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Abstract 

Background:  Understanding geographic distributions of species is a crucial step in spatial planning for biodiversity 
conservation, particularly as regards changes in response to global climate change. This information is especially 
important for species of global conservation concern that are susceptible to the effects of habitat loss and climate 
change. In this study, we used ecological niche modeling to assess the current and future geographic distributional 
potential of White-breasted Guineafowl (Agelastes meleagrides) (Vulnerable) across West Africa.

Methods:  We used primary occurrence data obtained from the Global Biodiversity Information Facility and national 
parks in Liberia and Sierra Leone, and two independent environmental datasets (Moderate Resolution Imaging 
Spectroradiometer normalized difference vegetation index at 250 m spatial resolution, and Worldclim climate data at 
2.5′ spatial resolution for two representative concentration pathway emissions scenarios and 27 general circulation 
models for 2050) to build ecological niche models in Maxent.

Results:  From the projections, White-breasted Guineafowl showed a broader potential distribution across the region 
compared to the current IUCN range estimate for the species. Suitable areas were concentrated in the Gola rainforests 
in northwestern Liberia and southeastern Sierra Leone, the Tai-Sapo corridor in southeastern Liberia and southwest‑
ern Côte d’Ivoire, and the Nimba Mountains in northern Liberia, southeastern Guinea, and northwestern Côte d’Ivoire. 
Future climate-driven projections anticipated minimal range shifts in response to climate change.

Conclusions:  By combining remotely sensed data and climatic data, our results suggest that forest cover, rather than 
climate is the major driver of the species’ current distribution. Thus, conservation efforts should prioritize forest protec‑
tion and mitigation of other anthropogenic threats (e.g. hunting pressure) affecting the species.

Keywords:  Climate change, Conservation, Conservation planning, Ecological niche modeling, Species distribution, 
Upper Guinea Forest, White-breasted Guineafowl
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Background
West Africa is recognized as a global biodiversity hotspot, 
yet the ecology, distributions, and population numbers of 
most of its biota remain largely unknown (Mittermeier 
et al. 1998; Myers et al. 2000), which makes it challeng-
ing to optimize conservation of threatened species in the 
region. The region also ranks among the most deforested 
places on Earth, and is considered as highly susceptible to 
impacts of global climate change (Stattersfield et al. 1998; 
Myers et al. 2000; Malcolm et al. 2006; Janes and Hartley 
2010; Díaz et al. 2018; IPBES 2018). As such, understand-
ing likely relative impacts of these changes on geographic 
distributions of the region’s biota is important for conser-
vation planning and decision-making.

A research approach used to address such questions 
is ecological niche modeling, which integrates known 
occurrences of species and environmental variables (e.g. 
temperature, precipitation) to characterize potential 
future geographic distributions of species in response to 
global climate change (Pearson and Dawson 2003; Peter-
son et al. 2011). Ecological niche models are useful tools 
in predicting or identifying priority areas for research 
and conservation of species and particularly for poorly 
known species (Pearson et al. 2007; Guisan et al. 2013).

In this study, we used ecological niche modeling to 
assess the distributional status of a Vulnerable For-
est Endemic bird species, the White-breasted Guine-
afowl (Agelastes meleagrides) across West Africa. 
White-breasted Guineafowl belongs to the family Numi-
dae and order Galliformes. Galliformes are thought to be 
highly susceptible to climate change owing to their rela-
tive inability to disperse over large distances and their 
consequently high site-fidelity (WPA-IUCN 2009). Habi-
tat loss and climate change both have drastic effects on 
the distributions and populations of birds (Şekercioğlu 
et al. 2012; Stephens et al. 2016).

Previous studies attempting to understand the ecol-
ogy and distribution of White-breasted Guineafowl have 
been patchy (Francis et al. 1992; Klop et al. 2010; Waltert 
et al. 2010; Freeman et al. 2019a, b), perhaps leading to an 
underestimation of the range of the species. For example, 
in 1986, one of the first surveys to be conducted in what 
was then known as the Gola Forest Reserves in Sierra 
Leone confirmed its presence, with six encounters across 
both primary and secondary forest habitat (Davies 1987), 
the first live records of the species in Sierra Leone, a 
country that by then had already seen most of its lowland 
forest cleared to make way for farming and plantations. 
Today, the Gola Rainforest National Park (GRNP) in 
Sierra Leone is believed to harbor one of the largest and 
westernmost populations of the species (Allport 1991; 
Dowsett-Lemaire and Dowsett 2007; Klop et  al. 2010), 
and the species has been used as an indicator of a healthy 

