distance traveled. His association of quantity of matter, which would later be called 
mass, with that of force explained the deviations in amount of space traversed by a falling object. 
This idea was the foundational basis used by Galileo in his law of inertia, which he purported 
during the Scientific Revolution in the seventeenth century.

Buridan made use of the impetus theory in his own time by applying it to the explanation 
of a falling body’s acceleration. Prior to Buridan, the rate at which a body accelerates during a 
fall was wholly ignored; often the fall was merely examined in regards only to an object’s 
weight. Buridan saw these explanations as weak, which led him to equate the weight to the 
amount of impetus gained and retained in the falling body.lxxiv He declared, “a heavy body not 
only acquires motion unto itself from its principal mover, i.e. its gravity, but that it also acquires 
unto itself a certain impetus with that motion.” lxxv Through this acquisition of impetus, the object 
actually moves faster because the fall is now caused by its own weight and the motion 
downward. Until some sort of resistance acts upon it, the body will continually increase its 
acceleration. Buridan’s genius in the area of dynamics rivals that of the Oxford Calculator’s of 
the time, and shows that even on the continent advancement was in fact occurring.

Oresme was Buridan’s successor at the University of Paris and worked with many of the 
same principles. He actually altered the argument put forward by Buridan regarding the nature of 
impetus. For Oresme, impetus derived from the initial acceleration, which then allows the object 
to increase its speed. He stated in Book II of De caelo, “Because it is accelerated in the 
beginning, it acquires such an impetus and this impetus is a coassister for producing movement. 
Thus with other things equal, the movement is faster. ”lxxvi One sees an evident difference 
between Oresme’s proposition and Buridan’s because Oresme’s explanation relies on both 
velocity and acceleration to create impetus.lxxvii

Oresme also left a lasting mark in other areas of natural philosophy. For example, he tried 
to extend the application of Bradwardine’s Function using a series of proofs to work with ratios 
and proportions. He also extensively contributed to the field of cosmology through his work on 
the possibility of a vacuum. He discussed the vacuum in “The Possibility of a Plurality of 
Worlds,” and came to the conclusion that “if two worlds existed, one outside the other, there 
would have to be a vacuum between them for they would be spherical in shape.”lxxvii Essentially, 
Oresme asserted that their motion was individual in nature and thus did not rely on the other to 
move. Therefore, there had to be some type of space between them in order to prevent them from
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acting on one another. His work with voids eventually led scientists such as Newton and Samuel 
Clarke to work with the plausibility of voids in the seventeenth century.

During the thirteenth and fourteenth centuries, an evident scientific revolution occurred, 
which led to advancements in the fields of mathematics, physics, astronomy, kinematics, and 
dynamics. The origins of this revolution are found in the rise of universities, which caused men 
to congregate and dispute the ideas of the great minds of the past. These institutions became the 
centers of scientific thought during this time. The greatest example was in fact Merton College, 
which proved to be controversial place during the thirteenth century because it emphasized the 
importance of studying the natural sciences in order to explain the world. Men early associated 
with this place, including Grosseteste, Bacon, and Ockham, paved the way for future scientific 
thought by illustrating the importance that observation and experimentation played in one’s 
understanding the world. Collectively they helped established a new mindset whereby one needs 
more than sheer logic to explain natural phenomena. The stage was thus set for the natural 
philosophers in the fourteenth century to build off of these ideas and work toward a new body of 
knowledge based on scientific inquiry.

Modem scientific inquiry inarguably began in the fourteenth century, which has been 
made evident in this paper. Each natural philosopher’s contributions have been examined in 
order to show how substantial their work was for future scientists. Though many of their 
propositions and findings have since been disproved, they are nevertheless important to 
understand. Without the introduction of certain ideas, such as the intension and remission of 
qualities, “The Mean Speed Theorem,” and the theory of inertia, scientists who came later would 
have had no foundation on which to stand. The work of fourteenth century scholars is often 
forgotten when compared with the great minds of Galileo, Kepler, and Copernicus who are 
idolized in history. It should be remembered, however, that their work relied on their scientific 
forebears who started to look at the world through a new lens. Thus, men like Bradwardine, 
Heytesbury, Dumbleton, and Swineshead deserve to be remembered in history as the fathers of 
modem science because without their genius and drive, later scientific thought would have been 
significantly impeded.
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