
La Salle University
La Salle University Digital Commons

Mathematics and Computer Science Capstones Mathematics and Computer Science, Department
of

Fall 1-15-2016

Building and Safety Department Android Mobile
Application
Nary Simms
La Salle University, tepn1@student.lasalle.edu

Follow this and additional works at: http://digitalcommons.lasalle.edu/mathcompcapstones

Part of the Databases and Information Systems Commons, Graphics and Human Computer
Interfaces Commons, and the Programming Languages and Compilers Commons

This Thesis is brought to you for free and open access by the Mathematics and Computer Science, Department of at La Salle University Digital
Commons. It has been accepted for inclusion in Mathematics and Computer Science Capstones by an authorized administrator of La Salle University
Digital Commons. For more information, please contact careyc@lasalle.edu.

Recommended Citation
Simms, Nary, "Building and Safety Department Android Mobile Application" (2016). Mathematics and Computer Science Capstones. 30.
http://digitalcommons.lasalle.edu/mathcompcapstones/30

http://digitalcommons.lasalle.edu?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.lasalle.edu/mathcompcapstones?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.lasalle.edu/mathcomp?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.lasalle.edu/mathcomp?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.lasalle.edu/mathcompcapstones?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.lasalle.edu/mathcompcapstones/30?utm_source=digitalcommons.lasalle.edu%2Fmathcompcapstones%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:careyc@lasalle.edu

Building and Safety Department Android Mobile

Application

LA SALLE UNIVERSITY

Nary Simms

1 | P a g e

Table of Contents

Introduction .. 2

Mobile App Scope and Overview .. 3

The 3 Main Features ... 4

Database Design .. 5

End User Documentation ... 7

Main Screen Activity ... 7

Permit Search Activity .. 8

Permit Search Use Case .. 10

License Search Activity ... 11

License Search Use Case.. 13

Address Search Activity .. 14

Address Search Use Case .. 17

Conclusion ... 18

Appendix A: Database Design ... 23

Appendix B: Storyboard and Wireframe .. 35

Appendix C: Mobile App Code .. 44

Appendix D: Development Environment ... 87

References ... 93

2 | P a g e

Introduction

Research has found that Americans spend 4.5 hours watching television, 1.5 hours

listening to the radio, about half an hour reading print and spend a whooping five plus hours per

day in digital media (online, mobile, other). Out of these five hours, two hours and twenty

minutes are spent on a mobile device (phone or tablet), which is a massive increase of about 575

percent from the twenty-four minutes that was reported in 2010. Flurry, an analytic app

company, released data about their tracking of more than 300,000 apps in 2013, and they found

the average time spent per day on mobile devices is two hours and thirty-eight minutes. They

further found that 80 percent of the time is spent on apps and only 20 percent on the actual

browser itself. Based off these findings, it can be concluded that Americans are spending more

time online than on any other media, that digital time is on mobile devices, and that mobile time

is spent mostly on apps (Samson, 2015).

Businesses are catching on to the fact that people are spending more time on their mobile

devices doing activities that they once did with computers such as shopping, maintaining their

calendars, and playing games. They are creating apps to accommodate these activities on mobile

devices. In order to keep current customers and attract new ones businesses realize that

portability is the future in how a business interacts with customers. Companies realize that to

have an effective mobile presence requires more than just creating a website that is mobile

friendly. So, small to medium-sized companies are creating their own dedicated apps to try an

even the playing field against the big boys like Walmart and Starbucks.

The project proposal is to develop of a simple mobile application for a medium to small

company that does not have a mobile application. It typically takes a minimum of four people to

design and build an application, a product manager (owner of the application), the UI/UX

3 | P a g e

designer (the artist responsible for the look and feel), the App Developer (the person who builds

the front end: what appears on the app) and the Backend Developer (the person who builds the

back end: what makes the app work). With my entry-level knowledge of java, python, HTML,

PHP and MySQL and various book reference and tutorials online (websites and YouTube) and

guidance from an advisor, I will take on all four roles and attempt to create a simple Android app

within a 16 – 18 week time frame.

Mobile App Scope and Overview

The mobile app will be used by the customers of the Building and Safety Department in

Lincoln Nebraska. The app will allow customers to check the approval status of a requested

permit or view previously approved permits and any relevant information pertaining thereto.

Users will be able to search three different ways. They can search by the actual permit number,

license number of the contractor associated with a permit, or by entering an address.

The department averages about 400 permit application submissions per week. These

submissions are for Electrical, Mechanical, Building and Plumbing permits only. There are many

other types of permits (Planning, Public Works, Flood Plan, Public Works and Health

Departments); these permit types will not be included in this mobile search app project.

Eventually, users will be able to apply for building permits, but that will be made available

through the web platform first because of all the reviews and fees involved in that process.

The scope of this project will focus on three main search type features that already exist

on the web platform known as the Accela Citizen Access:

(https://my.lincoln.ne.gov/CitizenAccess/) , this web application allows contractors to apply for

https://my.lincoln.ne.gov/CitizenAccess/

4 | P a g e

permits, to request inspections and to access contractor accounts. It also allows homeowners to

look-up permits by property, to request inspections and to search applications.

The 3 Main Search Features

Search by Permit Number

This feature allows the user to search for various permits that they or a contractor might

have. The user must know the permit number in order for him/her to use this feature. The types

of permits that can be searched for are Building, Mechanical, Plumbing and Electrical.

Search by Licensed Professional (Contractors):

This feature allows a licensed professional to search for permits that have their licensed

number associated with it. The search will display the permit number, the address of the permit,

contractors associated with permit and its status.

Search by Address:

This feature will allow users to search by address. The user will only need the street

number, street direction, street name and street type in order to find possible permits taken out on

that property. The search will display the permit number, the address of the permit, contractors

associated with permit and its status.

5 | P a g e

Database Design

Summary

 The mobile app obtains its data from the database. I will be using a local server database:

PHP/phpMyAdmin (MySQL Database) to house the data that will be used in the permit search

application.

ER Diagram

The database consists of 5 tables: permit, permit_details, permit_fees, owners_info and

contractors_info.

 The permit table houses the following fields: permit number [permit_number], address

[street_number, direction, street_name, street_type, city, state, zip_code] and the licensed

number [licensed_number]. This is the main table in the database where most of the

6 | P a g e

information will be drawn from. The permit_number is a primary key and

licensed_number is a foreign key.

 The Permit_Details houses the following fields: permit number [permit_number],

additional notes [additional notes] and project name [project_name]. This table contains

information such as the project name (if it exists) and any other additional notes

pertaining to the permit. The permit_number is a primary key and it connects to the

permit table using the permit_number.

 The Permit_Fees houses the following fields: permit number [permit_number], fees due

[fee_due], additional fees added [fee_added], due fee notes [fee_due_notes] and

additional added fees notes [fee_added_notes]. This table contains any fees and any

related details that are associated with the permit. The permit_number is a primary key

and it connects to the permit table using the permit_number

 The Owners_info table houses the following fields: permit number [permit_number],

name of owner [first_name, last_name, and middle_inital], address of owner [address]

and owner’s phone number [phone_number]. The table contains information about owner

of the permit or property. The permit_number is a primary key and it connects to the

permit table using the permit_number

 Contractors_info houses the following fields: licensed number [licensed_number],

contractor’s name [first_name, last_name, and middle_inital], address [address] and

phone number [phone_number]. The table contains information about the licensed

contractors associated with the permit. The licensed_number is a primary key and it

connects to the permit table using the licensed_number

For further details about database design please refer to Appendix A: Database Design

7 | P a g e

End User Documentation

Main Screen

Below is displayed the main screen for the application that users will see once they enter

the app. A user has 3 option buttons to choose from and each option button will take them to a

corresponding search screen.

3 Button Options:

 Search by permit: requires a permit number for search to work

 Search by licensed professional: requires a license number for search to work

 Search by address: requires the permit address (street number, street name, street

type)

8 | P a g e

Search by Permit Screen:

The Search by Permit Activity allows the user to enter the permit number and get the

corresponding information pertaining to that permit number.

Figure 1: Search by Permit Activity

Screen

Figure 1. 2: If the user does not enter a permit number and simply clicks on the search button,

then an alert will appear requesting the user to enter a permit number.

9 | P a g e

Figure 1. 3: If the user enters a permit number that exist then the results will appear

under the search button.

Figure 1. 4: If the user enters an incorrect permit number a message [permit number

does not exist, try again] will appear below the search button.

10 | P a g e

Permit Search Use Case

Use Case Name: Permit Search ID: 1 Importance Level: High

Primary Actor: User Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to search for the permit they applied for to determine status and information pertaining to it

Brief Description: this use case describes the process for searching permit numbers that a particular user

is looking for

Trigger: user performs this task when they want to search for a permit

Type: internal

Relationships:

Association:

Include:

Extend:

Generalization:

Normal Flow of Events:

1. The user selects the Search by Permit Button

2. The user enters the 9-10 digit permit number and clicks on search button

3. The system returns the results of the search in the same screen

SubFlows:

Alternate/Exceptional Flows:

11 | P a g e

Search by License Screen:

The Search by License Activity allows the user to enter the license number and retrieve

the corresponding information pertaining to that permit number they have entered.

Figure 2: Search by License Activity

Screen

Figure 2.1: If the user does not enter a license number and simply clicks on the search button,

then an alert will appear requesting the user to enter a license number.

12 | P a g e

Figure 2. 3: If the user enters a license number that exists then the results will appear

under the search button.

Figure 2. 4: If the user enters an incorrect license number a message [license number does

not exist, try again] will appear below the search.

13 | P a g e

License Search Use Case

Use Case Name: License Search ID: 2 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to search for the permits that associated with a particular license contractor

Brief Description: this use case describes the process for searching license numbers that a particular user

is looking for

Trigger: user performs this task when they want to search for a permit

Type: internal

Relationships:

Association:

Include:

Extend:

Generalization:

Normal Flow of Events:

1. The user selects the Search by License Button

2. The user enters the 3-6 digit license number and clicks on search button

3. The system returns the results of the search in the same screen

SubFlows:

Alternate/Exceptional Flows:

14 | P a g e

Search by License Screen:

The Search by Address Activity allows the user to enter the street number, street

direction, street name and street type. The street direction is optional since not all address has a

street direction associated with it.

