
La Salle University
La Salle University Digital Commons

Mathematics and Computer Science Capstones Scholarship

Spring 5-18-2018

RCON Administration tool designed for use with
Garry’s Mod and Source Servers
John Gibbons
La Salle University, gibbonsj3@student.lasalle.edu

Follow this and additional works at: https://digitalcommons.lasalle.edu/mathcompcapstones

Part of the Graphics and Human Computer Interfaces Commons, Other Computer Sciences
Commons, and the Programming Languages and Compilers Commons

This Thesis is brought to you for free and open access by the Scholarship at La Salle University Digital Commons. It has been accepted for inclusion in
Mathematics and Computer Science Capstones by an authorized administrator of La Salle University Digital Commons. For more information, please
contact careyc@lasalle.edu.

Recommended Citation
Gibbons, John, "RCON Administration tool designed for use with Garry’s Mod and Source Servers" (2018). Mathematics and
Computer Science Capstones. 39.
https://digitalcommons.lasalle.edu/mathcompcapstones/39

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by La Salle University Digital Commons

https://core.ac.uk/display/232014953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.lasalle.edu?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lasalle.edu/mathcompcapstones?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lasalle.edu/scholarship?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lasalle.edu/mathcompcapstones?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lasalle.edu/mathcompcapstones/39?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:careyc@lasalle.edu

1

RCON Administration tool designed for use with Garry’s Mod and Source Servers

https://play.google.com/store/apps/details?id=gibbons.gcon

https://gitlab.com/gibbonsjohnm/gcon

https://play.google.com/store/apps/details?id=gibbons.gcon
https://gitlab.com/gibbonsjohnm/gcon

2

Table of Contents
1 Executive Summary ... 4

1.1 Summary ... 4

1.2 Problem ... 4

1.3 Motivation ... 4

2 Planning... 6

3 Design .. 7

3.1 Activities/Layouts .. 7

3.1.1 AddServerActivity .. 7

3.1.2 ListServerActivity ... 8

3.1.3 AboutServerActivity .. 9

3.2 SQLite .. 11

4 Development ... 12

4.1 NetworkUtilities .. 12

4.1.1 AuthUpdater ... 12

4.1.2 IPQuery.. 12

4.1.3 JSONReader ... 12

4.1.4 PlayerQuery... 13

4.1.5 RCONAuth ... 13

4.1.6 RCONCommand .. 13

4.1.7 ServerPing ... 14

4.1.8 SteamQuery .. 14

4.2 Log Receiver .. 14

4.3 Log Server .. 15

4.4 External Libraries - Android .. 15

4.4.1 Steam-Condenser .. 15

4.4.2 Glide .. 15

4.5 External Libraries – NodeJS/NPM ... 16

4.5.1 Srcds Log Receiver ... 16

4.5.2 Log Server .. 16

5 Technical Difficulties/Lessons Learned ... 17

5.1 Logging .. 17

5.2 Asynchronous Tasks .. 17

3

6 Lessons Learned .. 19

6.1 Testing ... 19

6.2 CI/CD ... 19

6.3 Saying “No” ... 19

7 Moving Forward .. 20

7.1 Firebase ... 20

7.2 Google Play Console .. 20

7.3 SonarQube .. 21

8 Future Development ... 22

4

1 Executive Summary

1.1 Summary
The proposed project is an Android application designed to interact with the Source RCON protocol.

Defined below:

The Source RCON Protocol is a TCP/IP-based communication protocol used by Source Dedicated Server,

which allows console commands to be issued to the server via a "remote console", or RCON. The most

common use of RCON is to allow server owners to control their game servers without direct access to the

machine the server is running on. In order for commands to be accepted, the connection must first be

authenticated using the server's RCON password, which can be set using the console

variablercon_password.

The application will be designed entirely in Android/Java, utilizing libraries and APIs for querying and

interacting with Source Dedicated Servers

(https://developer.valvesoftware.com/wiki/Source_Dedicated_Server) and Steam user profiles

(https://developer.valvesoftware.com/wiki/Steam_Web_API).

