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ABSTRACT 

Two main routes of drug elimination include renal excretion via the kidney and metabolic 

degradation via metabolizing enzymes (DMEs) in the liver, followed by renal excretion or biliary 

elimination of the now more polar molecule.  Unlike renal excretion, liver metabolism tends to 

be highly variable between individuals due to various intrinsic and extrinsic factors such as age, 

genetics, smoking, and diet.  The variability in liver DME activity among individuals creates a 

challenge in drug development and pharmacotherapy, especially for drugs that are required to be 

metabolized and have narrow therapeutic windows.  If the liver DME activity of an individual 

could be predicted and each patient dosed according to their unique liver DME activity, the 

adverse effects or lack of effectiveness associated with these drugs may be prevented.  Currently, 

two methods available for predicting an individual’s liver DME activity are genotyping and 

phenotyping.  For genotyping, RT-PCR is used to determine the DNA sequence of the expressed 

enzyme.  This reveals the specific polymorphism of the enzyme and the “typical activity” of the 

expressed polymorph is used to dose the patient accordingly.  The issue with this however, is that 

it fails to account for other intrinsic or extrinsic factors that can affect the expression level of the 

given DME polymorph.  On the other hand, phenotyping is done by administering a cocktail of 

drugs to a patient and monitoring the activity of the expressed enzyme(s).  Because this reveals 

the true activity of the liver DMEs, it is more clinically relevant and used more often than 

genotyping.  However, phenotyping is expensive and requires consistent monitoring by medical 

professionals in the hospital, thus is inconvenient.  Accurate prediction of liver DME activity at 

the individual level in the clinical setting remains challenging, however if a more clinically 

friendly method were to be developed, it could lead to a broader range of potential drug 

candidates in drug development and lower risk of adverse drug responses. 
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In this dissertation, the use of exosomes to act as biomarkers for liver DMEs is 

investigated.  Exosomes are vesicles, typically 50 – 150 nm in diameter, secreted by cells into 

the extracellular space. In the human body, exosomal vesicles have been found in blood, saliva, 

urine, breast milk, and other bodily fluids.  What makes exosomes unique from other vesicles 

secreted by cells, is that exosomes are formed by an endosomal route, thus contain cargo that 

reflecting the cell from which they are being secreted, in the extracellular space.  This allows for 

the development of minimally invasive “liquid biopsies” to probe for markers of different 

diseases and cancers.  While exosomes have been demonstrated as useful tools for diagnosis and 

monitoring patient response to treatment, they are yet to be used in the clinical setting.  This is 

due to the lack of standardization in exosomal isolation and analysis.  These challenges were also 

addressed in this dissertation.   

In summary, this dissertation describes the development of a liquid chromatography 

multiple-reaction-monitoring mass spectrometry (LC-MRM-MS) method for exosomal analysis 

and its benefits over more traditional assays.  Following the method development, the presence 

of DMEs in exosomes were explored along with the ability of exosomal DME levels to be 

altered to reflect a change occurring in the secreting cell.  Finally, the ability to isolate liver 

derived exosomes based on the expression of a liver specific marker protein, ASGR1, is 

explored.  Further efforts of this project could lead to the development of a blood-based biopsy 

to evaluate the DME content of liver derived exosomes, which may correlate to liver DME 

activity, providing a new-found basis of personalized medicine.    
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1.1 Introduction 

Extracellular vesicles (EVs) are lipid bound vesicles secreted by cells into the extracellular space 

[1, 2].  The three main subtypes of EVs are microvesicles (MVs), exosomes, and apoptotic 

bodies and are differentiated based upon their biogenesis, release pathways, size, content, and 

function [1-3].  The content, or cargo, of EVs consists of lipids, nucleic acids, and proteins, 

specifically proteins associated with the plasma membrane, cytosol, and those involved in lipid 

metabolism [1, 4].  The primary focus of this review will be on the protein content of EVs, 

however, the nucleic acid and lipid composition of EVs is well described in [1, 2, 5] and [6-8], 

respectively.  While no specific protein markers have been identified to distinguish between the 

different types of EVs, MVs, exosomes, and apoptotic bodies have different protein profiles due 

to their different routes of formations [9-11].  However, substantial overlap of protein profiles is 

often observed, due in part to the lack of standardized isolation and analysis methods of EVs [2, 

12].  Further, it has been demonstrated that the proteomic profiles of EVs from the same source 

are dependent on their isolation method [2].  The field of EVs has led to much understanding in 

the area of cell-cell communication and cancer metastasis and their use in the clinical setting as 

carriers of biomarkers for diagnostic purposes has been demonstrated [13-28], however, 

standardized methods for EV isolation and analysis must be developed in order for them to 

become tools that can truly be used in the clinical setting.  

1.1.1 Exosomes 
 
Exosomes, also referred to as intraluminal vesicles (ILVs), are enclosed within a single outer 

membrane and are secreted by all cell types and have been found in plasma, urine, semen, saliva, 

bronchial fluid, cerebral spinal fluid (CSF), breast milk, serum, amniotic fluid, synovial fluid, 

tears, lymph, bile, and gastric acid [18, 22-24, 29-40].  



 6 

1.1.1.1 Origin and Size 
 
Exosomes are a subtype of EVs formed by an endosomal route and are typically 30 – 150 nm in 

diameter [1, 3-5].  Specifically, exosomal vesicles form by inward budding of the endosome 

membrane of multivesicular bodies (MVBs) [2, 4, 5].  MVBs form upon maturation of early 

endosomes [3].  Early endosomes form by inward budding of the cell’s plasma membrane and 

interact with the Golgi apparatus and endoplasmic reticulum to “pick up” proteins produced by 

the cell [3].  Early endosomes, and eventually the mature MVBs are involved in the endocytic 

and trafficking functions of the cell’s material [3].  Specifically, they are involved in protein 

sorting, recycling, storage, transport, and release [3].  Exosomes form from inward budding of 

either the early endosome or MVB membrane.  MVBs are eventually either sent to the lysosome 

to be degraded along with all of its components or fused with the cell’s plasma membrane to 

release its content, including exosomes, into the extracellular space [4, 41-43].  The factors that 

determine the fate of a specific MVB are not well understood [5].  However, studies have been 

done to demonstrate that the fate of a particular MVB depends on the level of cholesterol in the 

MVB.  Specifically, a cholesterol rich vesicle was secreted while a morphologically identical 

vesicle that lacked cholesterol was sent to the lysosome for degradation [44].  The regulation of 

MVB and exosome formation and release is through the ESCRT pathway [45, 46].  While the 

exact mechanism is still not fully understood, it appears the formation of MVBs can be 

stimulated by growth factors and the cell adjusts its exosome production according to its needs 

[29, 47]. 

1.1.1.2 Composition 
 
The biogenesis of exosomes can be used to understand the proteome of the vesicles.  Because 

exosomal formation and MVB transportation is regulated by ESCRT proteins, these proteins and 

its accessory proteins (Alix, TSG101, HSC70, and HSP90b) are expected to be found in 
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exosomes regardless of the type of cell from which they originate [11, 48-51]. Thus, this set of 

proteins are often termed “exosomal marker proteins.”  Some studies indicate there is another 

mechanism, an ESCRT independent mechanism, by which some cells release exosomes into the 

extracellular space [52].  In such cases, exosome release is thought to depend on 

sphingomyelinase enzyme instead of ESCRT, since cells depleted of the ESCRT machinery still 

produced CD63 positive exosomes [53-56].  The CD63, along with CD9 and CD81, are proteins 

in the tetraspanin family.  These transmembrane proteins and other proteins associated with the 

plasma membrane are commonly found in exosomes and are often enriched in the vesicles 

compared to the cell lysate [57, 58].  Originally, it was thought that tetraspanin proteins were 

specific markers of exosomes, however these proteins have since been identified in MVs and 

apoptotic bodies [59, 60].  Exosomes tend to be enriched in glycoproteins compared to the 

secreting cells, however MVs (discussed in 1.2) are thought to contain proteins with higher 

levels of posttranslational modifications (PTMs), such as glycosylation and phosphorylation, 

compared to exosomes, which is a potential way to distinguish the vesicles based on content 

rather than size [58, 61, 62].  Finally, proteins associated with organelles such as the nucleus and 

mitochondria are not expected to be observed in the exosomal vesicles.  Proteins associated with 

the Golgi apparatus and endoplasmic reticulum, however, may be present at low levels since 

early endosomes can interact with these organelles.  However, such proteins are typically still 

considered to be non-exosomal marker proteins since they are at lower levels in the exosomes 

compared to the lysate. 

1.1.1.3 Biological Purpose 
 
Exosomes were originally thought to be a source of cellular dumping, or a way for cells to get rid 

of unneeded or wanted materials, however it has since been found that exosomes participate in 

cell-cell communication, cell maintenance, and tumor progression, as discussed in section 1.2.3.  
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In addition, exosomes have been found to stimulate immune responses by acting as antigen 

presenting vesicles [63, 64].  In the nervous system, exosomes are found to help promote myelin 

formation, neurite growth, and neuronal survival, thus playing a role in tissue repair and 

regeneration [65-69].  At the same time, exosomes in the central nervous system (CNS) have 

been found to contain pathogenic proteins, such as beta amyloid peptide, superoxide dismutase, 

and alpha synuclein that may aid in disease progression [70-73].  

1.1.1.4 Applications and Uses 
 
A common interest in exosomal research is in studying their ability to act carriers of biomarkers 

for diseases.  For example, exosomes in both plasma and CSF have been found to contain alpha 

synuclein, a protein associated with Parkinson’s disease [74-76].  Exosomes isolated from urine 

have been demonstrated to reflect acute kidney injury [77].  There has also been success in 

finding markers for pancreatic cancer and lung cancer in exosomes as well [28, 78]. The use of 

exosomes as carries of biomarkers is ideal because these vesicles are found in bodily fluids, such 

as blood and urine, which allows for minimally to non-invasive “liquid biopsy” type methods to 

diagnose and even monitor a patient’s response to treatment.  The ability of exosomes to monitor 

a patient’s response is yet another potential application of these vesicles in the clinical setting 

[79].  If the disease marker directly correlates to disease state, and if the patient’s treatment is 

working, one should observe a change in the presence of the biomarker as the patient undergoes 

treatment.  Others have suggested that exosomes can be used in vaccine development and for 

other immunological purposes [64, 80].  Because exosomes act inherently as antigen presenting 

vesicles, it may be possible to capitalize on this inherent property.  Further, exosomes have a 

long circulating half-life, are well tolerated by the human body, and capable of not only 

penetrating cellular membranes but also potentially targeting specific cell types, which makes 

them an even better candidate for such immunological applications [81].  Also, because of these 
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inherent advantages of exosomes, they are also ideal for the development of drug delivery 

systems [82].  While methods are still being developed for introduction of RNA and protein to 

exosomes and to target these exosomes to a specific region of the body, the ability to load both 

protein and genetic material into exosomes is yet another advantage making exosomes an 

attractive drug delivery system [81].  Finally, it has been demonstrated the mesenchymal stem 

cell exosomes themselves can act a therapeutic entity to help reduce tissue injury [83-87].  While 

there is a broad potential application and use of exosomes in the clinical setting, more 

standardized methods for exosome isolation and analysis are needed in order to meet regulatory 

requirements the FDA and other regulatory agencies to use exosomes as biomarkers, vaccines, 

drug delivery devices, and therapeutic tools [5].   

1.1.2 Microvesicles 
 
1.1.2.1 Origin and Size 
 
MVs are EVs that form by direct outward budding, or pinching, of the cell’s plasma membrane.  

The size of MVs typically range from 100 nm up to 1 µm in diameter [1-5].  The route of MV 

formation is not well understood, however it is thought to require cytoskeleton components, such 

as actin and microtubules, along with molecular motors (kinesins and myosins) and fusion 

machinery (SNAREs and tethering factors) [88].  The number of MVs produced depends on the 

donor cells physiological state and microenvironment [1].  Likewise, it has been previously 

demonstrated that the number of MVs consumed depends on the recipient cells physiological 

state and microenvironment [1].  Further, the uptake of MVs is likely an energy dependent 

process, as uptake is suppressed at lower temperatures [62, 89, 90].     

1.1.2.2 Composition 
 
While the proteomic profiles of MVs heavily depend on the isolation method, there are a 

category of proteins termed “marker proteins,” which are proteins found in MVs, regardless of 
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cell origin, as a result of their biogenesis process [62, 91-93]. Because MVs form by an outward 

budding of the cell’s plasma membrane, it is easily understood that MVs contain mainly 

cytosolic and plasma membrane associated proteins, especially proteins known to cluster at the 

plasma membrane surface, such as tetraspanins [94, 95]. It has been reported that such proteins 

can have 100-fold higher concentration in MVs compared to the cell lysate [94, 95].  Other 

proteins commonly identified in MVs include cytoskeletal proteins, heat shock proteins, 

integrins, and proteins containing post translational modifications, such as glycosylation and 

phosphorylation [96-98].  Interestingly, the glycan binding proteins on the surface of MVs 

maybe a key factor in understanding how MVs are targeted to and interact with other cells.  The 

focus of this review will remain on the proteome of MVs, however, the glycome of MVs is 

thoroughly discussed in [2].  The presence of cytosolic and plasma membrane proteins can be 

understood based on the biogenesis of MVs, similarly, it can be understood that proteins 

associated with different organelles such as the mitochondria, Golgi apparatus, nucleus, and 

endoplasmic reticulum should be depleted in MVs, especially compared to the cell’s lysate, as 

these organelles are not involved in the biogenesis of MVs [58, 90].    

1.1.2.3 Biological Purpose 
 
Originally, it was thought that, like exosomes, MVs were a cellular dumping or maintenance 

mechanism, by which the cell would get rid of unwanted material [2].  However, it has since 

been understood that MVs (and exosomes) are involved in cell-cell communication between 

local and distant cells. The ability of these EVs to alter the recipient cell has been well 

demonstrated [99, 100]. These new discoveries in biological purpose of EVs have spurred a 

global interest in fully understanding EVs and the diagnostic and therapeutic potential. Other 

forms of cell-cell communication, such as hormones, growth factors, cytokines, and direct 

interaction are better understood and play an important role as to how multi-cellular organisms 
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are able to function as a single system [2].  The uniqueness of EVs is that they have the ability to 

package active cargo (proteins, nucleic acids, and lipids) and deliver it to another cell, 

neighboring or distant, and alter the recipient cells functions with its delivery [1].  While such 

forms of communication occur between physiologically healthy cells, one could understand that 

diseased cells, such as cancer cells, release their active machinery in EVs, transport it to 

otherwise healthy cells, thus playing a role in cancer metastasis [101, 102].  Perhaps a better 

understanding of MV and exosomal formation and regulation could lead to new options for 

cancer therapies, since they appear to play a critical role in cancer development and progression.          

1.1.2.4 Applications and Uses 
 
The applications of and uses of MVs in the clinical setting are similar to those of exosomes 

(1.1.4)       

1.1.3 Apoptotic Bodies 
 
1.1.3.1 Origin and Size 
 
Apoptotic bodies are released by dying cells into the extracellular space.  They are reported to 

range in size from 50 nm up to 5000 nm in diameter, with the size of most apoptotic bodies 

tending to be on the larger side [3]. These bodies form by a separation of the cell’s plasma 

membrane from the cytoskeleton as a result of increase hydrostatic pressure after the cell 

contracts [103].    

1.1.3.2 Composition 
 
The composition of apoptotic bodies is in direct contrast with exosomes and MVs.  Unlike 

exosomes and MVs, apoptotic bodies contain intact organelles, chromatin, and small amounts of 

glycosylated proteins [3, 49, 62, 104].  Thus, one would expect to observe higher levels of 

proteins associated with the nucleus (i.e. histones), mitochondria (i.e. HSP60), Golgi apparatus, 

and endoplasmic reticulum (i.e. GRP78).  Further, the proteomic profiles of apoptotic bodies and 
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cell lysate are quite similar whereas there are stark differences in the proteomic profiles between 

exosomes and cell lysate. 

