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Abstract 

 Multichannel radar depth sounding systems are able to produce two-dimensional and three-

dimensional imagery of the internal structure of polar ice sheets. One of the relevant features 

typically present in this imagery is the ice-bedrock interface, which is the boundary between the 

bottom of the ice sheet and the bedrock underneath. Crucial information regarding the current state 

of the ice sheets, such as the thickness of the ice, can be derived if the location of the ice-bedrock 

interface is extracted from the imagery. Due to the large amount of data collected by the radar 

systems employed, we seek to automate the extraction of the ice-bedrock interface and allow for 

efficient manual corrections when errors occur in the automated method. 

 We present improvements made to previously proposed solutions which pose feature 

extraction in polar radar imagery as an inference problem on a probabilistic graphical model. The 

improvements proposed here are in the form of novel image pre-processing steps and empirically-

derived cost functions that allow for the integration of further domain-specific knowledge into the 

models employed. Along with an explanation of our modifications, we demonstrate the results 

obtained by our proposed models and algorithms, including significantly decreased mean error 

measurements such as a 43% reduction in average tracking error in the case of three-dimensional 

imagery. 

 We also present the results obtained by several state-of-the-art ice-interface tracking 

solutions, and compare all automated results with manually-corrected ground-truth data. 

Furthermore, we perform a self-assessment of tracking results by analyzing the differences found 

between the automatically extracted ice-layers in cases where two separate radar measurements 

have been made at the same location. 
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Chapter 1 -  INTRODUCTION AND LITERATURE REVIEW 

1.1 - Background and motivation 

 Experts in climatological, geophysical and polar research have reached full agreement that 

the large glacial bodies of the planet, such as Antarctica and Greenland, have undergone a process 

of accelerated melting over the past several decades [1 - 4]. This is of extraordinary concern to the 

international scientific community due to the significant social and environmental impacts of sea 

level rise generated by melting ice, many of which can already be observed today.  

 Estimates of the annual polar ice mass discharge and contribution to sea level vary 

according to the methodology and data acquisition processes employed in different studies; 

however, researchers agree that both have significantly increased in the 20th century. Based on 

combined satellite altimetry, interferometry, and gravimetry datasets, some scientists argue that 

since 1992 polar ice melting has caused global sea level to rise, on average, by 0.59 ± 0.20 

millimeters per year [2], whereas other studies indicate this number may be as high as 2 millimeters 

per year [3]. Furthermore, recent research indicates that the Antarctic ice sheet discharge increased 

from 40 ± 9 gigatonnes/year in 1979-1990 to 252 ± 26 gigatonnes/year in 2009-2017 [4].  

 Several models and simulations that allow scientists to understand and predict the current 

and future ice sheet dynamics have been proposed. These models often involve ice-surface mass 

balance and conservation, ice flow, and discharge rates [5, 6, 7]. In order for these models to be 

formulated, large amounts of data must be directly acquired from polar regions. Ice sheet data are 

often repeatedly acquired from the same locations over the years so that direct calculations of the 

variations in ice sheet volume and ice velocity can be performed [8] and so that the long-term 

simulations can be evaluated. One of the main measurements required for assessing the mass 
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balance of the ice sheets of a particular region is the ice thickness [8], which we focus on 

throughout this work.  

 Several techniques have been employed over the years for the purpose of mapping and 

imaging the polar ice sheets. Ground-penetrating radar depth sounding systems have been 

developed for the purpose of imaging both the exposed and the subterranean structure of the polar 

ice sheets in an efficient manner. Since the 1980s, radar depth sounding (RDS) systems have been 

developed at the University of Kansas, as part of research efforts by the Center for Remote Sensing 

of Ice Sheets (CReSIS) and previously the Radar Systems and Remote Sensing Laboratory (RSL). 

Gradual improvement in RDS instrumentation led to the development of the Multichannel 

Coherent Radar Depth Sounder (MCoRDS) [9, 10], which is able to provide wide-coverage 

sounding and imaging of polar ice sheets with fine spatial resolution.  

 Using this sensor, CReSIS is able to image the internal structure of polar ice sheets to a 

depth of several kilometers. MCoRDS collects polar data from airborne platforms such as the 

Lockheed P-3 Orion and the Douglas DC-8 aircraft operated by the National Aeronautics and 

Space Administration (NASA).  

 

1.2 - Radar imagery 

 We use MCoRDS data to form images of the subterranean ice topography. The radar 

system employs a cross-track antenna array where each antenna element is individually sampled. 

Data from each element are independently pulse-compressed to resolve targets in the range 

dimension and synthetic aperture radar (SAR) processed to resolve targets in the along-track 

dimension. Finally, the individual SAR images from each element are combined using array 

processing to resolve targets in the elevation angle dimension [11]. The reader is referred to [11, 
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12, 13] for further information regarding the data acquisition and signal processing techniques 

employed. All radar data presented in this document were acquired with MCoRDS and processed 

in the manner briefly presented above. Note that minor differences exist in the radar systems and 

data processing parameters used in different CReSIS deployments, which lead to minor differences 

in the imagery generated from each deployment season. 

 Data products from this processing include two-dimensional SAR images where only the 

nadir elevation angle is resolved and three-dimensional SAR tomographic images where targets 

from all cross-track angles are resolved. The nadir direction is defined as pointing straight down, 

and therefore it is orthogonal to the surveyed terrain if the terrain is perfectly flat. 

 In the nadir-looking two-dimensional echograms generated by CReSIS, the ice structures 

are captured along the flight profile. Fig. 1.1 illustrates the image axes with respect to the aircraft, 

and Fig. 1.3 shows a two-dimensional echogram generated by CReSIS from data collected as part 

of the 2017 Operation IceBridge deployment to Greenland. The horizontal axis represents the 

along-track dimension, where each column is a range-line. The vertical axis corresponds to the 

fast-time dimension, where each row is a range bin. The vertical dimension is directly related to 

the depth of the subterranean ice structure. The pixel intensity of the radar image is proportional 

to radar scattering intensity, with darker representing a stronger scattering signal. The array 

processing algorithm for 2D imagery uses a filter to estimate the intensity of targets in the nadir 

direction while suppressing targets from off nadir. The Minimum Variance Distortionless 

Response (MVDR) algorithm is used for all 2D images in this work [12]. 
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 The three-dimensional data products consist of sequences of two-dimensional cross-track 

images (or “slices”) of the terrain. In each slice, the horizontal axis displays the radar elevation 

angle discretized into direction-of-arrival (DoA) bins, and the vertical axis depicts the fast-time 

dimension in the same manner as a two-dimensional echogram where each row corresponds to a 

range-bin. In this work, the terms “DoA bin” and “elevation angle bin” are synonymous. The 

MUltiple SIgnal Classification (MUSIC) algorithm is used to generate the 3D images [13]. The 

color of each pixel represents the MUSIC cepstrum which is loosely related to the scattering 

intensity from a particular DoA bin. See Fig. 1.5 for a single two-dimensional slice of the three-

dimensional imagery generated by CReSIS from data collected as part of the 2014 Operation 

IceBridge deployment to Greenland. In that figure, yellow indicates a larger cepstrum value which 

is associated with increased scattering intensity, and blue indicates a lower cepstrum value. Each 

slice of the 3D imagery represents a single range-line of SAR imagery, and thus corresponds to 

one column of the two-dimensional echogram depicting the same surveyed terrain. The 2D image 

Fig. 1.1.  Illustration depicting the axes of the radar imagery relative to the radar platform. Nadir-looking two-
dimensional echograms are vertically oriented and lie in the plane formed by the fast time and along-track axes. 
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is a proper subset of the 3D image and does not have an elevation angle dimension; it corresponds 

to just the nadir elevation angle bin from each 3D slice except that the array processing method to 

obtain the image is different. See Fig. 1.2 for a diagram demonstrating how an array of consecutive 

cross-sectional 2D slices forms a three-dimensional image.  

 In CReSIS data products, a data segment typically corresponds to the data collected during 

entire flights. Data segments are divided into data frames, which usually correspond to roughly 50 

kilometers (measured in the along-track dimension) of surveyed terrain each. Most examples of 

2D imagery presented in this document depict entire data frames, such as Fig. 1.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2.  A sequence of cross-track “slices” generates a 3D image of the surveyed terrain. 
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1.3 - Ice layers 

 In both two-dimensional and three-dimensional formats of imagery generated by CReSIS, 

the most prominent features are the ice-surface and ice-bottom layers. The ice-surface layer is the 

interface between the air and the top surface of the ice sheet. The ice-bottom layer is the interface 

between the bottom of the ice-sheet and the bedrock or liquid water underneath it. 

 No ice-bottom layer is visible in portions of the flights that are not over ice. Because the 

radar radio waves suffer increased power attenuation while traveling through the ice, the ice-

bottom boundary, where it exists, may be relatively faint and difficult to detect. See Fig. 1.5 and 

Fig. 1.7 for examples of this, along with the correct labeling of the ice-bottom layers in Fig. 1.6 

and Fig. 1.8 respectively. 

 In slices of 3D imagery, the response from the ice-bottom interface is typically of lower 

quality toward the grazing angles (leftmost and rightmost edges of individual slices). This is 

because the radar signal must travel farther to reach the ice in cases where the surface topography 

is relatively flat, the beam pattern is steered straight down at nadir so that less energy is sent toward 

grazing angles, the angular resolution of the horizontally oriented antenna array worsens toward 

the end-fire case, and the backscatter tends to be less for larger angles of incidence.  

 In contrast, a strong radar response is typically received from the ice-surface. The terrain 

underneath the ice is rich and heterogeneous, and can present varied topographies including flat 

regions, mountains, and valleys. In contrast, a much smoother interface is usually expected for the 

ice-surface, due to the gradual accumulation of ice and snow over thousands of years which 

generally fills in any low spots in the terrain. 

 For many glaciological research purposes, the locations of both ice-surface and ice-bottom 

layers must be obtained from the imagery, which allows for the slope, thickness, and other 
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properties of the ice to be numerically computed. This information can be used in generating digital 

elevation models (DEMs) of the imaged terrain.  

 Labeling of the layers in two-dimensional imagery has traditionally been performed by 

hand, since the ice boundaries are usually easily identifiable to a trained annotator. Manual tracking 

normally consists of hand-selecting sparse points corresponding to the ice boundaries, followed 

by a linear interpolation of the selected points in order to form a continuous layer. In some cases 

where the ice-bottom scattering is a distinct layer, a simple active contour model, also known as a 

snake model, is also used. This routine starts at the manually labeled points and tracks the highest 

intensity value within a manually selected range-bin window around the labeled point’s range-bin 

for each of the neighboring range-lines on each side of the manual point. This process is repeated 

with the newly tracked range-lines, and then again with those range-lines, until all the range-lines 

have a tracked value. 

 However, due to the large amount of data acquired by modern ice imaging systems, precise 

manual tracking of two-dimensional echograms is a highly time-consuming process even with the 

aid of the simple active contour model mentioned above. In the case of three-dimensional imagery, 

manual labeling of thousands of sequential slices to generate a three-dimensional model of the ice-

bed is not feasible. For this reason, significant effort is being spent to develop automated ice layer 

tracking systems for both 2D and 3D data formats.  

 Between the two aforementioned data products, there exists a fundamental difference that 

impacts the design and architecture of automated layer trackers: a strong correlation between 

consecutive slices of 3D imagery is expected, as they represent adjacent cross-sections of the 

surveyed terrain. For this reason, in most state-of-the-art software for three-dimensional ice 

reconstruction, tracking is performed in batches of consecutive slices, in order to exploit the along-
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track correlation between them. On the other hand, no similar “third dimension” exists in the case 

of two-dimensional imagery, and therefore each echogram is processed individually.  

 In this work, we propose several improvements and adaptations to two existing automated 

layer tracking solutions. The first, initially proposed by Crandall et al. [14], is based on the 

construction of a Hidden Markov Model (HMM) framework that defines a probabilistic cost 

minimization model conditioned on 2D images, with the Viterbi algorithm [15, 16] being 

employed to perform exact inference on the HMM. The second, applied only to three-dimensional 

imagery, is based on a Markov Random Field (MRF) framework conditioned on a 3D image. This 

ice-bottom tracking method was initially proposed by Xu et al. [17]. While performing exact 

inference on MRFs is NP-hard in the general case, a number of approximate algorithms have been 

developed for this purpose. The sequential tree-reweighted message passing (TRW-S) algorithm 

[18] is employed for approximate inference on the MRF. The result of the inference step performed 

by either of the aforementioned algorithms is the answer that will maximize the probability of 

correctly labeling the ice-bottom interface conditioned on the input imagery; such probabilities are 

calculated from a combination of single-pixel and transition cost functions. The majority of the 

improvements proposed in this work are in the form of refinements to the existing cost functions, 

with the purpose of integrating further domain-specific knowledge and a priori information about 

the ice-sheets into the calculations. A detailed explanation about the theory and implementation of 

these methods is provided in Chapter 2. 

 Tracking of the ice-surface boundary is generally a trivial task, especially because accurate 

estimates exist for most regions surveyed by CReSIS instrumentation. Because of this, we make 

the assumption that the ice-surface is labeled a priori and only the ice-bottom layer must be tracked 

in both 2D and 3D echogram formats. For ice-surface information in 2D echograms, we use a 
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threshold tracker occasionally guided by the ArcticDEM [19] and Reference Elevation Model of 

Antarctica (REMA) [20] DEMs. For the 3D imagery, we rely entirely on the ArcticDEM and 

REMA DEMs for ice-surface information. The available ice-surface layer information is used by 

the automated trackers proposed in this work as an additional source of evidence and as a constraint 

for the location of the ice-bottom boundary. 

 Several existing automated layer tracking techniques attempt to determine the locations of 

both ice-surface and ice-bottom layers simultaneously, rather than using the data available for the 

ice-surface layer. Thus, these approaches do not require the location of the ice-surface layer to be 

known a priori. Existing solutions also widely differ regarding which inputs must be passed in to 

the layer tracking software, and which inputs may be optionally passed in if available. A review of 

existing layer tracking approaches, as well as their inputs and outputs, is provided in the next 

section.  
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Fig 1.3.  An example of a two-dimensional radar echogram generated from data acquired from MCoRDS as part 
of the NASA Operation IceBridge deployment to Greenland in 2017.  

Fig 1.4.  The same echogram as presented in Fig 1.3 above. The ice-surface and ice-bottom layers have been 
overlaid on the echogram, and are indicated by the continuous orange and yellow lines, respectively. This color 
coding for the correct ice-surface and ice-bottom layers is standard throughout this document. 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig 1.6.  The same echogram as presented in Fig 1.5 above. The ice-surface and ice-bottom layers have been 
overlaid on the echogram. Notice that the two layers merge when no ice is present around range-line 5,500. This 
segment is indicated by the green line.  

Fig 1.5.  An example of a two-dimensional radar echogram generated from two adjacent data frames acquired 
from MCoRDS as part of the NASA Operation IceBridge deployment to Greenland in 2017. Notice how this 
example displays a more rugged ice-bottom layer than the previous. 
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Fig 1.7.  An example of a two-dimensional radar echogram generated from data acquired from MCoRDS as part 
of the NASA Operation IceBridge deployment to Greenland in 2017. Notice that the ice-bottom interface in this 
image is relatively faint and blurry in several areas. 

Fig 1.8.  The same echogram as presented in Fig 1.7 above. The ice-surface and ice-bottom layers have been 
overlaid on the echogram. The improvements we propose to the automated layer trackers aim to improve the ice-
bottom detection rate even in unfavorable situations such as the one presented above. 
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Fig 1.8.  Example of a single slice of three-dimensional imagery generated from data acquired from MCoRDS as 
part of the NASA Operation IceBridge deployment to Greenland and the Canadian Arctic Archipelago in 2014.  

Fig 1.9.  The same slice as presented in Fig 1.8 above. The ice-surface and ice-bottom layers have been overlaid 
on the image and are depicted with the standard color scheme. 
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Fig 1.10.  Example of a single slice of three-dimensional imagery generated from data acquired from MCoRDS 
as part of the NASA Operation IceBridge deployment to Greenland and the Canadian Arctic Archipelago in 2014. 
Notice also how this example displays a more rugged ice-bottom layer than the previous. 

Fig 1.11.  The same slice as presented in Fig 1.10 above. The ice-surface and ice-bottom layers have been overlaid 
on the image and are depicted with the standard color scheme. 
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Fig 1.12.  Example of a single slice of three-dimensional imagery generated from data acquired from MCoRDS 
as part of the NASA Operation IceBridge deployment to Greenland and the Canadian Arctic Archipelago in 2014.  

Fig 1.13.  The same slice as presented in Fig 1.12 above. The ice-surface and ice-bottom layers have been overlaid 
on the image and are depicted with the standard color scheme. Notice that the two layers merge when no ice is 
present around direction-of-arrival bin 57. This segment is indicated by the green line.  
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1.4 - Review of existing approaches for automated ice layer tracking 

 The large majority of all layer tracking solutions presented to date focus on two-

dimensional data, and are not designed to take advantage of the additional information available 

in the 3D case. 

 One of the first efforts regarding automated layer tracking solutions specifically designed 

for radar echograms of polar ice sheets, Gifford et al. [21] propose two methods for detecting both 

ice boundaries from two-dimensional imagery while receiving no input other than the radar 

echogram itself. The fist solution is a simple gradient-based edge detection approach employing 

detrending routines and image filtering for noise suppression. A more robust approach, based on 

the active contour technique, is also suggested.  

 As a successor to the aforementioned active contour technique, a distance-regularized 

level-sets approach was proposed by Rahnemoonfar et al. [22], in which both ice layers are 

simultaneously tracked by evolving an initial contour in the radar imagery until the ice interfaces 

are properly represented by the contour boundaries. This method was developed for tracking of 

two-dimensional echograms, and requires no additional sources of evidence regarding the ice 

sheets. Ilisei et al. [23] propose a technique that exploits the statistical properties of the radar 

response and generates a subsurface map that is segmented into regions corresponding to various 

features. This solution was applied to 2D echograms acquired from MCoRDS. 