habitat and low hunting pressure (Fuller and Garson 
2000). This species is endemic to the Upper Guinea For-
est biome, occurring in remnant forest patches in Sierra 
Leone, Liberia, Côte d’Ivoire, and Ghana (IUCN 2018). It 
is considered to be tolerant of some disturbance, occur-
ring in previously logged sites at high densities (Waltert 
et al. 2010). The species is nonetheless threatened by hab-
itat loss and heavy poaching (snares and shooting) across 
most of its range (Fuller and Garson 2000). Its population 
is estimated at between 85,000 and 115,000 individuals, 
and the species is considered Vulnerable on the IUCN 
Red List in view of recent rapid population declines. Like 
most West African species, the ecology and distribution 
of White-breasted Guineafowl remain poorly known 
(Francis et  al. 1992; Waltert et  al. 2010). For example, 
the current IUCN estimated range map of the species 
does not include key areas in Liberia where the species 
has been recorded (e.g. Sapo National Park; Fig. 1). With 
such gaps in the current knowledge of the ecology and 
distribution of the species, success of interventions to 
assure the species’ conservation could be limited.

Here, we aimed to (1) estimate the current geographic 
distribution of White-breasted Guineafowl, (2) assess 
impacts of global climate change on the current and 
potential future geographic distribution of the species, 
and (3) identify priority areas for research and conserva-
tion of the species.

Methods
Input data
This study was conducted across the Upper Guinea low-
land rainforest of West Africa, which is one of two major 
forest blocks in West and Central Africa, a global biodi-
versity hotspot, and a BirdLife International-designated 
Endemic Bird Area. Primary occurrence data for White-
breasted Guineafowl were obtained from two sources: 
the Global Biodiversity Information Facility (GBIF 2017) 
and surveys in two national parks in Liberia and Sierra 
Leone (Sapo National Park in Liberia and Gola Rainfor-
est National Park in Sierra Leone). The data obtained 
were error-checked, for example, for precision in GPS 
coordinates and wrong arrangement of longitude or lati-
tude, and improved where necessary to meet appropri-
ate standards for ecological niche modeling as explained 
below. To this end, for GBIF data, we split the dataset 
into georeferenced and non-georeferenced portions. 
Georeferenced data were checked for errors and data 
consistency as regards geographic coordinates (Chapman 
2005). Where possible, errors were fixed; otherwise, erro-
neous data points were removed from the datasets. Non-
georeferenced data that had detailed both datasets were 
rarefied spatially to remove duplicate points, using SDM 
Toolbox v2.2b in ArcGIS v10.4.1 (Brown 2014). We split 
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the two occurrence datasets into two portions each: 70% 
for model calibration and 30% for evaluation.

Next, we acquired two independent environmen-
tal datasets, remotely sensed data and climatic data, for 
building ecological niche models. For climatic data, we 
acquired 15 climatic variables at 2.5’ (~ 5  km) spatial 
resolution, characterizing temperature and precipitation 
and their seasonality for present-day climatic conditions 
(Hijmans et al. 2005). To characterize future climate con-
ditions, we used data for two IPCC representative con-
centration pathway (RCP 4.5, 8.5) emissions scenarios 
and 27 general circulation models (GCMs), all for one 
future time period (2050; Hijmans et  al. 2005; Addi-
tional file  1: Table  S1). The RCPs summarize low and 
high emissions scenarios as regards greenhouse gases, 
and the GCMs represent independent simulations of 
global climate processes and thus allow understanding 
of uncertainty as regards future climate patterns. For 
remotely sensed data, we obtained Moderate Resolution 
Imaging Spectroradiometer (MODIS 2017) normalized 
difference vegetation index (NDVI) data layers at 250 m 
spatial resolution from 2012 to 2016 for the region. The 
MODIS data consist of gridded vegetation index maps 
that depict temporal and spatial variations in the earth’s 
vegetation activity (Didan et  al. 2015). These vegetation 

indices are derived on 16-day and monthly intervals and 
provide consistent, spatial and temporal time series com-
parisons of global vegetation conditions that can be used 
to monitor the Earth’s terrestrial photosynthetic vegeta-
tion activity in support of phenologic, change detection, 
and biophysical interpretations (Huete et al. 1999; Didan 
et  al. 2015). Environmental datasets were processed as 
explained below.