The application will report information about servers to the user, including host name, game, game

mode, map, pings, connected players, logs, commands, among many other things.

The application will use SQLite for local databases, containing information related to servers, including

hostname/ip, game port, and RCON password. A separate nodejs application for sending and storing

server logs will be required for users who wish to view their server’s logs in the Android application.

The project will be stored in GitHub or GitLab and will utilize the CI/CD processes offered for automated

build, testing, and delivery to the Google Play Store. This can also be accomplished in Jenkins, using

Docker build slaves. Depending on research and performance, one of those avenues will ultimately be

selected.

1.2 Problem
Currently, the only way to interact with game servers remotely is via RCON browser tools or outdated

Java applications. Several Android applications exist, but do not possess all of the features discussed

above. They are especially lacking detailed player information, as well as real time logging data. A game

server is like any other server; it requires monitoring, alerting, and upkeep. For owners and

administrators who wish to monitor their server(s) on the go, a mobile application is necessary.

1.3 Motivation

The main focus and development point of gcon was Garry’s Mod (https://gmod.facepunch.com/). I’ve

been playing this game for over 4 years now and have logged nearly 1000 hours. Most of that time was

spent creating, fiddling with, and hosting servers for both friends and strangers. It became an instant

passion, allowing me to game while also channeling my creativity via Lua programming

(https://www.lua.org/about.html) and Linux administration. The only thing lacking was a remote, mobile

https://developer.valvesoftware.com/wiki/Source_Dedicated_Server)
https://developer.valvesoftware.com/wiki/Steam_Web_API)
https://gmod.facepunch.com/
https://www.lua.org/about.html

5

administration tool. To check my servers without being physically on them, I had to either go to clunky

URLs not built for mobile devices or write custom python scripts without any GUI. The lack of a strong

mobile market was another large factor.

6

2 Planning
Despite being the only developer on the project, I felt it was important to map out tasks to realistically

determine timelines for completion. I decided to adopt an Agile-like methodology to accomplish my

goal. Using a Trello board (https://trello.com/b/xIMb6n07/gcon), I created tasks to complete as well as

sub headers to appropriately organize the tasks. The sub headers included: “To do”, “In Progress”, “In

Testing”, “Completed.” I tried to stick to those tasks throughout the project, adding items as I

progressed.

My plan is to eventually move this list to GitLab’s built in Boards feature. I’ve already begun using it for

issue tracking and would love to setup a feature that created an issue in GitLab for every crash event in

the app.

https://trello.com/b/xIMb6n07/gcon

7

3 Design

3.1 Activities/Layouts
The first step in any mobile application is usually the design of the “screens.” In Android’s case, these

are created using layout xml files (https://developer.android.com/guide/topics/ui/declaring-layout) that

are later linked in code to Activity classes

https://developer.android.com/reference/android/app/Activity). Because I opted for a fragment based

structure, gcon only required the development of 3 activity classes. An overview of each class is

provided below.

3.1.1 AddServerActivity

Upon fresh installation of the application, the first screen the user sees is the AddServerActivity. Until

the user successfully adds a Source server, they cannot progress past this screen. 3 of the 4 fields listed

in the above screenshot are required: Nickname, Hostname/IP, Server Port. RCON Password is an

optional field; however, without one, the user will be unable to utilize all features of the application. The

user is notified when the password field is left blank.

Additionally, if the server the user entered doesn’t exist, or is not a Source server, they will receive a

Toast notification informing them of common things to verify.

https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/reference/android/app/Activity

8

Upon inputting a Source server, the application will either create a local SQLite database called gcon.db

or add a new entry to the existing database. Once that completes, the user is directed to the

ListServerActivity.

3.1.2 ListServerActivity

The ListServerActivity is what could be considered the “main” activity of the application. If the user has

added a valid Source server to the database, they will be directed to this screen when opening the app.