Figure 3: Search by Address Activity

Screen

Figure 3.1: If the user does not enter any information in any of the fields and simply clicks on

the search button, then an alert will appear requesting the user to enter a street number, street

name and street type.

15 | P a g e

Figure 3.2: If the user does not enter the required fields for the address search a corresponding

message will appear informing the user to enter the missing field.

16 | P a g e

Figure 3.3: If the user enters an address that has permits associated with it then the

results will appear under the search button.

Figure 3. 4: If the user enters an address that does not have any permits associate with it

[The Address you have enter does not have any permit(s) attached to it. Please try a

different address] will appear below the search button.

17 | P a g e

Address Search Use Case

Use Case Name: Address Search ID: 3 Importance Level: High

Primary Actor: User

Use Case Type: Detail, Essential

Stakeholders and Interests:

User – wants to search for the permits that are associated with a particular address

Brief Description: this use case describes the process for searching permit numbers that a particular user

is looking for

Trigger: user performs this task when they want to search for a permit

Type: internal

Relationships:

Association:

Include:

Extend:

Generalization:

Normal Flow of Events:

1. The user selects the Search by Permit Button

2. The user enters the street number, street name and street type/suffix and clicks on the search

button

3. The system returns the results of the search on the same screen below the search button

SubFlows:

Alternate/Exceptional Flows:

For more information about how the design came to be please refer to Appendix B: Mobile App

Story Board and to look at the Coding please refer to Appendix C: Mobile App Code.

18 | P a g e

Conclusion

According to Statista, (“Number of apps”, 2015) as of July 2015, there are roughly about four

million apps out in the market, and those numbers are increasing daily. 1.6 million Apps are Android

based (Google Play), and 1.5 million are iOS based (Apple App), while rest reside with Windows phone

store or Blackberry. Apps are popping up left and right but many of them turn out to be “copycat” apps

and get lost in the crowd. The question arise: who are creating all these game apps, social network apps,

utility and productive apps that are popping up monthly? How much time and effort is going on in the

background into building them? Kinvey conducted a survey of 100 native mobile developers, and they

found that on average the time to design, build and test an app is about eighteen weeks, which is a little

over more four months. Some claim that this is too much time, while others say that is not enough

(Rowinski, 2013). Nine Hertz, an offshore development company, agrees with this number of eighteen

weeks to develop and publish a mobile app, specifying further that it will take roughly ten weeks for

back-end coding and eight weeks to construct the front end. They also said that it takes about three

hundred hours to create a simple app and that a complex, multifaceted app would typically take more than

900 or more hours to produce (“Insight of Mobile App Development Process,2015”).

19 | P a g e

Source: Nine Hertz Source: Idea to Appster

As stated in the introduction “the project is to create an android mobile application within 16-18 weeks”

which according to a survey of 100 mobile developers this can be accomplished. According to Idea to

Appster “How long does it take to build an App”, it should take 2 weeks to design and create the mockup.

Fourteen weeks for actual development and testing for a mobile app with a backend server. For this

project I estimated about 3 weeks for design, mockup, researching, 11 weeks for development and 2

weeks for documentation.

During the first 3 weeks I was able to accomplish many things: gathered requirements from Rita

Cox, the Building and Safety Department stakeholder, created a story board and wireframe on how the

app should be connected, figured out what tools and programs needed to installed to create the application

20 | P a g e

and gathered instructional resources (YouTube videos, books and sample coding) to help guide me during

the development phase.

There were 2 major issues that I had to face during these first two weeks. One issue was

communication with the stakeholder. Our communication was mainly through email so it would take

about 2-3 days for responses to questions that occured during the project. The second issue was

downloading and installing the programs for my development environment. It was a struggle due to

multiple failed downloading and changing development environments. The additional program that

helped support the development platform required reconfiguration to function and to do this, additional

research was done in order to get the right configuration.

I had initially allotted a week to learn to navigate the development environment and to do some

practice coding. However, during this learning week, my two year old decided to use my laptop as a ramp

for his toy cars, and drop the computer down a flight of stairs. Needless to say, I had to reinstall the

development platform on an old laptop. This misfortune pushed my learning milestone back a couple of

days. The allotted time for of 3 weeks turned into 4 weeks. I still wanted to spend the next 11 weeks for

the development so documentation only now gets 1 week instead of the previous 2 weeks.

The next 11 weeks were development and testing of the app, to work on the front end, set up the

backend, the testing of the backend as well as learning along the way. Five weeks for the front end

development, five weeks on the backend development and one week to do additional final testing.

The next five weeks consisted of learning and programming the front end of the Android project.

During that time I realized that the front end development gradually blended in with the back end

development, so they took place at the same time. Many days were spent learning code and testing and

breaking down code, and re-doing the mobile application multiple times. There were many problems

along the way. Files become unusable and hours were spent trying to figure out the missing connection.

If the error could not be fixed, it meant that the project had to be redone. Files became lost or corrupted

because of unforeseen circumstances and could not be recovered. Besides the re-doing of files, there were

21 | P a g e

also the issues of constant Android Studio updates every 2-3 days which would delay the work on the

mobile app.

The final week was spent on trying to clean up the coding. Preparing documentation and bringing

everything together. Through all the frustration and hours of sleepless nights the project managed to come

together. From the standpoint of an IT project, this project failed because the requirements were not fully

met even though the prototype successfully runs the 3 main features, it is not ready for release. From an

educational standpoint the project was a success because of the valuable lessons learned from this project.

While learning about and creating an Android mobile app I realized I was using various concepts

that I had learned from several of my graduate classes that I had taken at La Salle University. These

concepts included client interface design, database design, object-oriented design, project management

and many others. I learned a valuable lesson on the amount of planning involved in project because

without a concise and clear plan of action before the actual development the initial timeline of what

needed to be done changes drastically. I also realized value of working in a team with members who

specialize in different areas of creating an IT project. It was a struggle trying to do every one of these

tasks on my own and trying to balance work, life and this project. I realize how a project in the “real

world” can easily fail due to unforeseen reasons, and I now realize the complexity of the project that was

not projected at the start. It is critical to plan everything effectively and having the right resources in order

to have a successful finish. During the project, scope creep became very real to me and it actually sneaked

up on me.

The Android application development is very intricate and has many components that blend

together so have the proper experience and expertise in these areas comes in handy when creating an

Android application. The project requires a level of expertise in different areas so one person cannot do it

alone, it requires team input.

Developing an app requires patience and time and a lot of tries because of how many ways to

approach the development. Frustration can happen easily with the lack of resources and expertise. It is

possible to create a simple Android application in 18 weeks or 300 hours. Yes, it is possible if you have

22 | P a g e

the knowledge, experience and a team to divide the work because no one person can handle all the things

that are required to build a mobile app that can be release to the public.

23 | P a g e

Appendix A:
Database Design

24 | P a g e

Database Design

 The Building and Safety Department uses software with a backend database. While the

Building and Safety Department uses the software interface to insert, update and delete permit

data, Accela Citizens Access, a separate entity from the Building and Safety Department uses the

backend database to retrieve relevant information. Both the Building and Safety Department and

Accela have created their own database but the information for their database is retrieve from the

larger backend database. It only seems natural and beneficial to try and mimic one of these pre-

existing SQL databases (direct access was not supplied for proprietary reasons).

 Accela Citizens Access has created an online permit related search application where

users register to gain access to its various search features. I obtained a copy, really more of a

snapshot of the database. After a week of trying to navigate through the 45 pages of the Accela

Citizen ERD Diagram trying to determine the relationship of each table, it was determined that

design will be inefficient for the mobile application database. The database had too many

relationships and an excessive number of joins were required for even relatively simply queries.

Furthermore trying to optimize by stripping down the non-essential information would take too

much time. Hence this database design will not be used to base the android application database

on.

 The Building and Safety Department has a more simplified database with relevant

information pull form the larger database. The snapshot of the database was on 1 page and

consisted of about 13 tables. Figuring out the relationships between the two tables was much

simpler as well. So, after navigating through both the databases, it was determined that the

design for the backend of the Android App will be based off the second simplified database

design. However, it will be even more stripped down with non-essential information taken out

25 | P a g e

and simplified in order for the wait time for results to be minimal. Making smaller tables will

hopefully cut down on query times.

Figure 1: Building and Safety ERD (Snapshot)

Building and Safety Database Summary

The simplified system database consists of about 13 tables with only five main tables

being used on a regular basis. The database itself is more of an out of the box product, so that it

is similar in all jurisdictions, and it can be implemented and modified to meet the different needs

of different jurisdictions.

 The system assigns more of a general number to the permit number and the department

defines what they want to see in the system. For instance: “B1500525” that is actually

stored in Alt_ID but behind the scenes the part would be (B1_Per_ID1 = 15BLD,

26 | P a g e

B1_Per_ID2 = 00000, B1_Per_ID3 = 003OQ). The field ALT_ID is an ID that all the

tables use.

 The Serv_Prov_Code: is the jurisdiction so it is automatically set to “Lincoln”

 Permit Number has between 8-9 characters but typically it will only have 8 characters,

the extra character will determine if it is a county permit or regular permit.

o The first character describes what type of permit it is (E for electrical, M for

Mechanical, P for Plumbing, EC for Electrical County etc.).

o Next two character are the year (e.g. E15*****)

o Last five characters are just number in sequence. These numbers will start over

each year on January 1st.

 Licensed Professional Number consists of a code between 3 and 6 characters long.

o EC*** [Electrical], MC***[mechanical], PC***[plumbing]

o After the first 2 characters the next characters are numbers in sequence which is

the reason they vary in range in number of characters.

o There are more Plumbing and Electrical codes than there are Mechanical codes.