First, we delineated our calibration area (M), which 
corresponds to the region accessible to the species 
over relevant time periods (Barveet et  al. 2011). Defin-
ing the correct boundary and size of this area is crucial 
to obtaining good predictions (Barve et  al. 2011). We 
delineated two M areas: one for the fine-scale occur-
rence data from national parks and the remotely sensed 
environmental data, and the second for the coarse-scale 
data from the broader set of primary occurrence records 
and the climatic data. To determine a calibration area 
for the fine-scale datasets, we buffered the well-sampled 
Gola Rainforest National Park in Sierra Leone by 100 km 
(Fig. 2); and for coarse-scale datasets, we used ecoregions 
of West Africa (Olson and Dinerstein 2002), buffering the 
ecoregion with the highest concentration of occurrence 
points by the nearest ecoregion on each side (Peterson 
et  al. 2011). All environmental variables were masked 

Fig. 1  Map of West Africa showing the boundaries of Upper Guinea Forest, the current IUCN view of range limits of White-breasted Guineafowl, 
and Sapo National outside the IUCN range estimate of the species in southeastern Liberia
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to the corresponding extent of M for each dataset using 
the “extract by mask” function in ArcGIS version 10.5.1 
(ESRI 2017). Subsequently, to determine subsets of 
important environmental variables with which to cali-
brate our models for the climatic dataset, we eliminated 
one variable from each pair of the 15 climatic variables 
presenting Pearson correlation coefficients above 0.8. 
With this reduced set, we implemented a “leave-one-out” 
jackknife approach in Maxent using the environmental 
variable and all occurrence points for the species (Phil-
lips et  al. 2006; Pearson et  al. 2007; Shcheglovitova and 
Anderson 2013). Based on the test gain distributions in 
these analyses, we selected three subsets of uncorrelated 
variables for further testing.

For the MODIS dataset, in which vegetation index 
data from successive time periods can be highly intercor-
related, we applied three principal components analy-
sis approaches: T-mode, S-mode, and Fourier to reduce 

colinerity or spatial and temporal autocorrelation (Mar-
tins et  al. 2012; Zhang et  al. 2012; Gocic and Trajkovic 
2014; Eastman 2015). In T-mode, each image in the series 
is considered to be an independent variable in the analy-
sis, components are images and the loadings are graphs 
(Zhang et al. 2012). In contrast, in S-mode, each pixel is 
considered as an independent sample in space and time; 
components are graphs and the loadings are images 
(Martins et  al. 2012; Gocic and Trajkovic 2014). Fou-
rier approaches use time series transposed into a set of 
Fourier components (amplitudes and phases) and apply 
principal components analysis (Manjunath Aradhya et al. 
2010; Sobrino and Julien 2013). Following the analysis, 
we selected three subsets each of T-mode, S-mode, and 
Fourier variables for modeling. Following the data pro-
cessing for both occurrence and environmental datasets, 
we left with 67 occurrence records for MODIS data and 
31 occurrence records for climatic data.

Fig. 2  Current geographic distribution of White-breasted Guineafowl across West Africa as predicted by models based on remotely-sensed data 
using two threshold values. Light red areas are at 5% threshold, whereas dark red areas are at 20% threshold
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Ecological niche modeling
We used the Maxent algorithm to estimate the ecologi-
cal niche of our target species (Phillips et  al. 2006). To 
calibrate models and choose optimal parameter values, 
for climatic variables (coarse-scale data), we assessed 29 
combinations of Maxent feature classes (all possible com-
binations of linear, quadratic, product, threshold, and 
hinge features) as they interacted with 17 regularization 
multiplier values (0.1, 0.2, 0.3…1, 2, 4, 5, 6, 8, and 10). For 
MODIS variables, we assessed a simpler set of five com-
binations of Maxent feature classes (linear, quadratic, 
product, threshold, and hinge) as they interacted with 
nine regularization multiplier values (0.1, 0.3, 0.5, 0.7, 1, 
3, 5, 7, and 10) to speed up the processing time, given the 
high spatial resolution of this dataset. For both fine-scale 
and coarse-scale analyses, we split the occurrence data 
into two portions: 70% for model calibration and 30% for 
evaluation. We evaluated candidate models and selected 
best models using the Akaike information criterion cor-
rected (AICc) for small sample sizes to evaluate model 
complexity (Hurvich and Tsai 1989), performed sig-
nificance tests using partial ROC (Peterson et  al. 2008), 
and evaluated performance using a 5% training presence 
threshold to evaluate omission (Peterson et al. 2011).