 In another solution, Crandall et al. [14] pose layer-tracking as an inference problem on a 

probabilistic graphical model (PGM). An HMM is formulated from the constraints and 

assumptions made about the data, and divided into a set of non-loopy graphs on which the Viterbi 

algorithm can be utilized to solve for the highest-probability sequence of hidden states. The hidden 

states, in this case, are the rows that correctly label the ice-bottom layer in each column of the 
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input image matrix. In this document we propose improvements to this solution, in the form of 

novel cost functions that allow for further domain-specific knowledge and additional sources of 

evidence to be integrated into the PGM.  

 The original Viterbi algorithm-based tracking technique was designed to track both ice 

layers in 2D imagery. The ice-surface was detected first, and then the ice-bottom layer with the 

restriction that it should be located underneath the ice-surface. This method has no additional input 

requirements other than the echogram itself and a set of optional scalar parameters, which are 

factored in the calculation of the pixel and transition probabilities that compose the model. In this 

work, an additional image processing step based on the image gradient was used before tracking. 

 Building on the probabilistic graphical approach proposed by [14], Lee et al. [24] construct 

an MRF to represent the model and use the Gibbs sampling algorithm to sample from the joint 

distribution of all possible layers conditioned on a 2D radar echogram image. The joint distribution 

of the layer boundaries is decomposed according to how well the echogram of interest can be 

explained by a given labeling, and how well the labeling satisfies the assumptions made about the 

ice layers, such that they should be smooth, continuous, and located around areas of high pixel 

intensity. The Gibbs Sampler is a Markov Chain Monte Carlo (MCMC) algorithm capable of 

producing samples from a given target distribution without directly sampling from it or even 

knowing its form, as long as the conditional distribution of each of the variables is known and 

tractable to compute. The Gibbs sampling-based approach has no additional input requirements, 

and detects both ice layers simultaneously by solving for the joint probability of the two layers.  

 Research has also been conducted with the purpose of developing automated layer tracking 

software able to detect multiple internal layers from a two-dimensional radar image, rather than 

only tracking the ice-bottom layer or both the ice-surface and ice-bottom boundaries. Examples 
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include the solution proposed by Mitchell et al. [25] which uses an active contour model to find 

high-intensity edges likely to correspond to layer boundaries. Mitchell [26] also demonstrates the 

application of MCMC techniques to extract internal ice layers from nadir-looking 2D echograms. 

Panton [27] proposes an active contour solution which requires a human operator to manually 

provide seed points as initial layer estimates. Carrer and Bruzzone [28] use a local scale HMM 

solved with the Viterbi algorithm to detect internal layers after a series of image pre-processing 

steps.  

 Research efforts in the fields of remote sensing, computer vision, and pattern recognition 

have also been performed with the purpose of identifying roads, vegetation, buried objects, and 

other features from ground-penetrating radar imagery, which is similar to our problem. As an 

example, a technique using a PGM solved using the Viterbi algorithm is proposed by Smock and 

Wilson [29].  

 For ice-bottom extraction from three-dimensional imagery, a solution was proposed by Xu 

et al. [17] using the TRW-S algorithm to iteratively perform energy minimization on a first-order 

MRF in a PGM framework similar to that proposed by Crandall et al. [14]. In this document we 

propose improvements to this solution, in the form of novel cost functions that allow for further 

domain-specific knowledge and additional sources of evidences to be integrated into the PGM. 

Berger et al. [30] presents improvements to the existing HMM/Viterbi algorithm framework of 

[14] and MRF/TRW-S algorithm framework of [17], many of which are reviewed in this 

document. 

 Furthermore, Xu et al. [31] recently proposed a deep-learning approach using a 

combination of a three-dimensional convolutional neural network (C3D) and a recurrent neural 

network (RNN) for three-dimensional imagery. Convolutional and recurrent neural networks have 
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revolutionized computer vision and pattern recognition tasks in recent years, and this is the first 

application of neural networks for the purpose of three-dimensional ice-layer tracking that we are 

aware of. In this solution, the C3D network performs local feature extraction in both intra- and 

inter-slice dimensions, while the RNN is used to capture longer-range features both within 

individual images and across the entire sequence of slices that compose the 3D dataset. 

 

1.5 - Outline of thesis 

 The remainder of this document is organized as follows: in Chapter 2, a theoretical review 

of the HMM and MRF frameworks and the Viterbi and TRW-S algorithms is provided, along with 

an explanation regarding their implementation for ice layer tracking purposes. Chapter 3 presents 

an empirical method of providing the automated layer tracking software with additional 

information about the ice layers based on a geostatistical analysis of ground truth data. Chapter 4 

discusses the results obtained from the proposed algorithms, and presents a comparison between 

these and the results generated by other proposed layer tracking solutions. Chapter 5 presents 

concluding remarks about the work performed.  
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Chapter 2 -  THE HMM AND MRF GRAPHICAL MODELS FOR ICE 
LAYER TRACKING 

2.1 - Introduction 

 In this section, we provide an overview of the automated ice-bottom layer tracking methods 

based on the construction of an HMM and a MRF for two-dimensional and three-dimensional 

imagery, respectively. A theoretical review of the Viterbi and TRW-S algorithms is first provided, 

followed by an explanation of the HMM and MRF graphical models and their implementation for 

ice layer tracking purposes. Furthermore, a summary of the inputs to and outputs from both HMM 

and MRF trackers is provided, along with a brief characterization of each. 

 Several improvements to both layer tracking applications are also proposed, mostly in the 

form of improved image pre-processing steps and novel cost functions that integrate further 

domain-specific knowledge into the probabilistic graphical models constructed. These modified 

cost functions were designed to match empirically-discovered properties of the surveyed ice based 

on a geostatistical analysis of manually-corrected ground-truth data, in a procedure described in 

detail in Chapter 3 of this document. We also propose a modified approach regarding the 

implementation of the TRW-S algorithm which helps improve tracking results compared to the 

original solution of [17]. 

 In the case of individual two-dimensional images, we construct an HMM conditioned on 

the input image, as proposed by Crandall et al. [14]. The most likely sequence of hidden states of 

an HMM can be found efficiently and exactly by performing inference with the Viterbi algorithm. 

Here, the definition of “two-dimensional images” is applied to both nadir-looking 2D echograms 

and individual slices of 3D imagery. On the other hand, an MRF is constructed conditioned on the 

entire three-dimensional image (in other words, on the entire set of consecutive slices that compose 
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a data frame). Performing exact inference on an MRF is an NP-hard problem and thus 

computationally intractable in the general case. However, efficient approximate techniques for this 

purpose exist, including the TRW-S algorithm used for this purpose by Xu et al. [17]. TRW-S is 

the de facto state-of-the-art in approximate MRF inference. Regardless of the model or algorithm 

used, the result of the inference step is the vector or matrix that describes the path with the highest 

calculated probability of correctly labeling the ice-bottom boundary conditioned on the input 

image and ancillary data used by the specific implementation.  

 Both HMM and MRF models are based on a unary cost function which assigns the cost for 

the ice-bottom layer to pass through each and every valid pixel. The formulation of this unary cost 

function is similar in both the HMM and MRF models. These models are also based on a binary 

(or pairwise) cost function, which is defined differently between the HMM and MRF models and 

generates a major difference between the two. In the case of a two-dimensional image, the binary 

cost function assigns costs to all valid transitions between adjacent columns, regardless of whether 

the columns represent range-lines (if the image is a nadir-looking 2D echogram), or represent 

direction-of-arrival bins (if the image is a single slice from 3D imagery). This combination of a 

unary cost function and a one-dimensional binary cost function defines an HMM.  

 However, in the case of three-dimensional imagery, two binary cost functions are used: 

one that enforces smoothness between adjacent columns (direction-of-arrival bins), and another 

that enforces smoothness on adjacent slices (range-lines). This combination of a unary cost 

function and a two-dimensional binary cost function generates a MRF, which, unlike an HMM, 

cannot be solved using the Viterbi algorithm. An MRF is similar to an HMM in that it consists of 

unary and pairwise terms, but an important difference is that the graphical structure of pairwise 

terms in an HMM forms a chain whereas an MRF may have arbitrary graph structure. 
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 In both HMM and MRF models, each valid pixel is a node of the corresponding graph. In 

Fig. 2.1, we present a diagram depicting a two-dimensional graph of size 4-by-2, as well as the 

unary cost and one-dimensional binary cost assignments which define an HMM. In this diagram, 

each node is represented as a square and is assigned an individual unary cost value. The binary 

cost assignments are represented as arrows, and only the assignments corresponding to one specific 

node are shown in the figure for ease of visualization. In reality, binary costs are assigned between 

all valid pixels of all pairs of consecutive columns of the graph. Since these binary costs are only 

assigned to transitions between adjacent columns, this is a one-dimensional binary cost function. 

However, in the MRF there exists a third dimension corresponding to different slices of the 3D 

imagery, which can be visualized as an extension of the graph depicted below to include multiple 

pages. Therefore, the binary costs in the MRF are assigned both column-to-column (cross-track) 

and page-to-page (along-track), and thus this is a two-dimensional binary cost function. 

 

 

 

 

 

 

 

 

 
Fig. 2.1.  Diagram depicting a two-dimensional graph, in which the definition of a unary cost for each individual 
node and a one-dimensional transition (binary) cost function between adjacent nodes in consecutive columns 
defines an HMM. Not shown are the binary cost assignments between every pixel of the first column and every 
pixel of the second column. 
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 The HMM-based tracker was originally developed for the purpose of layer tracking on 

nadir-looking 2D echograms only; however, it can be applied to 3D data with no modifications to 

its implementation if every slice of the three-dimensional imagery is individually processed by the 

software – after all, each individual slice is a two-dimensional image. As the Viterbi algorithm 

operates on non-loopy chains only, there seems to be no possibility of applying it on the entire 3D 

dataset at once, but inter-slice message passing may be simulated by providing the algorithm with 

the results from the previously tracked slice in the form of additional ground-truth data points. 

This possibility is not explored in this work and each slice is tracked individually with no prior 

information from other slices. Note that such an approach would still be significantly less robust 

than TRW-S, because it would make final decisions in a sequential manner since it would consider 

slices sequentially instead of simultaneously.  For example, an incorrect decision in the first slice 

would negatively impact inference on subsequent slices because that bad estimate would be fed in 

as ground truth. In contrast, TRW-S considers all evidence simultaneously, meaning that 

ambiguity in the first slice may be resolved by evidence in later slices. 

 Without the capability of inherently propagating layer information between adjacent slices, 

the Viterbi tracker often presents discontinuities in the along-track dimension when applied to 

three-dimensional datasets – this is only partly mitigated, but not completely solved, if ground-

truth from the previous slice is provided to the tracker. On the other hand, the TRW-S algorithm 

is well-suited for 3D data tracking due to its capabilities of performing both intra-slice (cross-

track) and inter-slice (along-track) message passing when performing global energy minimization. 

The inter-slice message propagation is performed both forwards and backwards, which allows for 

the tracking result of a given slice to be iteratively influenced by the partial tracking of slices both 
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ahead of and before it. This method is therefore capable of preventing discontinuities in both along-

track and cross-track dimensions.  

 

2.2 - The Viterbi algorithm 

 The Viterbi algorithm is an efficient dynamic programming method for finding the highest-

probability sequence of hidden states in a finite-state discrete-time HMM. The path which presents 

the highest-probability sequence of hidden states is the path with the highest total path metric 

between the initial and final states [32]. In the context of a Markov process, any non-zero 

probability of a single transition between two states is defined as a branch metric. The branch 

metric of the transition from state i to state j is defined as mij. This and other probabilities are 

usually computed as log-likelihood probabilities to reduce computational complexity and rounding 

errors by converting multiplications of probabilities to summations of log-probabilities. The 

Viterbi algorithm finds the path which maximizes the path metric, which equals the sum of all 

branch metrics between the initial and final states. Mathematically, the procedure applied is 

defined as the recursive optimization problem of 

 Mj(k) = MAXi { Mi(k − 1) + mij(k) },          (1) 

which states that the maximum-likelihood path up to state j after k transitions equals the maximum-

likelihood path up to the previous state i, plus the branch metric between states i and j. Any 

unallowed transitions between two states are given the value of mij =  −∞, to ensure that they 

will not be selected as part of the final path after maximization. The final path discovered by the 

algorithm is guaranteed to be the one which maximizes the global likelihood of transitions between 

the initial and final states.  

 



25 
 

2.3 - The TRW-S algorithm 

 The TRW-S algorithm is a successor to the tree-reweighted max product message passing 

(TRW) algorithm [33] for computing the maximum a posteriori (MAP) configuration of an MRF 

in which the cost function may be defined as a cyclic (or loopy) graph-structured probability 

distribution. For non-cyclic graphs (also known as trees), simpler message-passing methods such 

as the max-sum (or max-product) algorithm may be applied instead. The Viterbi algorithm is a 

special case of the max-sum (or max-product) algorithm.  

 Both TRW and TRW-S are iterative message-passing algorithms in which real-valued 

functions called messages are exchanged among the nodes of the MRF. The messages contain 

likelihood distributions that reflect each variable’s beliefs about the labels of its neighbors, based 

on its own evidence and the messages it has received in past iterations. In order to propagate the 

messages, both algorithms break down the MRF into several monotonic chains and transmit the 

messages along each chain. Local evidence thus iteratively propagates from neighbor to neighbor, 

spreading across the entire graph given enough iterations. After all iterations are performed, each 

node chooses its label based on its local evidence and the last set of messages it received from its 

neighbors. The main difference between the two algorithms is that the original TRW performs this 

message propagation on a bi-directional parallel schedule, whereas TRW-S does so in a specific 

sequential schedule. Because of this modification, TRW-S requires only one message, rather than 

two, to be passed on each edge of the graph – thus, it converges faster and requires only half the 

memory of TRW and other traditional message passing methods. However, neither of these 

algorithms are guaranteed to find the optimal cost minimization sequence within the graph. In the 

context of the CReSIS three-dimensional data, each pixel in the image passes a cost message to its 
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four neighboring pixels to the left and right (direction-of-arrival dimension) and forward and 

backward (along-track dimension).  

 TRW and TRW-S may also be applied on a non-cyclic graph. In this case, the exact 

marginal will be calculated and the algorithm is guaranteed to converge to the optimal MAP 

configuration. At this point, these algorithms would be similar, both in execution and performance, 

to the Viterbi algorithm. Since the Viterbi algorithm was already initially implemented for 

performing inference on non-cyclical graphs in the context of ice layer tracking and is guaranteed 

to efficiently find the optimal solution, the possibility of using TRW-S or other loopy-BP 

techniques for this purpose has not been explored. 

 While both Viterbi and TRW-S algorithms were originally devised to discover the 

maximum-likelihood configuration conditioned on the HMM or MRF of interest, the exact same 

frameworks may be used to perform inference on a graph in which edges are described in terms of 

a discrete cost, rather than probabilities. The cost represents a penalty associated with selecting a 

certain sequence of edges, rather than an increased likelihood, and thus needs to be minimized 

rather than maximized. In several publications, this cost is referred to as energy, and thus the 

procedure receives the name of energy minimization. The Viterbi and TRW-S are tasked with 

discovering the lowest-cost solution conditioned on the given radar echograms. Costs are assigned 

in a very similar way for both 2D and 3D imagery, according to a cost model explained in detail 

in Section 2.4.  

 The original TRW-S ice-bottom tracker proposed in [17] has been modified in several ways 

to improve its performance [11, 30]. In the original implementation, in both direction-of-arrival 

and along-track dimensions there was a preferential direction where the current iteration message 

is propagated, while a stale cost message from the previous iteration was propagated in the opposite 
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direction. This created a bias towards the side of the image from which the preferential direction 

started from. For example, when the preferential direction is left to right, the left-most side of the 

image has a stronger effect on the result than all other columns because its message is passed all 

the way across the image in a single iteration. The original solution dealt with this by alternatively 

propagating messages from the left to right and then right to left and from up to down and then 

down to up. The issue with this solution was that the most extreme directions of arrival (far-left 

and far-right), where the signal quality is worst, were being given too much influence.  

 In the case of 3D imagery, we have high-confidence ground-truth points at the nadir 

direction-of-arrival bin of every slice which is the center of the image. The ground-truth points are 

from the corresponding previously tracked and corrected two-dimensional data. Therefore, the 

ground-truth point at nadir should exert the largest influence on the tracking, and for this reason 

the preferential direction was changed to be outward from nadir. So on the left side of the image, 

the preferential direction is toward the left and on the right side of the image, the preferential 

direction is toward the right. In this way, the nadir column asserts the greatest influence. See Fig. 

2.2 for a graphical representation of the message propagation in the along-track and cross-track 

dimensions performed by this new implementation of the TRW-S algorithm. 
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2.4 - A probabilistic graphical model for ice layer tracking: unary cost function 

 The aforementioned HMM and MRF cost-minimization graphical models are formulated 

based on two cost functions: one unary, which assigns unary costs to individual pixels of the given 

radar image, and one binary, which assigns costs to all consecutive range-line-to-range-line 

transitions (in both 2D and 3D cases) and to all consecutive DoA-bin-to-DoA-bin transitions (in 
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Fig. 2.2.  The diagram above depicts the unary cost assignment to individual pixels (represented by squares) and 
two-dimensional binary cost propagation in the along-track and cross-track dimensions in part (a) and in the cross-
track dimension in part (b). Note from (a) that binary cost is entirely propagated outwards from nadir with the 
proposed modification, and no cost is propagated from the extreme elevation angles to nadir. The along-track 
(slice-to-slice) propagation is performed evenly (i.e. 50% weight is assigned to the incoming and outgoing 
messages both forwards and backwards). 
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the 3D case only). In both 2D and 3D labeling problems, the goal is to trace the location of the ice 

bed; in other words, the goal is to find the set of labels that correctly delineate the ice-bottom 

interface.  