1.2. Isolation Methods 

The potential benefits and uses of exosomes and EVs in the clinical setting has been described 

above, however a major hindrance in bringing exosomes into the clinical setting is the lack of 

standardization in isolation methods.  Exosomes were originally isolated by ultracentrifugation-

based methods, and while these methods remain the gold standard, other methods have been 

developed to address the challenges associated with ultracentrifugation [105, 106].  These 

alternative methods have been developed based on isolation by size, immunoaffinity capture, and 

precipitation of exosomes, however even these methods fail to exclusively isolate exosomes, and 

typically result in complex mixtures of EVs and other components of the extracellular space [1, 

2]. This is due to the complexity of biological fluids from which exosomes are being isolated 

from, the drastic overlap in the physiochemical and biochemical properties between exosomes 

and different EVs, and the heterogeneity among exosomes themselves [107, 108]. Thus, the 

challenge remains to develop isolation techniques that can differentiate the different types of 

EVs in the extracellular matrix and do so rapidly, efficiently, reproducibly, and in a clinically 

friendly manner [5].  Further, the use of multiple isolation methods consecutively has been used 

to further enrich the exosomal content of a particular isolation, however this also leads to 

increased cost, time, and technical training making it less clinically friendly [109].  An overview 

of some methods described in this review can be seen in Table 1.  

Table 1. Comparison of exosomal isolation techniques based on recovery, purity, required 
sample volume and time required for isolation.   

Isolation 
Technique Recovery Purity 

Sample 
Volume 

Time 
Required Reference 

Ultracentrifugation 5-25% Low 100s of mLs 8 hours [11] 
Density Gradient Higher than UC Similar to UC up to 1 mL 20 hours [161] 
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Precipitation Kits N/A Low > 100 µL Overnight [114] 
ExoChip N/A N/A  < 400 µL < 2 hours [142] 

Immunoprecipitation > 99% bead recovery Higher than UC up to 1 mL Overnight [11] 
ExoSearch Chip 42-97% Higher than UC 20 µL  40 minutes [140] 

Acoustic Nanofilter >80% High 50 µL < 30 minutes [138] 
 
1.2.1 Ultracentrifugation Techniques 
 
1.2.1.1 Differential Ultracentrifugation 
 
Differential ultracentrifugation was the first method used for exosome isolation and remains the 

gold standard for exosome isolation to date [105, 110, 111].  As is the case with all 

centrifugation methods, the separation of exosomes and EVs from the extracellular matrix 

depends on density, size, and shape, with larger and more dense particles sedimenting out  first 

[112].  A sample protocol for exosome isolation by differential ultracentrifugation is represented 

in the diagram in Figure 1.   

Figure 1. Workflow of Differential Ultracentrifugation for Exosome Isolation 
 

Cell Culture Medium (CCM)

300-500 g, 10 min

Pellet 
(lifted cells)

Discard

Supernatant

0.22 μm filter

Clarified CCM

10,000 g, 30 min

Pellet (debris, large 
vesicles)

Discard

Supernatant

100,000 g, 60-90 min, 
twice

Exosome pellet
Re-suspend
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The 500 x g step helps to pellet-out cellular debris and larger particles from the matrix.  The 0.22 

µm filtration and 10,000 x g steps further purify the matrix, removing larger EVs and apoptotic 

bodies.  Finally, the exosomes are pelleted out and washed in the 100,000 x g centrifugation 

steps.  The exosomal yield can be increased by using longer centrifugation times during the 

100,000 x g spins, however it has been demonstrated that if > 4 hours is used, there is significant 

mechanical damage to the exosomes and higher levels of soluble protein contamination in the 

final preparation [113, 114].  Even when less than 4 hours is used during the 100,000 x g spins, 

differential centrifugation only results in an enrichment of exosomes, not a complete separation 

of exosomes from other components in the extracellular space [1].  In addition, differential 

ultracentrifugation is time consuming and requires large starting volumes (100s of mLs) of 

sample, making it difficult to process several biological samples in a short amount of time [1].  

At the same time, however, differential ultracentrifugation requires little technical expertise, little 

to no sample pre-treatment, and affordability over time since only one ultracentrifuge is needed 

for long term use [106]. 

1.2.1.2 Density Gradient Centrifugation 
 
Density gradient centrifugation is another ultracentrifugation method that is commonly employed 

in research setting.  Like differential ultracentrifugation, separation is still based on size and 

density, however in density gradient centrifugation this occurs in the presence of a 

preconstructed density gradient, typically made of sucrose or iodoxinol, in the centrifuge tube 

[106, 109].  The sample is placed at the top of the gradient, and when centrifugal force is applied, 

the particles in the sample pass through the gradient, which increases in density from top to 

bottom, at unique rates to allow for separation.  The exosomes can then be collected by 

fractionation collection, typically in the density range of 1.1 and 1.2 g/mL [106, 109].  Density 

gradient ultracentrifugation is very effective in separating EVs and exosomes from protein 
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aggregates and non-membranous particles and is particularly useful for separating exosomes and 

EVs from bodily fluids. However, like differential ultracentrifugation, it suffers from low 

exosome recovery [11, 41, 94, 115].  Previous studies have demonstrated the coupling of 

differential ultracentrifugation with either Rate-Zonal Centrifugation or Isopycinic 

Centrifugation (2 types of density gradient ultracentrifugation) can drastically improve the purity 

and quality of the isolated exosomes, however it requires additional time for gradient preparation 

and extra care during the acceleration and deceleration to prevent damage to the gradient [116]. 

1.2.1.2.1 Rate-Zonal Centrifugation 
 
Rate-Zonal centrifugation allows for separation of particles based primarily on their 

sedimentation rate [116].  The sample containing EVs is placed on top of a gradient and upon 

centrifugation the sample particles will separate into different zones based on their sedimentation 

rate as they move through a gradient with increasing density towards the bottom of the 

ultracentrifuge tube.  The more dense particles will travel more quickly to the bottom of the tube 

as they can pass through the more dense layers easier than the smaller particles [116].  It is 

important to control the duration of centrifugation because eventually, since the particles are 

denser than the gradient, they will eventually pellet at the bottom of the ultracentrifugation tube. 

1.2.1.2.2 Isopycinic Centrifugation 
 
In isopycinic centrifugation, particles sediment into the fraction of the density gradient with the 

same density, also known as the isopycinic position [116].  At this position, the gradient density 

is equal to the buoyant density of the particles, and the particles therefore remain in the given 

portion of the gradient [116].  In this method, the exosomes will remain at their unique 

isopycinic position and will not pellet out, no matter how long the centrifugation time lasts [116].  

Since apoptotic bodies, microvesicles, exosomes, and soluble proteins have different densities, 
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their isopycinic positions will be at different levels of the gradient, providing a separation 

between the extracellular components. 

1.2.2 Size Based Techniques 
 
1.2.2.1 Ultrafiltration 
 
Ultrafiltration is one of the most common size-based techniques used for exosome isolation; the 

idea behind this method is the same as with conventional membrane filtration, where the 

separation of particles is based on the size and molecular weight cut off (MWCO) of the 

membrane being used [109].  That is, particles larger than the MWCO of the particular filter are 

retained by the filter and particles smaller than the MWCO of the filter are passed through the 

filter into the filtrate [106, 109].  One challenge with ultrafiltration is the clogging and trapping 

of vesicles (and therefore loss of exosomes) on the filter unit [117].  While this can be minimized 

by starting with larger MWCO filters and moving to smaller ones, it leads to low isolation 

efficiency and the exosomes lost on the membrane cannot be used in downstream analysis [106].  

While ultrafiltration is less time consuming than ultracentrifugation and requires no special 

instrumentation, it can still lead to particle deformation and lysis of exosomes due to the shear 

force, though this can be reduced by monitoring and regulating transmembrane pressure [114].          

1.2.2.2 Exosome Isolation Kit 
 
A commercially available isolation kit, the ExoMir Kit has been developed to isolate exosomes 

based on size [118].   Essentially, two membranes (200 nm and 20 nm) are placed into a syringe 

with the 200 nm filter at the top and the 20 nm filter at the bottom [118].  The sample is typically 

pre-treated with a low speed centrifugation, to pellet cells and cellular debris, and proteinase K, 

to help breakdown larger particles and prevent the membrane from clogging [118].  After pre-

treatment, the sample is passed through the syringe where the larger vesicles (>200 nm) remain 

above the first filter, the smaller vesicles (<200 nm and >20 nm) remain between the two filters 
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in the syringe, and the smallest vesicles (<20 nm) are passed through the syringe and discarded 

[118].  Other methods relying on the same general principle have also been developed, such as 

the ExoTIC technology, in order to make the isolation of exosomes a more clinically friendly 

procedure [119]. 

1.2.2.3 Sequential Filtration 
 
The idea behind sequential filtration for exosome isolation is similar to the ExoMir Kit or 

ExoTIC methods discussed in 2.2.2, in that it relies on a series of filtration steps for exosome 

enrichment.  In sequential filtration, the initial steps involves filtration with a 100 nm filter to 

eliminate cells, cellular debris, and large rigid particles [120]. Particles that are larger than 100 

nm in diameter, such as exosomes and macrovesicles, are able to pass through the 100 nm filter 

as long as they are soft and flexible [120].  However, the more rigid components associated with 

cellular debris are filtered away [120]. The filtrate then undergoes tangential flow filtration with 

a 500 kDa MWCO membrane to remove soluble proteins and other contaminants [120].  Finally, 

concentrated retentate is the filtered with a 100 nm track-etch filter for exosome enrichment 

[120].  The primary advantages of this methodology is that it can isolate exosomes from 150 mL 

of media within a day, is automatable, and produces intact and biologically active exosome 

material, some of which have been used in clinical trials [120-122]. 

1.2.2.4 Size Exclusion Chromatography (SEC) 
 
The use of size exclusion chromatography (SEC) to isolate exosomes from other EVs based on 

size is performed the same way as if one wanted to separate proteins of different sizes.  That is, a 

column is packed with a porous stationary phase in which small particles can penetrate.  This 

penetration slows down the movement of the smaller particles through the tube, causing them to 

elute later in the gradient, after the larger particles.  Typically, size exclusion is used in parallel 

to ultracentrifugation methods, where the exosome pellet is re-suspended after enrichment by 
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ultracentrifugation and then further purified using SEC [123, 124].  While SEC methods preserve 

vesicle structure, integrity, and biological activity, they require run times of several hours, are, 

not easily scalable, and cannot be used for high throughput applications [124].  However, iZON 

science has produced qEV Exosome Isolation Kit that allows for rapid, cost effective, high 

precision exosome isolation within 15 minutes based on the SEC methodology [125].  Their 

products allow for exosome isolation from < 150 µL up to 10 mL volume of starting material 

with porous resins of 35 nm or 75 nm for optimal exosome isolation [125].  Development of such 

methodologies may bring about standardization in the area of exosome isolation, making the use 

of exosomes in the clinical setting more realistic. 

1.2.2.5 Flow Field-Fractionation (FFFF) 
  
Flow Field-Flow Fractionation (FFFF) is a new technique used to isolate exosomes based on 

size.  In this method, the sample is injected into a chamber and subjected to parabolic flow as it 

is pushed down the length of the chamber [126].  At the same time a crossflow (a flow 

perpendicular to the parabolic flow) is used to create the separation of the particles in the sample 

[126].  Larger particles are more affected by the crossflow, so they are pushed closer to the walls 

of the chamber, where the parabolic flow is slower [126].  Thus, the larger particles elute after 

the smaller particles, which are less affected by the crossflow, remain in the center of the 

parabolic flow, and elute earlier [126]. 

1.2.2.6 Hydrostatic Filtration Dialysis (HFD) 
 
In traditional dialysis, separation of particles in the sample is achieved by diffusion of particles 

across a porous membrane.  The selectivity of the separation is dependent on the MWCO of the 

given membrane; particles smaller than the MWCO of the membrane will diffuse across the 

membrane and particles larger than the MWCO of the membrane will remain on the starting side 

of the membrane.  In HFD, the sample is forced through a dialysis tube with a MWCO of 1,000 
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kDa by hydrostatic pressure. The solvent and small solutes pass easily through the tube and the 

larger particles, such as exosomes and other EVs remain in the tube, where they can be collected 

[127].  Typically, ultracentrifugation methods are used after HFD isolation to further separate 

exosomes from other EVs retained in the dialysis tube [127].   

1.2.3 Immunoaffinity Capture-Based Techniques 
 
Immunoaffinity capture-based techniques rely on the use of an antibody to capture exosomes 

based on the expression of the antigen on the surface of the exosome.  Antibodies for a specific 

antigen of interest can be attached to plate (ex. ELISA, see section 2.3.1 below), magnetic beads 

(see section 2.3.2 below), resins, and microfluidic devices (see section 2.5.3 below) [106] . A 

major benefit of these techniques over others is that it allows for isolation of exosomes derived 

from a specific source [11, 128, 129].  For example, a well-established hepatocellular protein 

marker is Asialoglycoprotein receptor 1 (ASGR1).  The presence of this protein has been 

established in hepatocyte derived exosomes [130] and therefore has the ability to be used as a 

marker to isolate liver derived exosomes.  Not only do immunoaffinity methods have the 

potential to aid in the isolation of a specific sub-set of exosomes from a complex mixture, it also 

has the potential to separate exosomes from other types of EVs, should a specific marker for 

exosomes be identified and agreed upon [114].  The main limitation in developing this method is 

that the protein/antigen used to capture the exosomes must be expressed on the surface of 

exosomes, since the antibody will not be able to capture an antigen enclosed within the vesicle 

[109].  In addition, the specificity of the assay is limited to the specificity of the antibody used, 

however it has been well demonstrated that immunoaffinity methods result in lower yield of 

isolated exosomes with higher purity than for methods that isolate exosomes based on other 

properties [131].  Due to the complexity of biological fluids, such as plasma, immunoaffinity 
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capture-based techniques are often used after exosomal enrichment by ultracentrifugation or 

ultrafiltration [128].          

1.2.3.1 Enzyme-Linked Immunosorbent Assay (ELISA) 
 
An ELISA based assay, in which an antibody against and antigen of interest is immobilized on 

the surface of a microplate, is one type of immunoaffinity capture-based technique that is used to 

isolate exosomes from a sample.  The exosome sample is exposed to the well containing the 

immobilized antibody and the exosomes expressing the antigen are now immobilized onto the 

plate due to the antibody-antigen interaction.  The un-captured exosomes and sample contents 

are washed away and the immobilized exosomes can be detected using another antibody 

containing an absorbent tag.  In the EV field, ELISA has been used to isolate exosomes from 

urine, plasma, and serum, and can even be quantitative when standards (of known exosome 

amounts) are used to create a calibration curve.  This method has been around for many years 

and currently used in the clinical setting to test a patient’s blood for different antibodies against 

different infectious diseases, such as HIV, Zika, Lyme Disease, and others [132].  However, it is 

yet to be used in the clinical setting for exosome applications due to the required sample pre-

treatment by ultracentrifugation or ultrafiltration.     

1.2.3.2 Magneto-immunoprecipitation 
 
In the case of magneto-immunocapture, a biotinylated antibody against the antigen of interest is 

attached to the surface of streptavidin coated magnetic beads.  The antibody coated beads are 

then incubated with the sample from which exosomes are to be isolated from.  The major 

benefits of this method over ELISA is that the beads provide a larger surface area for capturing 

exosomes, leading to higher isolation efficiency.   Additionally, there is no upper limit of sample 

starting volume when using the magnetic beads, whereas the microplate-based ELISA assay has 

a maximum sample volume of 100 µL that can be held within the well of a typical 96-well 
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microplate.  Not only does magneto-immunocapture provide better isolation efficiency and 

capable of handling large sample volumes, the exosomes captured on the beads can be eluted and 

used for downstream analysis.  When comparing magneto-immunocapture to the gold standard 

exosome isolation method, ultracentrifugation, magneto-immunocapture leads to a more pure 

exosome preparation, is quicker, and requires no advanced or expensive instrumentation [109].  