Finally, to generate binary maps of the present and 
future time periods, we transferred the final (“best”) 
models to the present and future (climatic data only). We 
applied a 5% training omission threshold. To assess the 
vulnerability of White-breasted Guineafowl to global cli-
mate change, we combined medians of the present and 
27 future projections for each RCP to create a visualiza-
tion that shows the potential for range expansion, range 
retraction, and range stability (Campbell et al. 2015). All 
analyses were performed in ArcGIS version 10.5.1 (ESRI 
2017) and the “kuenm” R Package (Cobos et al. 2019).

Results
In all, 405 candidate models were calibrated for White-
breasted Guineafowl using the MODIS dataset. All 405 
candidate models performed significantly better than 
random expectations (p < 0.001); 123 models met our 5% 
omission rate threshold; and five models were within two 
units of the minimum AICc scores. Of the 123 models 
with low omission rates, 75 were candidate models built 
with T-mode variables (including the five models within 
two units of the minimum AICc), whereas only 7 and 41 
models were for Fourier and S-mode respectively. Of the 
five candidate T-mode models within two units of the 
minimum AICc and low omission rates, only one had 
zero omission rate. This model was selected as the best 
model and projected across the full extent of our region 
of interest (Fig. 2; Additional file 1: Table S2). From the 
model projections, White-breasted Guineafowl showed a 

broader distribution across its range compared to IUCN’s 
highly fragmented estimated range for the species (Figs. 1 
and 2). Suitable areas in model outputs were concen-
trated in the Gola rainforest complex in northwestern 
Liberia and southeastern Sierra Leone; the Tai-Sapo 
complex in southeastern Liberia and southwestern Cote 
d’Ivoire; and the Nimba Mountains in northern Liberia, 
southeastern Guinea, and northwestern Cote d’Ivoire 
(Fig. 2). Our projections also showed a significant extent 
of suitable habitat in southwestern Ghana and southeast-
ern Cote d’Ivoire (Figs. 1, 2).

For climate variables, using parameters reflecting 17 
values of regularization multiplier values as they inter-
acted with 29 combinations of feature classes and three 
sets of environmental variables, we built a total of 1479 
candidate models. All candidate models performed sig-
nificantly better than random (p < 0.001); 236 models 
met our 5% omission rate threshold and minimum AICc 
criteria, whereas one met our triple threshold for model 
complexity, performance, and significance (Additional 
file  2). The present climate-based potential geographic 
distribution of the species based on our final model 
showed a range almost entirely restricted to Liberia, with 
only a few patches of suitable conditions in southwest-
ern Côte d’Ivoire, southwestern Ghana, and southeastern 
and northwestern Sierra Leone (Fig.  3). Future projec-
tions showed high stability in the species’ range across 
Liberia, and minimal suggestion of range shift or loss in 
response to climate change (Fig. 3). We found only mod-
erate tendency for range expansion in response to climate 
change at the northwestern (Sierra Leone) and southeast-
ern (Côte d’Ivoire and Ghana) extremes of the range of 
the species (Figs. 3, 4). The results of the two RCPs were 
closely similar (Fig. 3).

Discussion
This study lays out the first detailed model-based projec-
tions of the geographic distribution of White-breasted 
Guineafowl across the Upper Guinea lowland rainforest 
region, providing a baseline for regional-to-local-level 
conservation planning and decision-making. Our results 
confirmed that GRNP and its sister reserve Gola For-
est National Park (GFNP) in Liberia hold broad suitable 
areas for White-breasted Guineafowl, emphasizing the 
importance of these sites in the conservation of the west-
ernmost range of the species. The good news here is that 
these two areas are designated protected areas in both 
countries. The decree of GFNP by the Liberian govern-
ment in 2016 created a transboundary landscape or cor-
ridor between Liberia and Sierra Leone to increase the 
dispersal potential of species in general, including, the 
White-breasted Guineafowl within a protected environ-
ment across the Gola forest landscape.
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Additionally, we acknowledge current efforts to create 
a network of protected areas across the region to increase 
transboundary landscape connectivity in Liberia, Sierra 
Leone, Guinea, and Cote d’Ivoire (e.g. GRNP Sierra 
Leone/GFNP Liberia; Ziama Guinea/Wonogizi Liberia; 
Tai Côte d’Ivoire/Sapo-Grebo Liberia) that will opti-
mize overall biodiversity conservation across the region. 
However, for threatened species, such efforts need to be 
extended to fragmented isolated populations/habitats 
outside these targeted landscapes (Freeman et al. 2019a, 
b). For instance, the easternmost population of White-
breasted Guineafowl in southwestern Ghana and south-
eastern Côte d’Ivoire is isolated from most of the species’ 
known populations in the west.