 There are fields in the Database for Group, Type, Sub-Type and Category. Example:

Electrical would be: Group-Building, Type-Electrical, subtype – City or County,

Category – Licensed or Non-License

27 | P a g e

Building and Safety (simplified) Database Table Descriptions

B1Permit Main table that includes permit basics like: date permit started, permit

number, record status, record type

B3Owners Owners associated to the permit and their address or phone number

information

B3Contra Contractors associated to the permit and their address or phone number

information

B3Contact Contacts such as applicant, architect or tenant plus their address or phone

number information

GProcess Current workflow step with due dates

GProcess_History All of the history associated to the workflow with who did each step, what

date and status of that step

F4FeeItem Fees that have been added to the permit

F4Payment Payments that have happened on the permit

B6Condit Conditions that would hold or stop a permit

G6Action Inspections associated with the permit

BWorkDes Work Description for the permit

BPermit_Detail More details associated with the permit

B3Address Address information associated with the permit

Mobile App Database

 Trying to stay as close as possible to create a simple database for the Android database

that is quick and efficient in the mobile environment can become a difficult task because you

want to create a database that will not only support the current features you want to design but

also support possible new features in the future. After much design trial and errors on creating a

feasible working database, the ER diagram shown below was deemed a simple but workable

database. and it was created. The database will retain information about building, mechanic,

plumbing and electrical permits for search purposes. The mobile app will utilize the permit

information stored in the database and display it in an organized way for the user. The users will

be able to search by permit, license number and pertinent data will be displayed; including the

permit number, license number (if applicable), address and status of the permit. The system is

mainly targeting citizens of Lincoln who have applied for a permit or just simply want to find

28 | P a g e

publicly available information. Since this project is a mobile application, we are going to restrict

the time frame of the permits to the last 3 years and the accessible data will be updated on a daily

basis because permits are taken out daily.

First Draft ERD

In my first attempt to consolidate the database I decided to have seven tables:

1. Permit table: contains the permit number, the date it started, the record type and the

record status.

2. Permit_fees table: contains the permit number, the fees due and fees added to that

particular permit

3. Permit_address: contains the permit number and address of the permit.

4. Permit_details table: contains the permit number and any comments or notes that go with

that table.

29 | P a g e

5. Contractors table: contains the permit number, the licensed number of the contractor,

contractors name, address and phone number

6. Licensed_professional table: contains the license number and type of license

7. Permit_owners table: contains the permit number, name, address and phone number

owner.

After looking at the tables and trying to make a connection, the realization came that this

table is not efficient and that some of the tables can be combine to make the queries quicker.

Second Draft ERD

In my second attempt to consolidate the database resulted in 7 tables:

1. Permit table: contains the permit number, the date it started, the record type and the

record status.

30 | P a g e

2. Permit_fees table: contains the permit number, the fees due and fees added to that

particular permit

3. Permit_address: contains the permit number and address of the permit.

4. Permit_details table: contains the permit number and any comments or notes that go with

that table.

5. Contractors table: contains the licensed number of the contractor, contractors name,

address and phone number

6. Permit_connect table: contains the permit number and license number (which replaced

Licensed_professional table)

7. Permit_owners table: contains the permit number, name, address and phone number

owner.

My second attempt had replacing licensed_professional table with permit_connect. After

looking at the tables and trying to make the connections between the tables, the realization came

that this table is still not efficient and that some of the tables can still be combine to make the

queries quicker.

31 | P a g e

Third ERD

In my third attempt to consolidate the database led me to have 6 tables:

1. Permit table: contains the permit number, the date it started, the record type and the

record status and licensed number.

2. Permit_fees table: contains the permit number, the fees due and fees added to that

particular permit

3. Permit_address: contains the permit number and address of the permit.

4. Permit_details table: contains the permit number and any additional notes and project

name if the permit has one.

5. Contractors table: contains the licensed number of the contractor, contractors name,

address and phone number

32 | P a g e

6. Permit_owners table: contains the permit number, name, address and phone number

owner.

My third attempt at the database got rid permit_connect all together and instead added

licensed_number table to connect the licensed number to the main permit table. However,

again, after looking at the tables and trying to make a connection, the realization came that

this table structure is not efficient and that some of the tables could be combined to make the

queries even quicker.

Final ERD

33 | P a g e

Table Descriptions (4th ERD)

Permit

permit_number primary key

date_permit_started Date the permit was started (applied for)

street_number Street number of where permit is taking place

Direction Direction of street where permit is taking place

Street_name Street Name of where the permit is taking place

Street_type Street Type of where the permit is taking place

City Needs to be set to Lincoln

State Needs to be set to Nebraska

Zip_Code 5 digit code

Permit_status 3 possible options: Denied, Approved, Pending

Permit_type Type of Permit: City Licensed Mechanical, City Licensed

Electrical, City Licensed Plumbing, City Non-Licensed

Mechanical, City Non-Licensed Electrical, City Non-Licensed

Plumbing.

Licensed_number Foreign Key: this relates Contractors information table, this

field can be NULL because not all permits will require a

contractor

Permit_Details

Permit_number primary key

Additional_notes Additional notes about the project itself, for instance what kind

of work is being done or the parcel number of the l and on

which the building is located

Project_name Name of the project if there is one

Permit_Fees

permit_number primary key

fee_due The fee amount

Fee_added Any additional fee that has been added

Fee_due_notes Description of the fee due

Fee_added_notes Detail/Description of the additional fee added

Owners_info

Permit_number primary key

First_name First name of property owner

Last_name Last name of property owner

middle_inital Middle initial of property owner (can be null)

Address Address of property owner: the owner can own many

properties but reside somewhere else

Phone_number Phone number of property owner (can be null)

Contractors_info

34 | P a g e

Licensed_number primary key: this connects the contractors info to the main

permit table (cannot be null)

first_name First name of contractor

last_name Last name of contractor

middle_inital Middle initial of contractor (can be null)

Address Address of contractor (doesn’t have to be home address, could

be address of work building)

phone_number Contractors phone number (can be null)

Database Design Conclusion

Creating a database is not as simple as seems because you have to figure out how each

table connects to each other, and since this database will be used to run the back-end of a mobile

app you want it to be not only efficient but also that the search query does not take forever to

load in the app. Customers do not like to be kept waiting they want the search time kept to a

minimum. It can take several times to figure out what will produce the best results and even

when you figure out one that works, changes can continue to be made to make it more efficient.

It took me about 2 weeks to figure and try out different types of database and how to make the

query work with the search. Currently the mobile app does not use all the tables but like most

projects, you have to figure out what might be needed in the future enhancements.

35 | P a g e

Appendix B:
Storyboard and Wireframe

36 | P a g e

Wireframe

This appendix provided a rough sketch of how I wanted the mobile app to function.

When you start on a project it is a good idea to create a wireframe and storyboard because it

helps build a roadmap that you can refer to throughout the project and helps give the customer a

general idea of what the app would look like.

There will be a main page where the users select three options and each option will take

them to a different search that will ultimately display the results of the search.

Figure 1: Mobile App Wire Frame

37 | P a g e

Back End Diagram

The mobile app’s main function is a search feature, so there needs to be a database and a

way for the app to connect to that database to retrieve the desired information. Since this is only

a prototype and will be used for demonstration purpose there needs to be way to retrieve

information from a development environment.

The diagram shows the front end will connect to the backend and how the device will

send and receive information. Using PHP to connect the app to the MySQL database will be the

method used in this development. Below is a simple wire frame for that connection.

Figure 2: Back End Diagram

38 | P a g e

Story Board

Sketches will be used as a visual foundation and reference for the interface design. Here

is where the visualization of the main features and layout of the structure of the application takes

place.

Main Screen Activity (Search Options):

 The diagram below represents the search option screen where users can select how they

want to search for the permit information. They are given 3 options. The first option is “search

by permit number”; this option will take the user to the permit search screen where they can

search for information pertaining to that permit number. The second option is “search by license

number”; this option will take the user to the permit search screen, where if the user knows a

license number they pull all the permits that relate to the license number. The third and final

option is “search by address”; this option will take the user to the address search screen where

users can search for permit information tied to a particular address.

39 | P a g e

Figure 3: Main Screen Activity (Search Options) Diagram

40 | P a g e

Permit Search Activity Screen

The diagram below shows the search by permit number screen. The user must know the

exact permit number to actually use this screen. If the user enters the correct permit number, then

results of that search will be displayed below the search button. The search will display the

permit number, the address of the permit that it corresponds to, and any contractors (or any other

people associated with permit).

Figure 4: Permit Search Activity Diagram

41 | P a g e

License Search Screen

The diagram below shows the search license number screen. The user must know the

exact license number to actually use this screen. If the user enters the correct license number,

then results of that search will be displayed below the search button. The search will display the

permit number, the address of the permit that it corresponds to, the contractors (or any other

people associated with permit).

Figure 5: License Search Activity Diagram

42 | P a g e

Address Search Screen

The diagram below shows the search by address screen. Here the user must enter the

street number, street direction, street name and street type. If the user enters correctly the fields

correctly, the results of that search will be displayed below the search button. The search will

display the permit number, the address of the permit that it corresponds to, the contractors (or

any other people associated with permit).

Figure 6: Address Search Activity Diagram

43 | P a g e

Conclusion

Before starting any project it is a good idea to provide a general sketch of what the app

will look like and do to the stakeholders. By providing this, it will allow the stakeholders to

change or add additional things that they want for the app. Most projects start off with the initial

design so the developers have a general idea of how the app will look and how it should

function. Throughout the project the initial design will change in minor or drastic ways. Once the

development actually starts and the app is being tested by the stakeholders, new ideas or

additional features that weren’t initial thought of will come to light during that time. So, hashing

out a good initial design that meets the stakeholder’s requirements is vital to any project.