 In the case of nadir-looking two-dimensional imagery, the HMM-based automated tracker 

is given an intensity image I of dimension NRB-by-NRL, where  NRB corresponds to the number of 

range-bins and NRL corresponds to the number of range-lines that compose the echogram. Let us 

also define sSURF(c) as the range-bin index of the known ice-surface layer at column c of the 

image, therefore with the restriction that 1 ≤ c ≤ NRL and 1 ≤  sSURF(c) ≤ NRB. Concretely, the 

goal is to identify, for each column c of I, the corresponding row coordinate sc through which the 

ice-bottom layer passes. The tracking output S = (s1, s2, … , sNRL) is therefore in the form of a NRL-

dimensional vector with the restriction that sSURF(c) ≤ sc ≤ NRB, and thus sc may be found in any 

of the valid range-bins (i.e. at or below the given ice-surface location). The format of the tracking 

output vector assures that exactly one row (range-bin) will be selected as the ice-bottom layer for 

each column (range-line) of the image. As previously mentioned, the HMM-based tracker is also 

able to perform tracking on individual slices of three-dimensional imagery. Each slice is an 

intensity image I of dimension NRB-by-NDoA, where NDoA is the number of direction-of-arrival 

bins in the input slice. In this case, the output obtained from the HMM tracker is in the form of a 

NDoA-dimensional vector. In the three-dimensional case, the MRF-based automated tracker is 

given a three-dimensional matrix of dimension NRB-by-NDoA-by-NRL, which therefore 

corresponds to a sequence of NRL slices, each with dimension NRB-by-NDoA. The tracking output 

in this case is a NDoA-by-NRL matrix where each element represents the output found for each 

column of each slice that composed the three-dimensional input space. 
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 In both 2D and 3D radar imagery cases, the unary cost function is tasked with integrating 

into the probabilistic model several constraints and assumptions regarding the shape and location 

of the ice-bottom. It assigns to every valid pixel a unary cost ψU which represents the cost for the 

ice-bottom layer to pass through that pixel. A pixel of any column is considered to be invalid for 

the ice-bottom layer if, for example, it is located above the given ice-surface layer for that column.  

 Furthermore, our proposed ice-bottom trackers make use of existing ice-mask datasets to 

invalidate additional pixels and thus further sparsify the calculation of unary costs. An ice-mask 

dataset is a binary raster used to determine whether or not ice is present at a given geographical 

location. These data are available for most regions surveyed by CReSIS (e.g. Randolph Glacier 

Inventory [34]). In both the HMM and MRF models proposed here, every pixel in the same range-

bin as the ice-surface layer is considered invalid if the ice-mask points to the existence of ice. This 

is sensible since the layer tracker should find a non-zero ice thickness for every column in which 

ice exists. For all pixels in columns to which the ice-mask points to the inexistence of ice, however, 

the unary cost calculation is skipped and the ice-bottom location is immediately set to match the 

location of the ice-surface. All invalid pixels are assigned a unary cost of ψU =  ∞, which 

guarantees they will not be selected by the algorithms as part of the path with minimum total cost.  

 Other than the aforementioned invalidation of certain pixels, the leading assumption made 

in our proposed framework is that the ice-bottom boundary is located along strong radar reflection 

peaks since the dielectric contrast between the ice and bedrock or water below creates a strong 

reflection. For this reason, the first unary term – and the one with the greatest overall impact on 

unary cost – increases the unary cost of pixels with low intensity. This term is ψSINC, named in 

this manner due to the sinc function used in its calculation. 
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 Previous work [17] measured the sum squared difference in the image pixel intensity 

relative to a template of an ideal layer return. The template was found through an automated 

training sequence using the a priori surface information. Although it is data dependent, the 

template invariably has a peak in the center with decreasing values towards the edges of the 

template. Because the term measured the squared distance to the template, a peak response in the 

imagery with exactly the same intensity values produces the lowest cost. We modified the 

previously proposed template term in order to better use the dynamic range of the imagery. A 

problem with using the squared distance to the template is that the peak intensity from the ice-

bottom layer varies and larger intensities generally indicate a better measurement (since these 

correspond to greater signal to noise ratios). The square distance metric meant that values with a 

larger peak intensity than the template would actually be penalized. To better handle peak intensity 

variability, we now use a correlation operation that multiplies the template with the image: 

where I is the input image and p ∈  T =  {−5,−4,−3, … ,5} refers to the pixel index of the 

correlation function, and µ(p) is the correlation function which is now fixed to sinc (p/3.33) 

which for ±5 pixels approximately corresponds to the midpoint in the first minimum on either 

side of the sinc function peak at  p = 0 as shown in Fig. 2.3. The truncated sinc waveform was 

chosen because it is symmetric and has a single peak in the center. Improved performance is likely 

possible by tuning the waveform shape. 

 To allow the algorithms to account for the inclusion of ground-truth data points, two cost 

terms are proposed: ψGT and ψEXTRA. In the case of nadir-looking 2D echograms, ground-truth 

points are 2-tuples which associate a certain range-bin with a certain range-line and thus have a 

format of (sGT, cGT) where sGT is the range-bin index and cGT is the range-line index of the ground-

 ψSINC(s, c) =  −  � I(s + p, c)µ(p)
p ∈ T

,          (2) 
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truth point. In the case of three-dimensional imagery, ground-truth points are 3-tuples which 

associate a certain range-bin with a certain slice and a certain DoA bin of the 3D dataset, and thus 

have the format of (sGT, cGT, dGT) where dGT is the index of the slice with which the ground-truth 

point is associated. 

 The purpose of the ψGT and ψEXTRA unary cost terms is to encourage the ice-bottom layer 

to be drawn towards ground-truth points, if they exist. Both terms modify the unary cost of all 

valid pixels located in any column (range-line in 2D imagery, DoA bin in a slice of 3D imagery) 

which contains a ground-truth point. Pixels in columns with no ground-truth points are unaffected. 

The term ψGT accounts only for high-confidence ground-truth points, whereas ψEXTRA accounts 

only for low-confidence ground-truth points. To account for potential small inaccuracies in the 

ground-truth, the algorithms are not forced to return an answer in which the ice-bottom is found to 

exactly match the location of that point, but encouraged to approximately match it by a cost term  

Fig. 2.3.  Values of the correlation function µ(p) used in the image intensity term ψSINC. 
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that is positively associated with the squared vertical distance to the ground-truth point, as in  

where s represents the row index and c represents the column index of the pixel of interest. 

sHCGT and sLCGT represent the row (range-bin) index of high-confidence and low-confidence 

ground-truth points, respectively. Effectively, the difference between the influence of ψGT and 

ψEXTRA in the total unary cost arises from the fact that they are given different weighting in the 

final unary cost calculation, with ψGT being assigned significantly higher weight. Fig. 2.4 

demonstrates the cost, before any weighting is applied, added by the two ground-truth terms. 

 High-confidence ground-truth can be manually added by a human operator. For both 2D 

and 3D imagery, this is not done before the automated tracking is run. However, high-confidence 

ground-truth points are automatically acquired for 2D data by intersecting the flight path of the 

 ψGT(s, c) = (s − sHCGT(c))2 and ψEXTRA(s, c) = (s− sLCGT(c))2          (3) 

Fig. 2.4.  The ψGT and ψEXTRA terms of the unary cost function of both Viterbi and TRW-S algorithms increase 
unary  pixel cost according to the squared vertical distance between the pixel of interest and the ground-truth 
point, as demonstrated by Eq. (3). The ψGT term accounts for high-confidence ground-truth points and is given 
higher weight in the final unary cost calculation. 
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data frame of interest with flight paths of previous surveys of that geographical region. Frequently, 

a given location will have been imaged and labeled before, and the point at which the new flightline 

crosses the old will already have ice-bottom depth information associated with it, which can then 

be used to help the tracker. These flightline intersections are commonly known as crossovers, and 

can also be used as part of a self-assessment of the error associated with layer tracking results as 

demonstrated in Chapter 4 of this document. 

 For 3D imagery, high-confidence ground-truth points are taken from the result of the 2D 

tracking process by using the ice-bottom label as ground-truth in the nadir elevation angle bin of 

each slice of the 3D imagery. Although this is not strictly required for constructing the MRF model 

or applying the TRW-S algorithm, in all the results presented in this work the tracked nadir bin 

from 2D imagery is used as ground-truth to the 3D imagery and we did not evaluate the 

performance without this ground-truth added in for 3D imagery. 

 A potential source of low-confidence ground-truth points is existing third-party estimates 

of the ice-bottom obtained, for example, from ice thickness models based on ice flow dynamics 

and mass conservation [6]. While these methods provide wide-coverage estimates of the ice-

bottom, they offer relatively low-resolution or smoothed estimates of the ice-bottom. Although 

somewhat imprecise, we may take advantage of these ice-flow or mass-conservation estimates as 

a weak source of evidence since they rarely diverge very far from the true result. See Fig. 2.5 for 

an example of a nadir-looking 2D echogram including an estimate of the ice-bottom obtained 

through the mass conservation method. Since these a priori estimates are interpolated to cover all 

range-lines, every range-line receives a low-confidence ground-truth point in this case. 
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Fig. 2.5.  A two-dimensional echogram from the 2017 OIB deployment to Greenland. From top to bottom: the 
original echogram with no layers depicted; the same echogram with the existing ice-surface layer (in orange) and 
the true ice-bottom layer (in yellow) overlaid; the same echogram with the existing ice-surface layer (in orange) 
and the existing a priori ice-bottom estimate (in magenta) obtained from the mass conservation method, which is 
used in the HMM model as a weak source of evidence of the ice-bottom. 
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 In addition, it is beneficial to add some sort of repulsion factor to the unary cost in order to 

prevent the ice-bottom trackers from mistakenly labeling part of the strong ice-surface return as 

the ice-bottom. The original HMM-based tracker [14] did not include a term with this function 

into the unary cost calculation, but a fixed unary cost term ψREP was used for this purpose in the 

original MRF/TRW-S framework [17]. Let us define ΔY to be the positive vertical distance, in 

range-bins, between the known ice-surface layer and the pixel of interest: 

where s represents the row index of the pixel of interest, and sSURF(c) is the range-bin index of the 

ice-surface layer at the same column c as the pixel of interest. The unary cost term ψREP proposed 

in [17] is defined as 

which therefore assigns an equal repulsion cost to all pixels within 19 or fewer range-bins of the 

ice-surface layer. However, this cost formulation tends to generate results in which a 

disproportionally large percentage of the ice-bottom layer is located exactly 20 range-bins away 

from the ice-surface, due to the abrupt increase in unary costs for all pixels between that range-bin 

and the ice-surface layer.  

 To combat this, we modified ψREP to introduce a gradual increase in the repulsion cost 

term, in which a pixel immediately under the ice-surface (ΔY = 1) is assigned a ψREP value 

approximately equal to 180, whereas a pixel with 50 or more range-bins of vertical separation to 

the ice-surface would have no unary cost added from this term. A smooth transition between these 

two extreme values was found, calculated according to a fixed shifted exponential decay function 

for pixels with 1 ≤  ΔY(s, c) ≤ 50. Note that a value of ΔY = 0, which would correspond to a pixel 

on the same range-bin as the ice-surface, is meaningless due to the aforementioned invalidation of  

 ΔY(s, c) = s − sSURF(c)          (4) 

                                                   if ΔY(s, c) < 20: 

       ψREP(s, c) ≔ 200 
(5) 
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such pixels.  This proposed fixed repulsion term ψREP is mathematically defined as 

where αMSD defines the maximum sensory distance from the ice-surface, αMC defines the 

maximum cost applied by this term, and λ is a manually chosen exponential decay constant. In the 

previously proposed solution that made use of this fixed repulsion term, the selected values for 

these parameters were αMSD = 50, αMC = 200, and λ = 0.075. The value of αMC, which in theory 

would be assigned to pixels in the same range-bin as the ice-surface layer (ΔY = 0), was 

specifically selected to match the original fixed repulsion cost value of the MRF framework, 

presented in Eq. 5. Fig. 2.6 illustrates this proposed term. 

 

ψREP(s, c) =  � 
0,   ∆Y> αMSD

αMC ∗ e−λ ∗ ΔY −  αMC ∗ e−λ ∗αMSD , otherwise         (6) 

Fig. 2.6.  The previously proposed fixed repulsion term of the unary cost function, which increased the cost of all 
valid pixels according to how close they were to the ice-surface. Note that this was formulated as an exponential 
decay function capped at a value of approximately 180 for pixels immediately underneath the ice-surface (Δ𝑌𝑌 = 1). 
As an improvement to this term, we propose an empirically-derived term based on a geostatistical analysis of the 
data, which substitutes the function demonstrated above for a dynamically-calculated term. 
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 Furthermore, it is helpful to add to the PGM a unary cost term ψSURF with the intention of 

enforcing a surface and ice thickness constraint on all valid pixels. The original versions [14, 17] 

of the HMM and MRF frameworks did not employ a cost term with this purpose in their unary 

cost functions. In previous versions of the work presented here, this cost term was set to force the 

ice-bottom to lie in a certain range relative to the ice-surface if close to the ice-margin (i.e. near 

the transition between no-ice and ice), or have no effect (ψSURF = 0) when more than a certain 

distance away from the ice-margin. In this previously proposed model, the difference between the 

ψREP and ψSURF terms lies in the fact that ψREP will gradually increase the unary cost of pixels as 

they vertically approach the given ice-surface layer regardless of the ice-mask value of the column 

of interest, whereas ψSURF is a hard constraint that is set to either ∞ or zero, and effectively restricts 

the range of allowed values for s. The term “ice-margin” refers to the meeting point between icy 

and non-icy regions.  

 However, both the aforementioned ψREP and ψSURF methods present major drawbacks. 

Defining the ψREP term as presented above leads to every pixel – regardless, for example, of 

whether the surveyed terrain presents sea ice/icebergs or a thick continental ice sheet – being 

equally penalized for generating a thin ice layer. Furthermore, the aforementioned ψSURF term, 

while useful in generating smoother transitions between icy and non-icy areas, was in part 

arbitrarily defined and not specifically tuned to match the realistic constraints of the ice sheets.  

 We propose a dynamic, empirically-discovered term able to simultaneously replace both 

ψREP and ψSURF terms of the unary cost function described above. The main purpose of this 

improvement is to assign a single cost term ψDIM which accounts for the expected ice thickness of 

a point according to the distance between that point and the ice-margin nearest to it. In other words, 

this novel cost term assigns a single unary cost term as a function of both the thickness of the ice 
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and the distance to the ice-margin, effectively combining the ψREP and ψSURF terms into one. We 

henceforth refer to the distance between a given coordinate and the ice-margin nearest to it as 

“distance to ice-margin”, or DIM. Furthermore, this novel cost term was empirically discovered 

rather than being arbitrarily defined or tuned, which likely increases the overall robustness and 

favorable impact of this term. The method through which this novel cost term is calculated is 

detailed in Chapter 3 of this document. 

 Intuitively, areas very near the ice-margin – such as sea ice, icebergs, or the edges of the 

ice sheets – tend to present thinner ice, whereas points with large DIM may present a variety of 

ice thickness measurements but it is unlikely that these points will contain very thin ice.  

 After the four unary cost terms (including ψDIM, presented in detail and mathematically 

defined in Chapter 3) are calculated for every valid pixel, the unary cost function performs a 

weighted summation to assign the final unary cost, as follows: 

 ψU(s, c) = wSINCψSINC(s, c) + wGTψGT(s, c) + wEXTRAψEXTRA(s, c)

+ wDIMψDIM(s, c) 
(7) 

where the w variables control the weights of each term in the total calculation. These weights may 

be manually or automatically tuned to improve the tracking performance of the algorithms. A 

potential method of tuning these scalars in an automated manner, as long as manually-corrected 

ground-truth layer data are available, is to perform a naïve (exhaustive) grid-search hyper-

parameter optimization routine in which the imagery is tracked using several different 

combinations of these parameters and the combination that yields the lowest average error when 

compared to the ground-truth layers is selected as optimal. A more robust approach is to perform 

random search [35], a recent hyper-parameter global optimization technique that has been shown 

to outperform naïve grid-search methods, particularly in large parameter spaces where not all 
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variables have equal impact on the final error measurement and therefore are not equally important 

to tune. Regardless of the optimization method, it is possible that the optimal combination found 

based on the labeled dataset of a given deployment season may no longer be optimal or perform 

as well when applied to a different season, due to differences in image characteristics or in the ice 

itself (e.g. tuning on a mountainous regions and then applying the results to a flat region). 

 

2.5 - A probabilistic graphical model for ice layer tracking: binary cost function 

 In both of the proposed HMM and MRF frameworks, a binary cost ψB is assigned to every 

transition between consecutive range-lines (in both 2D and 3D imagery) and to every transition 

between consecutive direction-of-arrival bins (in 3D imagery). In the case of 2D echogram 

tracking, handled only by the HMM/Viterbi algorithm in the presented framework, the binary 

function defines an along-track transition model by assigning costs to all transitions between 

consecutive columns (range-lines) of the image. When the HMM/Viterbi algorithm framework is 

applied to individual slices of 3D imagery, this pairwise function defines a cross-track transition 

model by assigning costs to all transitions between consecutive columns (DoA bins) of each slice. 

Due to the single-chain (non-cyclic) restrictions on the graph structure in the HMM framework, it 

is not possible to also assign an along-track transition model in this case.  

 In the MRF/TRW-S algorithm framework, applied only to three-dimensional spaces, the 

binary cost function defines costs for transitions in both the along-track and cross-track dimensions 

– this is possible because an MRF may have arbitrary graph structure. Note that the along-track 

transition model assigns costs to consecutive slice-to-slice transitions of the MRF whereas the 

cross-track transition model assigns costs to consecutive DoA-bin-to-DoA-bin transitions of the 

MRF; this is not to be confused with the message-passing system employed by the TRW-S 
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algorithm which is simply a method of iteratively solving the MRF defined by the unary and binary 

costs. 