Additionally, the magneto-immunocapture methodology is better for preserving the activity of 

exosomal proteins than other isolation methods, such as ultracentrifugation or ultrafiltration 

[133].     

1.2.4 Exosome Precipitation 
 
1.2.4.1 PEG Precipitation 
 
Precipitation of exosomal vesicles is typically done by introducing a water excluding polymer, 

such as PEG into the sample.  The PEG polymer then “ties-up” the water molecules, causing 

other particles, such as exosomes to precipitate out of solution [114].  The precipitated vesicles 

can then be pelleted by centrifugation and used for different downstream analysis [114].  This 

isolation method is quick, simple, requiring little technical expertise or expensive equipment 

[106, 109].  Additionally, it can be used for a variety of starting volumes (from 100 µL up to 

several mLs) and therefore is suitable for use in various research and clinical settings [106, 109].  

However, the major drawback with this methodology, and the reason it cannot be immediately 

employed in the clinical setting is due to the lack of selectivity [114, 131].  Not only do the PEG 

polymers cause precipitation of exosomal vesicles, it also causes precipitation of other 

extracellular vesicles, extracellular proteins and protein aggregates [105].  Therefore, it is 

important to include some sample pretreatment, such as filtration and/or centrifugation, before 

using such methods in order to reduce contamination of final exosomal preparation [109].  
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Several commercially available kits have been produced based on exosome precipitation for 

isolation of exosomes from cell culture medium and a variety of bodily fluids [134-136].      

1.2.4.2 Lectin Induced Agglutination 
 
An alternative to PEG precipitation is lectin precipitation.  Lectins are a family of proteins that 

bind carbohydrate moieties of other particles at a very high specificity.  This is able to aid in 

exosome isolation when lectins bind to carbohydrates on the surface of exosomes.  When lectins 

bind to the carbohydrates on the surface of exosomes, it alters their solubility, causing them to 

precipitate out of solution.  Typically, the sample is pre-treated by ultracentrifugation to remove 

any cellular debris or other components that may also contain carbohydrates.  The sample is then 

incubated overnight with the lectin, for example Concanavalin A or Phytohemagglutinin  at 1 

mg/L, and the precipitated exosomes can then be pelleted using centrifugation [137].  Like PEG 

precipitation methods, the lectin precipitation methods are straightforward requiring little time 

and expertise, however the co-precipitation of other soluble components is negligible unless they 

are highly glycosylated.   

1.2.5 Microfluidic Based Isolation Techniques 
 
Microfluidic based exosome isolation methods have been developed in order to address issues 

with more traditional methods and make the use of exosomes in the clinical setting more 

feasible.  The primary advantage of microfluidic techniques is that they have the ability to isolate 

exosomes based on their physical and biochemical properties simultaneously [109].  

Additionally, microfluidic isolation methods typically are rapid, efficient, require small starting 

volumes (10s – 100s of µL), and allow for the development of innovative separation mechanisms 

such as acoustic, electrophoretic, and electromagnetic properties of the exosomal vesicles [138, 

139]. 
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1.2.5.1 Acoustic Nanofilter 
 
Acoustic nanofilter is a microfluidic isolation technique in which exosomes and EVs are 

separated from the matrix based on size.  The matrix, containing exosomes, EVs, and other 

extracellular components is injected into a chamber where it is exposed to ultrasound waves.  

These waves exert radiation forces onto the particles and the particles response to these forces 

are dependent upon their size and density [138].  Specifically, larger particles experience 

stronger radiation forces and therefore migrate faster towards the pressure nodes [138].  The 

ultrasonic waves can be tuned in such a way to separate particles above and below any desired 

size [138].  While this specific methodology is still in development stages, its simplicity, 

quickness, tunability, and low starting volume (50 µL) of material make it a promising tool for 

potential use in the clinical setting.      

1.2.5.2 Immuno-based Microfluidic Isolation 
 
The principles behind immuno-based microfluidic isolation techniques is very similar to those of 

ELISA (section 2.3.1).  The isolation of exosomes is based on an interaction between a 

membrane bound protein on the exosomal vesicle and an antibody against the protein which is 

immobilized on a microfluidic chip.  The primary advantage of this technique over ELISA is that 

exosomes have been isolated from as little 10s – 100s of µL of serum in 60 minutes, whereas 

ELISA assays require prior isolation of exosomes (via ultracentrifugation, ultrafiltration etc..) 

from the plasma or serum [140, 141].  Much like ELISA, the specificity of the assay is dependent 

on the specificity of the antibody used.  A commercially available product, ExoChip, has been 

developed for isolation of exosomes using the microfluidic technology.  This product has an anti-

CD63 antibody immobilized on the surface of the chip.  The CD63 protein is considered an 

exosomal marker protein and found to be expressed in exosomes from many cell types, and thus 

allows for isolation of exosomes from a sample matrix regardless of the cell source [142].  Other 
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microfluidic based isolation methodologies have been developed, for example the ExoSearch 

Chip which has demonstrated the ability to isolate exosomes from as little at 20 µL of plasma in 

40 minutes [140].  Unlike the ExoChip, the ExoSearch Chip allows for isolation of specific 

subpopulations of exosomes of interest, assuming that the antigen used to differentiate the 

subpopulation of exosomes is expressed on the surface of the exosomes and can be recognized 

by the immobilized antibody on the beads [140].  The development of the microfluidic based 

technologies is essential to bringing the diagnostic, therapeutic, and prognostic capabilities of 

exosomes to the clinical setting because in comparison to all other isolation methods, these 

methods require the smallest amounts of plasma/serum, least amount of time, and are most cost 

efficient and require minimal expertise and training. 

1.3. Analysis of Exosomes 

Initially, isolated extracellular vesicles were characterized primarily by their protein 

concentration [1].  However, the protein concentration of isolated EVs is typically overestimated 

due to contamination and does not take into consideration the different protein profiles that can 

vary between different subtypes of EVs [1].  Thus, as the uses of EVs became more prevalent 

and of interest, they were studied by more sophisticated methods.  Today, there are typically two 

different types of analysis performed on the isolated vesicles, that is physical and 

chemical/biochemical/compositional analysis.  Physical analysis, which gives insight to particle 

size and/or concentration, is done using nanoparticle tracking analysis (NTA), dynamic light 

scattering (DLS), electron microscopy, and tunable resistive pulse sensing (tRPS).  The 

chemical/biochemical/compositional analysis is typically done via staining, immunoblotting, or 

proteomic analysis and gives information regarding the content of the isolated vesicles.  A major 

challenge in the area is developing methodologies that can differentiate the different types of 

extracellular vesicles, are easily standardized, and well multiplexed.  What makes this the most 
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difficult is the fact that the proteomic profiles of exosomes are changed when different isolation 

methods are used to isolate exosomes from the same cell line [2]. In this dissertation, the 

development of a liquid-chromatography multiple reaction monitoring mass spectrometry is 

described in order to address some of the challenges associated with current analysis methods.  

This section is an overview of the current methods used for exosomal protein analysis and unless 

otherwise noted, required some sort of isolation or enrichment of exosomal vesicles (see section 

2 of this paper) prior to analysis. 

1.3.1 Physical Analysis 
 
1.3.1.1 Nanoparticle Tracking Analysis (NTA) 
 
Nanoparticle Tracking Analysis, or NTA, allows for the determination of both particle size and 

concentration. The size of the particles is estimated using the Stokes-Einstein equation, where 

diffusion coefficient is based on the Brownian motion of particles within the chamber.  The laser 

light is scattered as it interacts with the particles (under Brownian motion) within the chamber, 

and the scattered light is collected by a microscope that has a camera mounted to it  [143].  The 

camera on top of the microscope captures the movement of particles in a video and then the NTA 

software uses the movement of the particles in the video to estimate the particle size and 

concentration [143].  NTA is capable of determining particle size between 10 and 1,000 nm in 

diameter, which is within the size of exosomes which are known to be between 50 – 150 nm [5, 

144].  The challenge with NTA, however, is that it requires sample volumes of ~0.5 mL and 

optimization of data collection and analysis parameters [145, 146].            

1.3.1.2 Dynamic Light Scattering (DLS) 
 
Like NTA, dynamic light scattering, or DLS, uses the scattered light due to Brownian motion of 

particles to estimate particle size and concentration.  However, instead of using the scattered 

light to determine the particles diffusion coefficient, DLS uses the fluctuations in the intensity of 
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the scattered light to estimate the particles size [145-147].  Unlike NTA, DLS requires very little 

sample volume (70 µL) and is easy to use, with few parameters needed for optimization [145, 

146].  While DLS has its benefits over NTA, its major drawback is in the analysis of 

heterogenous mixtures.  Specifically, the intensity of scattered light is proportional to the sixth 

power of particle diameter, making the scattered light due to smaller particles harder to detect, 

thus often produces data that is skewed towards larger particle sizes when there is a mixture of 

particle sizes present in the suspension [145, 146].  Therefore, NTA is best for differentiation of 

heterogenous populations of particles [146].  

1.3.1.3 Electron Microscopy 
 
The two common types of electron microscopy used to assess the morphology of exosomal 

vesicles are transmission electron microscopy (TEM) and scanning electron microscopy (SEM).  

Both SEM and TEM produce high resolution images of submicron particles using a beam of 

electrons.  The difference between the two is what electrons are detected.  Simply put, in SEM, 

the scattered electrons are detected and in TEM, the electrons that pass through the sample are 

detected [148].  More specifically, in SEM, the electrons are scattered when they interact with 

the particles in the sample.  The scattered electrons are then captured and detected, which 

produces this image of particles.  In TEM, however, the electrons that do not interact with the 

particles pass through the sample and are detected using a fluorescent screen.  The particles of 

the sample create dark areas, or shadows, on the fluorescent screen thus producing an image 

[148].  In the case of exosomes, both TEM and SEM demonstrate similar size distribution of 

particles but slightly different morphologies [149].  That is, in TEM, the exosomal vesicles 

typically have a divot in their center.  This is likely due to the drying process associated with the 

sample preparation required for TEM [149]. 

1.3.1.4 Tunable Resistive Pulse Sensing (tRPS) 
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Tunable resistive pulse sensing, or tRPS, is another technique that can be used in order to get the 

size distribution and concentration of particles in a sample.  Essentially, a fluid cell is divided in 

half by a non-conductive nano-membrane [150].  One half of the cell contains the suspension and 

the other half contains a particle free electrolyte [150].  A potential is applied across the 2 cells 

and the particles then flow from their half, through the nano-membrane, and to the other half.  As 

the particles cross the membrane, however, it causes a disruption, or resistive pulse, in the 

current across the 2 different cells [150].  The length of the resistive pulse can be correlated to 

the size of the particle producing that particular resistive pulse, if a series of standards with 

known diameters is used to build the calibration curve [150].  In addition, the number of resistive 

pulses can be measured over a given time (the rate of resistive pulses) which reveals information 

regarding particle concentration within a sample [150]. 

1.3.2 Chemical, Biochemical, and Compositional Analysis 
 
1.3.2.1 Immunodetection Methods 
 
Immunodetection methods are analysis methods that rely on the recognition of a polyclonal or 

monoclonal antibody to its antigen in the sample. Such methods are commonly employed in 

biomedical research laboratories and are often used to establish the purity of isolated EVs by 

observing the presence or absence of marker proteins, as well as detect target proteins of interest.  

1.3.2.1.1 Flow Cytometry 
 
Flow cytometry is often considered a physical form of analysis since it allows for visual 

observation of exosomes, however it requires some knowledge regarding the protein composition 

of the exosomal vesicles in order for the vesicles to be detected, thus is also considered a form of 

compositional analysis.  While the flow cytometry technology is quickly advancing, with newer 

instruments having detection limits as low as 100-200 nm, most instruments have a 300 - 500 nm 

limit of detection, which is much larger than the size of exosomal vesicles [151, 152]. The 
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challenge of flow cytometry in the field of EVs is that, despite the recent advances, it requires a 

single particle suspension which can be very challenging to achieve when the exosomal 

concentration is high or if aggregation of exosomal vesicles occurs during the isolation process 

[152].  Aggregation of vesicles results in the observation of multiple particles at a single time 

which results in inaccurate data [152]. Thus, it requires the immobilization of exosomes on the 

surface of beads (either by immunocapture or covalent conjugation) in order to be observed by 

the flow cytometer.  Once exosomes are immobilized on the surface of the beads, the exosomal 

vesicles are exposed to a fluorescently conjugated antibody against an antigen that is 

known/expected to be expressed on the exosomal surface [152].  The exosomal vesicles 

conjugated to the beads and the fluorescent antibody can be viewed under an epifluorescent 

microscope (EPI) prior to flow cytometry. Then, as the sample passes through the laser of the 

flow cytometer, it emits a fluorescent signal which is detected [151, 152].  Not only does this 

allow for high throughput analysis of exosomes, it also allows for quantification or classification 

of exosomes based on the antigen expression [152]. 

1.3.2.1.2 Western Blotting 
 
The principles behind immunoblotting, or Western blotting, are similar to that of EPI and flow 

cytometry, except that it occurs on the surface of a membrane rather than in solution on the 

surface of beads.  Unlike flow cytometry and EPI, Western blotting does not allow for 

observation of intact vesicles, rather, the vesicles are lysed and the proteins are denatured and 

reduced during the sample preparation [153].  After denaturation, the proteins are separated by 

SDS-PAGE and then transferred to a nitrocellulose or polyvinylidene fluoride (PVDF) 

membrane.  The remaining open pores on the membrane are filled with protein (from non-fat 

milk) and/or detergent and then exposed to an antibody against an antigen of interest.  The 

antibody ideally specifically recognizes the antigen on the surface of the membrane.  The 
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membrane is then exposed to a secondary antibody, which is an antibody against the species of 

the initial (primary) antibody used to recognize the antigen. The secondary antibody is detected 

due to its fluorescent tag, or by the horseradish peroxidase/alkaline phosphatase group coupled to 

the secondary antibody. The Western blotting methodology is among the most commonly-used 

analysis methods for analysis of exosomes due to its ease of use, wide accessibility, and the 

ability to detect exosomal surface proteins and internal proteins.  The primary pitfall, however, is 

that it is not well multiplexed, and specificity and reproducibility are limited by the quality of the 

antibody used.  The lack of multiplicity results in the use of a large amount of exosomal protein 

used to gain minimal amount of information.  Since the collection and isolation of exosomes is 

often a time-consuming process with low yield, more multiplexed analysis methods would be 

highly beneficial.  This issue was addressed in chapter 2 of this dissertation with the 

development of a liquid-chromatography multiple reaction monitoring mass spectrometry-based 

method. 

1.3.2.1.3 Integrated Immuno-isolation and Protein Analysis of Exosomes  
 
A novel microfluidic assay has been developed that allows for not only isolation, but also for 

protein analysis of exosomal vesicles.  As discussed above in section 2.5.3 (Immuno-based 

Microfluidic Isolation) microfluidic devices are a developing technology that may be key to 

bringing exosomes to use in the clinical setting.  Many of the existing microfluidic techniques 

allow for detection of exosomes using fluorescent antibodies against an antigen of interest on the 

surface of exosomes, this time taking place on the surface of a chip rather than a membrane or 

magnetic bead.  However, the novel device described in [141] allows for isolation of the 

exosomal vesicles, on a microfluidic chip, but then introduces a lysis buffer to lyse the captured 

exosomal vesicles.  The lysate is then eluted from the microfluidic chip, and the biomarkers of 

interest can be probed for, independent of whether or not the biomarker is contained within the 
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vesicles or on the surface of the exosomal vesicle.  This allows for a more broad spectrum of 

antigens to be detected and allows for the development of biomarkers within exosomes to be 

used rather than those only on the exosome surface. 