44 | P a g e

Appendix C:

Mobile App Code

45 | P a g e

Mobile App Icon

Below are files that make up the App Icon

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<!--This is the root directory. The manifest file presents essential information
about the app to the Android system, information the system must have before it can run any of the
app's code.-->

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="permit.com.permit">

<!-- this permission statement is required, if not the app won't be able to connect to the network-->
 <uses-permission android:name="android.permission.INTERNET"/>"

<!-- allowBackup: allows the app to be backup and have infrastructure to restore
Contains attributes like icon, label
icon: reference the app_logo that is located in the mipmap folder
label: label of app
supportsRt1: app willing to support right-to-left layouts-->
 <application
 android:allowBackup="true"
 android:icon="@mipmap/app_logo"
 android:label="@string/app_name"
 android:supportsRtl="true">

<!--Activities must be declared and if it is not then they will not be seen by the system and will never
be run. -->

46 | P a g e

 <!-- Declares the Main Activity -->
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Declares the Permit Activity -->
 <activity
 android:name=".PermitActivity"
 android:label="@string/title_activity_permit"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the License Activity -->
 <activity
 android:name=".LicenseActivity"
 android:label="@string/title_activity_license"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the Address Activity -->
 <activity
 android:name=".AddressActivity"
 android:label="@string/title_activity_address"
 android:theme="@style/AppTheme.NoActionBar">

 </activity>
 </application>
</manifest>

Strings.xml

<?xml version="1.0" encoding="utf-8"?>
<!--All string resources with other simple resources in the one XML file, and is reference using the
value provide in the name attribute-->

<resources>
 <string name="app_name">Permit App</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_permit">Permit Activity</string>
 <string name="title_activity_license">License Activity</string>
 <string name="title_activity_address">Address Activity</string>

 //string resource used in content_main.xml
 <string name="SearchPermit">Search by Permit</string>

47 | P a g e

 <string name="SearchLicense">Search by Licensed Professional</string>
 <string name="SearchAddress">Search by Address</string>

 //string resource used in content_permit.xml
 <string name="askPermit">Enter Permit Number</string>
 <string name="askPermitButton">Search</string>
 <string name="permitMessage">Enter Permit Number</string>

 //string resource used in content_license.xml
 <string name="askLicense">Enter Licensed Number</string>
 <string name="askLicenseButton">Search</string>
 <string name="licenseMessage">Enter License Number</string>

 //string resource used in content_address.xml
 <string name="streetNum">Street Number</string>
 <string name="streetDir">Street Direction</string>
 <string name="streetName">Street Name</string>
 <string name="streetType">Street Type</string>
 <string name="askAddressButton">Search</string>
</resources>

Main Screen Activity

Below are files that make up the Main Activity Screen

activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- This xml determines how the look of the main activity should be -->

<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

48 | P a g e

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="permit.com.permit.MainActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />
 </android.support.design.widget.AppBarLayout>

 <!-- reference the content found in content_main.xml -->
 <include layout="@layout/content_main" />
</android.support.design.widget.CoordinatorLayout>

content_main.xml
<?xml version="1.0" encoding="utf-8"?>

<!--
This xml determines the contents in the activity_main: contents that will user sees
 android:background="@color/colorBackground" : reference color from colors.xml
 tools:showIn="@layout/activity_main": will display contents in activity_main.xml
-->
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:background="@color/colorBackground"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="permit.com.permit.MainActivity"
 tools:showIn="@layout/activity_main">
<!--
Permit Search Button:
android:onClick="PermitSearch": method name that will call when user clicks on button

49 | P a g e

android:text="@string/SearchPermit" : reference string value from strings.xml
-->
 <android.support.v7.widget.AppCompatButton
 android:layout_marginTop="57dp"
 android:id="@+id/permitSearchButton"
 android:text="@string/SearchPermit"
 android:onClick="PermitSearch"
 android:padding="12dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="14sp" />

<!--
License Search Button:
android:onClick="LicenseSearch": method name that will call when user clicks on button
android:text="@string/SearchLicense" : reference string value from strings.xml
-->
 <android.support.v7.widget.AppCompatButton
 android:id="@+id/licenseSearchButton"
 android:text="@string/SearchLicense"
 android:onClick="LicenseSearch"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/permitSearchButton"
 android:padding="12dp"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:textSize="14sp" />

<!--
Address Search Button:
android:onClick="AddressSearch" method name that will call when user clicks on button
android:text="@string/SearchAddress" : reference string value from strings.xml
-->

 <android.support.v7.widget.AppCompatButton
 android:id="@+id/addressSearchButton"
 android:text="@string/SearchAddress"
 android:onClick="AddressSearch"
 android:padding="12dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/licenseSearchButton"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:textSize="14sp" />
</RelativeLayout>

50 | P a g e

strings.xml
<?xml version="1.0" encoding="utf-8"?>
<!--All string resources with other simple resources in the one XML file, and is reference using the
value provide in the name attribute-->
<resources>
 <string name="app_name">Permit App</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_permit">Permit Activity</string>
 <string name="title_activity_license">License Activity</string>
 <string name="title_activity_address">Address Activity</string>

 //string resource used in content_main.xml
 <string name="SearchPermit">Search by Permit</string>
 <string name="SearchLicense">Search by Licensed Professional</string>
 <string name="SearchAddress">Search by Address</string>

 //string resource used in content_permit.xml
 <string name="askPermit">Enter Permit Number</string>
 <string name="askPermitButton">Search</string>
 <string name="permitMessage">Enter Permit Number</string>

 //string resource used in content_license.xml
 <string name="askLicense">Enter Licensed Number</string>
 <string name="askLicenseButton">Search</string>
 <string name="licenseMessage">Enter License Number</string>

 //string resource used in content_address.xml
 <string name="streetNum">Street Number</string>
 <string name="streetDir">Street Direction</string>
 <string name="streetName">Street Name</string>
 <string name="streetType">Street Type</string>
 <string name="askAddressButton">Search</string>
</resources>

MainActivity.java
package permit.com.permit;

//imports that class that this java file uses
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.Toolbar;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
//end imports

public class MainActivity extends AppCompatActivity {

51 | P a g e

 @Override
 //initialize the activity
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //call the activity_main layout resource to define the UI
 setContentView(R.layout.activity_main);
 //retrieve toolbar widget from activity_main.xml
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 //method to designate the toolbar as the action bar for Activity
 setSupportActionBar(toolbar);
 }

 //Method called when user clicks on permit search button from content_main.xml
 public void PermitSearch(View view){
 //start permit activity
 Intent intent = new Intent(this,PermitActivity.class);
 startActivity(intent);
 }

 //Method called when user clicks on license search button from content_main.xml
 public void LicenseSearch(View view){
 //start license activity
 Intent intent = new Intent(this,LicenseActivity.class);
 startActivity(intent);
 }

 //Method called when user clicks on address search button from content_main.xml
 public void AddressSearch(View view){
 //start address activity
 Intent intent = new Intent(this,AddressActivity.class);
 startActivity(intent);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement

52 | P a g e

 if (id == R.id.action_settings) {
 return true;
 }

 return super.onOptionsItemSelected(item);
 }
}

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<!--This is the root directory. The manifest file presents essential information
about the app to the Android system, information the system must have before it can run any of the
app's code.-->

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="permit.com.permit">

<!--this permission statement is required, if not the app won't be able to connect to the network-->
 <uses-permission android:name="android.permission.INTERNET"/>"

<!-- allowBackup: allows the app to be backup and have infrastructure to restore
Contains attributes like icon, label
icon: reference the app_logo that is located in the mipmap folder
label: label of app
supportsRt1: app willing to support right-to-left layouts-->
 <application
 android:allowBackup="true"
 android:icon="@mipmap/app_logo"
 android:label="@string/app_name"
 android:supportsRtl="true">

<!--Activities must be declared and if it is not then they will not be seen by the system and will never
be run. -->

 <!-- Declares the Main Activity -->
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

53 | P a g e

 <!-- Declares the Permit Activity -->
 <activity
 android:name=".PermitActivity"
 android:label="@string/title_activity_permit"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the License Activity -->
 <activity
 android:name=".LicenseActivity"
 android:label="@string/title_activity_license"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the Address Activity -->
 <activity
 android:name=".AddressActivity"
 android:label="@string/title_activity_address"
 android:theme="@style/AppTheme.NoActionBar">

 </activity>
 </application>
</manifest>

Permit Search Activity

init.php

<?php

 /* Script to Connect to MySQL database
database name: permitappdb*/

 //Setup MySQL connection variables: defining Constants

54 | P a g e

 $db_name = "permitappdb";
 $mysql_user = "root";
 $mysql_pass = "root";
 $server_name = "localhost";

 //create connection to database
 $con = mysqli_connect($server_name, $mysql_user, $mysql_pass, $db_name);

 //check connection
 if(!$con)
 {
 // echo "Connection Error...".mysqli_connect_error();
 }
 else
 {
 //echo "<h3>Database connection Success...</h3>";
 }
 ?>

permit.php
<?php

/**
 Script to handle permit search request.
 To get the permit search detail we use JSON.
 This script will get the permit number as an http request and will display the permit search
 details in json according to the given permit number
*/

//import init.php script: db connection script
 require "init.php";

 //getting value
$permit_number = $_GET['permit_search'];

 // creating an sql query (setup search query for permit)
$sql_query = "SELECT * from permit where permit_number = '$permit_number' ;";

 //run the query against the database
$r = mysqli_query($con,$sql_query);

//create a blank array
$result = array();

//looping through all the records
while ($row = mysqli_fetch_assoc($r)){

//The array_push() function inserts one or more elements to the end of an array
array_push($result,array(

55 | P a g e

/**specifies the value to add to the array:
 pushing license, permit, number, direction, name,type, status in the blank array created */
"license"=>$row['licensed_number'],
"permit"=>$row['permit_number'],
"number"=>$row['street_number'],
"direction"=>$row['direction'],
"name"=>$row['street_name'],
"type"=>$row['street_type'],
"status"=>$row['permit_status'],
));
}

//displaying the array in json format
 echo json_encode (array("result"=>$result));

 //closing the database
mysqli_close($con);

 ?>

We go to this url: localhost/permitapp/permit.php?permit_search=b1306312 to make sure we can pass
the request [?permit_search=permit_number]. Wamp is the server so that is why it is working on a
localhost.