 The main purpose of the binary cost is to enforce a smoothness constraint on the model, 

increasing the likelihood that transitions which generate smoother layers will be selected by 

assigning to these a lower cost. While the ice-bottom boundaries are often found to be rough and 

sloped, abrupt vertical discontinuities in the ice are not expected. Thus, a locally-smooth interface, 

in which no large jumps occur between any two consecutive range-lines or direction-of-arrival 

bins, is generally a reasonable assumption for the bottom of the ice sheet. However, more 

sophisticated transition models – such as discussed in this section and in Chapter 3 – may employ 

empirical probabilistic models that more accurately model the ice-bottom smoothness. 

 A simulated example of how binary costs may be assigned to a transition between 

consecutive range-lines can be seen in Fig. 2.7.  

 

 

Fig. 2.7.  Simulated example of the range-line-to-range-line transition model costs. The vertical bar on the right 
represents the binary cost assigned to each range-bin of the upcoming column at the right side of the image: darker 
blue represents a lower binary cost, and yellow represents a higher binary cost. 
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 In the original solutions of Crandall et al. [14] and Xu et al. [17], the implementation of 

the binary cost term was set to prioritize flat surfaces in the coordinate systems of the 2D and 3D 

imagery, by simply assigning no additional cost to the range-bin which generates a perfectly flat 

transition and increasing the cost of transitions to range-bins above or below the current one, 

therefore equally penalizing all vertical jumps (regardless of jumping up or down) between 

consecutive range-lines or direction-of-arrival bins. The binary costs assigned to along-track and 

cross-track transitions were equal and calculated in the same manner.  

 This term was defined as a zero-mean Gaussian probability distribution transformed into a 

quadratic function by using a negative logarithm. This is done both for computational efficiency 

and to reduce rounding errors associated with taking products of many probability distribution 

functions since the logarithm converts the probability distribution products into summations of the 

log-probabilities. This term was mathematically defined as 

where sci and scj  are respectively the row index (range-bin) of the consecutive source and 

destination range-lines (in the 2D and 3D cases) or direction-of-arrival bins (in the 3D case) and 

therefore  (sci − scj) is the range-bin offset between the source and destination, and Ɲ is the 

Gaussian (normal) probability density function with the usual definition of 

 
Ɲ(x, µ,σ2) =  

1
 √2 ∗ π ∗ σ2

 e−
(x−µ)2
2σ2  (9) 

where σB2  is the desired variance of the Gaussian distribution, and wB is a scalar weighting factor 

that determines the impact of the binary cost ψB in the total cost calculation. The binary cost ψB 

of all invalid transitions (i.e., between non-consecutive range-lines or DoA bins) was set to ∞, 

 ψB(sci , scj) = wB ∗ − ln(Ɲ(sci − scj , 0,σB2) (8) 
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ensuring that these would never be selected by the algorithms. See Fig. 2.8 for an example of this 

previous ψB term. 

 However, since the 3D data are in the native cylindrical coordinate system native of the 

radar sounding processing, this original binary cost function which assigned minimum cost to a 

flat surface in a cylindrical coordinate system did not assign minimum cost to a flat topography in 

the Cartesian coordinate system which we believe is the more likely scenario for most scenes. 

Specifically, a flat surface is not represented as a flat (i.e. perfectly horizontal) layer as a function 

of the directions of arrival. A flat surface in Cartesian coordinates curves downward towards the 

edges of the 3D imagery (see Fig. 1.8 for an example of this effect).  Also, if the aircraft altitude 

changes, both the ice-surface and ice-bottom will change together with altitude.  

Fig. 2.8.  The previously proposed fixed binary cost function as defined by Eq. (7), which increased the binary 
cost of both along-track and cross-track transitions according to a simple quadratic function. The values 
demonstrated above are presented before the application of the weighting factor wB and vary depending on the σB2  
parameter, here shown with unit variance (σB2 = 1). 
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 For this reason, one potential improvement to this term involves setting the lowest 

transition costs to range-bins that follow the range-slope of the ice-surface. In the 3D imagery 

scenario, although this is still not a flat surface in the Cartesian coordinate system, this is a flatter 

and more realistic approximation of the expected shape of the ice-bottom, and computationally 

simpler than calculating the shape of a flat ice-bottom in Cartesian space which must account for 

ice refraction from a non-flat ice-surface layer. According to this proposed modification, the binary 

cost may then be calculated as 

 ψB(ci, cj) = wB ∗ [sci − scj − �sSURF(ci)− sSURF�cj��]2 (10) 

where sci and scj are the row-indices assigned to adjacent range-lines or direction-of-arrival bins, 

and therefore �sSURF(ci) − sSURF�cj�� corresponds to the range-slope of the ice-surface between the 

coordinates of interest.  

 In the along-track dimension, this modification is not as helpful since a flat (i.e. perfectly 

horizontal) ice boundary in the along-track dimension does approximately depict flat topography; 

approximately because it does not account for the change in radar wave propagation speed in ice 

versus air or changes in platform altitude. Additionally, although it is a low correlation 

relationship, there is often correlation between the range-slope of the ice-surface and the shape of 

the ice-bottom layer [36, 37]; thus, this cost term is used for both 2D and 3D data and for both the 

Viterbi and TRW-S algorithms in the along-track dimension. 

 As an improvement to both of the aforementioned binary cost calculations based on fixed 

layer smoothness and following the range-slope of the surface, we propose an empirically-derived 

binary cost function similar to what was described for the distance-to-ice-margin term of the unary 

cost function. Based on manually-corrected ground-truth data, we are able to compute more 
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accurate transition models for both along-track and cross-track dimensions. Both of the new 

transition models calculate binary costs based on the variances of the distributions of vertical 

difference, in units of range-bins, observed when an along-track or cross-track transition is 

performed. 

 Finally, after unary costs are assigned to all valid pixels and binary costs are assigned to 

all valid along-track (in the 2D and 3D cases) and cross-track (in the 3D case) transitions, the cost-

minimization framework is formulated as  

where sc is the row index through which the ice-bottom layer passes at column c, and N is the 

number of columns in the input image, which is equal to NRL in a nadir-looking 2D echogram and 

NDoA in a slice of three-dimensional imagery. In addition, P is the set of all 2-tuples that represent 

neighboring range-lines or DoA bins, and E(S) is the energy function which the Viterbi and TRW-

S algorithms are tasked with minimizing. The notation of sci  and scj is presented in Eq. 10.  

 

2.6 - Data pre-processing steps 

 Along with novel unary and binary cost terms, we propose an improved combination of 

pre-processing steps applied to nadir-looking 2D radar imagery, which we have experimentally 

found to improve tracking performance. We now list and describe these pre-processing routines.  

 The 2D image intensity exhibits a strong dependence on depth in ice due to ice loss and 

spherical spreading loss. We apply a simple detrending routine that normalizes the mean intensity 

of each row. This helps the tracker in areas where the bed echo is weak. Without detrending, clutter 

 
E(S) = �    ψU(sc, c)

N

c=1

+  � ψB �sci , scj�
p∈P

p=�ci, cj�

 (11) 
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near the ice-surface is often so strong that the ice-bottom layer tracker may jump to this signal 

despite the layer smoothness and surface-repulsion constraints enforced by the cost functions of 

the models. See Fig. 2.9 for a demonstration of the effects of the detrending process. 

 The first proposed Viterbi solution [14], which dealt with 2D images only, used image 

gradients and cumulative max gradients to handle the dynamic range. While the 2D images are 

estimates of scatterer intensity from MVDR, the 3D images are generated from the MUSIC 

cepstrum and a similar detrending procedure is not necessary because MUSIC produces a muted 

dynamic range. In [17], which dealt with the 3D MUSIC images, a simple thresholding technique 

was used to reduce the dynamic range. With this approach, every pixel of the input image with 

value greater than a certain manually tuned threshold was made equal to the threshold value to 

reduce the difference between the pixel values of the ice-surface and ice-bottom layers to prevent 

the automated tracker from selecting the (often) stronger ice-surface return as the ice-bottom. The 

problem with thresholding is that the shape and strength of the return is distorted by the 

thresholding and occasionally the ice bottom would exceed this threshold and be clipped as well. 

The thresholding step was removed for the 3D images in our modified approach. 
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Fig. 2.9.  A demonstration of the effect of the detrending pre-processing step applied to all nadir-looking 2D 
echograms in this tracking framework. The top image displays the original echogram; note how the ice-bottom 
interface is faint and blurry in several areas. These become significantly clearer and more apparent in the second 
image, which displays the same echogram after the detrending process. This is the same echogram displayed in 
Figs. 1.7 and 1.8. 
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 An undesirable feature present in the 2D imagery is the surface multiple, which is caused 

by a ringing of the radar signal between the ice-surface and the aircraft. This is also seen in the 3D 

imagery, but the tracking is not as affected. To mitigate the effect of the surface multiple in 2D 

imagery as a false positive to the algorithms, we employed a simple method of smoothing the input 

image around the areas in which the surface multiple is located. This was achieved by replacing 

from 20 rows above to 20 rows below the surface multiple with a blurred version of the image. 

The image is blurred with a 2D Gaussian filter with standard deviation equal to 50 pixels and 

kernel size equal to 201 pixels. It is possible to estimate the location of the first surface multiple 

by doubling the two-way travel time of the ice-surface. We have experimentally found that this 

multiple suppression approach does not significantly slow down the tracking or decrease tracking 

accuracy significantly even if the ice-bottom layer is located within the rows to which the filtering 

was applied, due to the smoothness and continuity constraints enforced by the unary cost function. 

We did, however, find the rate of mislabeling the ice-bottom due to the surface multiple to have 

been largely decreased. See Fig. 2.10 for a demonstration of multiple suppression, and Fig. 2.11 

for an example of tracking results with and without it. 

 Additionally, previous 2D tracking efforts performed layer tracking on the 2D echograms 

of individual data frames. This sometimes resulted in lower quality results near the edges of the 

data frames, because evidence from contiguous frames was not being considered. For this reason, 

we horizontally concatenated the two-dimensional data frames before passing them to the Viterbi 

algorithm so that all adjacent data frames (usually entire flights) are tracked at once. This also 

increases the probability that the image being processed will include automated high-confidence 

ground truth from crossovers, although this tends to have a relatively local effect on improving 

performance.  
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Fig. 2.10.  Demonstration of the multiple suppression technique. From top to bottom: the original echogram with 
no layers depicted; the same echogram with the existing ice-surface layer (in orange) and the first surface multiple 
(in magenta) calculated as twice the two-way travel time of the ice-surface; the echogram after application of the 
multiple suppression step. Note how the first surface multiple, explicitly depicted in the second image, has been 
blurred out in the result shown in the third image. See next page for an example including the tracking results. 
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Fig. 2.11.  The same 2D nadir-looking echogram as presented in Fig. 2.9, with the existing ice-surface layer (in 
orange) and the ice-bottom layers found by the Viterbi algorithm (in yellow) overlaid on the image. The result on 
top was generated with no multiple suppression applied to the original image. Notice how on two separate 
occasions, starting around range-lines 1,500 and 3,000 the automated tracker incorrectly jumps up and selects the 
first surface multiple as the result for the ice-bottom layer, even with the layer smoothness constraints included in 
the tracking models. The result on the bottom was obtained with the multiple suppression process of filtering the 
original image as described in the text. With this pre-processing step, the tracker correctly selects the ice-bottom 
as can be seen in the second image above. No other pre-processing steps or input parameters (including ground-
truth points) were modified in the generation of these results. 
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2.7 - Inputs provided to the HMM/Viterbi and MRF/TRW-S trackers 

 The purpose of this section is to list and describe the inputs provided to the HMM/Viterbi 

and MRF/TRW-S ice-bottom trackers and to describe the technical details of the specific 

implementations to support use of the tools. All presented inputs are common to both trackers, 

except when stated otherwise, but often have different dimensions and interpretations between the 

two. The most essential difference between the inputs is that the HMM/Viterbi tracker receives 

only a single two-dimensional image (nadir-looking echogram or a single slice of 3D imagery) at 

a time, while TRW-S receives a 3D image composed of two or more slices. While the MRF model 

and the TRW-S algorithm in general may be applied to tracking of a single slice at a time, our 

implementation of this framework requires that two or more slices be passed in. 

 Several inputs are required, in the sense that the algorithms need some value to use in the 

calculations, but need not necessarily be passed in because a certain fixed (hard-coded) value is 

used if no value is provided for that variable, and thus these inputs may be left empty. In several 

cases, using pre-defined values has an overall tendency of decreasing the performance of the 

algorithms due to the values being somewhat generic or not employing the cost function 

improvements proposed in this work such as the empirically-derived calculations obtained from 

geostatistical analysis. The applications and effects of the inputs are described for both algorithms 

in Sections 2.3 and 2.4 of this document.  

 The graphical interface for browsing, verifying, and correcting CReSIS radar echograms 

is written in Matlab. Both tracking algorithms are implemented as routines developed in C++ and 

invoked by the Matlab interpreter as a function via the Matlab Executable (MEX) framework. Both 

the interface and the tracking functions are cross-platform and have been verified to perform 

identically on Windows and Linux systems. 
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 In the order they were integrated into the cost functions and are passed in to the tracking 

software, the inputs are as follows: 

1. Image data. This input is the matrix containing the radar imagery itself. In the case of 2D 

radar echograms, handled only by the HMM/Viterbi algorithm framework, this is a two-

dimensional matrix of dimensions NRB rows and NRL columns, where NRB is the number 

of range-bins and NRL is the number of range-lines of the echogram. In the case of 3D radar 

imagery, the Viterbi algorithm can perform tracking of individual slices, as previously 

mentioned; in this case, the input is a two-dimensional matrix of size NRB rows and NDoA 

columns, where NDoA is the number of direction-of-arrival bins of the given slice. The 

TRW-S algorithm, however, must be provided with a sequence of slices at a time, in the 

form of a three-dimensional matrix of size NRB-by-NDoA-by-NRL. Note that NRL 

corresponds to the number of slices that are simultaneously provided to TRW-S, with the 

requirement that NRL > 1 in our implementation of the algorithm. In order to enhance 

contrast, the image input is provided in the form of 20 ∗ log10(I) in all cases, where I is the 

input image matrix. Other pre-processing steps applied to the 2D and 3D radar echograms 

are detailed in Section 2.5.  

2. Location of the ice-surface layer. This input consists of the row (range-bin) values that 

label the ice-surface layer, which can be acquired from existing third-party airborne or 

spaceborne laser altimetry instrumentation [19, 20]. It is provided to the Viterbi algorithm 

as a row-vector of the same size as the number of columns in the image: a NRL-dimensional 

vector in the nadir-looking 2D echogram case or a NDoA-dimensional vector in the case of 

an individual slice. It is provided as a NDoA-by-NRL matrix to the TRW-S algorithm, 

therefore corresponding to one value for each DoA of every slice being processed.  



53 
 

3. High-confidence ground-truth points. This input corresponds to ψGT in Eq. 3 and Eq. 7, 

and consists of the set of high-confidence ground-truth points used in the unary cost 

calculation. The Viterbi algorithm receives these as 2-by-NHCGT matrix which corresponds 

to a sequence of range-bin/range-line pairs in the 2D case, or range-bin/DoA-bin pairs in 

the 3D case. The equivalent input to the TRW-S algorithm is a 3-by-NHCGT matrix which 

corresponds to a sequence of range-bin/slice/DoA-bin 3-tuples. In both cases, NHCGT is the 

number of high-confidence ground-truth points available for the dataset of interest. May 

be left empty and no fixed values are used in that case. 

4. Low-confidence ground-truth points. This input corresponds to ψEXTRA in Eq. 3 and Eq. 7, 

and consists of the set of low-confidence ground-truth points used in the unary cost 

calculation. The Viterbi algorithm receives these as a 2-by-NLCGT matrix which 

corresponds to a sequence of range-bin/range-line pairs in the 2D case, or range-bin/DoA-

bin pairs in the 3D case. The equivalent input to the TRW-S algorithm is a 3-by-NLCGT 

matrix which corresponds to a sequence of range-bin/slice/DoA-bin 3-tuples. In both cases, 

NLCGT is the number of low-confidence ground-truth points available for the dataset of 

interest. May be left empty and no fixed values are used in that case. 

5. Ice-mask. This input is a binary raster interpolated to describe every range-line and 

direction-of-arrival bin of data displayed by the echogram of interest. Each element of the 

raster determines the existence of ice at a certain coordinate when equal to 1, and the 

inexistence of ice if equal to 0. Typically generated by third-party researchers from satellite 

imagery, the ice-mask is available for most regions surveyed by CReSIS. See, for example, 

the Randolph Glacier Inventory [34] for more information. In our tracking solutions, the 

ice-mask has the same size as input #2 (location of the ice-surface layer) in all cases. 
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6. Values of the correlation function µ(p). This input defines the values of the correlation 

function µ(p) used in the image intensity term of the unary cost function, as presented in 

Eq. (2). In all cases, this input is of size 1-by-Nµ(p), where Nµ(p) is an arbitrary positive 

natural number. In this work, Nµ(p) = 11 and the values of the µ(p) function used are 

shown in Fig. 2.2.  

7. High-confidence ground truth weight. This input corresponds to wGT in Eq. 7, which scales 

the effect of the high-confidence ground-truth in the unary cost function. May be left empty 

and a pre-defined value is used in that case. 

8. Smoothness weight. Used as a scaling factor used in the binary cost function. Provided to 

the Viterbi algorithm as a scalar, and as a 2-by-1 vector to TRW-S. In the Viterbi algorithm, 

controls column-to-column transition weights; in TRW-S, the first element controls cross-

track transition weights and the second element controls along-track transition weights. A 

pre-defined value is used if left empty. 