1.3.2.2 Thermophoretic Profiling 
 
This methodology is similar to the integrated immune-isolation discussed above (3.2.1.3) in that 

it isolates, or enriches, the vesicles while giving some compositional information at the same 

time.  The difference in thermophoretic profiling compared to the integrated immune-isolation, is 

that is does not rely on the use of antibodies.  Instead, < 1 µL of serum is diluted 10x into PBS 

and incubated with 7 different fluorescently conjugated nucleotide aptamers, which specifically 

target different proteins on the surface of exosomes in the serum [154].  The aptamer-exosome 

incubation takes place for 2 hours at room temperature, at which point the chamber is exposed to 

a 1,480 nm laser for 10 minutes.  This process drives the exosomal vesicles to the center of the 

laser point, leading to accumulation of the vesicles, which can then be investigated for 

presence/absence of specific proteins based on the fluorescent detection of the EV conjugated 

aptamers.  The authors demonstrated lack of fluorescent signal without the laser heating and also 

that free aptamers and small serum proteins could not be enriched when exposed to the laser 

[154].  Such methodologies, which use very little serum, do not require any sample pre-treatment 

or time-consuming exosome isolation, are reliable, reproducible, specific, do not require high 

technical expertise or training, and give information regarding the presence of cancer biomarkers 

in the EVs within hours, are methods that could make the use of exosomes in the clinical setting 

a reality. 

1.3.2.3 Mass Spectrometry (MS)-Based Proteomic Analysis 
 
1.3.2.3.1 Global Proteomic Approaches 
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Global proteomics is a method used to identify as many proteins as possible within a sample.  

This can be done two different ways, via data dependent acquisition (DDA) or data independent 

acquisition (DIA), with DDA being used more commonly than DIA [155].  In DDA experiments, 

a survey MS spectrum is collected, and the most abundant ions are then selected for 

fragmentation and MS/MS analysis.  Thus, the data depends on the abundance of the ion in the 

survey MS spectrum relative to other ions eluting at the same retention time in the same MS 

spectrum.  The tandem MS data is processed using software (for example Mascot) to get 

information on the amino acid sequence which can then be used to identify the proteins present 

in a sample.  In DIA experiments, ions are not selected based on abundance for fragmentation, 

but rather it is an attempt to fragment and get MS/MS data on all ions within a given mass range.  

In these experiments, fragmentation libraries are used to sort the mixed MS/MS data and identify 

the proteins present within the sample.  Both DDA and DIA experiments can be done with top-

down sample preparation and bottom up sample preparation.  The top down approach, which is 

when no proteolysis of the proteins takes place prior to MS analysis, remains challenging from a 

technological perspective [156].  While advances have been made in the ability to separate and 

fragment intact proteins, the bottom up approach remains the most commonly used sample 

preparation method.  In bottom up approach, the sample is digested with a protease, such as 

trypsin or pepsin, prior to MS analysis.  The smaller protein fragments (peptides) produced by 

the enzymes are easier to separate, ionize, and fragment for high quality MS/MS data.  However, 

the versatility of this technique is limited because the MS/MS data collected occurs after 

fragmentation by collision induced dissociation (CID).  During CID, the weakest bonds are 

broken first, and these bonds are typically bonds associated with PTMs, thus making the PTM 

analysis of these peptides difficult.  The use of top down approaches, however, would reveal 

information regarding a protein’s PTMs as the MS/MS data is collected after electron-transfer 
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dissociation (ETD), which causes fragmentation of the peptide/protein backbone while leaving 

PTMs intact.  Additionally, top down approaches would reveal sequence variations in proteins 

between the exosomes and parent cell, which may be useful in further understanding the role of 

specific proteins within exosomal vesicles.  Typically, global proteomic experiments on 

exosomes results in several hundred to several thousand of proteins identified, dependent upon 

the amount of starting material used, the sample preparation method, and the algorithm used for 

data analysis.  The use of global proteomics in the field of exosomes is often for identification 

novel biomarkers for different cancers or diseases, but sometimes the presence of the protein (or 

biomarker) is also present in exosomes from healthy tissues.  Thus, it is not only important to 

identify the proteins present in the exosomal vesicles, but also be able to quantify the proteins 

present within the exosomal vesicles.  Protein quantification in global proteomics can be done 

with labeled techniques, such as SILAC or iTRAQ, which involve the incorporation of a stable 

heavy isotope labeled amino acid into the peptide of interest [157].  However, not only is this an 

expensive process, but the peptide of interest may not always be known.  Thus, label free 

techniques have been developed in order to quantify the proteins identified in DDA or DIA 

experiments. The techniques rely either on the peak area of the parent ion or the spectral count, 

which is the number of times a specific peptide is selected for fragmentation in a data dependent 

LC-MS/MS [158].  While both of these methods require some sort of normalization, they are 

now used more frequently than the labeling techniques.  The use of global proteomics in the field 

of EVs, and specifically exosomes, has aided and continues to aid in the development of 

biomarkers for different diseases and cancers.  Further, there is potential for this technique to 

reveal the purpose and activity of different proteins in the exosomal vesicles and how they are 

similar and different to those in the parent cells as the technology around the top down 

methodology continues to develop. 
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1.3.2.3.2 Targeted Proteomic Approaches 
 
As opposed to global proteomics, where the goal is to identify as many proteins as possible in a 

sample, targeted proteomic analysis is used to identify and quantify a predefined set of proteins 

in a given sample [155].  The most common targeted proteomic approach is multiple reaction 

monitoring, or MRM.  Due to upper mass limitations of triple quadrupole instruments, used for 

MRM methods, the bottom up approach must be used and specific peptides for each protein of 

interest must be selected prior to analysis.  That is, a peptide generated by the trypsin or pepsin 

digestion must be selected and be unique for the protein that is to be monitored [159, 160].  Once 

the peptide is selected, transitions, or fragments, of the peptide can be established and detected 

by the instrument.  Essentially, in the first quadrupole (Q1) of a triple quadrupole instrument, the 

parent ion, which is the intact peptide selected to represent the protein of interest, is selected to 

pass through into the second quadrupole (q2).  All other ions are filtered out in Q1 quadrupole 

and do not pass into q2 [155].  Once in q2, the parent ion will be fragmented and then passed into 

the third quadrupole, Q3.  In Q3, a specific fragment ion is selected to reach the detector and all 

other fragment ions are filtered out and do not reach the detector.  By monitoring multiple unique 

peptides for a single protein, and then multiple fragments for each peptide, the specificity and 

accuracy of the method can be greatly enhanced.  Typically, it is recommended that at least 2 

unique peptides are used to monitor a specific protein and at least three transitions are used to 

monitor each peptide, thus a total of 6 signals are used to monitor a single protein of interest.  

Additionally, the MRM method is extremely well multiplexed, as long as the chromatography 

allows for good separation of the peptides.  By monitoring different peptides at different 

retention times, the MRM method can give highly sensitive, specific, and quantitative 

information on hundreds of peptides in a single experiment.  Absolute quantification for proteins 

(via peptides) in a sample can be assessed using the MRM methodology by spiking stable 
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isotope labeled peptides into the sample prior to analysis.  Relative quantification can be done 

using simple normalization techniques, similar to the normalization done in the label free global 

proteomic approaches.  However, because MRM methods have lower limits of detection, greater 

dynamic ranges, and increased specificity, it is the mass spectrometry proteomic approach of 

choice for the rapid identification and quantification of a predetermined set of proteins in a 

sample [155].  In the realm of EVs, specifically exosomes, the development of MRM methods to 

characterize isolated exosomes would be beneficial not only due to its multiplicity and 

specificity over the traditional Western blot methodology, but also because a predefined set of 

proteins (exosomal marker proteins and non exosomal marker proteins) have been described. 

1.4. Conclusions 

The uses of EVs in the clinical setting for diagnostic, prognostic, therapeutic, and drug delivery 

tools has well been demonstrated and continues to be a subject of intense study simply based on 

the ever-growing literature on the topic.  However, the lack of standardization in isolation and 

analysis methods is heavily impacting the advancement of exosomes and EVs into the clinical 

setting.  Each isolation and analysis method (see Figure 2 for review) has its own set of benefits 

and drawbacks, and it has been demonstrated that different isolation methods used to isolate 

exosomes from the same cell type results in different proteomic profiles, further complicating the 

situation.  Therefore, instead of focusing on establishing a set of exosomal/non exosomal marker 

proteins secreted by all cell types independent of the isolation method, it may be more beneficial 

to focus on the development exosomal/non exosomal marker proteins for a given cell type, 

independent of isolation method, or a set of exosomal/non exosomal marker proteins for all 

exosomes, regardless of their origin, when isolated by a specific method.  
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 Figure 2. Overview of Isolation and Analysis Methods Covered in This Review 
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2.1 INTRODUCTION 

The use of exosomes as biomarkers for diagnosis, prognosis, and monitoring patient response to 

treatment is one of increasing interest.  The proteins, lipids, and other exosomal cargo reflect the 

cells from which they originate, be it diseased or healthy.  While some exosomal proteins are 

unique due to its cell of origin, there have been several proteins identified in exosomes from 

various cell types.  These are termed exosomal marker proteins and are typically associated with 

the cytosol or cell membrane including Heat Shock Cognate 70 kDa (HSC70), Cluster of 

Differentiation 9 (CD9), Heat Shock Protein 90 kDa beta (HPS90b), Programmed Cell Death 6-

Interacting Protein (ALIX), and Tumour Suppression Gene 101 (TSG101) [1, 2]. Often, these 

marker proteins are found to be enriched in exosome preparations compared to the cell lysate.  

Additionally, there are a set of proteins reported in literature, termed non-exosomal marker 

proteins, and are typically organelle-associated proteins such as endoplasmic reticulum (ER) 

luminal protein Glucose Regulated Protein 78 kDa (GRP78) and mitochondrial proteins 

Prohibitin - 1 (PHB1) and Heat Shock Protein 60 kDa (HSP60) [1, 2].  In the field of exosomal 

research, the presence of the exosomal marker proteins and absence the non-exosomal marker 

proteins often is how the purity and quality of the exosomal preparation is determined, usually by 

Western blot analysis using antibodies specific to these marker proteins. 

 

Western blot has been the considered the gold-standard technique for protein identification due 

to its low cost, simplicity and wide accessibility [3].  As is the case with all immuno-based 

assays, Western blot relies on the use of a single antibody for identification of the antigen of 

interest. Therefore, the specificity and reproducibility of the Western blot assay are limited to the 

antibody being used, which can be largely variable between different vendors and lots within the 

same vendor [4-7].  The band observed on a Western blot is considered to be specific if the 
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molecular weight of the band matches the expected molecular weight of the antigen of interest.  

The presence of bands at different molecular weights, due to potential non-specific binding, 

lowers the confidence in the identification of the antigen of interest [3].  In addition, the Western 

blot assay is meant to detect one protein at a time, meaning it is not well multiplexed and 

therefore requires an abundance of sample in order to monitor several proteins of interest [6-8]. 

This poses a major challenge in using Western blot to monitor the presence or absence of the 

exosomal/non-exosomal marker proteins in an exosomal preparation, as the exosomal protein 

yield is very low [1, 2, 9]. 

 

Targeted proteomic methods, such as liquid chromatography – multiple reaction monitoring – 

mass spectrometry (LC-MRM-MS), can be developed to address the challenges associated with 

traditional Western blot methodologies. LC-MRM-MS detection relies on both retention time 

and mass to charge ratios (m/z) of precursor and product ion(s) of signature peptides (also 

referred to as surrogate, proteotypic, or ACQUA peptides) for the target protein using a triple-

quadrupole MS [5].  The selection of both precursor and product ions results in a high signal to 

noise (S/N) ratio, low limit of detection (fmol), and allows for detection of both high and low 

abundant proteins within the same starting mixture [3-5, 8].  LC-MRM-MS methods can be 

developed such that multiple signature peptides for a single protein, and multiple product ions 

for a single peptide, are detected to further increase the confidence that the protein of interest is 

being detected [3, 8].  Due to the nature of the LC-MRM-MS methodology, it is more well 

multiplexed than Western blot with up to 10 proteins detected in a single 20 minute LC run [3, 

8].  Finally, because protein digestions are reproducible and many steps of sample preparation 

can be automated, several studies have demonstrated that MS based methods are more 

reproducible, robust, and accurate than immuno-based methods, such as Western blot [3, 4, 8].  
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The major downfall of LC-MRM-MS methods compared to Western blot is that it requires 

sophisticated instrumentation with expertise to be operated correctly [8]. However, because of 

the increase in sensitivity, selectivity, specificity, reproducibility, and ability to be multiplexed, 

this technique is arguably an important technique that needs to be implemented in the field of 

exosomal research and development. 

 

Here, a LC-MRM-MS method was developed for detection of exosomal marker proteins 

(HSC70, HSP90b, CD9, ALIX and TSG101) and non-exosomal marker proteins (GRP78, 

HSP60, and PHB1) and used to assess the purity and quality of exosomal preparations from a 

hepatoma cell line, HepG2, and a cervical cancer cell line, HeLa, isolated by differential 

ultracentrifugation and a Total Exosome Isolation Kit (TEIK).     
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2.2 MATERIALS AND METHODS 

2.2.1 Chemicals and Reagents 

Optima LC-MS/MS grade acetonitrile, water and formic acid were purchased from Fisher 

Chemical (Fair Lawn NJ). HepG2 and HeLa cells were purchased from American Type Culture 

Collection (Manassas, VA).  Dulbecco’s modified Eagle’s medium (DMEM), cell culture grade 

sodium bicarbonate, dithiothreitol (DTT), ammonium bicarbonate (ABC), iodoacetamide (IAM), 

tris-base (Tris), and tween-20 were purchased from Sigma-Aldrich Co. (St. Louis).  Fetal bovine 

serum (FBS) was purchased from Life Technologies (Carlsbad, CA).  Sterile cell culture flasks 

and 0.22-micron filters were purchased from Corning (Corning, NY).  A Beckman OptimaÔ L-

90K class S preparative ultracentrifuge, type 35 rotor, swinging 28 (SW28) rotor, and 

ultracentrifuge tubes were purchased from Beckman Coulter (Brea, CA).  Phosphate buffered 

saline (PBS) 10 x was purchased from Cellgro (Manassas, VA). A bicinchoninic acid (BCA) 

protein assay kit was purchased from Pierce Biotechnology (Rockford, IL).  The TEIK and 

sterile 15 mL conical tubes were purchased from Invitrogen by Thermo Fisher Scientific 

(Carlsbad, CA). Micron centrifugal filters ultracel regenerated cellulose 10,000 molecular weight 

cut off (MWCO) columns were purchased from Millipore (Billerica, MA).  Sequencing grade 

modified trypsin was purchased from Promega (Madison, WI). Laemmli sample buffer, Mini-

PROTEANÒ TGXTM gels, and Immun-BlotÒ PVDF membranes for protein blotting were 

purchased from Bio-Rad (Hercules, CA).  Protein low bind tubes were purchased from 

eppendorff (Westbury, NY).  Non-fat dry milk was purchased from Associated Wholesale 

Groceries Inc (Kansas City, KS).  Antibodies against CD9 (a-CD9), HSP90 (a-HSP90), HSC70 

(a-HSC70), GRP78 (a-GRP78), HSP60 (a-HSP60), and horseradish peroxidase (HRP) 

conjugated antibodies against rabbit (a-rabbit-HRP) and mouse (a-mouse-HRP) were purchased 

from Abcam (Cambridge, MA). 
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2.2.2 Identification of Signature Peptides for Marker Proteins 
 
Signature peptides for proteins of interest were selected based on a set of criteria [10, 11] to 

ensure specificity towards target protein, optimal retention on analytical LC column, chemical 

stability, digestion efficiency, and lack of posttranslational modifications and mutations.  The 

amino acid sequence of the different isoforms for each of the proteins of interest were found 

using PubMed Protein BLAST and the sequences of each isoform were then aligned using 

EMBL Protein Align.  Using these results, the region that had the best alignment for all isoforms 

was chosen for in-silico digestion, resulting in a list of potential peptides with masses between 

500 – 2000 Da, a minimum length of 5 amino acids, no missed cleavages, and included an 

alkylation modification of cysteine by IAM.  Any peptides containing methionine, N-terminal 

glutamine, or the sequence asparagine glycine (NG) were then discarded from the list of 

potential peptides.  Additionally, any peptides that were too hydrophobic (HPLC index >50; 

predicted by MS-Digest of ProteinProspector), contained consecutive lysine or arginine, or 

lysine/arginine followed by aspartic acid or glutamic acid were also considered not ideal.  Lastly, 

peptides containing cysteine or either C or N terminus were also discarded.  Once the list of 

peptides was narrowed down to those that are most stable and lead to reproducible, quantitative, 

trypsin digestion, PubMed Protein BLAST was then used to determine peptide specificity against 

all other proteins in homo sapiens. 