Below is the json string

activity_permit.xml
<?xml version="1.0" encoding="utf-8"?>
<!-- This xml determines how the look of the main activity should be -->
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="permit.com.permit.PermitActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

56 | P a g e

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>
 <!-- reference the content found in content_permit.xml -->
 <include layout="@layout/content_permit" />
</android.support.design.widget.CoordinatorLayout>

content_permit.xml
<?xml version="1.0" encoding="utf-8"?>
<!--
This xml determines the contents in the activity_permit contents that will user sees
 android:background="@color/colorBackground" : reference color from colors.xml
 tools:showIn="@layout/activity_permit": will display contents in activity_permit.xml
-->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:background="@color/colorBackground"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="permit.com.permit.PermitActivity"
 tools:showIn="@layout/activity_permit"
 android:weightSum="1">

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <!-- Text Area where user enters permit number-->
 <EditText
 android:id="@+id/permitID"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:inputType="none"
 android:singleLine="true"

57 | P a g e

 android:textSize="14dp" />

 </LinearLayout>
 <!--
 Text displaying message
 android:text="@string/permitMessage": reference string value from strings.xml
 -->
 <TextView android:id="@+id/permitMessage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/permitMessage"
 android:gravity="center"
 android:singleLine="false"
 android:textColor="#0b0a0a"
 android:textSize="14sp"
 android:textIsSelectable="true" />

 <!--
 Permit Search Button:
 android:text="@string/askPermitButton" : reference string value from strings.xml
 -->
 <android.support.v7.widget.AppCompatButton
 android:id="@+id/permitButton"
 android:text="@string/askPermitButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="12dp"
 android:layout_gravity="right"
 android:textSize="14sp" />

<!--Area where result will display-->
 <TextView
 android:id="@+id/permitResult"
 android:layout_width="fill_parent"
 android:layout_height="0dp"
 android:layout_weight="0.79"
 android:textSize="14dp"
 android:textIsSelectable="false" />

</LinearLayout>

strings.xml
<?xml version="1.0" encoding="utf-8"?>
<!--All string resources with other simple resources in the one XML file, and is reference using the value
provide in the name attribute-->
<resources>
 <string name="app_name">Permit App</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_permit">Permit Activity</string>

58 | P a g e

 <string name="title_activity_license">License Activity</string>
 <string name="title_activity_address">Address Activity</string>

 //string resource used in content_main.xml
 <string name="SearchPermit">Search by Permit</string>
 <string name="SearchLicense">Search by Licensed Professional</string>
 <string name="SearchAddress">Search by Address</string>

 //string resource used in content_permit.xml
 <string name="askPermit">Enter Permit Number</string>
 <string name="askPermitButton">Search</string>
 <string name="permitMessage">Enter Permit Number</string>

 //string resource used in content_license.xml
 <string name="askLicense">Enter Licensed Number</string>
 <string name="askLicenseButton">Search</string>
 <string name="licenseMessage">Enter License Number</string>

 //string resource used in content_address.xml
 <string name="streetNum">Street Number</string>
 <string name="streetDir">Street Direction</string>
 <string name="streetName">Street Name</string>
 <string name="streetType">Street Type</string>
 <string name="askAddressButton">Search</string>
</resources>

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<!--This is the root directory. The manifest file presents essential information
about the app to the Android system, information the system must have before it can run any of the
app's code.-->

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="permit.com.permit">

<!-- this permission statement is required, if not the app won't be able to connect to the network-->
 <uses-permission android:name="android.permission.INTERNET"/>"

<!-- allowBackup: allows the app to be backup and have infrastructure to restore
Contains attributes like icon, label
icon: reference the app_logo that is located in the mipmap folder
label: label of app
supportsRt1: app willing to support right-to-left layouts-->
 <application
 android:allowBackup="true"
 android:icon="@mipmap/app_logo"

59 | P a g e

 android:label="@string/app_name"
 android:supportsRtl="true">

<!--Activities must be declared and if it is not then they will not be seen by the system and will never be
run. -->

 <!-- Declares the Main Activity -->
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Declares the Permit Activity -->
 <activity
 android:name=".PermitActivity"
 android:label="@string/title_activity_permit"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the License Activity -->
 <activity
 android:name=".LicenseActivity"
 android:label="@string/title_activity_license"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the Address Activity -->
 <activity
 android:name=".AddressActivity"
 android:label="@string/title_activity_address"
 android:theme="@style/AppTheme.NoActionBar">

 </activity>
 </application>
</manifest>

ConfigPermit.php

package permit.com.permit;
/**Declare important constants*/
public class ConfigPermit {

 //Address of permit script
 public static final String PERMIT_URL = "http://192.168.56.1/permitapp/permit.php?permit_search=";

 //Keys that will be used to send this request to php scripts

60 | P a g e

 public static final String KEY_PERMIT = "permit";

 //Key values from inner array
 public static final String KEY_NUMBER = "number";
 public static final String KEY_DIRECTION = "direction";
 public static final String KEY_NAME = "name";
 public static final String KEY_TYPE = "type";
 public static final String KEY_STATUS = "status";

 //JSON string
 public static final String JSON_ARRAY = "result";
}

PermitActivity.java
package permit.com.permit;

//imports that class that this java file uses
import android.app.ProgressDialog;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

import com.android.volley.RequestQueue;
import com.android.volley.Response;
import com.android.volley.VolleyError;
import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

//end import

public class PermitActivity extends AppCompatActivity implements View.OnClickListener {

 //defining views
 private EditText permitID;
 private Button permitButton;
 private TextView permitResult;
 //define progressDialog class: displays dialog and spinner while search is going on in background
 private ProgressDialog loading;

61 | P a g e

 @Override
 //initialize the activity
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //call the activity_permit layout resource to define the UI
 setContentView(R.layout.activity_permit);

 //initialize views
 permitID = (EditText)findViewById(R.id.permitID);
 permitButton = (Button)findViewById(R.id.permitButton);
 permitResult = (TextView)findViewById(R.id.permitResult);
 //set onclick listener to permit search button
 permitButton.setOnClickListener(this);
 }

 //Permit Search Function
 public void getPermit(){
 //get the value the user enters
 String permit_search = permitID.getText().toString().trim();
 //if user does not enter any text
 if (permit_search.equals("")){
 //display this message
 Toast.makeText(this,"Please enter a permit number",Toast.LENGTH_LONG).show();
 return;
 }
 //start the dialog box
 loading = ProgressDialog.show(this,"Please wait...","Fetching...",false,false);

 //add search parameters to query URL that is called from ConfigPermit.java and create
 String url = ConfigPermit.PERMIT_URL+permitID.getText().toString().trim();

 /** Create String Request: Request string response from the provided URL* */
 StringRequest stringRequest = new StringRequest(url, new Response.Listener<String>(){
 @Override
 public void onResponse(String response){
 //make the dialog box close when search is complete
 loading.dismiss();
 //calls the JSON method
 showJSON(response);
 }
 },
 /**
 * callback method that an error has been occured with the provided error code
 * with message
 */
 new Response.ErrorListener(){
 @Override
 public void onErrorResponse(VolleyError error) {

62 | P a g e

 //display error message
 Toast.makeText(PermitActivity.this,"Not Working",Toast.LENGTH_LONG).show();
 }
 });
 /**
 * Instantiate the RequestQueue
 * request queue using Volley library: volley handles network connections
 * Volley maps the JSON response in respective class objects, it allows you to add
 * getter setter for the response model objects which allows you to access JSON values/
 * parameters using .operator like normal JAVA object, which makes response handling simple
 */

 RequestQueue requestQueue = Volley.newRequestQueue(this);
 //adding the request to RequestQueue
 requestQueue.add(stringRequest);
 }
 //showJSON method: this is where the JSON is parse
 private void showJSON(String response){
 //create constants
 String permit="";
 String number="";
 String name="";
 String direction="";
 String type="";
 String status="";
 String display="";

 //create a JSONObject
 JSONObject jsonObject = null;
 try {
 //get the JSON string
 jsonObject = new JSONObject(response);
 } catch (JSONException e) {
 Toast.makeText(this,"JSON object error",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }
 //create an JSONArray
 JSONArray result = null;
 try {
 //extract data array from json string: retrieve from ConfigPermit.java file
 result = jsonObject.getJSONArray(ConfigPermit.JSON_ARRAY);
 } catch (JSONException e) {
 //if the key is not found or if the value is not a JSONArray
 Toast.makeText(this,"JSON array error",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }

 //if there is nothing in the JSON array

63 | P a g e

 if (result.length()==0){
 //display message
 display="Permit Number Does Not Exist, Try Again";
 }

 //loop to get all json object from json array
 for (int i = 0; i < result.length();i++) {

 try {
 //retrieves the JSONObject with the associated index value
 JSONObject permitData = result.getJSONObject(i);
 //getting fields inside in the JSON array
 permit = permitData.getString(ConfigPermit.KEY_PERMIT);
 status = permitData.getString(ConfigPermit.KEY_STATUS);
 number = permitData.getString(ConfigPermit.KEY_NUMBER);
 name = permitData.getString(ConfigPermit.KEY_NAME);
 direction = permitData.getString(ConfigPermit.KEY_DIRECTION);
 type = permitData.getString(ConfigPermit.KEY_TYPE);

 } catch (JSONException e) {
 Toast.makeText(this,"error2",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }
 //add the found fields in display variable
 display+= "Permit:\t" + permit + "\nStreet Address:\t" + number + "\t" + direction + "\t" + name +
"\t" + type + "\t" + "\nPermit Status:\t" + status;
 }
 //display the result in the designated text area
 permitResult.setText(display);
 }

 @Override
 //When user clicks the button, call the getPermit Function
 public void onClick(View v) {
 getPermit();
 }
}

64 | P a g e

License Search Activity

init.php
<?php

 /* Script to Connect to MySQL database
database name: permitappdb*/

 //Setup MySQL connection variables: defining Constants
 $db_name = "permitappdb";
 $mysql_user = "root";
 $mysql_pass = "root";
 $server_name = "localhost";

 //create connection to database
 $con = mysqli_connect($server_name, $mysql_user, $mysql_pass, $db_name);

 //check connection
 if(!$con)
 {
 // echo "Connection Error...".mysqli_connect_error();
 }
 else
 {
 //echo "<h3>Database connection Success...</h3>";
 }
 ?>

license.php

<?php

65 | P a g e

/**
 Script to handle license search request.
 To get the license search detail we use JSON.
 This script will get the license number as an http request and will display the license search
 details in json according to the given license number
*/

//import init.php script: db connection script
require "init.php";

 //getting value
$license_number = $_GET['license_search'];

 //creating sql query (setup search query for license)
$sql_query = "SELECT * from permit where licensed_number = '$license_number' ;";

 //run the query against the database
$r = mysqli_query($con,$sql_query);

//create a blank array
$result = array();

//loop through the records
while ($row = mysqli_fetch_array($r)){
//The array_push() function inserts one or more elements to the end of an array
array_push($result,array(
/**specifies the value to add to the array:
 pushing license, permit, number, direction, name,type, status in the blank array created */

"license"=>$row['licensed_number'],
"permit"=>$row['permit_number'],
"number"=>$row['street_number'],
"direction"=>$row['direction'],
"name"=>$row['street_name'],
"type"=>$row['street_type'],
"status"=>$row['permit_status']
));

}
//display array in json format
echo json_encode (array("result"=>$result));

//close the connection
mysqli_close($con);
 ?>

66 | P a g e

We go to this url: localhost/permitapp/license.php?license_search=ec1234 to make sure we can pass
the request [?license_search=license_number]. Wamp is the server so that is why it is working on a
localhost.