9. Slope of the ice-surface. Represents the range-slope of the ice-surface, and has the same 

size as input #2 (location of the ice-surface layer) in all cases. Calculated as the first 

derivative of the ice-surface vector (in the 2D case) and as the first derivative of ice-surface 

of every slice (in the 3D case). Used in the binary cost function. For example, if a portion 

of a 2D ice-surface is defined in terms of range-bins as  

ICE-SURFACE = [⋯,100,101,99,100,100,101,⋯] 

then the range-slope corresponding to that portion is equal to  

RANGE-SLOPE = [⋯,1,-2,1,0,1,⋯] 

and the same calculation is performed in the 3D case where the ice-surface is passed in as 

matrix corresponding to the value for every direction-of-arrival bin of every slice. 
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10. Bounds. Used whenever the automated tracking should ignore certain extreme DoA bins 

(far left or right edges) of the input image. While typically not applicable to nadir-looking 

2D echograms, this is often useful in the tracking of slices of 3D imagery since the extreme 

direction-of-arrival bins have the lowest quality and may be ignored. In the case of Viterbi 

tracking of 3D slices, it is passed in as a 2-vector representing the starting and ending valid 

DoA bins; for example, setting this to equal [3, 60] will cause the tracker to ignore the 3 

leftmost and 4 righmost DoA bins in a standard 64 DoA bin slice, and no output will be 

provided for the ignored DoA bins. A similar 4-vector is passed in to TRW-S, in which the 

4 elements represent the starting and ending valid DoA bins and the starting and ending 

valid range-lines for tracking, respectively. A constraint on the valid range-lines is typically 

not used. A pre-defined value in which no DoA bins or range-lines are ignored is used if 

left empty. 

11. Low-confidence ground-truth weight. This scalar input corresponds to wEXTRA in Eq. 7, 

which scales the effect of the low-confidence ground-truth in the unary cost function. May 

be left empty and a pre-defined value is used in that case. 

12. Distance to nearest ice-margin. A vector or matrix indicating the shortest distance between 

every column of the input image (in every range-line, in the 3D case) to an ice-margin.  

Used in the calculation of ψDIM in the unary cost function; see Eq. 7 and Chapter 3 for 

more information on this topic. This input has the same size as input #2 (location of the 

ice-surface layer) in all cases. May be left empty and the previously proposed ψREP and 

ψSINC terms are used in that case. 
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13. Distance to nearest ice-margin cost matrix. This matrix defines the unary cost term 

 ψDIM = 𝑓𝑓(T, D) (12) 

as a function of the calculated ice-thickness T of the pixel of interest and as a function of 

its distance to the nearest ice-margin D. The values of D for every pixel are directly taken 

from the previous input. An explanation on how these values are obtained from the 

geostatistical analysis is provided in Chapter 3. For both 2D and 3D imagery and for both 

HMM/Viterbi and MFR/TRW-S solutions, this matrix has arbitrary size in both 

dimensions, but must contain at least one element. The DIM is provided in units of meters 

and the ice-thickness is provided in units of range-bins. Pixels with DIM or thickness 

greater than the maximum values defined in the matrix are thresholded to the maximum 

defined in the matrix. May be left empty and the previously proposed ψREP and ψSINC 

terms are used in that case, and may not be used if input #12 (distance to ice-margin matrix) 

has been left empty. 

14. Variances for the along-track transition model. This one-dimensional vector defines the 

variances of the probability distributions used in the along-track transition model, which is 

part of the binary cost function of both tracking models. This input is passed in as a scalar 

value to the HMM/Viterbi tracking technique in the case of a 2D nadir-looking echogram. 

This scalar corresponds to the variance, in units of range-bins, discovered for the nadir 

DoA bin. This input is not provided to the HMM/Viterbi tracker when processing 

individual slices of 3D imagery. It is passed in as a 1-by-NDoA vector to the MRF/TRW-S 

framework, with each element corresponding to the variance discovered for each direction-

of-arrival bin in the input image. May be left empty and the previously proposed fixed 

along-track binary term is used in that case. 
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15. Variances for the cross-track transition model. This one-dimensional vector defines the 

variances of the probability distributions used in the cross-track transition model, which is 

part of the binary cost function of both tracking models. Passed in as a 1-by-NDoA vector 

to both tracking models in the case of tracking three-dimensional imagery. This input is 

not provided to the HMM/Viterbi tracker when processing two-dimensional nadir-looking 

imagery. May be left empty and the previously proposed fixed cross-track binary term is 

used in that case.  

 

 See Table 2.1 for a summary of the inputs described above. A list of the symbols used is 

provided below.  

 

NRB Number of range-bins in the input image 

NRL Number of range-lines in the input image 

NDoA Number of direction-of-arrival bins in the input image 

NHCGT Number of high-confidence ground-truth points 

NLCGT Number of low-confidence ground-truth points 

Nµ(p) Length of the correlation function µ(p) used in the ψSINC unary cost term 

TMAX Maximum ice-thickness T defined by 𝑓𝑓(T, D) of the ψDIM unary cost term 

DMAX Maximum DIM D defined by 𝑓𝑓(T, D) of the ψDIM unary cost term 
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Input type Dimension 
(HMM, 2D data) 

Dimension 
(HMM, 3D data) Dimension (MRF) Required 

May be 
left 

empty 

Image data NRB-by-NRL NRB-by-NDoA NRB-by-NDoA-by-NRL 
  

Ice-surface layer 1-by-NRL 1-by-NDoA NDoA-by-NRL 
  

High-confidence 
GT 2-by-NHCGT 2-by-NHCGT 3-by-NHCGT   

Low-confidence 
GT 2-by-NLCGT 2-by-NLCGT 3-by-NLCGT   

Ice-mask 1-by-NRL 1-by-NDoA NDoA-by-NRL 
  

Correlation 
function µ(p) 1-by-Nµ(p) 1-by-Nµ(p) 1-by-Nµ(p)   

High-confidence 
GT weight Scalar Scalar Scalar 

  

Smoothness 
weight Scalar Scalar 2-by-1 

  

Ice-surface 
range-slope 1-by-NRL 1-by-NDoA NDoA-by-NRL 

  

Bounds Not applicable 2-by-1 4-by-1   

Low-confidence 
GT weight Scalar Scalar Scalar 

  

DIM 1-by-NRL 1-by-NDoA NDoA-by-NRL   

DIM cost values TMAX-by-DMAX TMAX-by-DMAX TMAX-by-DMAX   

Variances for 
along-track 

transition model 
Scalar Not applicable 1-by-NDoA   

Variances for 
cross-track 

transition model 
Not applicable 1-by-NDoA 1-by-NDoA   

Table 2.1.  Inputs provided to the HMM/Viterbi and MRF/TRW-S trackers. 
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Chapter 3 -  GEOSTATISTICAL ANALYSIS 

3.1 - Theory and motivation 

 As mentioned throughout Chapter 2, the unary and binary cost functions employed in all 

previous iterations of the HMM and MRF-based ice-bottom tracking solutions [14, 17, 30] were 

composed of fixed calculations that attempted to match the assumptions and constraints of the ice 

sheets. While favorable results were obtained by the previous models, they were limited by the 

difficulty of discovering proper cost formulations and tuning the numerous parameters that 

numerically define them. Intuitive manual estimation of these parameters is challenging because 

of the complexity of the models. Automated tuning is computationally expensive because it 

requires tracking a large dataset many times using different parameter combinations and 

comparing the results with the ground-truth. 

 Previous iterations of the HMM and MRF models also presented other problems. For 

instance, the previously-proposed ψREP term of the unary cost function equally penalized all pixels 

for being near the ice-surface, regardless of the expected ice thickness. However, it is sensible to 

assume that icy areas very near the ice-margin are more likely to have very thin ice and thus pixels 

that are much deeper than the ice-surface should be penalized in this case. Similarly, the parameters 

used in the previous ψSURF term, while useful in generating smooth transitions between icy and 

non-icy areas, were initial educated guesses and not tuned. This unary cost term was defined to 

force the ice-bottom layer to lie within a certain distance (in the range dimension) to the ice-surface 

in all cases where the pixel of interest was within a certain distance (in the along-track or cross-

track dimensions) to a point with no ice (in other words, to the nearest ice-margin). The proper 

values for these two distances, however, are difficult to intuitively estimate or automatically tune 

because of the aforementioned problem with parameter tuning dimensionality. This obstacle is 
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found in both HMM and MRF models and thus affects all ice-bottom tracking in the previously 

presented framework. Furthermore, as detailed in Section 2.5 of this document, the proposed 

binary cost models reward transitions that adhere to the constraints of smoothness and matching 

the range-slope of the ice-surface layer. For this reason, in past iterations of the HMM/MRF 

frameworks, areas of rugged bedrock topography show a degradation in tracking performance. 

Furthermore, the cross-track transition model applied by the original binary cost function presented 

in Eq. 8 did not allow for any variation in the expected distribution of the transitions along the 

elevation angle dimension even though the ice-bottom layer tends to be flatter around nadir and to 

curve downward towards the extreme elevation angles. The reformulated binary cost function, 

presented in Eq. 10, mitigates this problem by accounting for the range-slope of the ice-surface, 

but the range-slope of the ice-surface is unlikely to be perfectly matched to the range-slope of the 

ice-bottom layer. 

 As a partial solution to the problems presented above, we have conducted a geostatistical 

analysis using the existing manually-corrected ground-truth two-dimensional and three-

dimensional layer data, from which three probability distributions were calculated. These 

distributions are used to define empirically-derived cost terms for both the unary and binary cost 

functions. These consist of a novel ψDIM term in the unary cost function, which replaces the 

previous ψSURF and ψREP terms, and more sophisticated along-track and cross-track transition 

models for the binary cost function.  

 The final values for the ψDIM term for 2D and 3D data were derived separately, using two-

dimensional and three-dimensional ground-truth layer data, respectively. The ψDIM term resulting 

from each was applied only to tracking of the respective type of imagery. Similarly, a geostatistical 

analysis was separately conducted using the 2D and 3D training dataset to discover the along-track 
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transition models appropriate to each type of imagery. As the cross-track transition model is 

exclusive to three-dimensional imagery tracking, only the 3D training set was used in the 

derivation of this term.  

 The new cost terms are based on parametric models of the histograms from ground-truth 

layer data. Modifications with the purpose of generalizing beyond the training set’s limitations 

were made to the ψDIM unary cost term discovered from the three-dimensional data, since the 

three-dimensional training set used does not include very thick ice or ice far from the ice margin. 

 In all cases, basing the unary and binary cost calculations on actual first and second order 

statistics of ground-truth data should provide more realistic models assuming the geostatistics are 

sufficiently stationary and the Gaussian approximations used are close enough matches. Each of 

the three modifications proposed here is presented as a separate section in this chapter.  

 The datasets used for all geostatistical analysis calculations are the training subset of the 

two-dimensional and three-dimensional datasets presented in Chapter 4. The two-dimensional 

dataset was acquired over Greenland and the Canadian Arctic Archipelago (CAA) during the 2014 

NASA Operation IceBridge arctic deployment. The three-dimensional dataset is a proper subset 

of the 2D dataset, containing only data acquired over the CAA during the same deployment. The 

two-dimensional ground-truth layer dataset was manually tracked by experienced ice layer 

analysts, using the simple automated tools briefly described in Section 1.3 of this document. The 

ground-truth 3D layer dataset was initially tracked with the original MRF/TRW-S algorithm 

framework and then manually corrected by human annotators. More information about the datasets 

used in this work is provided in Chapter 4 of this document. 
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3.2 - Unary cost term as a function of ice thickness and distance to ice-margin 

 The novel probabilistic cost term ψDIM assigns to every valid pixel a cost value based on 

the ice thickness generated by that pixel and the distance between that pixel and the ice-margin 

nearest to it. In other words, this unary cost term is calculated as a function of the thickness T and 

distance-to-ice-margin D of the pixel of interest. This is represented as ψDIM = 𝑓𝑓(T, D), which has 

been previously presented in Eq. 12. This cost term applies a unary cost to pixels based on where 

the current pixel’s ice thickness falls in the ice thickness histogram for a similar DIM. The higher 

the estimated probability based on the histogram, the lower the cost will be. As mentioned before, 

the conceptual expectation is that areas very near the ice-margin will tend to have thin ice, whereas 

points with large DIM may have a large variety of ice thickness measurements but it is unlikely 

that these points will contain very thin ice. 

 The purpose of this probabilistic term is two-fold. First, it generates ice-bottom layers with 

smooth transitions between icy and non-icy areas based on the test set’s measured geostatistics, 

and therefore it serves as a replacement for the previously-proposed ψSURF term. Because of the 

discovered geostatistical values, the ψDIM cost term assigns low costs to pixels that generate thin 

ice measurements in areas with low DIM, and the cost for generating thin ice measurements 

steadily rises as the distance-to-ice-margin increases. This cost distribution generates a smooth 

approximation of the ice-bottom layer towards the ice-surface as the coordinate of interest 

approaches the ice-margin.  

 The second purpose of this probabilistic term is that it serves as an empirically-derived 

substitute for the previous ψREP term of the unary cost function, which prevents the layer tracker 

from mistakenly labeling the strong ice-surface return as the ice-bottom layer. This is due to the 

fact that pixels with large DIM and low ice thickness will most likely not be selected by the 
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algorithms due to their increased ψDIM cost, unless the other cost terms are so favorable they 

compensate for the increased cost assigned by this term. In other words, ice in areas with relatively 

high distance-to-ice-margin (such as greater than 1,000 meters) will not be tracked as being thin, 

since this is physically unlikely, unless the other unary cost terms (ψSINC, ψGT, and ψEXTRA) are 

low enough that they compensate for the increased cost of going against the expected high ice 

thickness.  

 The total distance between a given coordinate and the ice margin nearest to it is calculated 

as the rounded Euclidean distance transform of the binary ice-mask raster. For each element in the 

ice-mask, the distance transform assigns a number equal to the distance between that element and 

the nearest zero-element (which therefore indicates an ice-margin). Table 3.1 provides an example 

of a two-dimensional binary ice-mask raster with the convention that a value of 1 indicates the 

presence of ice and a value of 0 indicates the inexistence of it at each coordinate. Table 3.2 shows 

the results of the Euclidean distance calculations on the initial matrix. Table 3.3 presents the final 

results after rounding the distance measurements. 

 

 

 

 

  

 

 

DoAk+2 1 1 1 1 1 

DoAk+1 1 0 1 1 1 

DoAk 0 0 1 1 1 

DoAk−1 0 0 0 1 1 

DoAk−2 0 0 1 1 0 

 RLk−2 RLk−1 RLk RLk+1 RLk+2 

Table 3.1.  Example of a two-dimensional ice-mask raster. 
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 In the previous tables, DoAi and RLj represent arbitrary adjacent direction-of-arrival bins 

and range-lines, respectively. The DIM is calculated for every range-line in the case of 2D data. 

In the 3D case, which is shown in the tables above, the DIM is calculated for every range-line and 

direction-of-arrival bin. In order to normalize the resolution of range-lines and direction-of-arrival 

bins, all DIM measurements are converted to meters. Furthermore, the thickness measurement 

T(s, c) generated by a certain pixel is equal to the vertical distance, measured in range-bins, to the 

known ice-surface layer at that coordinate. This is mathematically described by  

 T(s, c) = s − sSURF(c), (13) 

following the same notation used in Eq. 4.  

DoAk+2 1.4142 1 1.4142 2.2361 3.1623 

DoAk+1 1 0 1 2 2.8284 

DoAk 0 0 1 1.4142 2 

DoAk−1 0 0 0 1 1 

DoAk−2 0 0 1 1 0 

 RLk−2 RLk−1 RLk RLk+1 RLk+2 

DoAk+2 1 1 1 2 3 

DoAk+1 1 0 1 2 3 

DoAk 0 0 1 1 2 

DoAk−1 0 0 0 1 1 

DoAk−2 0 0 1 1 0 

 RLk−2 RLk−1 RLk RLk+1 RLk+2 

Table 3.2.  Result of the Euclidean distance transform applied to the raster in Table 3.1. 

 

 

Table 3.3.  Result of rounding the matrix in Table 3.2. This is the final distance-to-ice-margin input 
passed in to the tracking algorithms. This is input #12 presented in Section 2.6 of this document. 
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 We now focus on describing the computation of the ψDIM cost term itself. As previously 

mentioned, separate geostatistical analyses using the 2D and 3D ground-truth layer datasets were 

performed. In both cases, the first step is to generate the histogram of the ice thickness 

measurements for every DIM from the existing ground-truth datasets.  Note that the 3D dataset 

used presents statistical limitations due to being mostly composed of narrow fjord glaciers in the 

relatively small ice caps of the Canadian Arctic Archipelago. This dataset presents points with 

distance to ice margin up to only approximately 2,500 meters. Furthermore, ice thickness 

distributions in areas with high DIM (such as greater than 1,000 meters) are very sparsely defined 

due to the low number of occurrences of such points in the 3D dataset used. For this reason, we 

consider only the distributions found for DIM ≤ 1,000 meters as statistically significant. Fig. 3.1 

presents the two-dimensional histogram of ice thickness for all DIM measurements up to 2,500 

meters, obtained from the ground-truth three-dimensional layer dataset. 

 

 

 

 

 

 

 

 

 

Fig. 3.1.  Histogram of the ice-thickness measurements (vertical axis) found for all distances-to-ice-margin 
(horizontal axis) from the ground-truth three-dimensional dataset. The color of each pixel in the matrix above 
represents the number of occurrences for the corresponding combination of ice-thickness and DIM (see color bar 
on the right hand side). We thresholded the values depicted here to 1,000 for ease of visualization, but the values 
used in the actual cost calculations were not thresholded. 