The screen contains a ListView, which scrapes data from the local SQLite database and puts it in

readable form. It also provides the status of the server (ONLINE/OFFLINE).

The user can edit or delete an existing server or add a new one, using the blue floating action button at

the bottom of the page.

Finally, the activity contains a navigation drawer for a link to my donation page, the community’s discord

(https://discordapp.com/) server, and a toggle option to download player images.

Each server in the list is clickable. If the server is online at the time of the onClick event, the user will be

directed to the AboutServerActivity.

https://discordapp.com/

9

3.1.3 AboutServerActivity

This activity serves a handler for a ViewPager for 4 Fragment classes. The reason for this design was to

achieve a tab based layout.

3.1.3.1 SummaryFragment

The Summary Fragment contains all the essential information about a server: Game, Game mode,

current Map, and connected player information.

The current map image is pulled from https://www.gametracker.com/ and uses the game mode and

map name to attempt to grab the appropriate image. The user can change the name of the game mode

to adhere to game tracker’s default, if images aren’t loading properly.

Each player is contained in a ListView that holds the player profile image (downloaded from

https://store.steampowered.com/), how long the player has been connected, and their current score. If

the server is successfully authenticated, more information about a player will be available after the

onClick event, including IP address, ping, and the ability to kick or ban the player.

https://www.gametracker.com/
https://store.steampowered.com/

10

3.1.3.2 MapsFragment

The MapsFragment uses the RCONCommand class to determine all the current maps on the server. It

runs “maps *” to get a full list of maps, and then parses that information into the ListView. Each map is

clickable, and the user can change the current map on the server to any available in the list.

3.1.3.3 LogsFragment

The LogsFragment directly integrates with gcon’s log receiver. If the server is authenticated, this class

will attempt to locate the server’s log file on the log receiver, using the server’s IP address and Port. If

the file is located, the last 20 lines of the log are parsed and displayed in a TextView. The user can

refresh the log at any time. For cases where the log can’t be located, the user will be notified of

common ways to fix the problem.

11

3.1.3.4 AdminFragment

The AdminFragment provides a way to run common commands on the server, such as version, status,

and users. It also allows users to attempt to restart their servers, in case of unexpected crashes or

maintenance. Its main feature, however, is the ability to run any custom command on the server. Each

command, custom or built-in, will print its output to a TextView.

3.2 SQLite
https://developer.android.com/training/data-storage/sqlite

The SQLite structure for this application is very simplistic, yet critical. It is stored in a file called gcon.db

and has the following attributes:

public static final String TABLE_NAME = "rcon";

public static final String COLUMN_NAME_HOSTNAME = "hostname";

public static final String COLUMN_NAME_NICKNAME = "nickname";

public static final String COLUMN_NAME_PORT = "port";

public static final String COLUMN_NAME_FULL= "full";

public static final String COLUMN_NAME_PASSWORD = "pass";

public static final String COLUMN_NAME_AUTHENTICATED = "auth";

public static final String COLUMN_NAME_GAMENAME = "gamename";

private static final String SQL_CREATE_ENTRIES =

 "CREATE TABLE " + FeedEntry.TABLE_NAME + " (" +

 FeedEntry._ID + " INTEGER PRIMARY KEY," +

 FeedEntry.COLUMN_NAME_HOSTNAME + " TEXT," +

 FeedEntry.COLUMN_NAME_NICKNAME + " TEXT," +

 FeedEntry.COLUMN_NAME_PORT + " INT," +

 FeedEntry.COLUMN_NAME_FULL + " TEXT," +

 FeedEntry.COLUMN_NAME_PASSWORD + " TEXT," +

 FeedEntry.COLUMN_NAME_AUTHENTICATED + " TEXT," +

 FeedEntry.COLUMN_NAME_GAMENAME + " TEXT)";

This database is accessed constantly throughout the lifecycle of the application.

https://developer.android.com/training/data-storage/sqlite

12

4 Development

4.1 NetworkUtilities
Each of the classes in the NetworkUtilities package interacts with the Source Server, using the Steam-

Condenser, or with gcon’s log receiver. Every action is performed via a nested ASyncTask

(https://developer.android.com/reference/android/os/AsyncTask) to run network code in a background

thread. The classes are used throughout the lifecycle of the application.