Below is the json string

activity_license.xml
<?xml version="1.0" encoding="utf-8"?>
<!-- This xml determines how the look of the main activity should be -->
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="permit.com.permit.LicenseActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />
 </android.support.design.widget.AppBarLayout>
 <!-- reference the content found in content_permit.xml -->
 <include layout="@layout/content_license" />
</android.support.design.widget.CoordinatorLayout>

content_license.xml
<?xml version="1.0" encoding="utf-8"?>
<!--
This xml determines the contents in the activity_license contents that will user sees
 android:background="@color/colorBackground" : reference color from colors.xml
 tools:showIn="@layout/activity_license": will display contents in activity_license.xml
-->

67 | P a g e

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:background="@color/colorBackground"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="permit.com.permit.LicenseActivity"
 tools:showIn="@layout/activity_license">

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <!-- Text Area where user enters license number-->
 <EditText
 android:id="@+id/licenseID"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:inputType="text"
 android:textSize="14sp"
 android:singleLine="true" />

 </LinearLayout>
 <!--
 Text displaying message
 android:text="@string/licenseMessage": reference string value from strings.xml
 -->

 <TextView android:id="@+id/permitMessage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/licenseMessage"
 android:gravity="center"
 android:singleLine="false"
 android:textColor="#0b0a0a"
 android:textSize="14sp"
 android:textIsSelectable="true" />

 <!--

68 | P a g e

 License Search Button:
 android:text="@string/askLicenseButton" : reference string value from strings.xml
 -->

 <android.support.v7.widget.AppCompatButton
 android:id="@+id/licenseButton"
 android:text="@string/askLicenseButton"
 android:padding="12dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="right" />

 <!--Area where result will display-->
 <TextView
 android:id="@+id/licenseResult"
 android:layout_width="fill_parent"
 android:layout_height="375dp"
 />

</LinearLayout>

strings.xml
<?xml version="1.0" encoding="utf-8"?>
<!--All string resources with other simple resources in the one XML file, and is reference using the value
provide in the name attribute-->
<resources>
 <string name="app_name">Permit App</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_permit">Permit Activity</string>
 <string name="title_activity_license">License Activity</string>
 <string name="title_activity_address">Address Activity</string>

 //string resource used in content_main.xml
 <string name="SearchPermit">Search by Permit</string>
 <string name="SearchLicense">Search by Licensed Professional</string>
 <string name="SearchAddress">Search by Address</string>

 //string resource used in content_permit.xml
 <string name="askPermit">Enter Permit Number</string>
 <string name="askPermitButton">Search</string>
 <string name="permitMessage">Enter Permit Number</string>

 //string resource used in content_license.xml
 <string name="askLicense">Enter Licensed Number</string>
 <string name="askLicenseButton">Search</string>
 <string name="licenseMessage">Enter License Number</string>

 //string resource used in content_address.xml

69 | P a g e

 <string name="streetNum">Street Number</string>
 <string name="streetDir">Street Direction</string>
 <string name="streetName">Street Name</string>
 <string name="streetType">Street Type</string>
 <string name="askAddressButton">Search</string>
</resources>

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<!--This is the root directory. The manifest file presents essential information
about the app to the Android system, information the system must have before it can run any of the
app's code.-->

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="permit.com.permit">

<!-- this permission statement is required, if not the app won't be able to connect to the network-->
 <uses-permission android:name="android.permission.INTERNET"/>"

<!-- allowBackup: allows the app to be backup and have infrastructure to restore
Contains attributes like icon, label
icon: reference the app_logo that is located in the mipmap folder
label: label of app
supportsRt1: app willing to support right-to-left layouts-->
 <application
 android:allowBackup="true"
 android:icon="@mipmap/app_logo"
 android:label="@string/app_name"
 android:supportsRtl="true">

<!--Activities must be declared and if it is not then they will not be seen by the system and will never be
run. -->

 <!-- Declares the Main Activity -->
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Declares the Permit Activity -->
 <activity

70 | P a g e

 android:name=".PermitActivity"
 android:label="@string/title_activity_permit"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the License Activity -->
 <activity
 android:name=".LicenseActivity"
 android:label="@string/title_activity_license"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the Address Activity -->
 <activity
 android:name=".AddressActivity"
 android:label="@string/title_activity_address"
 android:theme="@style/AppTheme.NoActionBar">

 </activity>
 </application>
</manifest>

ConfigLicense.php
package permit.com.permit;

/**Declare important constant*/
public class ConfigLicense {
 //Address of permit script
 public static final String LICENSE_URL =
"http://192.168.56.1/permitapp/license.php?license_search=";

 //Keys that will be used to send this request to php script
 public static final String KEY_LICENSE = "license";
 //Keys values from inner array
 public static final String KEY_PERMIT = "permit";
 public static final String KEY_NUMBER = "number";
 public static final String KEY_DIRECTION = "direction";
 public static final String KEY_NAME = "name";
 public static final String KEY_TYPE = "type";
 public static final String KEY_STATUS = "status";
 //JSON string
 public static final String JSON_ARRAY = "result";

}

LicenseActivity.java
package permit.com.permit;

//imports that class that this java file uses
import android.app.ProgressDialog;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;

71 | P a g e

import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;
import com.android.volley.RequestQueue;
import com.android.volley.Response;
import com.android.volley.VolleyError;
import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
//end import

public class LicenseActivity extends AppCompatActivity implements View.OnClickListener {
 //defining views
 private EditText licenseID;
 private Button licenseButton;
 private TextView licenseResult;
 //define progressDialog class: displays dialog and spinner while search is going on in background
 private ProgressDialog loading;

 @Override
 //initialize the activity
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //call the activity_license layout resource to define the UI
 setContentView(R.layout.activity_license);
 //initialize views
 licenseID = (EditText)findViewById(R.id.licenseID);
 licenseButton = (Button)findViewById(R.id.licenseButton);
 licenseResult = (TextView)findViewById(R.id.licenseResult);
 //set onclick listener to license search button
 licenseButton.setOnClickListener(this);
 }

 //License Search Function
 public void getLicense(){
 //get the value the user enters
 String license_search = licenseID.getText().toString().trim();
 //if user does not enter any text
 if (license_search.equals("")){
 //display this message
 Toast.makeText(this, "Please enter a license number", Toast.LENGTH_LONG).show();
 return;
 }

72 | P a g e

 //start the dialog box
 loading = ProgressDialog.show(this,"Please wait...","Fetching...",false,false);
 //add search parameters to query URL that is called from ConfigLicense.java and create
 String url = ConfigLicense.LICENSE_URL+licenseID.getText().toString().trim();
 /** Create String Request: Request string response from the provided URL* */
 StringRequest stringRequest = new StringRequest(url, new Response.Listener<String>(){
 @Override
 public void onResponse(String response){
 //make the dialog box close when search is complete
 loading.dismiss();
 //calls the JSON method
 showJSON(response);
 }
 },
 /**
 * callback method that an error has been occured with the provided error code
 * with message
 */
 new Response.ErrorListener(){
 @Override
 public void onErrorResponse(VolleyError error) {

Toast.makeText(LicenseActivity.this,error.getMessage().toString(),Toast.LENGTH_LONG).show();
 }
 });
 /**
 * Instantiate the RequestQueue
 * request queue using Volley library: volley handles network connections
 * Volley maps the JSON response in respective class objects, it allows you to add
 * getter setter for the response model objects which allows you to access JSON values/
 * parameters using .operator like normal JAVA object, which makes response handling simple
 */
 RequestQueue requestQueue = Volley.newRequestQueue(this);
 //adding the request to RequestQueue
 requestQueue.add(stringRequest);
 }
 //showJSON method: this is where the JSON is parse
 private void showJSON(String response) {
 //create constants
 String license = "";
 String permit = "";
 String number = "";
 String name = "";
 String direction = "";
 String type = "";
 String status = "";
 String display="";

73 | P a g e

 //create a JSONObject
 JSONObject jsonObject = null;
 try {
 //get the JSON string
 jsonObject = new JSONObject(response);
 } catch (JSONException e) {
 Toast.makeText(this,"JSON object error",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }
 //create an JSONArray
 JSONArray result = null;
 try {
 //extract data array from json string: retrieve from ConfigLicense.java file
 result = jsonObject.getJSONArray(ConfigLicense.JSON_ARRAY);
 } catch (JSONException e) {
 Toast.makeText(this,"JSON array error",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }

 //if there is nothing in the JSON array
 if (result.length()==0){
 //Toast.makeText(this,"no result were found",Toast.LENGTH_LONG).show();
 display="License Number is not attached to any permit, Try Again";
 }
 //loop to get all json object from json array
 for (int i = 0; i < result.length(); i++) {
 try {
 //retrieves the JSONObject with the associated index value
 JSONObject licenseData = result.getJSONObject(i);
 //getting fields inside in the JSON array
 license = licenseData.getString(ConfigLicense.KEY_LICENSE);
 permit = licenseData.getString(ConfigLicense.KEY_PERMIT);
 status = licenseData.getString(ConfigLicense.KEY_STATUS);
 number = licenseData.getString(ConfigLicense.KEY_NUMBER);
 name = licenseData.getString(ConfigLicense.KEY_NAME);
 direction = licenseData.getString(ConfigLicense.KEY_DIRECTION);
 type = licenseData.getString(ConfigLicense.KEY_TYPE);

 } catch (JSONException e) {
 Toast.makeText(getBaseContext(),"not working",Toast.LENGTH_SHORT).show();
 e.printStackTrace();
 }
 //add the found fields in display variable
 display+= "License No: \t" + license + "\nPermit No:\t" + permit + "\nStreet Address:\t" + number
+ "\t" + direction + "\t" + name + "\t" + type + "\t" + "\nPermit Status:\t" + status + "\n\n";
 }
 //display the result in the designated text area
 licenseResult.setText(display);

74 | P a g e

 }

 @Override
 //When user clicks the button, call the getLicense Function
 public void onClick(View v) {
 getLicense();
 }
}