66 
 

 On the other hand, no similar limitation exists for the geostatistical analysis performed 

using the two-dimensional training dataset, which includes imagery acquired from the center of 

the Greenland continental ice sheet and presents data points with distance to ice margin in excess 

of 300 kilometers. In this case, we consider the distributions found for DIM ≤ 350,000 meters as 

statistically significant. Fig. 3.2 presents the two-dimensional histogram of ice thickness for all 

DIM measurements up to 375 kilometers. For ease of visualization of this histogram, we have 

normalized each column of the matrix so that all values of each column add up to exactly 1. In the 

resulting image, the darker pixels represent a low occurrence of the DIM and ice thickness 

combination of interest, whereas the brighter pixels represent the frequently occurring 

combinations. Fig. 3.3 presents the same histogram but with the low-DIM/low-thickness data 

points in detail.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.  Histogram of the ice-thickness measurements (vertical axis) found for all distances-to-ice-margin 
(horizontal axis) from the ground-truth two-dimensional dataset. For ease of visualization, we have normalized 
the histogram above so that the sum of the values in each column is equal to 1. The darker pixels represent a low 
occurrence of the DIM and ice thickness combination of interest, whereas the brighter pixels represent the 
frequently occurring combinations. 
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 We demarcate boundaries in the histograms presented above such that 90% of all data 

points in each column in the histogram matrix fall within the main interval, 5% fall over and 

5% fall under the calculated limits. This allows for the distinction between a high probability area, 

defined by the points within the interval, and lower probability areas outside the interval. These 

intervals are defined up to the maximum distance to ice margin considered statistically significant 

in each case. In Fig 3.4, we present the histogram obtained from the three-dimensional dataset, up 

to DIM ≤ 1,000 meters, with the red lines representing the boundaries of the main interval in 

which 90% of all data occurrences take place. We refer to these boundaries as the upper 5% bound, 

which defines for each DIM the ice thickness for which 5% of all data points present greater ice 

thickness, and similarly the lower 5% bound, which defines for each DIM the ice thickness for 

which 5% of all data points present lower ice thickness. 

 

Fig. 3.3.  Histogram presented in Fig. 3.2, with the low-DIM/low-thickness data points in detail.  
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 In the case of the histogram obtained from two-dimensional imagery, rather than directly 

using the aforementioned 90% boundaries calculated from the data, we use polynomial functions 

fitted to these boundaries so that the final interval limits are smoother and more representative of 

realistic DIM/ice thickness distributions. In the case of the lower 5% bound calculated for the 

histogram, a single 7th-degree polynomial was sufficient to satisfactorily represent the true lower 

bound. The upper 5% bound, however, presents a sharp angle in the histogram data around a 

distance to ice margin of approximately 2,000 meters, which cannot be properly represent by a 

single polynomial of relatively low degree. Any single polynomial function of relatively low 

degree will maintain its general shape in the low-DIM areas, and is therefore not able to properly 

fit the sharp angle in the histogram. This sharp angle around the DIM measurement of 2,000 meters 

is noticeable in Fig 3.3. For this reason, for the upper bound we fit a piecewise polynomial function 

Fig. 3.4.  Histogram of the ice-thickness measurements (vertical axis) found for all distances to ice margin 
(horizontal axis) from the ground-truth three-dimensional dataset, displayed up to the maximum distance to ice 
margin considered statistically significant (1,000 meters). The red lines represent the interval in which 90% of all 
data points are located. 
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composed of a 7th-degree polynomial for the high-DIM/high-thickness areas and a 3rd-degree 

polynomial for the low-DIM/low-thickness region. The 7th-degree polynomial was found to match 

the overall shape of the lower 5% bound in its entirety and the upper 5% bound satisfactorily for 

most parts of the histogram.  The 3rd-degree polynomial was then applied to correct for the 

distributions found for DIM measurements up to approximately 2,000 meters, which the 7th-degree 

polynomial did not satisfactorily represent. Fig. 3.5 demonstrates the polynomial-fitted interval 

boundaries discovered for the histogram generated from the nadir-looking 2D training dataset, and 

Fig. 3.6 demonstrates this histogram with the same axes limits as Fig. 3.3. In Fig. 3.6, the piecewise 

polynomial fitting of the upper bound can be seen in detail.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5.  Histogram of the ice-thickness measurements (vertical axis) found for all distances-to-ice-margin 
(horizontal axis) from the ground-truth two-dimensional dataset, displayed up to the maximum distance to ice 
margin considered statistically significant (350,000 meters). The red lines represent the interval in which 90% of 
all data points are located. 
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 In both 2D and 3D calculations of the ψDIM term, we assign to the high probability area 

(i.e. the data points between the upper and lower bounds) of each distance to ice margin a uniform 

probability value equal to the mean of the data inside the high probability area. To parametrically 

model the histogram in areas outside the upper and lower bounds, we fit two exponential functions 

to each distance to ice margin, one for the data above the upper bound and one for the data below 

the lower bound for each distance to ice margin. An illustration of this method is provided in Fig. 

3.7, in which the parametric model for a distance to ice margin equal to 800 meters in the 

histogram acquired from three-dimensional data is shown. These parametric histogram models are 

calculated in the same manner for both histograms. 

 

Fig. 3.6.  Histogram presented in Fig. 3.5, with the low-DIM/low-thickness data points in detail. The 3rd-degree 
polynomial and the 7th-degree polynomial fitted to the upper 5% bound merge at a DIM of approximately 2,000 
meters. 
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 In Fig. 3.8, we present the mean and standard deviation (STDEV) of the data above the 

upper bound and below the upper bound for each distance to ice margin in the histogram acquired 

from the three-dimensional dataset. Note that there is a strong correlation between the values of 

the mean and standard deviation found for the data. This is an indication that the exponential 

function that was fitted to each distance to ice margin was a relatively good approximation of the 

data, since the mean and standard deviation of an exponential distribution are the same. In other 

words, if the data were distributed according to an exponential distribution, we would find these 

vectors to have precisely the same values on average. In Fig. 3.9, we demonstrate the same results 

for the histogram obtained from the two-dimensional layer data. 

Fig. 3.7.  The histogram data for all points with distance to ice margin equal to 800 meters in the three-dimensional 
training set is represented by the blue line. The parametric model fitted for these data, represented by the orange 
line, is composed of a fitted exponential function for points under the lower bound (ice thickness from 1 to 27 
range-bins), a uniform distribution across the high probability area (ice thickness from 28 to 255 range-bins), and 
a fitted exponential function for points over the upper bound (ice thickness from 256 to 395 range-bins).  
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Fig. 3.8.  Mean and standard deviation of the data over the upper bound (plot on the left) and under the lower bound 
(plot on the right) from the three-dimensional layer data. 

Fig. 3.9.  Mean and standard deviation of the data over the upper bound (plot on the left) and under the lower 
bound (plot on the right) from the two-dimensional layer data. For ease of visualization, only the data at distance 
to ice margin up to 50 km is presented, but the correlation between the mean and standard deviation values was 
noted across all distances to ice margin. 
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 Finally, we calculate the negative natural logarithm of the parametrized distribution of each 

DIM to obtain the final cost values for each combination of ice thickness and distance to ice 

margin. The high probability area at all DIMs is fixed to zero cost, and the points outside of this 

area are normalized proportionally. The resulting cost matrix obtained from the three-dimensional 

training dataset, before any scaling factor is applied, can be seen in Fig. 3.10. For comparison, the 

negative natural logarithm of the histogram found from the three-dimensional dataset is presented 

in Fig. 3.11. To allow this ψDIM unary cost term to properly match the other terms of the unary 

cost function, the values presented are multiplied by a scaling factor equal to 200 based on some 

earlier tuning of the cost function. The final cost matrix and the negative natural logarithm of the 

histogram found from the two-dimensional dataset are presented in Fig. 3.12 and 3.13, 

respectively. Figs. 3.14 and 3.15 demonstrate the same, using the axes limits as Fig. 3.3. The 

calculated cost function and the negative logarithm of the histogram are more similar in the three-

dimensional case than the 2D case, as the real data distributions outside of the high probability are 

closer to exponential distributions. 

 In our proposed solution, any valid pixels with ice thickness or distance to ice margin 

greater than the maximum values defined in the matrices below are assigned the values calculated 

for the nearest defined ice thickness or DIM. 
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Fig. 3.10.  Final normalized values of the proposed ψDIM term of the unary cost function applied to three-
dimensional data tracking. The values shown above are multiplied by a scaling factor equal to 200. 

Fig. 3.11.  Negative natural logarithm of the histogram presented in Fig. 3.4. Note the similarities between this 
result and our proposed final cost values shown in Fig. 3.10.  
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Fig. 3.12.  Final normalized values of the proposed ψDIM term of the unary cost function applied to two-
dimensional data tracking. The values shown above are multiplied by a scaling factor equal to 200. 

Fig. 3.13.  Negative natural logarithm of the histogram presented in Fig. 3.5. Note the similarities between this 
result and our proposed final cost values shown in Fig. 3.12.  
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Fig. 3.14.  Final normalized values of the proposed ψDIM term of the unary cost function applied to two-
dimensional data tracking. The values shown above are multiplied by a scaling factor equal to 200. 

Fig. 3.15.  Negative natural logarithm of the histogram presented in Fig. 3.5. Note the similarities between this 
result and our proposed final cost values shown in Fig. 3.12.  
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3.3 - Range-bin variation in the along-track dimension 

The second cost term constructed from the results of the geostatistical analysis defines an along-

track (range-line to range-line) transition model. Note that transitions between adjacent range-lines 

occur between columns in two-dimensional imagery, and between slices in the three-dimensional 

data products. As mentioned in Section 3.1, this information is acquired from the 2D and 3D 

ground-truth ice-bottom labels that compose the training sets described in Chapter 4. The 

distributions discovered from the ground-truth three-dimensional data are applied to 3D tracking 

using the MRF/TRW-S framework, and in this case all direction-of-arrival distributions are used. 

The model obtained from the geostatistical analysis performed on the ground-truth 2D layer data 

is applied to two-dimensional tracking using the HMM/Viterbi algorithm framework. However, 

no along-track transition model is applied when the Viterbi algorithm is tasked with tracking of 

three-dimensional imagery due to the lack of slice-to-slice cost propagation in the HMM 

framework since each slice is modeled and processed independently of the other slices. 

 This transition model was implemented as part of the binary cost function of both the HMM 

and MRF models. In both, this cost term serves as an empirical substitute for the previously 

suggested fixed smoothness constraint presented in Section 2.5, used to increase the cost of pixels 

that generate a large vertical discontinuity between two consecutive range-lines. While it still 

penalizes transitions that generate increased vertical discontinuities between range-lines, it applies 

the variance values discovered for each DoA bin rather than using a fixed value for all directions-

of-arrival bins. Furthermore, the variance values are calculated directly from ground-truth data 

rather than being estimated or tuned. 

 The geostatistical analysis performed to discover this term consisted of calculating the 

variance of the vertical differences, measured in range-bins, between consecutive range-lines. In 
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the two-dimensional case, a single variance value σAT2 2D corresponding to the variance at the nadir 

direction was calculated. In the three-dimensional case, a variance value was calculated for every 

direction-of-arrival bin. In other words, in the 3D case for each DoA bin we calculate the variance 

of the difference between the row-indices of the ice-bottom labels at all “source” and “destination” 

range-lines.  

 We assume a zero mean for all distributions used (i.e., all transition probabilities are 

centered at zero vertical difference, therefore the lowest-cost transition still always generates a 

perfectly flat layer), and only the variance between transitions is calculated. As an example, the 

histogram of all vertical differences found for DoA bin 30 (out of 64) can be seen in Fig. 3.16. 

Note that this distribution presents an approximately Gaussian shape; this can be seen in Fig. 3.17 

which depicts the best-fit unimodal Gaussian distribution for the presented histogram. This 

approximate Gaussian pattern was similarly noted in the distributions of all DoA bins. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.16.  Histogram depicting the distribution of along-track vertical differences, measured in range-
bins, at direction-of-arrival bin 30 (out of 64). 
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 For this reason, the proposed binary term for this transition model assigns costs based on 

an inverted Gaussian distribution with mean equal to the range-bin value that produces zero 

vertical difference and variance equal to the empirically-discovered value for the direction-of-

arrival bin of interest. The inverse Gaussian distribution generates the desired effect that a lower 

binary cost is assigned to transitions with higher probability according to the analyzed data. 

Similarly to what was done in the original implementation of the binary cost function, shown in 

Eq. 7, this zero-mean Gaussian probability distribution is transformed into a quadratic function by 

a negative logarithm, which increases computational efficiency and reduces the occurrence of 

rounding errors.  

 The along-track binary cost ψB−AT−2D�ci, cj� for two-dimensional tracking is 

mathematically defined as follows:  

 ψB−AT−2D�ci, cj� = −log (Ɲ�ΔY, sci,σAT
2

2D�)        (16) 

Fig. 3.17.  The normalized best-fit Gaussian PDF relative to the histogram shown in Fig. 3.6.  



80 
 

and the along-track binary cost ψB−AT−3D�ci, cj� for three-dimensional tracking is defined as  

where σAT2 DoA is the variance empirically discovered for the DoA bin of interest. Furthermore,  ΔY 

is the vertical difference between the “source” and “destination” range-lines of interest, corrected 

to account for the range-slope of the ice-surface. This term is thus defined as 

In both equations above, sci and scj are the row-indices assigned to adjacent range-lines, with sci 

being the row-index of the “source” range-line and scj the row-index of the “destination” range-

line. Furthermore, sSURF(c) is the row-index of the known ice-surface layer at column c, and thus 

sSURF(ci) refers to the row-index of the ice-surface layer at the “source” range-line, and sSURF�cj� 

refers to the same at the “destination” range-line. The Gaussian PDF calculation of Ɲ(x, µ,σ2) is 

defined in Eq. 9. Note that the usage of sci as the mean (µ) of the Gaussian distribution above 

generates the aforementioned effect of centering the PDF at the range-bin which generates zero 

vertical difference between the ice-bottom layer at the “source” and “destination” range-lines.  

 In Fig. 3.18, we demonstrate the final along-track cost distribution calculated as a function 

of the vertical difference between the ice-bottom layer point tracked at a given “source” range-line 

and the relevant pixels at the consecutive “destination” range-line for DoA bin 30, which is also 

presented in Figs. 3.16 and 3.17. These values were found by applying the value of σAT2 30 = 0.4524 

(obtained from geostatistical analysis) onto Eq. 17. Furthermore, in Fig. 3.19 we demonstrate the 

variances found for every direction-of-arrival bin. These variances were smoothed by a moving-

average filter to generate a more representative distribution despite our limited training dataset. 

 

 

 ψB−AT�ci, cj� = −log (Ɲ�ΔY, sci,σAT
2

DoA�)        (17) 

 ΔY = sci − scj − �sSURF(ci) − sSURF�cj��.        (18) 
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Fig. 3.19.  Values of the variances, in range-bins, found for the along-track transitions for every DoA bin. 

Fig. 3.18.  Final along-track transition costs for DoA bin 30 (out of 64). 
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3.4 - Range-bin variation in the cross-track dimension 

 The final cost term derived from the geostatistical analysis serves as a cross-track (DoA-

bin to DoA-bin) transition model, and is associated with the binary cost function of both HMM 

and MRF models. It refers to the vertical variation, measured in range-bins, of the ice-bottom layer 

between two consecutive direction-of-arrival bins in slices of three-dimensional imagery. 

Therefore, it is related to the same measurement used in the along-track transition model but 

calculated over the elevation angle (cross-track) dimension. Because this term operates in the 

cross-track dimension, it is only applicable in the case of three-dimensional imagery. It is 

employed by the MRF/TRW-S algorithm in all cases, and by the HMM/Viterbi algorithm when it 

is tasked with tracking individual slices of 3D datasets. 

 As is done with the along-track transition model, this cost term is implemented as part of 

the binary cost function used by both the HMM and MRF models, and acts as a smoothness 

constraint by penalizing large vertical discontinuities in the ice-bottom layer. The values used with 

this technique were obtained from geostatistical analysis performed on the same 3D training 

dataset as mentioned in Section 3.1. The geostatistical analysis consisted of calculating the mean 

and variance of the vertical differences between the ice-bottom layer locations in consecutive 

direction-of-arrival bins. We generate a histogram of all the vertical differences found for a given 

DoA bin over all slices of 3D imagery, calculate the mean variance of those vertical differences, 

and use the best-fitting unimodal Gaussian distribution to model the discovered histogram.  

 As an example, see Fig. 3.20 which displays the histogram of the vertical differences found 

in the transitions between source DoA bin 30 and destination DoA bin 31 (out of 64) across all 

slices of the 3D training dataset. Note that this histogram may be approximately modeled as a 

Gaussian distribution. This can be seen in Fig. 3.21, which depicts the best-fitting unimodal 
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Gaussian distribution for the presented histogram. This approximate Gaussian pattern was 

similarly noted in the distributions found for all DoA bins.  

 The final cross-track transition cost calculation is very similar to the one proposed for the 

along-track case, in which costs are assigned based on an inverted Gaussian distribution. The major 

difference between the two transition models is that the along-track model uses a zero-mean value, 

whereas the cross-track model uses the empirically-discovered mean and variance values for the 

direction-of-arrival bin of interest. The final cost distribution for the cross-track term is also 

transformed into a quadratic function by a negative logarithm.  

 The cross-track binary cost term ψB−CT(ci, cj) is mathematically defined as follows: 

where µCTDoA  is the mean and  σCT2 DoA is the variance empirically discovered for the DoA bin of 

interest, and all other variables have the same definition as in Eq. 17 and Eq. 18.  

 In Fig. 3.22, we demonstrate the final cross-track cost distribution calculated for transitions 

between DoA bins 30 and 31, found by applying the value of  σCT2 30 = 20.4725 (obtained from 

geostatistical analysis) onto Eq. 18. Furthermore, in Fig. 3.23 we demonstrate the variances found 

for every direction-of-arrival bin. These variances were smoothed by a moving-average filter to 

generate a more representative distribution despite our limited training dataset. 

 

 

 

 

 ψB−CT�ci, cj� = −log (Ɲ�ΔY, µCTDoA ,σCT2 DoA�) (19) 
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Fig. 3.20.  Histogram depicting the distribution of cross-track vertical differences, measured in range-bins, at 
direction-of-arrival bin 30 (out of 64). 

Fig. 3.21.  The normalized best-fit Gaussian PDF relative to the histogram shown in Fig. 3.10. 