4.1.1 AuthUpdater

Runs when a user edits the server to use a new password or when a required authenticated activity

happens and the server is no longer authenticated. Updates the authentication field in the SQLite db

with the appropriate authentication status.

values.put(FeedReaderContract.FeedEntry.COLUMN_NAME_AUTHENTICATED, "false");
 db.update(FeedReaderContract.FeedEntry.TABLE_NAME, values, "_id=" +
sqlHandler.getRows("_id").get(position), null);

4.1.2 IPQuery

Runs on LogsFragment to return a list of IPAddresses from the SourceServer object. The IPv4 address is

used when retrieving logs from the log receiver.

SourceServer test = new SourceServer(server);
 ipAddresses = test.getIpAddresses();
 return ipAddresses;

4.1.3 JSONReader

Runs on LogsFragment. Authenticates with the log receiver, parses the log, and returns the last 20 lines

to be printed in the logs TextView.

try {
 InputStream is = new URL(params[0]).openStream();
 try {
 BufferedReader rd = new BufferedReader(new InputStreamReader(is, Charset.forName("UTF-8")));
 String jsonText = readAll(rd);
 JSONObject json = new JSONObject(jsonText);
 return json;
 } finally {
 is.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (JSONException e) {
 e.printStackTrace();
 }

https://developer.android.com/reference/android/os/AsyncTask

13

4.1.4 PlayerQuery

Uses a SourceServer’s getPlayers() method to return a hashmap of player information including name,

time connected, and score. If the server is authenticated, more information about the players is

retrieved, such as IP Address, SteamId, ping, etc.

SourceServer Server = new SourceServer(server);
if(auth && dlPlayerImages){
 return server.getPlayers(pass);
 }
 else{
 return server.getPlayers();
 }

4.1.5 RCONAuth

Attempts to authenticate with the server and returns a Boolean indicating whether or not the attempt

was successful. Occurs during the initial creation of the server if an RCON password is specified, as well

as when a server is edited under the same conditions.

public class RCONAuth {
 public boolean getAuth(String server, String pass) {
 try {
 SourceServer test = new SourceServer(server);
 test.rconAuth(pass);
 return test.isRconAuthenticated();
 } catch (SteamCondenserException e) {
 e.printStackTrace();
 } catch (TimeoutException e) {
 e.printStackTrace();
 }
 return false;
 }

4.1.6 RCONCommand

Used primarily in MapFragment (to return a list of maps and execute a map/level change) and

AdminFragment (to run built-in and custom commands).

String response = null;
 try {
 SourceServer server = new SourceServer(serverName);
 server.rconAuth(pass);
 response = server.rconExec(command);
 } catch (TimeoutException e) {
 e.printStackTrace();

14

4.1.7 ServerPing

Returns the host’s current ping to the server. Primarily used to determine if a server is offline or not.

while (true) {
 try {
 SourceServer test = new SourceServer(server);
 ping = test.getPing();
 break;
 } catch (SteamCondenserException e) {
 e.printStackTrace();
 if (++count == maxTries) break;
 } catch (TimeoutException e) {
 e.printStackTrace();
 if (++count == maxTries) break;
 }
 }
 return ping;

4.1.8 SteamQuery

Runs on SummaryFragment. Returns a Hashmap of server information including name, game mode,

current map, connected players, maximum players, among many other things.

while (true) {
 try {
 SourceServer test = new SourceServer(server);
 serverInfo = test.getServerInfo();
 test.disconnect();
 break;
 } catch (SteamCondenserException e) {
 if (++count == maxTries) break;
 } catch (TimeoutException e) {
 if (++count == maxTries) break;
 }
 }
 return serverInfo;

4.2 Log Receiver

Gcon’s log receiver takes advantage of Srcds Log Receiver to receive any logs from Source Servers

configured to send servers to the receiver’s URL (logreceiver.gconapp.com:9871). Each server gets its

own daily log file.