License Search Activity

init.php
<?php

 /* Script to Connect to MySQL database
database name: permitappdb*/

 //Setup MySQL connection variables: defining Constants
 $db_name = "permitappdb";
 $mysql_user = "root";
 $mysql_pass = "root";
 $server_name = "localhost";

 //create connection to database
 $con = mysqli_connect($server_name, $mysql_user, $mysql_pass, $db_name);

75 | P a g e

 //check connection
 if(!$con)
 {
 // echo "Connection Error...".mysqli_connect_error();
 }
 else
 {
 //echo "<h3>Database connection Success...</h3>";
 }
 ?>

address.php

<?php
/**
Script to handle address search request.
To get the address search detail we use JSON.
This script will get the number, name, type, direction as an http request and will display the address
search details in json according to the given address
*/

//import database script
require "init.php";

 //getting the values
$number = $_GET['number'];
$name = $_GET['name'];
$type = $_GET['type'];
$direction = $_GET['direction'];

 //creating sql query (setup search query for address)

$sql_query = "SELECT * FROM permit WHERE
(street_number like '$number')
AND (street_name like '$name%')
AND (street_type like '$type%')
AND (direction = null or direction like '$direction%')
 ;";

 //AND direction like '$direction'
 //AND street_name like '$name%'
 //AND street_type like '$type'

 //run the query against the database
$r = mysqli_query($con,$sql_query);

//create a blank array

76 | P a g e

$result = array();

//loop through the records
while ($row = mysqli_fetch_array($r)){
//The array_push() function inserts one or more elements to the end of an array
array_push($result,array(
/**specifies the value to add to the array:
 pushing license, permit, number, direction, name,type, status in the blank array created */
"license"=>$row['licensed_number'],
"permit"=>$row['permit_number'],
"number"=>$row['street_number'],
"direction"=>$row['direction'],
"name"=>$row['street_name'],
"type"=>$row['street_type'],
"status"=>$row['permit_status']
));
}
//display array in json format
echo json_encode (array("result"=>$result));
//close the connection
mysqli_close($con);

 ?>

We go to this url: localhost/permitapp/address.php?number=1010&name=10th&type=street&direction=
to make sure we can pass the request [?number=street_number & ?name = street_name & &type =
street_type&direction=street_direction]. Wamp is the server so that is why it is working on a localhost.

Below is the json string

activity_address.xml
<?xml version="1.0" encoding="utf-8"?>
<!-- This xml determines how the look of the main activity should be -->
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="permit.com.permit.AddressActivity">

 <android.support.design.widget.AppBarLayout

77 | P a g e

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>
 <!-- reference the content found in content_address.xml -->
 <include layout="@layout/content_address" />

</android.support.design.widget.CoordinatorLayout>

content_address.xml
<?xml version="1.0" encoding="utf-8"?>

<!--
This xml determines the contents in the activity_license contents that will user sees
 android:background="@color/colorBackground" : reference color from colors.xml
 tools:showIn="@layout/activity_address": will display contents in activity_address.xml
-->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:background="@color/colorBackground"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="permit.com.permit.AddressActivity"
 tools:showIn="@layout/activity_address"
 android:weightSum="1">

 <!-- Text Area where user enters street number-->
 <EditText
 android:id="@+id/streetNoID"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="number"
 android:singleLine="true" />

78 | P a g e

 <!--
 Text displaying message
 android:text="@string/streetNum": reference string value from strings.xml
 -->

 <TextView android:id="@+id/streetNoMessage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/streetNum"
 android:gravity="center"
 android:singleLine="false"
 android:textColor="#0b0a0a"
 android:textSize="12sp"
 android:textIsSelectable="true" />

 <!-- Text Area where user enters street direction-->
 <EditText
 android:id="@+id/streetDirID"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="none"
 android:singleLine="true" />

 <!--
 Text displaying message
 android:text="@string/streetDir": reference string value from strings.xml
 -->

 <TextView android:id="@+id/directionMessage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/streetDir"
 android:gravity="center"
 android:singleLine="false"
 android:textColor="#0b0a0a"
 android:textSize="12sp"
 android:textIsSelectable="true" />

 <!-- Text Area where user enters street name-->
 <EditText
 android:id="@+id/streetNameID"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="none"
 android:singleLine="true" />
 <!--
 Text displaying message
 android:text="@string/streetName": reference string value from strings.xml

79 | P a g e

 -->
 <TextView android:id="@+id/streetNameMessage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/streetName"
 android:gravity="center"
 android:singleLine="false"
 android:textColor="#0b0a0a"
 android:textSize="12sp"
 android:textIsSelectable="true" />
 <!-- Text Area where user enters street type -->
 <EditText
 android:id="@+id/streetTypeID"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="none"
 android:singleLine="true" />
 <!--
 Text displaying message
 android:text="@string/streetType": reference string value from strings.xml
 -->

 <TextView android:id="@+id/streetTypeMessage"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/streetType"
 android:gravity="center"
 android:singleLine="false"
 android:textColor="#0b0a0a"
 android:textSize="12sp"
 android:textIsSelectable="true" />
 <!--
 Address Search Button:
 android:text="@string/askAddressButton" : reference string value from strings.xml
 -->
 <android.support.v7.widget.AppCompatButton
 android:id="@+id/addressButton"
 android:text="@string/askAddressButton"
 android:padding="12dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="right" />
 <!--Area where result will display-->
 <TextView
 android:id="@+id/addressResult"
 android:layout_width="fill_parent"
 android:layout_height="0dp"
 android:layout_weight="0.71" />

80 | P a g e

</LinearLayout>

strings.xml
<?xml version="1.0" encoding="utf-8"?>
<!--All string resources with other simple resources in the one XML file, and is reference using the value
provide in the name attribute-->
<resources>
 <string name="app_name">Permit App</string>
 <string name="action_settings">Settings</string>
 <string name="title_activity_permit">Permit Activity</string>
 <string name="title_activity_license">License Activity</string>
 <string name="title_activity_address">Address Activity</string>
 //string resource used in content_main.xml
 <string name="SearchPermit">Search by Permit</string>
 <string name="SearchLicense">Search by Licensed Professional</string>
 <string name="SearchAddress">Search by Address</string>
 //string resource used in content_permit.xml
 <string name="askPermit">Enter Permit Number</string>
 <string name="askPermitButton">Search</string>
 <string name="permitMessage">Enter Permit Number</string>
 //string resource used in content_license.xml
 <string name="askLicense">Enter Licensed Number</string>
 <string name="askLicenseButton">Search</string>
 <string name="licenseMessage">Enter License Number</string>

 //string resource used in content_address.xml
 <string name="streetNum">Street Number</string>
 <string name="streetDir">Street Direction</string>
 <string name="streetName">Street Name</string>
 <string name="streetType">Street Type</string>
 <string name="askAddressButton">Search</string>
</resources>

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<!--This is the root directory. The manifest file presents essential information
about the app to the Android system, information the system must have before it can run any of the
app's code.-->

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="permit.com.permit">

<!-- this permission statement is required, if not the app won't be able to connect to the network-->
 <uses-permission android:name="android.permission.INTERNET"/>"

<!-- allowBackup: allows the app to be backup and have infrastructure to restore

81 | P a g e

Contains attributes like icon, label
icon: reference the app_logo that is located in the mipmap folder
label: label of app
supportsRt1: app willing to support right-to-left layouts-->
 <application
 android:allowBackup="true"
 android:icon="@mipmap/app_logo"
 android:label="@string/app_name"
 android:supportsRtl="true">

<!--Activities must be declared and if it is not then they will not be seen by the system and will never be
run. -->

 <!-- Declares the Main Activity -->
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Declares the Permit Activity -->
 <activity
 android:name=".PermitActivity"
 android:label="@string/title_activity_permit"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the License Activity -->
 <activity
 android:name=".LicenseActivity"
 android:label="@string/title_activity_license"
 android:theme="@style/AppTheme.NoActionBar" />

 <!-- Declares the Address Activity -->
 <activity
 android:name=".AddressActivity"
 android:label="@string/title_activity_address"
 android:theme="@style/AppTheme.NoActionBar">

 </activity>
 </application>
</manifest>

ConfigAddress.php
package permit.com.permit;

82 | P a g e

/**Declare important constant*/
public class ConfigAddress {

 //Address of permit script
 public static final String ADDRESS_URL = "http://192.168.56.1/permitapp/address.php?number=";

 //Keys that will be used to send this request to php script
 public static final String KEY_NUMBER = "number";
 public static final String KEY_DIRECTION = "direction";
 public static final String KEY_NAME = "name";
 public static final String KEY_TYPE = "type";

 //Keys values from inner array
 public static final String KEY_PERMIT = "permit";
 public static final String KEY_STATUS = "status";
 public static final String KEY_LICENSE = "license";

 //JSON string
 public static final String JSON_ARRAY = "result";
}

AdressActivity.java
package permit.com.permit;
//imports that class that this java file uses
import android.app.ProgressDialog;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

import com.android.volley.RequestQueue;
import com.android.volley.Response;
import com.android.volley.VolleyError;
import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

//end import

public class AddressActivity extends AppCompatActivity implements View.OnClickListener{
 //defining views
 private EditText streetNoID;
 private EditText streetNameID;

83 | P a g e

 private EditText streetTypeID;
 private EditText streetDirID;
 private Button addressButton;
 private TextView addressResult;
 //define progressDialog class: displays dialog and spinner while search is going on in background
 private ProgressDialog loading;

 @Override
 //initialize the activity
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //call the activity_address layout resource to define the UI
 setContentView(R.layout.activity_address);
 //initialize views
 streetNoID = (EditText)findViewById(R.id.streetNoID);
 streetNameID = (EditText)findViewById(R.id.streetNameID);
 streetTypeID = (EditText)findViewById(R.id.streetTypeID);
 streetDirID = (EditText)findViewById(R.id.streetDirID);
 addressButton = (Button)findViewById(R.id.addressButton);
 addressResult = (TextView)findViewById(R.id.addressResult);
 //set onclick listener to license search button
 addressButton.setOnClickListener(this);
 }
 //Address Search Function
 private void getAddress(){
 //get the value the user enters
 String number = streetNoID.getText().toString().trim();
 String name = streetNameID.getText().toString().trim();
 String type = streetTypeID.getText().toString().trim();