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.22.  Final cross-track transition costs for DoA bin 30 (out of 64). 

Fig. 3.23.  Values of the variances, in range bins, found for cross-track transitions for every DoA bin. 
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Chapter 4 -  RESULTS AND COMPARISON BETWEEN STATE-OF-THE-
ART SOLUTIONS 

4.1 - Introduction 

 The purpose of this chapter is to define the settings in which the tracking frameworks 

presented in this work were executed, and to present the results achieved by these methods in both 

2D and 3D tracking scenarios. We describe the training and testing datasets used, explain the result 

criteria, and evaluate the outputs obtained from each of the trackers. In doing so, we present a 

comparison between our proposed tracking techniques and several other recently published 

methods for ice-layer tracking applied to CReSIS imagery.  

 Previously published works applied their proposed tracking solutions on different radar 

imagery datasets, measured the accuracy of their techniques using different benchmarks, and 

offered results using different units and calculations. This has complicated a general evaluation of 

the state-of-the-art in this area. For this reason, we offer a comprehensive and standardized 

comparison between several recently proposed automated tracking methods. An effort has been 

made to apply the software provided by the authors of these solutions exactly as intended, and to 

perform a uniform and impartial assessment of the results by applying the solutions to the same 

2D and 3D CReSIS datasets under the same conditions. All of the tracking algorithms included in 

this general comparison are mentioned in Section 1.4 of this document, and are briefly reviewed 

in Section 4.2.  

 The remainder of this chapter is organized as follows: Section 4.2 presents a review of the 

tracking solutions for two-dimensional imagery included in this comparison, along with the 

settings in which these methods were applied. Section 4.3 does the same for the tracking solutions 

for three-dimensional imagery. In Sections 4.4 and 4.5, we present the datasets used in the 2D and 
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3D comparisons, respectively, and in Section 4.6 we define the error calculations used for all the 

trackers included. In Section 4.7 we present and evaluate the results obtained for the 2D tracking 

methods, and in Section 4.8 we do the same for three-dimensional tracking results.  

 

4.2 - Two-dimensional tracking solutions included in the comparison 

 4.2.1 - Level-sets approach by Rahnemoonfar et al.  

 The first solution considered in this comparison is the distance-regularized level-sets model 

(LSM) proposed by Rahnemoonfar et al. [22]. The existing implementation of this method is 

applicable to tracking of nadir-looking 2D echograms only, is able to simultaneously solve for 

both ice-surface and ice-bottom layers, and requires no additional sources of evidence regarding 

the ice sheets. Furthermore, it does not allow for the addition of manual or automated ground-truth 

data points. It presents three tunable hyperparameters which significantly modify the final results:  

1. A scalar variable y which defines the initial location of the ice-surface layer (which is then 

iteratively modified and evolved by the algorithm). The value of y defines the range-bin in 

which the ice-surface contour is initialized for all range-lines. The ice-surface contour is 

therefore initialized as a flat horizontal layer in the 2D echogram. 

2. A scalar Δy which defines the initial vertical offset between the ice-surface and the ice-

bottom layers (the initial ice-bottom contour therefore being defined by y + Δy). The ice-

bottom contour is therefore also initialized as a flat horizontal layer in the 2D echogram. 

3. The number of iterations performed by the algorithm. Note that the level-sets technique is 

not necessarily expected to output improved results as the number of iterations performed 

is increased. 
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 We tuned the hyperparameters using an exhaustive grid-search over the parameter ranges 

that we expect to contain the optimal results. The purpose is to find the optimal combination for 

the values of the three variables listed above. This tuning routine is performed on the 2D training 

set described in Section 4.4, and the results presented here are obtained by applying the algorithm 

on the testing set using the optimal combination found from the training set.  

 The tested values for the aforementioned ice-surface initialization parameter are y =

{160, 180, 200, … , 300}. Since we would like to see how the algorithm performs using the a priori 

ice-surface information, we also test the mean value of the range-bin labels of the known ice-

surface layer of each data frame as an alternative initial position of the ice-surface contour of each 

frame, calculated as 

where sSURF(i) is the range-bin of the known ice-surface layer at range-line i, and NRL is the 

number of range-lines in the 2D data frame of interest. The final values used for this variable were 

therefore y = {160, 180, 200, … , 300, mean(S)}. The values used for the ice-bottom offset Δy 

were Δy = {5, 10, 20, 40}. For the number of iterations performed by the algorithm, we tested 

values of {50, 100, … , 800}. In total, 9 ∗ 4 ∗ 16 = 576 combinations were evaluated. When using 

a fixed y value, we found that the combination of y = 200, Δy = 5, and 400 iterations produces 

the most favorable mean error results. When the mean range-bin of the ice-surface layer is used as 

the y value, the best results were achieved when combining y = mean(S) with a value of Δy = 40 

and a total of 350 iterations. The optimal parameters in both choices for y are taken to be the 

parameters that minimize the absolute error of the ice surface and the ice bottom. Fig. 4.1 depicts 

the two-dimensional error plot generated by each of the combinations tested for y = mean(S). 

 

 
mean(S) =

1
NRL

∗� sSURF(i),
NRL

i=1

 (19) 
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 We evaluate the results of the LSM tracker using both definitions of the y parameter and 

the respective parameter combinations described above. This tracking technique is assigned the 

index of (1) in the two-dimensional comparison when the y parameter is equal to the fixed value 

of 160 for all data frames, found by the hyperparameter tuning routine to be the optimal value. 

Furthermore, this tracking technique is assigned the index of (2) in the two-dimensional 

comparison when the y parameter is assigned a variable value for each frame according to the 

calculated mean range-bin of the ice-surface layer. 

 

 4.2.2 - HMM + Viterbi algorithm approach by Crandall et al.  

 The second technique included in this comparison is the original probabilistic graphical 

approach proposed by Crandall et al. [14] which constructs an HMM to model the ice sheets and 

uses the Viterbi algorithm to perform inference on the HMM. The improved HMM/Viterbi 

Fig. 4.1.  Mean pixel error found for each tested combination of the number of iterations and Δy parameters. The 
white ‘x’ marks the combination with the lowest mean error, equal to a number of iterations of 350 and Δy = 40. 
The same procedure was performed for the case in which y,Δy, and the number of iterations are unknowns.  
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algorithm framework presented in Chapters 2 and 3 of this document is based on this work. This 

method is applicable to tracking of nadir-looking 2D echograms only, is able to simultaneously 

solve for both ice-surface and ice-bottom layers, and requires no additional sources of evidence 

regarding the ice sheets. This technique allows for the addition of ground-truth coordinates for 

both ice interfaces.  

 We have tested this technique in two different ways. First, no ground-truth points of any 

kind were provided to the algorithm, and the outputs for both ice layers are included in the 

comparison. Second, we provide the model with ground-truth points for the ice-bottom from all 

crossovers (previous data collections at the same location as data points in the data frame being 

tracked), and provide the a priori ice-surface in the format of ground-truth points for the ice-

surface. In this second case, only the output for the ice-bottom is included in the comparison. No 

parameter tuning was performed for this method, and so only the parameters proposed by the 

authors were applied. The results presented for this technique were acquired from execution on the 

2D testing set only.  This tracking technique is assigned the index of (3) in the two-dimensional 

comparison when no ground-truth points are provided to the algorithm, and the index of (4) when 

the ice-surface location and the available ice-bottom ground-truth points are provided to the model. 

 

 4.2.3 - MRF + Markov Chain Monte Carlo approach by Lee et al. 

 The third approach included in this comparison, proposed by Lee et al. [24], builds on the 

probabilistic graphical approach of [14] but constructs an MRF to represent the model. In order to 

solve for the maximum-likelihood solution, this approach attempts to estimate functionals of the 

full joint probability distributions via Gibbs sampling. The Gibbs sampler is a Markov Chain 

Monte Carlo technique, and so this technique is referred to as “MCMC” in this document.  
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 The proposed implementation of this method is applicable to tracking of nadir-looking 2D 

echograms only, is able to simultaneously solve for both ice-surface and ice-bottom layers, and 

requires no additional sources of evidence regarding the ice sheets. Furthermore, it does not allow 

for the addition of manual or automated ground-truth data points. No parameter tuning was 

performed for this method, and so only the parameters proposed by the authors were applied. The 

results presented for this technique were acquired from execution on the 2D testing set only. This 

tracking technique is assigned the index of (5) in the two-dimensional comparison. 

 

 4.2.4 - Modified HMM + Viterbi algorithm approach 

 The final solution included in the 2D comparison is the modified HMM + Viterbi algorithm 

technique proposed in Chapters 2 and 3. This approach is applicable to both nadir-looking 2D 

echograms and individual slices of 3D imagery, and therefore it was tested in both cases. This 

method detects the ice-bottom layer only, and requires several additional sources of evidence 

regarding the ice sheets, such as the location of the ice-surface and the ice-mask of the surveyed 

terrain, as mentioned in Chapter 2. All available ice-bottom crossovers were provided to this 

algorithm in the form of high-confidence ground-truth points. No low-confidence ground-truth 

points were provided. Furthermore, this method is the only one in the 2D comparison to benefit 

from the empirically-derived model definitions discovered by the geostatistical analysis described 

in Chapter 3 of this document. The results presented in the 2D comparison for this technique were 

acquired from execution on the 2D testing set only. This tracking technique is assigned the index 

of (6) in the two-dimensional comparison. 
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4.3 - Three-dimensional tracking solutions included in the comparison 

 4.3.1 - Modified HMM + Viterbi algorithm approach 

 The first solution included in the 3D comparison is the modified HMM + Viterbi algorithm 

technique proposed in this document. This is the same algorithm as discussed in Section 4.2.4. 

This method performs tracking on individual slices of 3D imagery. Results from previously 

tracked slices were not provided to the algorithm in any form. However, a ground-truth point in 

the nadir direction-of-arrival bin was provided to the algorithm in each slice. The results presented 

in the 3D comparison for this technique were acquired from execution on the 3D testing set only. 

This tracking technique is assigned the index of (1) in the three-dimensional comparison. 

 

 4.3.2 - MRF + TRW-S algorithm approach by Xu et al. 

  The second technique included, proposed by Xu et al. [17], is the original probabilistic 

graphical approach constructing an MRF to model the three-dimensional space defined by the 3D 

radar imagery and using the TRW-S algorithm to iteratively find the minimum-cost solution 

conditioned on the MRF. The modified MRF/TRW-S algorithm framework presented in Chapters 

2 and 3 of this document is based on this algorithm. This method solves for the ice-bottom layer 

only, and may include additional evidence of the ice-sheets, such as ground-truth points and ice-

mask datasets, if available. A ground-truth point in the nadir direction-of-arrival bin was provided 

to the algorithm in each slice, as well as the available ice-mask dataset. No parameter tuning was 

performed for this method, and so only the parameters proposed by the authors were applied. The 

results presented for this technique were acquired from execution on the 3D testing set only. This 

tracking technique is assigned the index of (2) in the three-dimensional comparison. 
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 4.3.3 - C3D + RNN approach by Xu et al. 

 One of the two approaches included in this comparison that does not make use of a 

probabilistic graphical model (along with the level-sets solution described in Section 4.2.1), the 

recently proposed solution by Xu et al. [31] is notable for being one of the first efforts in the field 

of automated ice-layer tracking to employ deep-learning techniques. The proposed method 

employs a combination of three-dimensional convolutional neural networks (C3D) and recurrent 

neural networks (RNN) to find both the ice-surface and ice-bottom layers. The neural networks 

were trained using the manually-corrected 3D training set (described in Section 4.5) for both the 

ice-surface and ice-bottom layers, and tested on the 3D testing dataset. This method requires no 

additional sources of evidence and does not allow for the input of ground-truth points. This 

tracking technique is assigned the index of (3) in the three-dimensional comparison. 

 

 

 

 4.3.4 - Modified MRF + TRW-S algorithm approach 

 The final solution included in this comparison is the modified MRF + TRW-S algorithm 

technique proposed in Chapters 2 and 3. This approach detects the ice-bottom layer in three-

dimensional imagery only, and requires the aforementioned additional sources of evidence 

regarding the ice sheets. A ground-truth point in the nadir direction-of-arrival bin was provided to 

the algorithm in each slice. Furthermore, this method is the only one in the 3D comparison to 

benefit from the empirically-derived model definitions achieved through the geostatistical analysis 

described in Chapter 3 of this document. The results presented for this technique were acquired 
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from execution on the 3D testing set only. This tracking technique is assigned the index of (4) in 

the three-dimensional comparison. 

 

4.4 - Dataset used in the comparison between 2D tracking solutions 

 The two-dimensional dataset used by all the tracking solutions presented in this comparison 

was acquired by the MCoRDS instrument as part of the 2014 NASA Operation IceBridge 

deployment to Greenland and the Canadian Arctic Archipelago. Included in the comparison are a 

total of 57 data segments, out of which 23 segments (approximately 40%) were randomly selected 

as the training set, and the remaining 34 segments were used as the testing set. The 23 data 

segments in the training set are composed of a total of 716 data frames, and the 34 data segments 

used as the testing set are composed of a total of 1,146 data frames. The 2D data segments included 

in this comparison are listed in Table 4.1 along with their division between training and testing 

sets. The ground-truth ice-surface layer dataset for both training and testing sets was obtained by 

executing a simple threshold tracker guided by the ArcticDEM [19] digital elevation model 

dataset. The results obtained from the automated ice-surface tracking were occasionally manually 

corrected where necessary. The ground-truth ice-bottom layer dataset for both training and testing 

sets was acquired via manual layer tracking performed by experienced CReSIS analysts.  

 

4.5 - Dataset used in the comparison between 3D tracking solutions 

 The three-dimensional dataset used in this work is a proper subset of the 2D dataset used 

and thus was acquired by the same instrument and in the same season. This dataset is far smaller, 

being composed of only 5 data segments which correspond to a total of 102 data frames. From the 
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102 data frames in the 3D dataset, 5 were discarded due to the altitude of the measurement causing 

the range gate to not include the ice bottom, and thus 97 data frames were considered in this 

comparison. Out of the 97 frames, 57 (approximately 60%) were used as the training set, with the 

40 remaining data frames being used as the test set. The increased percentage of frames used as 

training data in the 3D case is due to the reduced amount of total data, and the fact that the tracking 

approach of [31], based on a neural network technique, heavily relies on large amounts of training 

data to perform well. The 5 data segments used in this comparison were all the currently available 

three-dimensional data for this season. The 3D data segments included in this comparison are listed 

in Table 4.2 along with their division between training and testing sets. Due to the processing 

parameters used in the generation of the imagery in this dataset, the elevation angle of all slices in 

both the training and testing datasets is divided into 64 DoA bins. 

 The ground-truth ice-surface layer dataset for both training and testing sets was acquired 

entirely from the existing ArcticDEM [19] dataset. These estimates were occasionally manually 

corrected where necessary. The ground-truth ice-bottom layer dataset for both training and testing 

sets was acquired by executing the original MRF/TRW-S tracking solution (described in Section 

4.3.2) and then performing manual analysis and correction of the automated results.  For this 

reason, it is likely that the 3D ground-truth layer data present a bias towards the results output by 

the automated TRW-S technique. The initial use of the TRW-S tracker to create the ground-truth 

data is necessary for the 3D dataset due to its large size. This is not the case for 2D layer data, as 

manual tracking of these images is a far more tractable problem. 
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4.6 - Definition of the error measurements 

 The main result obtained from the comparison of the automated tracking frameworks 

analyzed in this work is the difference between the automated output of a given tracking solution 

and the available manually-corrected ground-truth layer data for each data frame. These 

differences are calculated for each column as the absolute column-wise vertical distance between 

the ground-truth and the automatically tracked layers, from which the mean and median values 

over all data frames considered are presented. These error measurements are calculated in terms 

of pixels (or range-bins) and are found for every range-line in the case of nadir-looking 2D 

echograms, and for every range-line and DoA-bin in the case of three-dimensional imagery.  

 For both 2D and 3D tracking scenarios, we also present accuracy and precision 

calculations, using three different definitions of a true positive result: a particular image column is 

considered to have been correctly tracked if it is within 3 range-bins, within 5 range-bins, and 

within 10 range-bins of the ground-truth. A true negative and a false positive column are then any 

column for which this is not the case. Therefore, the accuracy and precision measurements are 

identical and equivalent to the percentage of correctly labeled columns (i.e. columns labeled within 

3, 5, and 10 range-bins of the ground-truth). 

 The two-dimensional ice-bottom tracking results of mean error, median error, and accuracy 

are presented according to two different criteria. First, all range-lines of all data frames in the 

testing set are considered. However, this method occasionally generates misleadingly large mean 

and median tracking errors for the techniques that do not consider the ice-mask during the tracking. 

This is due to the fact that these techniques will attempt to detect the ice-bottom layer in all range-

lines of each data frame, even in areas in which no ice-bottom is detectable because the terrain is 

not covered by ice. Several of the data frames included in the testing set used are partially or 
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entirely devoid of ice. The only 2D tracking technique which accounts for the ice-mask included 

in this comparison is the proposed modified HMM/Viterbi tracking framework. For this reason, 

the second method used for the ice-bottom results of all trackers in this comparison excludes the 

range-lines in which the ice-mask dataset indicates the inexistence of ice. 

 The results presented in the comparison between trackers of 3D imagery consider only 

DoA bins [5, 6, 7, … , 60] of the 64 total DoA bins in the dataset used. This was done because the 

data in the extreme elevation angles typically present very low quality, and so are ignored in the 

comparison. 

 We also perform a self-assessment of tracking error for all four of the 3D layer trackers 

included in this comparison. This is done by calculating the difference between the results output 

by each tracker in all areas of the testing set where flightlines crossed and two independent 

measurements were acquired over the same location. For comparison, we also provide the mean 

and median error measurement calculated in the same areas using the manually-corrected layer 

data.  