 
2.2.3 LC-MRM-MS Method Development 
 
Arginine and lysine stable isotope-labelled crude peptides were purchased from Thermo Fisher 

Scientific (Carlsbad, CA).  Upon arrival, an aliquot of each peptide was diluted 10 x in 50/50 v/v 

acetonitrile/water and designated as the working stock and was stored at -20 °C.  Immediately 

before LC-MS method development, an aliquot of the working stock was diluted 100 x into 

50/50 v/v acetonitrile/water and labelled infusion stock.  The infusion stock was then infused at 5 
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µL/minute into a Waters Xevo TQ-S triple-quadrupole MS (Waters, Millford, MA) combined 

with an LC flow of 15 % acetonitrile with 0.1 % v/v formic acid and 85 % water with 0.1 % v/v 

formic acid at 0.4 mL/minute and an MS1 scan was collected to select the precursor ion of the 

peptide.  The intellistart software was then used for tuning the peptide which produced a list of 

identified mass transitions (product ions) with optimal cone voltage and collision energy.  Using 

this information, an MRM method could then be developed, using at least three mass transitions 

to identify each peptide. 

 
2.2.4 Collection and Isolation of HepG2 and HeLa Exosomes by Differential 

Ultracentrifugation 

HepG2 and HeLa cells were cultured to 100 % confluency in 4 x T-150 flasks in DMEM 

containing 10% v/v FBS at 37 °C and 5 % CO2.  Each flask was then incubated for 48 hours at 

37 °C and 5 % CO2 with 25 mL of exosome collection media (DMEM with no FBS).  This 

resulted in 100 mL of media collected from the 4 x T-150 flasks for each cell line, which was 

centrifuged at 500 x g for 10 minutes at 4 °C, filtered with a 0.22-µm filter, and stored at -80 °C. 

The 48-hour incubation in exosome collection media was repeated two more times to collect a 

total of 300 mL of media for both cell lines.  Once 300 mL of media was collected and filtered, 

the frozen media was thawed on ice and centrifuged at 10,000 x g for 30 minutes to pellet larger 

vesicles.  The pellets were discarded, and the supernatant was centrifuged at 100,000 x g for 1 

hour.  The supernatant was then discarded, and each pellet was re-suspended in 10 mL of 1 x 

PBS and centrifuged once more at 100,000 x g for 1 hour.  Each pellet was re-suspended in 50 

μL of 1 x PBS and quantified using the BCA protein assay kit.   

 
2.2.5 Isolation of HepG2 and HeLa Exosomes by TEIK 
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A 3 mL aliquot of the 300 mL of collected media (above) was set aside for isolation by the TEIK 

according to the manufacturer’s instructions. Briefly, the 3 mL aliquot of media was put into a 15 

mL conical tube and 1.5 mL of the TEIK reagent was added. The mixture was vortexed briefly 

and incubated at 4 °C overnight (~16 hours).  The sample was then centrifuged at 10,000 x g for 

1 hour at 4 °C and the supernatant discarded.  The exosome pellet was then re-suspended in 300 

µL of ice cold 1 x PBS and quantified using the BCA protein assay kit.   

 
2.2.6 NTA of Exosomes 
 
A Malvern NanoSight LM10 Nanoparticle Analysis System (Malvern Panalytical Inc.; 

Westborough, MS) equipped with a charged coupled device (CCD) camera and a 638 nm class 

3B laser source was used to determine the size and particle concentration of the isolated 

exosomal vesicles. Prior to analysis, the position of the visual reference (the thumbprint-like 

shape) was checked to ensure and the optimal imaging location was located.  The chamber was 

then flushed with 1 x PBS and the exosomal sample was injected into the chamber.  The camera 

settings were then adjusted so that the particles appeared as single bright points in the imaging 

field and then 3 x 30 second videos of the exosomal vesicles were collected, with a fresh volume 

of sample introduced into the chamber between each video.  The videos were then analysed with 

NanoSight software version 3.2, with auto function selected for the detection threshold, blur, 

minimum tracking length, and minimum particle size analysis parameters. 

 
2.2.7 Western Blot Analysis 
 
Fifteen (15) µg of exosomal or cellular protein were mixed with 4 x Laemmli sample buffer and 

diluted to 1 x with water.  The protein-buffer mixture was incubated at 95 °C for 5 minutes prior 

to electrophoretic separation on Mini-PROTEAN TGX precast gels for 60 minutes at 150 V on 
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ice. The proteins were transferred onto PVDF membranes using Trans-BlotÒ Turboä Transfer 

System and the membranes were blocked with 5 % fat-free milk in tris-buffered saline 

containing 0.05 % tween 20 (TBS – T20 (0.05%)) for 1 hour at room temperature.  The 

membranes were exposed to a-CD9, a-HSP90, a-HSC70, a-GRP78, a-HSP60 antibodies 

(previously validated with either total cell lysate or HLMs for activity and specificity) overnight 

(~16 hours) at 4 °C.  Following primary antibody exposure, the membranes were washed and 

exposed to the appropriate secondary antibodies, either a-rabbit-HRP or a-mouse-HRP, prior to 

imaging was with a Kodak Image Station 400CF. 

 
2.2.8 Sample Preparation for LC-MRM-MS Analysis 
 
Thirty (30) μg exosomal and total cellular proteins were digested by trypsin and prepared for LC-

MRM-MS analysis using the qFASP protocol. Briefly, the proteins were reduced with 10 mM 

DTT in 20 mM ABC and denatured at 95 °C for 3 minutes.  The solution was then cooled to 

room temperature and loaded onto a 10 kDa MWCO centrifugal filter unit.  The proteins were 

washed with 50 mM ABC and centrifuged at 14,000 x g at 20 °C for 20 minutes followed by 

alkylation with 10 mM IAM.  The excess IAM was removed by centrifugation at 14,000 x g for 

20 minutes at 20 °C, and the proteins were trypsin-digested at 37°C for 4 hours with 1 μg trypsin.  

The peptides were eluted from the filter unit by centrifugation into a protein low binding tube 

prior to being spiked with arginine and lysine stable isotope-labelled crude peptides, which 

served as internal standards. 

 
2.2.9 LC-MRM-MS Analysis 
 
A total of 3 µg of digested cellular and exosomal protein, spiked with internal standard, were 

injected on to an analytical column (ACQUITY UPLC, C18, 1.7 µm, 2.1 x 100 mm) and 
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separated with a gradient of water with 0.1 % v/v formic acid (A) and acetonitrile with 0.1 % v/v 

formic acid (B) at a flow rate of 0.4 mL/minute.  The gradient started at 2 % B and increased to 

30 % B over the course of 9 minutes.  The gradient increased from 30 % B to 95 % B in 1.5 

minutes before re-equilibrating to the initial conditions (2 % B) for 2 minutes.  Signature 

peptides for exosomal marker proteins (HSC70, HSP90b, CD9, ALIX, and TSG101) and non-

exosomal marker proteins (GRP78, HSP60, and PHB1) were detected using the specific mass 

transitions on a Waters Xevo TQ-S triple-quadrupole MS operating in electrospray ionization 

positive (ESI+) mode.  

 

The Waters Xevo TQ-S triple-quadrupole MS was operated using the Waters MassLynx 4.1 

software (Waters, Millford, MA).  The data were analysed with the TargetLynx Application 

Manager within the MassLynx software.  The chromatographic peaks of each peptide and its 

internal standard were integrated by the TargetLynx software to determine the area under the 

curve (AUC).  The response ratio was then calculated by dividing the AUC of the peptide from 

the digest (light peptide) by the AUC of the internal standard (heavy peptide). The “Fold 

Change” value, normalized to the cell lysate, on the y-axis was calculated by Equation 1.  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑖𝑛	𝑡ℎ𝑒	𝐶𝑒𝑙𝑙	𝐿𝑦𝑠𝑎𝑡𝑒	(𝑜𝑟	𝐸𝑥𝑜𝑠𝑜𝑚𝑒)	𝐷𝑖𝑔𝑒𝑠𝑡
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑖𝑛	𝑡ℎ𝑒	𝐶𝑒𝑙𝑙	𝐿𝑦𝑠𝑎𝑡𝑒	𝐷𝑖𝑔𝑒𝑠𝑡  

Two-way ANOVA statistical analysis, in Graph Pad Prism (version 7; San Diego, CA) was used 

to compare the fold change in the lysate to each different exosome preparation, noted with * in 

the graphs, and to compare the different preparations to each other, noted with ** in the graphs. 
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2.3 RESULTS 

2.3.1 LC-MRM-MS Method Development 
 
The signature peptides selected for each protein of interest along with the 3 mass transitions used 

to monitor each peptide in the MRM method are summarized in Table 1.  The bolded mass 

transitions in Table 1 are the mass transitions of highest intensity, and the peaks associated with 

these mass transitions can be seen in the chromatogram of Figure 1. For most proteins, at least 2 

different signature peptides were monitored.  However, for CD9, Alix, and TSG101, only 1 

peptide was selected as the other peptide candidates produced by the in-silico digestions were 

discarded based on the criteria previously established [10, 11].  

 
Table 1. Selected peptides, mass transitions, and retention times for LC-MRM-MS method 
development.  The bolded mass transitions are the transitions with the highest intensity whose 
peaks are present on the chromatogram in Figure 1.  
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Retention Time
1 2 3 (Minutes)

VFESIG(K) 780.8 390.22 680.36 533.29 404.25 3.79
VLPSITTEIL(K) 1214.46 607.37 904.61 817.5 704.42 7.21
LSDGVAVL(K) 902.05 451.27 701.42 430.3 260.2 4.37
VTDALNAT(R) 961.04 480.76 760.39 645.37 461.25 3.34
LTPEEIE(R) 987.07 493.76 772.38 675.33 546.29 3.73
ITITNDQN(R) 1075.14 537.78 860.42 747.34 646.29 3.25
ITITND(K) 804.89 402.73 691.4 590.3 477.2 3.24

FEELNADLF(R) 1254.36 627.3 848.5 735.4 435.3 7.21
CD9 DVLETFTV(K) 1052.19 526.29 724.39 595.35 494.3 6.28
ALIX FTDLFE(K) 899.99 450.23 752.38 651.33 536.31 5.50

TSG101 GVIDLDVFL(K) 1119.32 559.83 849.47 734.44 506.33 9.82
HFSVEGQLEF(R) 1349.46 450.22 749.39 692.37 564.31 5.28

HLEINPDHPIVETL(R) 1783.99 594.98 827.5 740.5 617.36 5.20

PHB1

HSP60

GRP78

HSC70

HSP90B

Protein Signature Peptide Average Mass MH+ (Da) MRM Precursor Ion (m/z) MRM Product Ions (m/z)
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Figure 1. Chromatogram of Selected Peptides for LC-MRM-MS Method Development. 

 

2.3.2 NTA of HepG2 and HeLa Exosomes Isolated by Differential Ultracentrifugation and 

TEIK 

The size distribution of the HepG2 and HeLa exosomes isolated by differential 

ultracentrifugation and the TEIK was assessed by NTA and can be seen in Figure 2A – D.  The 

average size (mean +/- SD) of the isolated exosomes from the HepG2 and HeLa cell culture 

medium by differential ultracentrifugation and TEIK are is summarized in Table 2, and were 

within the expected 30 -150 nm size for exosomes [12-15]. However, larger particles (>0.22 µm, 

pore size of the filter used in during exosome isolation) could also be seen in ultracentrifuge 

samples, which may be due to particle clumping when resuspending lipidic particles in aqueous 

PBS. 

Table 2. Summary of NTA results for exosomes isolated from HepG2 and HeLa cell culture 
medium by differential ultracentrifugation and TEIK. 

Cell Type Isolation Method Particle Size (nm) 
mean +/- SD 

HeLa Ultracentrifugation 132 +/- 5 

E) PHB1_VFESIGK 
1.34*10^6
F) HSP60_LSDGVAVLK 
5.16*10^5

C) HSP60_VTDALNATR
7.37*10^5
D) GRP78_LTPEEIER 
4.72*10^5

B) GRP78_ITITNDQNR 
2.58*10^5

A) HSC70_ITITNDK 
5.86*10^5

H) HSP90B_HFSVEGQLEFR
3.41*10^6

G) HSP90B_HLEINPDHPIVETLR
1.20*10^6

M) TSG101_GVIDLDVFLK
7.82*10^5

J) CD9_DVLETFTVK
1.80*10^5

I) ALIX_FTDLFEK
2.86*10^5

K) PHB1_VLPSITEILK 
4.08*10^6
L) HSC70_FEELNADLFR
1.32*10^6

0 1052.5 7.51 1.5 2
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TEIK 127 +/- 8 

HepG2 
Ultracentrifugation 140 +/- 3 

TEIK 126 +/- 4 
 
 

Figure 2. NTA Analyses of HepG2 and HeLa Exosomes Isolated by Differential 
Ultracentrifugation and TEIK.  Exosomes were isolated from HeLa cell culture media by 
differential ultracentrifugation (A) and by TEIK (B).  Exosomes were also isolated from HepG2 
cell culture medium by differential ultracentrifugation (C) and TEIK (D).  
 

2.3.3 Comparison of Isolation Efficiency Between Differential Ultracentrifugation and 

TEIK 

Figure 3 shows the amount (µg) of isolated protein per volume (mL) of cell culture medium 

averaged together for the 4 biological replicates (n=4).  For the HepG2 and HeLa exosomes 

isolated by differential ultracentrifugation, approximately 3 and 1 µg of protein was isolated per 

HeLa UC

HepG2 UC

HeLa Kit

HepG2 Kit

A B

C D
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mL of starting material, respectively.  For HepG2 and HeLa exosomes isolated by the TEIK, 

approximately 70 and 23 µg of protein was isolated per mL of starting material, respectively.  

Table 3 shows the amount of protein isolated, the starting volume, and amount of protein 

isolated per mL of starting material for the 4 biological replicates individually.  The average of 

the values reported in Table 3 were used to plot the data in Figure 3. 

Figure 3. Comparing Isolation Efficiency of Differential Ultracentrifugation and TEIK 
Exosomes Isolation Methods. The amount (µg) of exosomal protein isolated was quantified by 
BCA and then normalized to the amount (mL) of starting material for 4 biological replicates 
(n=4). 
 
 
Table 3. Amount (µg) of exosomal protein isolated, starting volume (mL) of cell culture 
medium, and µg/mL of exosomal protein for 4 biological replicates.  

 

Amount (ug) Isolated Starting Volume (mL) Amount (ug)/mL Amount (ug) Isolated Starting Volume (mL) Amount (ug)/mL
1 942.9 297 3.2 285.6 3 95.2
2 1147.5 297 3.9 237.3 3 79.1
3 589.7 297 2.0 125.0 3 41.7
4 778.0 297 2.6 194.0 3 64.7

Amount (ug) Isolated Starting Volume (mL) Amount (ug)/mL Amount (ug) Isolated Starting Volume (mL) Amount (ug)/mL
1 259.8 297 0.9 97.2 3 32.4
2 351.0 297 1 32.1 3 10.7
3 503.7 297 2 83.1 3 27.7
4 369.6 297 1 60.0 3 20.0
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2.3.4. Western Blot Analysis of HepG2 and HeLa Cell Lysate and Exosomes 
 
HeLa and HepG2 total cell lysate and exosomal protein isolated by differential 

ultracentrifugation and TEIK were assessed by Western blot for expression of exosomal marker 

proteins (HSC70, HSP90, and CD9) and non-exosomal marker proteins (HSP60, and GRP78).  