15

4.3 Log Server
The log server lives on a Linode VPS (Virtual Private Server) and can be reached via

https://logs.gconapp.com. It can only be accessed via password. In order to not use too much storage,

the log server purges files older than 24 hours.

4.4 External Libraries - Android

4.4.1 Steam-Condenser

https://github.com/koraktor/steam-condenser/

The Steam Condenser is a multi-language library for querying the Steam Community, Source and

GoldSrc game servers as well as the Steam master servers. Currently it is implemented in Java, PHP and

Ruby.

Example:

SourceServer test = new SourceServer(server);

serverInfo = test.getServerInfo();

4.4.2 Glide

https://github.com/bumptech/glide

https://logs.gconapp.com/
https://github.com/koraktor/steam-condenser/
https://github.com/bumptech/glide

16

Glide is a fast and efficient open source media management and image loading framework for Android

that wraps media decoding, memory and disk caching, and resource pooling into a simple and easy to

use interface.

Example:

Glide.with(getContext())

 .setDefaultRequestOptions(requestOptions)

 .load("https://image.gametracker.com/images/maps/160x120/" +

sqlHandler.getRows("gamename").get(position) + "/" +

serverInfo.get("mapName").toString() + ".jpg").into(mapImg);

4.5 External Libraries – NodeJS/NPM

4.5.1 Srcds Log Receiver

https://www.npmjs.com/package/srcds-log-receiver

A library to receive logs directly from a Source dedicated server (srcds) via its UDP log transport

(logaddress_add). As these logs are sent live during the game, this allows you to build interactive real time

systems that react to in-game events.

4.5.2 Log Server

https://www.npmjs.com/package/log-server

A simple log server that receive text and dumps it into a file. Every log file will have a daily representation,

meaning that you can easily delete old logs.

https://www.npmjs.com/package/srcds-log-receiver
https://www.npmjs.com/package/log-server

17

5 Technical Difficulties/Lessons Learned

5.1 Logging
A monitoring app, especially one designed for game servers, would be nearly useless without any sort of

logging capability. Unfortunately, this turned out to be one of the more difficult things to implement.

The RCON protocol does not provide this type of functionality and neither did Steam-Condenser. A few

other libraries did; however, none of the solutions were designed for mobile. My original intention was

to have each device be its own receiver, but that required the network the device was on to have a

specific port open. This, for obvious reasons, is nearly impossible to guarantee.

Ultimately, I decided on an external Srcds Log Receiver. All logs live on a web server only accessible via

password. End users will not be able to view their logs on the portal. I imagine many of my potential

users will not be fond of having their server’s logs on a web server. So, I left the choice up to them. Gcon

will not attempt to forward logs to the log receiver unless the user performs specific actions on their

game server. This should alleviate some concerns.

5.2 Asynchronous Tasks

On the Android platform, all network activity has to occur in a background thread. This is accomplished

by using an Asynchronous task. At first, I was only using the AsyncTasks to perform a network activity

using doInBackground() and return the value. This is not the intended use case. You are supposed to

perform tasks prior to the desired network call and then return the value to the UI using

OnPostExecute(). Once I figured this out, app performance improved significantly. An example of a

proper AsyncTask below:

public class ChangeMap extends AsyncTask<String, Void, String> {
 int mapPosition;

 public ChangeMap(int mapPosition) {
 this.mapPosition = mapPosition;
 }

 @Override
 protected String doInBackground(String... params) {
 RconCommand execCommand = new RconCommand(getActivity(), position);
 String response = execCommand.getResponse(serverNames.get(position), serverPass.get(position),
"changelevel " + maps.get(mapPosition));
 return response;
 }