 Finally, we present the mean execution time measurement for all of the trackers presented 

in this comparison. These values are obtained for the tracking of a single data frame in both 2D 

and 3D tracking scenarios. Note that all tracking solutions presented here are trivially 

parallelizable, as tracking a given data frame is independent from other frames. The only exception 

to this is the modified HMM/Viterbi algorithm framework proposed here, which horizontally 

concatenates all frames of the same data segment as discussed in Section 2.5. However, this 

solution is still parallelizable since tracking of separate data segments is independent and thus they 

can still be processed simultaneously. Although execution time is less critical for fully automated 

analysis, it is very beneficial for trackers to present low-enough execution times to be used 
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interactively when manual ground truth points are being added. For instance, an ice layer analyst 

may desire to correct part of the results obtained from an initial run of a given automated tracking 

solution. In this case, the analyst may manually enter additional ground-truth points for the desired 

ice layer and re-execute the tracking algorithm for the region that needs to be corrected. Near real-

time evaluation allows for the algorithm to be run as ground points are added so that the analyst 

knows immediately when enough ground points are added.  
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Two-dimensional data training and testing sets 

2014_Greenland_P3 
Training Set Testing Set 

Segment Number of Frames Segment Number of Frames 
20140313_07 1 20140313_05 1 
20140313_08 3 20140313_06 1 
20140313_10 2 20140313_09 5 
20140325_07 5 20140314_04 3 
20140331_02 13 20140325_05 2 
20140401_04 5 20140325_06 1 
20140405_01 69 20140331_01 13 
20140409_02 48 20140401_01 8 
20140410_01 70 20140401_03 48 
20140412_01 9 20140407_01 72 
20140412_02 33 20140408_01 68 
20140412_04 8 20140409_01 24 
20140415_04 6 20140412_03 5 
20140415_05 19 20140412_05 1 
20140416_01 68 20140414_02 69 
20140421_01 78 20140415_01 6 
20140501_01 46 20140415_02 29 
20140506_01 46 20140415_03 2 
20140507_01 70 20140416_02 1 
20140508_01 73 20140419_02 11 
20140520_04 4 20140419_03 42 
20140520_05 3 20140423_02 36 
20140521_01 37 20140424_01 73 

  20140426_01 46 
  20140429_01 69 
  20140502_01 61 
  20140505_01 70 
  20140509_01 60 
  20140512_01 61 
  20140514_01 69 
  20140515_02 71 
  20140516_01 50 
  20140520_03 31 
  20140521_02 37 
    

Total: 716 Total: 1,146 

Table 4.1.  List of the data segments from the 2014 Greenland P3 season used in the comparison between 2D 
tracking frameworks. The training and testing sets were randomly selected. For a given data segment shown 
above, all of the data frames that compose it were used.  
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Three-dimensional data training and testing sets 

2014_Greenland_P3 
Training Set Testing Set 

Segment Frames Segment Frames 
20140325_05 1 20140401_03 5:24 
20140325_07 1:4 20140506_01 11:30 
20140401_03 1:4, 25:47   
20140506_01 1:10, 31:45   

    
Total:  57 Total: 40 

 

 

 

 

4.7 - Results and evaluation of two-dimensional tracking techniques 

TWO-DIMENSIONAL TRACKING RESULTS – ICE-SURFACE 

 

 

 

 

 (1) (2) (3) (5) 

Ice-surface mean error 5.62 4.06 12.93 2.50 

Ice-surface median error 0 0 0 0 

Ice-surface accuracy (3 px) 94.31% 95.26% 92.47% 95.62% 

Ice-surface accuracy (5 px) 94.71% 95.63% 92.49% 96.27% 

Ice-surface accuracy (10 px) 95.37% 96.19% 92.59% 97.51% 

Table 4.2.  List of the data segments from the 2014 Greenland P3 season (Canadian Arctic Archipelago) used in 
the comparison between 3D tracking frameworks. The training and testing sets were randomly selected. As shown 
above, data segments 20140401_03 and 20140506_01 were split between the training and testing sets. Notation 
such as “1:4” in the “Frames” column should be understood as frames 1, 2, 3, and 4. 

Table 4.3.  Ice-surface error and accuracy measurements obtained from the two-dimensional automated trackers. 
Only the 2D trackers designed to detect the ice-surface layer are presented. All mean and median errors are in 
pixels. 

(1): Level-sets technique [22], fixed initial ice-surface contour value 

(2): Level-sets technique [22], variable initial ice-surface contour value equal to the mean of the ice-surface layer 

(3): Original HMM/Viterbi algorithm [14], no ground-truth provided 

(5): MCMC [24] 
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TWO-DIMENSIONAL TRACKING RESULTS – ICE-BOTTOM, ALL RANGE-LINES 

 

 

TWO-DIMENSIONAL TRACKING RESULTS – ICE-BOTTOM 

ONLY ICE RANGE-LINES INCLUDED 

 

 

 

 

 

  (1) (2) (3) (4) (5) (6) 

Ice-bottom mean error 16.21 15.04 24.80 4.63 13.18 1.67 

Ice-bottom median error 0 0 0 0 0 0 

Ice-bottom accuracy (3 px) 93.64% 96.51% 92.71% 94.29% 96.02% 98.03% 

Ice-bottom accuracy (5 px) 94.00% 97.05% 92.81% 95.31% 96.40% 98.34% 

Ice-bottom accuracy (10 px) 94.40% 97.45% 93.09% 96.35% 97.51% 98.69% 

  (1) (2) (3) (4) (5) (6) 

Ice-bottom mean error 13.71 12.15 23.15 3.21 11.20 1.70 

Ice-bottom median error 0 0 0 0 0 0 

Ice-bottom accuracy (3 px) 93.90% 97.22% 93.75% 95.62% 96.84% 98.20% 

Ice-bottom accuracy (5 px) 94.23% 97.86% 93.85% 96.39% 97.21% 98.63% 

Ice-bottom accuracy (10 px) 94.61% 97.97% 94.04% 97.44% 97.71% 98.99% 

Table 4.4.  Ice-bottom error and accuracy measurements obtained from the two-dimensional automated trackers. 
These results include all range-lines, regardless of whether or not ice is present in every location. All 2D trackers 
are presented. All mean and median errors are in pixels. See column indexes below.  
 

Table 4.5.  Ice-bottom error and accuracy measurements obtained from the two-dimensional automated trackers. 
These results exclude the range-lines to which the ice-mask points to the inexistence of ice. Column indexes: 

(1): Level-sets technique [22], fixed initial ice-surface contour value 

(2): Level-sets technique [22], variable initial ice-surface contour value equal to the mean of the ice-surface layer 

(3): Original HMM/Viterbi algorithm [14], no ground-truth provided 

(4): Original HMM/Viterbi algorithm [14], entire ice-surface and available ice-bottom ground-truth provided 

(5): MCMC [24] 

(6): Modified HMM/Viterbi algorithm (ours), entire ice-surface and available ice-bottom ground-truth provided 
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 TWO-DIMENSIONAL TRACKING RESULTS – MEAN TIME MEASUREMENTS 

 

 

 

 

 

  

 As expected, we find that the automated trackers consistently output better tracking results 

for the ice-surface layer, given that it is typically characterized by a far stronger and smoother 

interface in the radar echograms than the ice-bottom boundary. In evaluating the ice-bottom 

tracking error results presented in Tables 4.4 and 4.5, note that all solutions, with the exception of 

our modified HMM/Viterbi algorithm technique, are able to extract both the ice-surface and ice-

bottom layers from a two-dimensional echogram. Providing a layer tracking algorithm with the 

location of the ice-surface boundary, such as we propose, simplifies the tracking framework and 

strengthens the location constraints for the ice-bottom. Furthermore, all of the previously published 

solutions included here make use of less information than our proposed solution. In all three, the 

a priori location of the ice-surface and the ice-mask raster were not used by the algorithms when 

they were initially published; the only input requirements of these techniques consist of the radar 

echogram itself and a set of tunable hyper-parameters such as weights and scaling factors. 

 (1) (2) (3) (4) (5) (6) 

Mean tracking time per frame 

(seconds) 
147.10 116.44 1.42 1.35 3,625.18 1.25 

Table 4.6.  Timing measurements obtained from the two-dimensional automated trackers. All values in seconds. 
For tracking techniques (1), (2), (3) and (5), these values refer to the total tracking time of both ice layers.  

(1): Level-sets technique [22] 

(2): Level-sets technique [22] 

(3): Original HMM/Viterbi algorithm [14], no ground-truth provided 

(4): Original HMM/Viterbi algorithm [14], entire ice-surface and available ice-bottom ground-truth provided 

(5): MCMC [24] 

(6): Modified HMM/Viterbi algorithm (ours), entire ice-surface and available ice-bottom ground-truth provided 
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Furthermore, our proposed techniques are the only ones to benefit from the novel empirically-

derived cost models described in Chapter 3 of this document. The improved results obtained by 

our method come at the trade-off of requiring significantly more information regarding the 

surveyed terrain to be available. In a situation where the required additional data such as ice-

surface and ice-mask datasets are not available, it may be impossible to make use of the techniques 

proposed here. However, these are rare exceptions and should not significantly affect the generality 

of these methods. Moreover, a small degradation in performance is noted to occur if the available 

ground-truth data points for the ice-bottom layer are not provided to our model, but this possibility 

was not explored in this work. The existing implementations of the level-sets technique and the 

MCMC tracker do not allow for ground-truth data points to be included in the tracking 

computations. 

 The mean execution time values presented in Table 4.6 refer to the tracking function calls 

only, and therefore assume all required data are already loaded, including the input echogram and 

ice-surface and ice-mask dataset where required. Similarly, the image pre-processing steps of all 

tracking techniques, such as the ones presented in Section 2.5 for our proposed HMM/Viterbi 

tracking framework, are excluded from the timing demonstrated in Table 4.6. The execution times 

of LSM tracker are linearly dependent on the total number of iterations performed by the algorithm. 

The results presented in Table 4.6 refer to the optimal number of iterations presented in Section 

4.2.1. Therefore (1) refers to 400 iterations and (2) refers to 300 iterations. 
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4.8 - Results and evaluation of three-dimensional tracking techniques 

 THREE-DIMENSIONAL TRACKING RESULTS – ICE-SURFACE 

 

 

 

 

 

 

 

THREE-DIMENSIONAL TRACKING RESULTS – ICE-BOTTOM 

 

 

 

 

 

 

 

 

 

 C3D/RNN (3) 

Ice-surface mean error 3.68 

Ice-surface median error 2 

Ice-surface accuracy (3 px) 71.19% 

Ice-surface accuracy (5 px) 82.21% 

Ice-surface accuracy (10 px) 92.62% 

  (1) (2) (3) (4) 

Ice-bottom mean error 9.21 7.90 8.88 4.48 

Ice-bottom median error 1 1 4 1 

Ice-bottom accuracy (3 px) 67.95% 52.18% 43.20% 73.59% 

Ice-bottom accuracy (5 px) 72.60% 71.82% 57.98% 78.31% 

Ice-bottom accuracy (10 px) 79.59% 81.18% 77.26% 85.54% 

Table 4.8.  Ice-bottom error and accuracy measurements obtained from the three-dimensional automated trackers. 
All 3D trackers are presented. All mean and median errors are in pixels. 

(1): Modified HMM/Viterbi algorithm (ours) 

(2): Original MRF/TRW-S algorithm [17] 

(3): C3D + RNN [31] 

(4): Modified MRF/TRW-S algorithm (ours) 

 

Table 4.7.  Ice-surface error and accuracy measurements obtained from the three-dimensional automated tracker. 
The only 3D tracker designed to detect the ice-surface layer in this comparison is the C3D/RNN tracker [31]. All 
mean and median errors are in pixels. 
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THREE-DIMENSIONAL TRACKING RESULTS – MEAN TIME MEASUREMENTS 

 

 

 

 

 

 

THREE-DIMENSIONAL TRACKING RESULTS – CROSSOVER MEASUREMENTS 

 

 

 

 

 

 

 The results presented in Table 4.7 include only the C3D/RNN tracker [31]. This is the only 

3D image tracker included in this comparison designed to automatically detect the ice-surface 

layer. As in the 2D tracking case, the results are consistent with the fact that ice-surface layer 

tracking typically produces more accurate results than ice-bottom tracking, for the same reasons 

as discussed in Section 4.7. This neural network-based tracker solves for both ice layers 

  (1) (2) (3) (4) 

Mean tracking time per frame 

(seconds) 

25 1,742 45 1,792 

  (1) (2) (3) (4) MC 

Crossover mean error (meters) 25.0 26.0 25.8 24.1 23 

Crossover median error (meters) 13 13 14 12 11 

Table 4.9.  Timing measurements obtained from the two-dimensional automated trackers. All values in seconds. 
For the C3D/RNN tracking technique, the value refers to the total tracking time of both ice layers.  

 (1): Modified HMM/Viterbi algorithm (ours) 

(2): Original MRF/TRW-S algorithm [17] 

(3): C3D/RNN [31] 

(4): Modified MRF/TRW-S algorithm (ours) 

 

Table 4.10.  Mean and median crossover absolute error results. All values in meters. For context, we also present 
the mean error found in the manually-corrected (MC) layer dataset. 

 (1): Modified HMM/Viterbi algorithm (ours) 

(2): Original MRF/TRW-S algorithm [17] 

(3): C3D/RNN [31] 

(4): Modified MRF/TRW-S algorithm (ours) 
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simultaneously, but may output an ice-bottom layer partially or entirely located above the detected 

ice-surface for the same slice. To obtain the ice-bottom tracking results for this technique presented 

in Table 4.8, we have thresholded the ice-bottom range-bin values so that these cannot exceed the 

range-bin value for the ice-surface layer found at the same direction-of-arrival bin. 

 Furthermore, the results point to the fact that three-dimensional tracking generates larger 

mean error values than the 2D tracking techniques do for nadir-looking two-dimensional 

echograms. The main reason for this is that tracking 3D imagery is more difficult than tracking 2D 

imagery because the image quality generally deteriorates on each side of nadir for the 3D images. 

When the original MRF/TRW-S algorithm was used to track 2D images using the 3D image (no 

nadir ground truth was provided), it outperformed the HMM/Viterbi 2D tracker when only the 

nadir result was compared [17]. The assumption was that the additional information in the 3D 

image allowed the nadir track to be tracked more precisely since the TRW-S algorithm had all 64 

elevation angle bins and the 2D tracker only had the nadir elevation angle bin. The modified 

HMM/Viterbi tracking framework is also aided by the large amount of available ground-truth 

points in the 2D case. Also, TRW-S is an approximate algorithm which does not necessarily output 

the global optimal path during the inference step although it does seem to converge to a stable 

solution after a total of approximately 50 iterations. 

 As previously mentioned in Section 4.5, the ground-truth layer data for the three-

dimensional imagery was obtained from manual correction of the results output by the original 

MRF/TRW-S algorithm technique [17]. For this reason, it is possible that the results presented in 

Table 4.8 present a bias favoring the results of our proposed implementation of the MRF/TRW-S 

method. The HMM/Viterbi technique, the original MRF/TRW-S solution, and our proposed 

implementation of the MRF/TRW-S method, all of which employ comparable layer tracking 
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models defined by cost functions following similar assumptions. Therefore, the error results of 

Table 4.8 may particularly disfavor the C3D/RNN solution, which does not use a probabilistic 

graphical model although it is trained on these ground truth so the effect may be minimal. 

 Along with the mean and median tracking results for the four automated trackers included 

in the three-dimensional tracking comparison, we present the crossover errors where flight lines 

crossed and two independent measurements were acquired over the same location. The two 

independent measurements allow the consistency of the approach to be analyzed. We present 

results for all automated trackers and for the manually-corrected ground truth data. Crossover 

errors can be visualized by overlaying the two (crossing) flight lines of interest in a digital elevation 

model. Fig. 4.2ab displays the flight paths (green and blue lines) of two data frames from the three-

dimensional testing set used, as well as the swath imaged by each. The region surrounded by the 

red line is the intersection of the two swaths and represents the data points that were imaged both 

times. Fig. 4.2c displays the vertical error between the results obtained by tracking the ice-bottom 

layer at the intersection of the two data frames shown. 
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Fig. 12.  Crossover visualization and error map. 

a)

b)

c)

Fig. 4.2.  Crossover visualization and error map. 
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Chapter 5 -  CONCLUSION 

 We have demonstrated ice-bottom layer tracking in two-dimensional SAR images and 

three-dimensional SAR tomographic images of polar ice sheets using modified versions of two 

existing layer tracking solutions based on the HMM/Viterbi algorithm framework from [14] and 

MRF/TRW-S algorithm framework from [17]. We have also presented a thorough comparison 

between all ice bottom tracking solutions we found in the literature. Evaluation of the state-of-the-

art in this area was previously complicated by the fact that the authors of the existing techniques 

presented the results obtained by their solutions using different datasets and error measurements. 

Furthermore, the published results of [22] and [24] excluded imagery that was deemed of low 

quality, whereas we have used precisely the same two-dimensional and three-dimensional datasets 

in all the comparisons presented. Substantial effort was made to generate an impartial analysis of 

the results obtained to help guide future research in this area. 

 Based on the results obtained in this comparison, our methods outperform the existing 

solutions while being fast enough to allow for corrections to be performed efficiently and in near 

real-time when errors occur in the automated result. However, our modifications require that more 

ancillary data regarding the surveyed ice sheets be available. Furthermore, our techniques are able 

to detect only the ice-bottom interface, whereas the majority of the existing solutions output both 

the ice-surface and ice-bottom layers. 

 The improvements proposed here arise from refinements made to the unary and binary cost 

functions of the probabilistic graphical models used in the original publications, which allow for 

the integration of further domain-specific knowledge and sources of evidence. Additional 

automated pre-processing steps are also applied on the two-dimensional radar echograms, such as 

data detrending, concatenation of adjacent data frames, inclusion of ground truth from previous 
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radar campaigns, and filtering of the first surface multiple from the image, which increase the 

accuracy of the tracker in adverse scenarios such as noisy data and very weak ice bed returns. 
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