The blots can be seen in Figure 4A and 4B respectively for HepG2 and HeLa cell lines.   

 

Figure 4. Western Blot Analysis of HepG2 and HeLa Exosomes Isolated by Differential 
Ultracentrifugation and TEIK and Corresponding HepG2 and HeLa Cell Lysate. HepG2 cell 
lysate and exosomes (A) and HeLa cell lysate and exosomes (B) isolated by differential 
ultracentrifugation and TIEK were assessed for exosomal marker proteins CD9, HSP90, and 
HSC70 and non-exosomal marker proteins GRP78 and HSP60. 
 

For the HepG2 cell lysate, all proteins were observed, though HSP90 at a very low level. For the 

HepG2 exosomes isolated by differential ultracentrifugation and TEIK all proteins were 

observed, except for CD9 after TEIK isolation.  Based on the relative intensity of the bands in 

the blots, it appears both HSP90 and HSC70 proteins are enriched in the exosome preparations 

compared to the corresponding cell lysate.  The HSP60 and GRP78 proteins appear to be more 
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abundant in the HepG2 cell lysate compared to the exosomes isolated by differential 

ultracentrifugation or the TEIK.  The enrichment of HSC70 and HSP90 and decrease in HSP60 

and GRP78 in exosomes relative to the HepG2 cell lysate suggests the particles isolated by both 

differential ultracentrifugation and TEIK are exosomal vesicles.  For the HeLa cell lysate, all 

proteins were detected, however, only the CD9 protein appears to be enriched in the HeLa 

exosomes after isolation by differential ultracentrifugation.  The enrichment of the CD9 protein 

in the exosomes isolated by differential ultracentrifugation and the lack of non-exosomal marker 

proteins (HSP60 and GRP78) suggest the particles isolated by differential ultracentrifugation are 

exosomal vesicles.  

 
2.3.5 LC-MRM-MS Analysis of Isolated HepG2 and HeLa Exosomes 
 
The HeLa and HepG2 total cell lysate and exosomes isolated by differential ultracentrifugation 

and TEIK were analysed by LC-MRM-MS for the presence and absence of exosomal marker 

proteins.  The data are summarized in Figure 5A and 5B.  For HeLa exosomes isolated by 

differential ultracentrifugation and TEIK, the non-exosomal marker protein levels in the 

exosomes are lower than then the corresponding cell lysate (left side of Figure 5A).  This is also 

the case for the non-exosomal marker proteins in the HepG2 exosomes isolated by both 

differential ultracentrifugation and TEIK (left side of Figure 5B).  For the exosomal marker 

proteins in the HeLa exosomes isolated by TEIK, most were found to be at a similar level, or 

lower, then the lysate levels (right side of Figure 5A).  However, when HeLa exosomes were 

isolated by differential ultracentrifugation, it appeared that both CD9 and ALIX marker proteins 

were enriched, by approximately 30-fold and 2.5-fold respectively, in the exosomes compared to 

the lysate (right side of Figure 5A).  For the HepG2 exosomes isolated by differential 

ultracentrifugation, all the exosomal marker proteins, except TSG101, appeared to be at higher 

levels in the exosomes compared to the lysate, with HSC70 and HSP90b being the most heavily 
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enriched each at ~ 4-fold (right side of Figure 5B).  For HepG2 exosomes isolated by TEIK, 

however, only HSP90b was found to be enriched (~ 2-3-fold) in the exosomes compared to the 

lysate (right side of Figure 5A). 
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Figure 5. LC-MRM-MS Analysis of HepG2 and HeLa Exosomes Isolated by Differential 
Ultracentrifugation and TEIK and Corresponding HepG2 and HeLa Cell Lysate. A total of 30 µg 
of cellular and exosomal proteins from HeLa (A) and HepG2 (B) were trypsin digested and 
assessed for the presence of exosomal marker proteins (HSC70, HSP90b, CD9, TSG101, and 
ALIX) and non-exosomal marker proteins (PHB1, HSP60, and GRP78) by LC-MRM-MS for 4 
biological replicates (n=4). Exosomal marker proteins in exosome preparations whose fold 
change value was significantly different from the lysate level are marked by (*).  Exosomal 
marker protein levels which were significantly different between the 2 different isolation 
methods are marked by (**).   
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2.4 DISCUSSION 

The potential use of exosomes in the clinical setting to act as carries of biomarkers, diagnostic 

tools, and monitor therapeutic responses has been well demonstrated [16-31].  However, a major 

challenge in the field is the lack of standardized methods for exosome isolation and analysis.  

Typically, the protein content of the isolated exosomes is investigated by Western blot for the 

presence of exosomal marker proteins and absence of non-exosomal marker proteins in order to 

investigate the purity and quality of the exosome preparation [29, 31-34].  Western blot not only 

relies on the use of antibodies, which are expensive and potentially non-specific, but is also not 

well multiplexed and therefore requires an abundance of protein for analysis [3].  As 

demonstrated in Figure 3 and Table 3, exosomal protein yield is quite low, especially for 

isolation by differential ultracentrifugation.  Using a large quantity of exosomal protein to assess 

the purity and quality of the preparation leaves little protein left for future experiments, hence it 

would be advantageous to develop a well multiplexed method for exosome analysis. 

 

Here, a LC-MRM-MS-based method for exosome analysis was developed.  Unlike Western blot, 

this assay is well multiplexed and does not require the use of antibodies.  The technique for 

developing these methods has been previously established in this lab [10, 11].  Once the 

signature peptides for each protein of interest were identified, the LC-MRM-MS method was 

developed by identifying 3 mass transitions, or fragments, for each peptide of interest.  Table 1 

lists the proteins, signature peptides, and mass transitions (precursor and product ions) used to 

develop the LC-MRM-MS method.  As demonstrated in Figure 1, 8 exosomal/non-exosomal 

marker proteins could be monitored, in a 13.5-minute gradient, by 13 different peptides (at 3 

mass transitions/peptide) using only 3 µg of a 30 µg total exosomal (or cellular) protein digest, 

speaking largely to the multiplex-ability of this LC-MRM-MS based assay.  In contrast, Western 
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blot analysis (Figure 4A and 4B) required 15 µg of exosomal protein for each protein (5) that 

was blotted against, in this case using a total of 75 µg of exosomal protein.  If all 8 proteins 

monitored by LC-MRM-MS were assessed by Western blot at 15 µg/blot, a total of 120 µg of 

exosomal protein would be used. Hence, the LC-MRM-MS based assay required 40-fold less 

protein to get the same, if not more useful information than the tradition Western blot 

methodology.  Specifically, the LC-MRM-MS data could be used to get information regarding 

the relative abundance of the peptide (and therefore protein) between the cell lysate and different 

exosome preparations.  Such comparison demonstrated that the relative abundance of HSC70 

and HSP90b were higher in the HepG2 exosomes isolated by differential ultracentrifugation than 

in exosomes isolated by TEIK (Figure 5B), a comparison that would have been difficult to make 

based on the Western blot data (Figure 4A). 

 

The relative abundance, based on LC-MRM-MS analysis, of exosomal marker proteins (HSC70, 

HSP90b, CD9, ALIX, and TSG101) appeared at lower levels in exosomes isolated by TEIK than 

differential ultracentrifugation for both HepG2 (Figure 5B) and HeLa (Figure 5A) exosome 

preparations. This supports the previously reported issues with TEIK for exosome isolation 

leading to a less pure sample preparation [35-38].  Essentially, this method introduces 

polyethylene glycol (PEG) polymers into the cell culture medium which tie-up the water 

molecules and cause precipitation of the exosomal vesicles.  However, in addition to 

precipitation of exosomal vesicles, other soluble proteins secreted by the cells are also 

precipitated.  Thus, there appears to be a higher isolation efficiency by TEIK, as demonstrated in 

Figure 3 and Table 3, however if the protein quantification assay were able to differentiate 

exosomal protein from soluble protein this would likely not be the case. When samples were 

prepared for LC-MRM-MS analysis, the digestion was normalized to protein amount (30 µg) and 
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the level of soluble proteins contributing to the 30 µg is much higher for TEIK preparation than 

for the ultracentrifuge preparation, resulting in lower levels of exosomal marker proteins relative 

to differential ultracentrifugation preparations. 

 

In addition to using the LC-MRM-MS method for comparing exosomes isolated by different 

methods, the method was also be used to analyse exosomes from different cell types as well, in 

this study HepG2 and HeLa cell lines.  In this analysis, both the LC-MRM-MS and Western blot 

methods were consistent with each other in that they revealed different exosomal marker protein 

expression profiles in HepG2 and HeLa exosomes isolated by differential ultracentrifugation.  

Specifically, Figure 4A and Figure 5B suggested that HSC70 and HSP90b are ideal exosomal 

marker proteins for HepG2 exosomes isolated by differential ultracentrifugation, as these 

proteins are enriched in the exosomal vesicles compared to the corresponding HepG2 cell lysate.  

Additionally, Figure 4B and Figure 5A suggests that CD9 and ALIX are ideal exosomal marker 

proteins for HeLa exosomes isolated by differential ultracentrifugation, as these proteins are 

enriched in the exosomal vesicles compared to the corresponding HeLa cell lysate.  This data 

demonstrates the need to develop a set of exosomal marker proteins specific for exosomes from 

different cell types. Often, the focus is on the development of marker proteins that can be used to 

identify exosomes from all cell types and that can be used to distinguish exosomal vesicles from 

other extracellular vesicles (EVs), but such markers are yet to be identified.  However, in the 

same way that different protein biomarkers have been developed for diagnosis of different 

cancers [39-44], the need to develop different protein biomarkers for exosomes from different 

cell types was demonstrated; and the utility of LC-MRM-MS-based targeted proteomics for 

identification of specific exosomal marker proteins was also demonstrated.      
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2.5 CONCLUSION 

The use of exosomes in the clinical setting has been of recent interest, however the lack of 

standardization in exosomal isolation and analysis is a major challenge in the field.  Here, a LC-

MRM-MS-based method was developed, and the capabilities of LC-MRM-MS-based targeted 

proteomic techniques to benefit the field of exosomal research were demonstrated.  Particularly, 

the LC-MRM-MS data was generally consistent with the traditional Western blot data, but it 

required 40-fold less exosomal protein and gave additional information regarding relative 

abundance of proteins that would be difficult to extract from Western blot data.  The LC-MRM-

MS method was used to compare exosomes isolated by TEIK and differential ultracentrifugation 

and was consistent with previous reports of increased contamination of soluble proteins in 

exosomes isolated by TEIK.  Furthermore, the LC-MRM-MS method was used to compare 

exosomes isolated from different cell lines and suggested a need to change the focus from 

developing a set of exosomal marker proteins for exosomes secreted by all cell types to 

developing a unique set of marker proteins for exosomes isolated from different cell types.  
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3.1 INTRODUCTION 

Metabolic degradation and renal excretion are the primary processes by which the body removes 

xenobiotics from its system.  Unlike renal excretion, metabolic degradation is highly variable 

among individuals for various intrinsic and extrinsic factors such as age, ethnicity, genetics, diet, 

smoking, and exercise [1].  This variability poses a challenge in drug development and 

pharmacotherapy when a drug product has a narrow therapeutic window and is eliminated from 

the body primarily by metabolic degradation.  An example of a drug that falls into this category 

currently on the market is a blood thinner, warfarin, and is metabolized by Cytochrome P450 

(CYP) CYP1A2, CYP2C9 and CYP3A4 [2]. Changes in the activity of these enzymes in an 

individual on warfarin may significantly alter the pharmacokinetic (PK) exposure leading to 

adverse effects or a decrease in the therapeutic effect, depending on whether the CYP1A2, 

CYP2C9 and CYP3A4 activity are inhibited or induced [2].  However, if an individual’s 

metabolic activity can be predicted, the individual can be dosed according to their unique 

metabolic activity and prevent the adverse effects associated with these drugs.       

 

Currently, an individual’s metabolic activity is predicted based on either genotyping or 

phenotyping procedures.  Genotyping is used to determine the DNA sequence that codes for the 

enzyme of interest, this can be used to determine the polymorphism of the expressed enzyme, 

and then based on tabulated data, the “typical activity” of the given polymorphism can be used to 

dose the patient accordingly [3].  This process however fails to account for intrinsic and extrinsic 

factors that may alter the “typical activity” of an enzyme for an individual.  Phenotyping, on the 

other hand, which is done by administering a cocktail of drugs to a patient, can be used to 

determine the activity of the expressed enzyme (independent of the polymorphism) and then the 

patient can be dosed accordingly.  While this procedure is used more often in the clinic, it is 
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costly and inconvenient as it requires monitoring by medical professionals in the hospital [4].  

Consequently, there is a need for alternative methods to predict an individual’s metabolic 

activity.   

 

Exosomes are vesicles, typically 30 – 150 nm in diameter, secreted by cells into the extracellular 

space. They have been found to contain proteins, lipids, and mRNA that reflect the cell from 

which they were secreted [5].  Since exosomes contain this cellular cargo and are circulating in 

the extracellular space, they are of recent interest for the development of minimally invasive 

“liquid biopsies” [6, 7].  Since the liver is the primary location of xenobiotic metabolism, the 

circulating liver-derived exosomal vesicles may be a source of drug metabolizing enzymes 

(DMEs) that can be used for development of a “liquid biopsy” procedure for predicating 

metabolic activity on an individual level.  Thereby providing a new basis for personalized 

medicine. 

 

Unlike genotyping, where populations are grouped into categories, exosomal DME expression 

may be able to reflect a change in an individual’s hepatocyte DME expression level. The 

expression levels of DMEs in hepatocytes can be altered due to ontogeny, disease, or induction, 

and in the genotyping process, these altered expression levels are not revealed and therefore not 

considered in personalized medicine. An individual’s liver DME expression profile can 

potentially be assessed by exosomal DME expression and provide vital information for 

individualized medicine.  Unlike phenotyping, however, where the true activity of the DME is 

measured, the exosomal DME expression would not be able to predict a change in liver DME 

activity due to chemical inhibition.  That is, if the DME expression profile of the hepatocyte is 

unchanged, but the activity of the DMEs are altered due to chemical inhibition, this reduced liver 
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DME activity may not be reflected in the exosomes.  In such cases, the phenotyping method may 

be preferred. However, in the absence of any suspicion of chemical inhibition, the exosomal 

DME expression may be able to be assessed via a simple blood draw, or “liquid biopsy,” making 

it more cost efficient and less inconvenient to patients in comparison to phenotyping.      

 

In this study, liquid chromatography – multiple reaction monitoring – mass spectrometry (LC-

MRM-MS) was used to examine the exosomal DME expression in exosomes derived from a 

hepatoma line, HepG2.  Further, the ability of exosomal DME expression to be altered to reflect 

a change occurring within the cells was explored.  
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3.2 MATERIALS AND METHODS 

3.2.1 Chemicals and Reagents 
 
HepG2 cells were purchased from American Type Culture Collection (Manassas, VA). 

Dulbecco’s modified Eagle’s medium (DMEM), b-naphthoflavone (b-NF), dimethyl sulfoxide 

(DMSO), dithiothreitol (DTT), ammonium bicarbonate (ABC), iodoacetamide (IAM), 7-

ethoxyresorufin (7-ER) and resazurin sodium salt were purchased from Sigma-Aldrich Co. (St. 