Unexpectedly the projected impacts of climate change 
on the geographic distribution of White-breasted Guine-
afowl were minimal, suggesting stability across the spe-
cies’ range for the present and in the future, at least as 
regards climate change effects. Low sensitivity to climate 
change in this species does match the general observation 
for West African birds (Carr et al. 2014; Baker et al. 2015). 
However, although minimum, the notable projected 
coastal range loss of the species should be considered in 
any future conservation planning. This potential range 
loss could be attributed to increasing projected global 
sea level rise that would increase the chances of coastal 
erosion, thereby changing microclimatic conditions. 
Liberia is already experiencing rapid coastal erosion due 

Fig. 3  Current and potential future distributions of White-breasted Guineafowl for two emissions scenarios (top, RCP 4.5; bottom, RCP 8.5) in 2050. 
Dark blue: areas predicted to be suitable in present and in the future; medium light blue: areas predicted to be suitable in present but with reduced 
probability of presence in the future; light blue: areas predicted to be suitable in present and completely unsuitable in the future; dark red: areas 
unsuitable in the present, but with a strong chance of suitability in the future; medium red: areas predicted to be unsuitable in present but with a 
moderate chance of suitability in the future; light red: areas predicted to be unsuitable in present but have slight chance of suitability in the future, 
and white: areas unsuitable in both present and the future
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to global sea level rise. Galliformes are thought to be at 
most risk from climate induced changes in higher eleva-
tions (Li et  al. 2010); the low elevation habitat in West 
Africa inhabited by White-breasted Guienafowl will not 
face such extreme climate shifts. However, an important 
caveat is that the potential behavioral and demographic 
impacts of climate change on West African birds remain 
largely unexplored. For example, the cues for the tim-
ing of breeding for Black Grouse (Tetrao tetrix) in Fin-
land have been shifted, such that the survival probability 
of chicks is much lower, as they are exposed to lower 
temperatures as the breeding cues shift further into the 
summer (Ludwig et al. 2006). These demographic conse-
quences of climate change need to be investigated fully 
for the White-breasted Guineafowl and other West Afri-
can taxa.

A prominent observation in our results, however, was 
the projected westwards potential climate-change-driven 

range expansion of the species, extending to the Western 
Peninsula National Park in southwestern Sierra Leone. 
We know of no record of the species from this site, but 
it already offers suitable forested habitat for some of the 
Upper Guinea Forest endemics (e.g. White-necked Pica-
thartes Picathartes gymnocephalus). However, given the 
projected potential connectivity between Western Pen-
insula National Park and GRNP, under favorable climatic 
conditions in the future, this forest complex could exem-
plify a classic metapopulational dynamics, with GRNP 
providing viable source populations of White-breasted 
Guineafowl to colonize the site.

Conclusions
In conclusion, we show that White-breasted Guineafowl 
has a broader present-day distribution than represented 
by IUCN (2018), and that projected climate-change-
driven impacts on the species are minimal. This latter 

Fig. 4  Climatic range gains and losses for White-breasted Guineafowl projected based on climate model projections for 2050. The top map shows 
potential range gains while the bottom map shows potential range losses
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result suggests that forest cover, and not necessarily cli-
mate change, is the most important driver of the species’ 
geographic distribution. As such, national and regional 
conservation efforts should prioritize forest protection 
and anthropogenic threats (e.g. hunting pressure, shifting 
cultivation) impacting the species. This new perspective 
on the species’ distribution is important for its conser-
vation given increasing threats across its range. It pro-
vides an opportunity to include isolated populations that 
were originally overlooked for lack of information. These 
results demonstrate that by combining remotely sensed 
data and climatic data in ecological niche modeling, we 
understand not only species’ responses to global climate, 
but also their responses to land use and land cover.

Additional files

Additional file 1: Table S1. General circulation models and the two emis‑
sions scenarios used in our models. Table S2. Metrics of final best models 
selected from the calibration of climatic and MODIS data.

Additional file 2. Climatic data model calibration output using kuenm R 
Package.
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