 @Override
 protected void onPostExecute(String response) {
 if (response == null) {
 Toast.makeText(getActivity(), R.string.unable,
 Toast.LENGTH_SHORT).show();
 } else {

18

 Toast.makeText(getActivity(), getString(R.string.map_change) + maps.get(mapPosition) + ".",
 Toast.LENGTH_SHORT).show();
 }
 }

19

6 Lessons Learned

6.1 Testing
Android has a wide array of options for testing. Unfortunately, I decided to put that off to the end and

never got it fully featured. I had to rely on manual/alpha testing, firebase, and the internal testing

google play provides when releasing an app. Test-driven development is something I need to start

embracing to build the best application I possibly can. Down the line, I hope to make testing integrated

into the build process and stop builds/deployments when a test case fails.

6.2 CI/CD
“Continuous integration, delivery, and deployment, known collectively as CI/CD, is an integral part of

modern development intended to reduce errors during integration and deployment while increasing

project velocity. CI/CD is a philosophy and set of practices often augmented by robust tooling that

emphasize automated testing at each stage of the software pipeline. By incorporating these ideas into

your practice, you can reduce the time required to integrate changes for a release and thoroughly test

each change before moving it into production.”

The ideas of Continuous integration, delivery, and deployment go hand-in-hand with a solid testing

framework. While the initial release of an application via google play console requires a decent amount

of manual work, future iterations do not. I believe I can easily leverage GitLab’s CI/CD pipelines

(https://docs.gitlab.com/ee/ci/) to automate testing and releasing.

6.3 Saying “No”

When I first came up with the idea for gcon, it was more featured than the version I released to the play

store. While I still have hopes and development plans for those features, I decided it was best to focus

on the essentials and produce an MVP, or minimum viable product

(https://en.wikipedia.org/wiki/Minimum_viable_product). This is a development technique that

companies have begun to adopt. It involves releasing software that is developed enough to satisfy early

adopters. Features are then added based on feedback received. Sometimes, my idea for a feature isn’t

what’s right, so I decided to let my user base help me figure out what works and what doesn’t.

https://docs.gitlab.com/ee/ci/
https://en.wikipedia.org/wiki/Minimum_viable_product

20

7 Moving Forward

7.1 Firebase
“Firebase helps you build better mobile apps and grow your business.”

I began using Firebase towards the end of my development cycle. I needed a way to monitor my app
performance, especially crash events, while testing it on the go. Firebase provided a seamless way to do
this. It integrates directly with the build process and creates a portal for the application in the Firebase
console:

The best feature of Firebase, in my opinion, is that it emails you after it receives a crash event. This will
allow me to monitor crashes and continuously improve.

7.2 Google Play Console

“Publish your apps and games with the Google Play Console and grow your business on Google Play.

Benefit from features that help you improve your app’s quality, engage your audience, earn revenue,

and more.”

The google play console is a “one-stop shop” for all android developers. You can test your app, publish,

manage releases, view crash reports, downloads, user statistics, and many more essential items.

The console has already allowed me to see what audience I’m reaching and how effective each release

has been.

21

7.3 SonarQube

“SonarQube provides the capability to not only show health of an application but also to highlight issues

newly introduced. With a Quality Gate in place, you can fix the leak and therefore improve code quality

systematically.”

SonarQube has helped me identify critical bugs, security vulnerabilities, duplications of code, and areas

for improvement in my application. I’ve already started a git branch to address the issues it finds. I plan

on keeping my SonarQube dashboard clean throughout the lifecycle of gcon.

22

8 Future Development
To me, gcon is something that will always be a work in progress. In other words, I think there will always

be room for improvement. I have many ideas to expand the app, as well as improve some of its current

features. I hope to take the crash reports, feedback from google play reviews, and discussions on reddit

to continue to make gcon the best at what it does.

	La Salle University
	La Salle University Digital Commons
	Spring 5-18-2018

	RCON Administration tool designed for use with Garry’s Mod and Source Servers
	John Gibbons
	Recommended Citation

	tmp.1531695036.pdf.GResk