Louis).  Hepatic fetal bovine serum (FBS), 6-carboxy-X-rhodamine (ROX) reference dye, SYTO 

82 orange fluorescent nucleic acid stain, and Guanidinium thiocyanate (TRIzol) were purchased 

from Life Technologies (Carlsbad, CA).  A bicinchoninic acid (BCA) protein assay kit was 

purchased from Pierce Biotechnology (Rockford IL).  Optima grade LC-MS/MS grade 

acetonitrile, methanol, water, chloroform, formic acid, and isopropanol were ordered through 

Fisher Chemical (Fair Lawn, NJ).  Micron centrifugal filters ultracel regenerated cellulose 

10,000 kDa molecular weight cut off (MWCO) columns were purchased from Millipore 

(Billerica, MA).  Protein low bind tubes were purchased from Eppendorf (Westbury, NY).  

Phosphate buffered saline (PBS; 10x molecular biology grade), was purchased from Cellgro 

(Manassas, VA). A Beckman OptimaÔ L-90K preparative ultracentrifuge (Class S), a type 35 

rotor, a swinging 28 (SW28) rotor, and ultracentrifuge tubes were purchased from Beckman 

Coulter (Brea, CA). Sterile 0.22-micron filters and cell culture flasks were purchased from 

Corning (Corning, NY).  High capacity cDNA reverse transcriptase (RT) kit and fast 96-well 

reaction (0.1 mL) PCR compatible DNA/RNA/RNAse free plates were purchased from Applied 

Biosystems (Foster City, CA). GoTaq hot start colorless master mix, 2x, and sequencing grade 

modified trypsin were bought from Promega (Madison, WI).  Primers were purchased from 

Invitrogen (Eugene, OR).  Thin walled RNAse, DNAse, and pyrogen free 0.2 mL tubes with 

dome cap and radioimmunoprecipitation assay (RIPA; 2x) were purchased from Molecular 
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Bioproducts (San Diege, CA).  Protease inhibitor cocktail tablets were purchased from Roche 

Diagnostics (Indianapolis, IN). 

 

3.2.2 HepG2 Cell Culture and Induction of CYP1A1 in HepG2 Cell by b-NF 

HepG2 cells were cultured in T-150 flasks at 37 °C and 5 % CO2 in DMEM containing 10 % v/v 

FBS prior to treatment with 100 μM of β-NF in 0.1 % v/v DMSO, 10 % v/v FBS in DMEM for 

48 hours at 37 °C and 5 % CO2.  An additional HepG2 cell culture was treated with 0.1 % v/v 

DMSO, 10 % FBS in DMEM to act as a vehicle control. 

 

3.2.3 mRNA Isolation and Quantification from Treated HepG2 Cells 
 
The cellular mRNA was extracted using TRIzol according to the manufacture’s protocol for 3 

biological replicates (n=3). In short, TRIzol reagent was added to the cells and incubated at room 

temperature for 5 minutes.  Chloroform was added and incubated briefly at room temperature 

followed by a centrifugation at 12,000 x g for 15 minutes at 4 °C.  Approximately 70 % of the 

top aqueous layer was transferred to a clean RNAse/DNAse free tube and isopropanol was and 

incubated at room temperature for 10 minutes before centrifuged at 12,000 x g for 5 minutes at 

4 °C.  The supernatant was discarded, and the pellet, containing mRNA, was washed with 70 % 

ethanol, dried, and resuspended in nuclease free water.  The quantity and purity of the isolated 

mRNA was assessed with a NanoDrop ND1000 Spectrophotometer (NDS, Nanodrop 

Technologies, Wilmington, DE). Briefly, the NDS was blanked with 2 µL of nuclease free water 

before using the ND1000 version 3.8.1 software to calculate the A260/A280 and A260/A230 

ratios as well as the amount of mRNA recovered (ng/µL).  A value of two (2) for A260/280 and 

A260/230 ratios respectively were considered pure RNA.    
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3.2.4 RT and Real Time-Polymerase Chain Reaction (PCR) Analysis of mRNA from 

Treated HepG2 Cells 

Using the High Capacity cDNA RT Kit, 1 μg mRNA was added to a 0.2 mL tube containing 4 

mM deoxyribonucleotide triphosphate (dNTP) mixture, 1 x RT buffer, RT random primers and 

RT enzyme in a total final volume of 20 µL.  For each mRNA sample, a non-RT control was also 

prepared containing all the components listed above except the RT enzyme.  The mRNA was 

converted to single-stranded cDNA using a Bio-Rad C1000 Thermal Cycler (Bio-Rad, Hercules, 

CA).  Specifically, the reaction spent 10 minutes at 25 °C followed by 2 hours at 37 °C and then 

5 minutes at 85 °C before being cooled and held at 4 °C.  The real time-PCR samples were 

prepared by combining 12.5 µL of SYTO82/Promega hot start PCR master mix with 10 µM final 

concentration of forward/reverse (F/R) PCR primers, and 12.5 ng of cDNA (for all samples 

including the non-RT control), in a total final volume of 25 µL.  A list of the primers used can be 

seen in Table 1.  The real time-PCR was carried out using an Applied BiosystemsÒ 7500 Fast 

real time-PCR System (Applied Biosystems, Foster City, CA), spending 5 minutes at 95 °C 

followed by 40 cycles of 15 seconds at 95 °C and 35 seconds at 60 °C.  The cycle threshold (Ct) 

values generated were used to calculate the fold induction of mRNA relative to b-actin, the 

housekeeping gene, using double delta Ct analysis method.          

Table 1. Sequences of primers used for real time-PCR analysis of mRNA isolated from DMEM, 
DMSO, AND b-NF treated HepG2 cell cultures 

Protein Primer 
(F/R) Primer Sequence		 PCR Product 

 (# of base pairs) 
β-actin F AAACTGGAACGGTGAAGGTG 

176 β-actin R AGAGAAGTGGGGTGGCTT 
CYP3A4 F TCAGCCTGGTGCTCCTCTAT 

120 CYP3A4 R GGGATGAGGAATGGAAAGACTGT 
CYP1A1 F GTTCTACAGCTTCATGACAGAAGATG 

127 CYP1A1 R TTGGCGTTCTCATCCAGCT 
CYP1A2 F CTGTGGTTCCTGCAGAAAACAG 101 
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CYP1A2 R CCCTTCTTGCTGTGCTTGAAC  
 
 
3.2.5 CYP1A1 Induction Confirmed in Treated HepG2 Cells by LC-MRM-MS 
 
The treated HepG2 cells for 3 biological replicates (n=3) were pelleted and then lysed with RIPA 

buffer supplemented with protease inhibitor cocktail for 30 minutes at 4 °C.  The lysate was 

centrifuged at 10,000 x g for 5 minutes at 4 °C, the supernatant was transferred to a clean low 

protein binding tube and quantified by the BCA assay.  A total of 30 µg of total cell lysate was 

trypsin digested using the quantitative filter-aided sample preparation (qFASP) method.  In short, 

the proteins were reduced with 10 mM DTT in 20 mM ABC and denatured at 95 °C for 3 

minutes.  The samples were washed on a 10 kDa MWCO column with 50 mM ABC prior to 

incubation with 10 mM IAM for 20 minutes in the dark at room temperature.  The excess IAM 

was then removed from the column by centrifugation at 14,000 x g for 20 minutes at 20 °C.  The 

proteins were digested with 1 µg of trypsin for 4 hours at 37 °C, the peptides were recovered 

from the 10 kDa MWCO column by centrifugation into a clean protein low binding tube prior to 

being spiked with arginine and lysine stable isotope-labelled crude peptides to serve as internal 

standards (IS) for LC-MRM-MS analysis.   

 

A total of 3 µg of digested protein with IS was separated on an analytical column (ACQUITY 

UPLC, C18, 1.7 µm, 2.1 x 100 mm) with a gradient consisting of water with 0.1 % v/v formic 

acid (A) and acetonitrile with 0.1 % v/v formic acid (B) at a rate of 0.4 mL/minute.  Specifically, 

the column was equilibrated in 2 % B for 3 minutes and then increased to 30 % B over the course 

of 9 minutes.  The gradient increased from 30 % B to 95 % B in 1.5 minutes in then back to 2 % 

B for 2 minutes during each injection.  Signature peptides for b-actin, CYP1A1, CYP1A2, and 
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CYP3A4 were previously identified [8] and monitored using a Waters Xevo TQ-S triple 

quadrupole MS (Waters, Millford, MA) in electrospray ionization positive (ESI+) mode. 

 
3.2.6 7-ethoxyresorufin-O-deethylase (EROD) Assay for CYP1A1 
 
After treatment, the media was removed, the cells were washed with 1 x PBS, and 2 mL of 

DMEM without phenol red containing 1 μM 7-ER was added to each well.  The reactions were 

quenched with cold methanol immediately after 7-ER addition (zero time point), as well as at 30- 

and 60-minutes post 7-ER addition.  A calibration curve prepared from a 1 µM resorufin stock 

was used to quantify the levels of resorufin, formed by the cells in 3 biological replicates (n=3), 

which was normalized to the milligram (mg) of cellular protein using a TECAN Infinite M200 

PRO (TECAN, Mannedorf, Switzerland) plate reader with an excitation wavelength of 565 nm 

and emission wavelength of 595 nm.   

 
3.2.7 LC-MRM-MS Data Analysis 
 
Waters MassLynx 4.1 Software was used to was used to operate the Waters Xevo TQ-S triple 

quadrupole MS.  Further, the TargetLynx Application Manager within the MassLynx software 

was used to analyze the data.  Specifically, the chromatographic peaks for each peptide were 

integrated by the TargetLynx Application to determine the area under the curve (AUC) for each 

peptide.  The normalized peak area was then calculated by dividing the AUC of the light peptide 

(sample) by the AUC of the heavy peptide (IS).  For assessing the CYP1A1 induction in the cell 

lysate, the “Fold Change” value on the y – axis was calculated by Equation 1 below. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝑡ℎ𝑒	𝐶𝑒𝑙𝑙	𝐿𝑦𝑠𝑎𝑡𝑒	(𝐷𝑀𝐸𝑀,𝐷𝑀𝑆𝑂, 𝑜𝑟	b− 𝑁𝐹)	𝐷𝑖𝑔𝑒𝑠𝑡
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝑡ℎ𝑒	𝐷𝑀𝐸𝑀	𝐿𝑦𝑠𝑎𝑡𝑒	𝐷𝑖𝑔𝑒𝑠𝑡  
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3.2.8 HepG2 Exosome Collection 
 
HepG2 cells were cultured in twelve T-150 flasks in DMEM containing 10 % v/v FBS.  Cells in 

four of the T-150 flasks were treated with 0.1 % v/v DMSO in DMEM with 10 % v/v FBS, cells 

in four T-150 flasks were treated with 100 µM b-NF in 0.1 % v/v DMSO in DMEM with 10 % 

v/v FBS and cells in the remaining four T-150 flasks were maintained in the normal growth 

conditions (DMEM with 10 % v/v FBS) for 48 hours at 37 °C and 5 % CO2.  Post treatment, 

each flask was incubated with 25 mL of its respective treatment media, but with no FBS, for 48 

hours at 37 °C and 5 % CO2.  The media was collected, centrifuged at 500 x g for 10 minutes at 

4 °C, filtered with a 0.22-micron filter, and stored at -80 °C until exosome isolation.  The 48-

hour exosome collection was repeated twice more to collect a total of 300 mL of DMEM, 

DMSO, and b-NF treated HepG2 media.  Upon each collection period, the media was 

centrifuged, filtered, and stored at -80 °C until exosome isolation. 

 
3.2.9 HepG2 Exosome Isolation by Differential Ultracentrifugation 
 
The collected cell culture medium was thawed on ice and centrifuged at 10,000 x g for 30 

minutes at 4 °C to pellet larger vesicles which were discarded, and the supernatant was 

centrifuged at 100,000 x g for 1 hour at 4 °C.  The supernatant was discarded and each pellet, 

containing the exosomes, was re-suspended in 10 mL of 1 x PBS and centrifuged once more at 

100,000 x g for 1 hour at 4 °C.  Each pellet was re-suspended in 30 μL of 1 x PBS and quantified 

using the BCA protein assay kit.   

 
3.2.10 Exosome Characterization by NTA 
 
The size and concentration of the isolated exosomal vesicles were assessed using a Malvern 

NanoSight LM10 Nanoparticle Analysis System equipped with a charge coupled device (CCD) 

camera and a 638 nm class 3B laser source.  Prior to analysis, the chamber was flushed was 1 x 
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PBS and the optimal imaging location was located using the thumb-print like shape. The 

exosomes were then introduced to the chamber and 3 x 30 second videos were captured with a 

fresh volume of sample introduced between each video.  The NanoSight 3.2 software was used 

to process the videos with the auto function selected for the following analysis parameters: 

detection threshold, blur, minimum tracking length, and minimum particle size. 

 
3.2.11 LC-MRM-MS Analysis of the Isolated Exosomes for DME Expression 
 
Using the qFASP protocol discussed above, 30 μg of exosomal and cellular proteins for 4 

biological replicates (n=4) were trypsin digested and prepared for LC-MRM-MS analysis.  The 

analytical conditions (column and gradient) used for the LC-MRM-MS analysis were identical to 

those discussed above.  In the first LC run, signature peptides for exosomal marker proteins heat 

shock protein 70 kDa (HSC70) and Heat Shock Protein 90 kDa beta (HSP90b) and non-

exosomal marker proteins Glucose Regulated Protein 78 kDa (GRP78), Prohibitin 1 (PHB1), and 

Heat Shock Protein 60 kDa (HSP60) were detected using a Waters Xevo TQ-S triple quadrupole 

MS.  In a second LC run, signature peptides for CYPs (2C9, 2C19, 3A4, 3A5, 3A7, 1A1, 1A2, 

4F11, 1B1, 4F3B, 4F2, and 4F12), flavin-containing monooxygenase (FMOs) 1, 3 and 5, and β-

actin were detected using specific MRM transitions and a triple-quadrupole MS [8-11] (Waters 

Xevo TQ-S).   
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3.3 RESULTS 

3.3.1 Confirmation of Intracellular CYP1A1 Induction with Real Time-PCR, Protein 

Expression, and EROD Assay 

The isolated mRNA from the treated HepG2 cells was reverse transcribed to cDNA and used for 

real time-PCR analysis.  While heavily debated, an increased level of mRNA can be associated 

with an increased level of protein, thus the CYP1A1 induction in the treated HepG2 cells can be 

probed indirectly by real time-PCR analysis [15-17].  The mRNA levels for different DMEs 

normalized to b-actin, can be seen in Figure 1.  b-actin was selected as the housekeeping gene as  

Figure 1. Real Time-PCR analysis of mRNA isolated from DMEM, DMSO, and β-NF treated 
HepG2 cells to demonstrate CYP1A1 induction in β-NF treated HepG2 cells. Error bars 
represent 3 biological replicates (n=3), asterisks (*) indicate significant difference in mRNA 
level from the β-Actin mRNA level. 
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whereas the CYP1A1 mRNA levels in the DMEM and DMSO treated cells were not.  

Additionally, the mRNA for CYP1A2 appeared slightly induced, about 7-fold, in the b-NF 

treated HepG2 cells compared to the DMEM and DMSO treated HepG2 cells.  However, the 

lack of induction in CYP3A4 and CYP2C8 mRNA levels, and the minimal increase in CYP1A2 

mRNA, demonstrates the specificity of the induction. 

 

An LC-MRM-MS method previously developed in the lab [8-11] for DMEs was used to directly 

probe the DME expression of the treated HepG2 cells.  Unlike real time-PCR, the LC-MRM-MS 

method directly probes the DME expression based on the detection of signature peptides for the 

DMEs of interest.  As seen in Figure 2, the CYP1A1 expression in the b-NF treated HepG2 cell  

Figure 2. LC-MRM-MS analysis of treated HepG2 cell lysate to confirm the induction of 
CYP1A1 intracellularly after treatment with β-NF and to demonstrate the specificity of CYP1A1 
induction with HepG2 cells are treated with β-NF. Error bars represent 3 biological replicates 
(n=3). 
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lysate is increased greater than 100-fold from the DMEM culture conditions; and as was 

demonstrated by real time-PCR, the specificity of the induction for CYP1A1 was further 

demonstrated based on the lack of increase of other DMEs (CYP1A2 and CYP3A4) expressed in 

the b-NF treated HepG2 cell lysate versus the DMEM and DMSO treated HepG2 cell lysate.  