 //if user does not enter street number, street name and street type
 if(number.equals("")& name.equals("")& type.equals("")){
 //display this message
 Toast.makeText(this,"Please enter street number, street name and street
type",Toast.LENGTH_LONG).show();
 return;
 }
 //if user does not enter street number
 if (number.equals("")){
 //display this message
 Toast.makeText(this, "Please enter a street number", Toast.LENGTH_LONG).show();
 return;
 }
 //if user does not enter street name
 if(name.equals("")){
 //display this message
 Toast.makeText(this,"Please enter name of street",Toast.LENGTH_LONG).show();
 return;

84 | P a g e

 }
 //if user does not enter street type
 if(type.equals("")){
 //display this message
 Toast.makeText(this,"Please enter type of street",Toast.LENGTH_LONG).show();
 return;
 }

 //start the dialog box
 loading = ProgressDialog.show(this,"Please wait...","Fetching...",false,false);

 //add search parameters to query URL that is called from ConfigAddress.java and create
 String url = ConfigAddress.ADDRESS_URL+streetNoID.getText().toString().trim() + "&name=" +
streetNameID.getText().toString().trim() + "&type=" + streetTypeID.getText().toString().trim() +
"&direction=" + streetDirID.getText().toString().trim();
 /** Create String Request: Request string response from the provided URL* */
 StringRequest stringRequest = new StringRequest(url, new Response.Listener<String>(){
 @Override
 public void onResponse(String response){
 //make the dialog box close when search is complete
 loading.dismiss();
 //calls the JSON method
 showJSON(response);
 }
 },
 /**
 * callback method that an error has been occured with the provided error code
 * with message
 */
 new Response.ErrorListener(){
 @Override
 public void onErrorResponse(VolleyError error) {
 //display error message
 Toast.makeText(AddressActivity.this,"Not Working",Toast.LENGTH_LONG).show();
 }
 });

 /**
 * Instantiate the RequestQueue
 * request queue using Volley library: volley handles network connections
 * Volley maps the JSON response in respective class objects, it allows you to add
 * getter setter for the response model objects which allows you to access JSON values/
 * parameters using .operator like normal JAVA object, which makes response handling simple
 */
 RequestQueue requestQueue = Volley.newRequestQueue(this);
 //adding the request to RequestQueue
 requestQueue.add(stringRequest);
 }

85 | P a g e

 //showJSON method: this is where the JSON is parse
 private void showJSON(String response) {
 //create constants
 String license = "";
 String permit = "";
 String number = "";
 String name = "";
 String direction = "";
 String type = "";
 String status = "";
 String display = "";

 //create a JSONObject
 JSONObject jsonObject = null;
 try {
 //get the JSON string
 jsonObject = new JSONObject(response);
 } catch (JSONException e) {
 Toast.makeText(this,"JSON object error",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }
 //create an JSONArray
 JSONArray result = null;
 try {
 result = jsonObject.getJSONArray(ConfigAddress.JSON_ARRAY);
 } catch (JSONException e) {
 Toast.makeText(this,"JSON array error",Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }

 //if there is nothing in the JSON array
 if (result.length()==0){
 //display message
 display="The Address you have enter does not have any permit(s) attached to it. Please Try a
different address";
 }

 for (int i = 0; i < result.length(); i++) {
 try {
 //retrieves the JSONObject with the associated index value
 JSONObject addressData = result.getJSONObject(i);
 //getting fields inside in the JSON array
 license = addressData.getString(ConfigAddress.KEY_LICENSE);
 permit = addressData.getString(ConfigAddress.KEY_PERMIT);
 status = addressData.getString(ConfigAddress.KEY_STATUS);
 number = addressData.getString(ConfigAddress.KEY_NUMBER);
 name = addressData.getString(ConfigAddress.KEY_NAME);

86 | P a g e

 direction = addressData.getString(ConfigAddress.KEY_DIRECTION);
 type = addressData.getString(ConfigAddress.KEY_TYPE);

 } catch (JSONException e) {
 e.printStackTrace();
 }
 //add the found fields in display variable
 display += "License No: \t" + license + "\nPermit No:\t" + permit + "\nStreet Address:\t" + number
+ "\t" + direction + "\t" + name + "\t" + type + "\t" + "\nPermit Status:\t" + status + "\n\n";

 }
 //display the result in the designated text area
 addressResult.setText(display);
 }
 @Override
 //When user clicks the button, call the getAddress Function
 public void onClick(View v){
 getAddress();
 }
}

87 | P a g e

Appendix D:
Development Environment

88 | P a g e

Development Environment

There are two Android Development Environments to choose from, either Eclipse or

Android Studio. Since I was familiar with Eclipse, I figured that was the best route at first. Then

I had an issue with downloading the Eclipse and Android SDK that I needed to integrate with the

Eclipse to help develop my Android prototype. I spent about 3 hours trying to download Eclipse

but I never succeed with that download because it would download and when it was almost

complete the download would fail, so my frustration won out and I decided to go with another

application to help me develop my Android app.

After reading more about Android Studio, I decided to download it instead. It is the latest

development environment for programming a mobile application, and I figured I can adjust and

work with it from the various resources on how to navigate it. So I decided to download Android

Studio and the SDK, and it took me about 2 hours do download both.

What I find frustrating with Android Studio after I successfully installed it using various

YouTube videos explaining how to do so, is the constant updating of the tool. With all the

updates and newer version of Android environment I would say I have spent over 10 plus hours

on updates alone. Updates happen at least twice a week and can take anywhere from 45 minutes

to 2 hours depending on the speed of my wireless connection. If I didn’t use my wireless and

used a direct connection, it would typically take about 20 minutes depending on the update.

What was particularly frustrating was when Android Studio updated to the latest version because

it would change the structure of the application itself. What I mean by this statement is that the

pages (XML and java files) would change. For example, the biggest change is the separation of

89 | P a g e

layout of the xml files. So instead of one file to design the layout of the app, there are now two,

one stores the look while the only stores the content of what is on the app.

Another frustration I found was the using the AVD (android virtual device) Emulator that

comes with the development platform. It did not work properly and after about 2 hours of

research I was able to make it work but it takes time for it to run and at most times does not

function properly. I had to change my BIOS to enable my Hardware Virtualization, then install

the Intel x86 Emulator Accelerator (HAXM installer), which according to Android Studio it was

already installed. Even though I am able to use it, it takes forever to load and a lot of times it still

does not functioning properly.

 After searching around I found another AVD to work with Android and that is called

Genymotion. Genymotion was a free download; however that has recently changed in the last

month where you have to buy it to use it. It only took me about 20 minutes between download

and set up, and it works great. The problem I ran into is getting the AVD to display properly.

Since I can no longer download various AVD simulators I am stuck to one which does not

display my app in a decent screen. Still it allows me to test my features quicker than the standard

AVD emulator.

For the back end of the mobile application I will need a database, a web server and a

server-side scripting language that will connect the development environment to the server to

grab the information off the database. I installed WAMPSERVER

(http://www.wampserver.com/en/) to take care of all the back end tools I will need. Installing

WAMP server, gets me a database (MySQL database and PHP/phpMyAdmin), a Web Server

(Apache Web Server) and a Server Side Scripting Language (PHP). I am entry level knowledge

of MySQL and PHP and the rest I can learn through books and searching along the way. It took

http://www.wampserver.com/en/

90 | P a g e

me about 2 hours to install and test to make sure everything ran properly and another 2 hours of

research and testing to figure out how to install the design features for phpMyAdmin in order for

me to make my table connections. So overall it took me about 10 hours to set up everything I

need for my development platform for my application and another 10+ hours of updates. So

development setup took me roughly 2 weeks.

Download Sources:

1. Android Development Environment: https://developer.android.com/sdk/index.html

2. Install the latest Android SDK to go with Android Environment:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

91 | P a g e

3. Download and install WAMPSERVER because the server installer contains the following

components that you need: Apache Server Application, MySQL Database and

PHP/phpMyAdmin. Website: http://www.wampserver.com/en/

4. Install Genymotion (https://www.genymotion.com) for a faster Android emulator to use

with Android Studio. It can be downloaded for free for personal use, you just have to

register. This is has recently change, because it is no longer have a free personal usage

download.

http://www.wampserver.com/en/
https://www.genymotion.com/

92 | P a g e

5. Install Android Volley.

Android Volley is an HTTP library that makes networking for Android apps easier and faster.

Volley simplifies networking task in Android and creates and easy way to use request

management, provides an efficient network management and is easily customizable. Steps to

download this library was found at this website: https://www.simplifiedcoding.net/android-

volley-tutorial-to-get-json-from-server/

93 | P a g e

References

Samson, M. (2015, April 7). Why Mobile Apps May Become More Important Than Your Website.

Retrieved October 17, 2015, from https://www.linkedin.com/pulse/why-mobile-apps-may-become-more-

important-than-your-website-samson

Number of apps available in leading app stores 2015 | Statistic. (n.d.). Retrieved October 17, 2015, from

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores

Rowinski, D. (2013, January 9). How Long Does It Take To Build A Native Mobile App. Retrieved

October 14, 2015, from http://readwrite.com/2013/01/09/how-long-does-it-take-to-build-a-native-mobile-

app-infographic

Insight of Mobile App Development Process [Infographic]. (2015, September 7). Retrieved October 14,

2015, from http://theninehertz.com/insight-of-mobile-app-development-process

How Long Does it Take to Make an App?: An Infographic - Idea to Appster. (2013, February 13).

Retrieved October 17, 2015, from http://ideatoappster.com/how-long-does-it-take-to-make-an-app/

https://www.linkedin.com/pulse/why-mobile-apps-may-become-more-important-than-your-website-samson
https://www.linkedin.com/pulse/why-mobile-apps-may-become-more-important-than-your-website-samson
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores
http://readwrite.com/2013/01/09/how-long-does-it-take-to-build-a-native-mobile-app-infographic
http://readwrite.com/2013/01/09/how-long-does-it-take-to-build-a-native-mobile-app-infographic

	La Salle University
	La Salle University Digital Commons
	Fall 1-15-2016

	Building and Safety Department Android Mobile Application
	Nary Simms
	Recommended Citation

	tmp.1466103892.pdf.9YGZV