Furthermore, this data suggests the b-actin levels are not changed upon treatment with DMSO, 

DMEM, or b-NF as expected. 

 

The conversion of 7-ER to resorufin is catalyzed by the CYP1A family.  Based on the data in 

Figure 1 and Figure 2, the primary enzyme of the CYP1A family present in the HepG2 cells is 

CYP1A1.  Therefore, the formation of resorufin, > 80 nM/mg protein after 1 hour, in b-NF 

treated HepG2 cells, as seen in Figure 3, is associated with the CYP1A1 expression.   

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3. 7-EROD Assay to confirm CYP1A1 induction in HepG2 cells after treatment with β-
NF in comparison to the vehicle control, DMSO treated HepG2 cells, and the normal growth 
conditions of DMEM. Error bars represent 3 biological replicates (n=3). 
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The DMSO and DMEM treated HepG2 cells, acting as the vehicle control and normal growth 

conditions respectively, do not appear to express in the CYP1A1 enzyme based on the lack of 

resorufin (0 nM/mg) formed as a function of time compared to the b-NF treated HepG2 cell 

culture.  This data suggests that b-NF induces the CYP1A1 expression intracellularly in HepG2 

cells, as expected [12-14]. 

 

3.3.2 Exosome Characterization by NTA and LC-MRM-MS 
 
Exosomes were isolated from DMEM, DMSO, and b-NF treated HepG2 cell culture medium 

and characterized by NTA to determine size distribution and concentration. The NTA analysis, 

which can be seen in Figure 4, revealed the particles to have an average (mean +/- SD) size of 

142 +/-3 nm (4a), 149 +/- 3 nm (4b), and 139 +/- 4 nm (4c), respectively for exosomes from the 

DMEM, DMSO, and b-NF treated cell cultures, which are all within the expected size range of 

30 – 150 nm.   

Figure 4. NTA of exosomes isolated from DMEM treated HepG2 cell culture (A), DMSO 
treated HepG2 cell culture (B), and β-NF treated HepG2 cell culture (C) 
 
The purity and quality of the exosome preparation was assessed based on the presence of 

exosomal maker proteins, HSC70 and HSP90b, and absence of non-exosomal marker proteins, 

PHB1, HSP60, and GRP78 using a previously developed LC-MRM-MS based method.  The data 

in Figure 5a and 5b demonstrates the levels of exosomal marker proteins are higher in the 

A B C
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exosomes from the DMEM, DMSO, and b-NF treated HepG2 cell cultures compared to their 

corresponding cell lysate.  Additionally, Figure 5a and 5b also suggests the levels of non-

exosomal marker proteins are at higher levels in the DMEM, DMSO, and b-NF treated HepG2 

cell lysate in comparison to their respective exosome isolations, further confirming that particles 

observed by NTA are likely exosomal vesicles. 

Figure 5. Assessing the purity and quality of the exosomes isolated by differential 
ultracentrifugation from DMEM treated HepG2 cell culture (A, n=4) and DMSO and β-NF 
treated HepG2 cell culture (B, n=6)  by LC-MRM-MS. 
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whose peaks are present in the chromatogram (Figure 6a) can be seen in Table 2.  Overall, this 

data suggests the presence of DMEs in HepG2 cell lysate and exosomes. 

Figure 6. Chromatogram demonstrating detection of DMEs in HepG2 exosomes and lysate (A) 
and relative quantification of DMEs in the HepG2 exosomes and lysate. Error bars represent 4 
biological replicates (n=4). 
 
Table 2. Relative quantification of DMEs in DMEM treated HepG2 cell lysate and exosomes 
isolated by differential ultracentrifugation from DMEM treated HepG2 cell culture medium 
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clear.  Specifically, the CYP1A1 appears to be ~1000 x more abundant in the b-NF treated 

HepG2 cell lysate in comparison to the DMSO treated HepG2 cell lysate.  By comparing the 

CYP1A1 expression levels in exosomes isolated from the DMSO treated HepG2 cell culture 

medium (lane 2) and the b-NF treated HepG2 cell culture medium (lane 4), the intracellular 

induction of CYP1A1 is reflected in the exosomes, though showing only a ~100-fold increase 

rather than the 1000-fold increase as was seen in the lysate.  The data in Figure 7a is for a total 

of 6 biological replicates and the data is plotted slightly differently in Figure 7b.  Specifically, 

the correlation between the cellular level and the exosomal level for each experiment can be 

seen. A second peptide for the CYP1A1 (CYP1A1_PEP2) protein is plotted in Figures 7c and 

7d and overall tells the same story as the other peptide for CYP1A1 (CYP1A1_PEP1) (Figures 

7a and 7b).   

Figure 7. Two (2) peptides, detected by LC-MRM-MR, for CYP1A1 indicate induction of 
CYP1A1 intracellularly and in the exosomal vesicles after treatment with β-NF (A and C).  Both 
peptides allow for observation of a correlation between lysate levels and exosomal levels after 
treatment (B and D). Error bars represent 6 biological replicates (n=6). 
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To demonstrate this is a true enrichment of CYP1A1 in the exosomes isolated from the b-NF 

treated HepG2 cell culture, the levels of CYP3A4 and b-actin were investigated and can be seen 

in Figure 8a and 8b.  By comparing lanes 1 and 3 for both proteins, the intracellular levels of b-

actin and CYP3A4 are not changing, as expected [12, 18].  Additionally, the exosomal levels 

(lanes 2 and 4) are not showing the same type of induction that was observed in Figure 7 further 

suggesting the trend seen in Figure 7 was not an artifact of data analysis, but rather a true 

induction of CYP1A1 in the exosomal vesicles. 

Figure 8. Monitoring the intracellular and exosomal CYP3A4 (A) and b-actin (B) expression 
levels after treatment with β-NF by LC-MRM-MS. Error bars represent 6 biological replicates 
(n=6).   
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3.4 DISCUSSION 

While different methods, such as genotyping and phenotyping, have been developed to predict 

an individual’s metabolic activity, no single method has proven cost efficient and convenient 

while accounting for different intrinsic and extrinsic factors that can affect DME expression. [3, 

4].  Therefore, there is a need for development of alternative methods predict metabolic activity 

at the individual level, which would allow patients to be dosed certain medications, specifically 

those eliminated via metabolic degradation and have narrow therapeutic windows, based on their 

unique metabolic activity.  Here, the use of liver-derived exosomes is explored as way to predict 

metabolic activity at the individual level.  Exosomes are membrane bound vesicles secreted by 

cells into the extracellular matrix and contain proteins, lipids, and other cargo that reflect the 

cells from which they originate [19].  Therefore, perhaps hepatocyte-derived exosomes 

circulating in the blood can be used to interrogate the DME content of the liver, thereby allowing 

for prediction of an individual’s metabolic activity via a simple blood draw, or “liquid biopsy”.   

 

In order for exosomes to act as surrogates for liver DME activity, the presence of DMEs in 

exosomal vesicles must first be established.  Thus, in the first part of this study, the DME content 

of an HCC cell line, HepG2, and its exosomes isolated by differential ultracentrifugation was 

investigated.  The isolated exosomes, from DMEM treated HepG2 cell medium, were first 

interrogated for particle size by NTA; as seen in Figure 4a the isolated particles were found to 

be within the expected size range of exosomes (30 – 150 nm).  The purity and quality of the 

exosome preparation was investigated by LC-MRM-MS analysis for presence of exosomal 

marker protein HSC70 and HSP90b and non exosomal marker proteins HSP60, PHB1, and 

GRP78.  As demonstrated in Figure 5a the exosomal vesicles contain higher levels of the 

exosomal marker proteins than the corresponding cell lysate and vice versa for the non-exosomal 
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marker proteins, thus suggesting the particles observed by NTA are exosomal vesicles.  The 

DME content of the HepG2 cell lysate and exosomes was then investigated using LC-MRM-MS 

analysis, using a method previously developed in the laboratory [9].  As seen in the 

chromatogram, Figure 6a, several CYPs and FMO3 were detected in the HepG2 cell lysate and 

exosomes, though as demonstrated in Figure 6b, the levels were typically higher in the lysate 

than in the exosomes. 

 

Once the presence of DMEs in exosomal vesicles were established, the ability of the exosomal 

DME expression to change to reflect a change occurring within the secreting cells was 

investigated.  For this study, a HepG2 cell culture was treated with DMSO, to act as a vehicle 

control, and another HepG2 cell culture was treated with b-NF.  b-NF is an aryl hydrocarbon 

receptor (AhR) agonist known to induce CYP1A1, but not CYP3A4, expression in HepG2 cells 

[12-14].  As demonstrated in Figures 1 – 3 three different assays (7-EROD assay, real time-

PCR, and LC-MRM-MS) all indicated a significant increase in the CYP1A1 expression 

intracellularly after treatment with b-NF, in comparison to HepG2 cells maintained in normal 

growth conditions (DMEM) and the vehicle control (DMSO).  The real time-PCR (Figure 2) and 

LC-MRM-MS analysis (Figure 3) also demonstrates the specificity of the CYP1A1 induction 

intracellularly by b-NF. 

 

Exosomes were isolated by differential ultracentrifugation from the DMSO and b-NF treated 

HepG2 cell culture medium.  The isolated exosomes were analyzed by NTA (Figure 4b and 4c) 

and LC-MRM-MS (Figure 5b) to confirm the particles were within the expected size range of 

30 – 150 nm and contained exosomal marker proteins and the non-exosomal marker proteins 
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were absent.  Both NTA and LC-MRM-MS analysis confirmed the particles isolated from the 

DMSO and b-NF treated HepG2 cell culture medium were exosomes.  

 

Finally, the isolated exosomes could be probed for CYP1A1 by LC-MRM-MS to determine if 

the CYP1A1 induction intracellularly was reflected in the exosomal vesicles secreted by these 

cells.  As seen in Figure 7, two different peptides for the CYP1A1 protein were monitored 

during the LC-MRM-MS analysis, and both indicated the CYP1A1 expression is increased in the 

exosomes secreted by the b-NF treated HepG2 cells compared to the vehicle control, DMSO.  

Furthermore, the trend observed in Figure 7 was confirmed by also assessing the induction of 

CYP3A4 and b-actin (Figure 8), in which case there was no increase in the levels of these 

proteins post treatment with b-NF, as expected.   
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3.5 CONCLUSION 

In conclusion, these studies not only established the presence of DMEs in hepatocyte-derived 

exosomal vesicles, but also suggested the exosomal DME expression can be alerted to reflect a 

change occurring within the secreting cells.  This simultaneous induction supports the proposed 

idea of using exosomal DMEs as surrogates for liver DME activity, although additional studies 

including the DME content of exosomes from primary human hepatocytes and their correlation 

to the DME activity of the secreting hepatocytes and investigating hepatocyte derived exosomes 

circulating in the plasma are needed to translate the use of exosomal DMEs into the clinics. 
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4.1 INTRODUCTION 

Exosomes are vesicles secreted by cells into the extracellular space.  Their formation begins with 

an inward budding of the plasma membrane to from an early endosome, which then inward buds 

to form exosomes [1].  Eventually, early endosomes mature into multivesicular endosomes 

(MVEs) and fuse with the plasma membrane releasing their content, including exosomes into the 

extracellular space.  Exosomes are typically 30 – 150 nm in diameter and contain proteins, 

RNAs, DNAs, and lipids from the cell they are originating from.  In the human body, exosomes 

are secreted into bodily fluids such as blood, and in the case of cell culture the exosomes are 

released directly into the cell culture medium [1, 2] . Since exosomes contain cargo from the cell 

they originate from, they are thought to be a source of biomarkers, and since they are found in 

plasma, they provide the potential for development of minimally invasive “liquid biopsies” for 

diagnosis of different diseases, such as cancer [3, 4]. 

 

While plasma is 95 % water, it contains an abundance of secreted proteins such as albumin, 

antibodies, enzymes, clotting factors, and small molecules such as glucose, lipids, and hormones.  

This results in a complex matrix which the circulating exosomes of interest also reside in.  

Therefore, in order to probe the exosomal vesicles for biomarkers of interest, it is essential to 

isolate them from the plasma.  This has been done mostly by differential ultracentrifugation and 

immuno-isolation methods [2, 5].  Differential ultracentrifugation isolates total plasma 

exosomes, as there is no way for differential ultracentrifugation to separate plasma exosomes 

based their originating cell or organ.  Immuno-isolation methods can also be used to isolate 

exosomes from different cell types, if a general exosomal marker protein such as Heat Shock 

Cognate 70 kDa (HSC70), Heat Shock Protein b 90 kDa (HSP90b), Cluster of Differentiation 9 

(CD9), or Programmed Cell Death 6-Interacting Protein (ALIX) is used.  However, immuno-
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isolation methods can be used to isolate a subset of exosomal vesicles, originating from a 

specific organ, if a specific marker protein for the organ is identified.   

 

The purpose of this study is to establish an immuno-isolation method to isolate liver-derived 

exosomes, using a liver-specific marker protein Asialoglycoprotein-1 (ASGR1) [6-9].  This liver 

marker protein was previously identified in exosomes derived from primary rat hepatocytes, thus 

is expected to also be expressed in exosomes from primary human hepatocytes [10].  By 

isolating liver-derived exosomes from plasma, the drug metabolizing enzyme (DME) content of 

the exosomes can be correlated to liver DME activity and provide a new foundation for 

personalized medicine.  Additionally, the liver-derived exosomes can be probed for hepatoma 

biomarkers and lead to early diagnosis of hepatoma.   
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4.2 MATERIALS AND METHODS 

4.2.1 Chemicals and Reagents 
 
HepG2 and HeLa cells were purchased from American Type Culture Collection (Manassas, VA). 

Radioimmunoprecipitation assay (RIPA; 2x) buffer was purchased from Boston BioProducts 

(Ashland, MA) and protease inhibitor cocktail tablets were purchased from Roche Diagnostics 

Complete (Indianapolis, IN).  Low protein binding microcentrifuge tubes (1.5 mL), PierceÒ 

bicinchoninic acid (BCA) protein assay reagent A and B, bovine serum albumin (BSA) standard, 

Western blotting filter paper, Slide-A-LyzerÒ MINI dialysis units, and PierceTM antibody 

biotinylation kit for Immunoprecipitation (IP), were purchased from Thermo Scientific 

(Rockford, IL). Pooled human liver microsomes (HLMs) were purchased from XenoTech 

(Kansas City, KS).  Laemmli sample buffer, Mini-PROTEANÒ TGXTM precast gels, 

PowerPacTM Basic, Immun-BlotÒ Polyvinylidene difluoride (PVDF) membranes for protein 

blotting, Trans-BlotÒ TurboTM transfer system, 10x Tris/Glycine,/Sodium Dodecyl Sulfate 

(SDS) gel running buffer, and Trans-BlotÒ TurboTM 5x tansfer buffer was purchased from Bio-

Rad (Hercules, CA). Non-fat dry milk was purchased from Associated Wholesale Groceries Inc 

(Kansas City, KS). Anti-ASGR1 (a-ASGR1) and anti-rabbit (a-rabbit) horseradish peroxidase 

(HRP)-labeled antibodies were purchased from Abcam (Cambridge, MA).  TweenÒ 20, sodium 

chloride, precleaned microscope slides, tris-base (Tris), optima liquid chromatography – MS/MS 

(LC-MS/MS) grade methanol, acetonitrile, and formic acid were purchased from Fisher 

Scientific (Fair Lawn, New Jersey).  Phosphate buffered saline (PBS; 10x molecular biology 

grade) was purchased from Cellgro (Manassas, VA). DynabeadsTM M-280 streptavidin, Alexa 

FluorTM 488 antibody labeling kit, fetal bovine serum (FBS), and arginine and lysine stable 

isotope-labelled crude peptides were purchased from Invitrogen by Thermo Fisher Scientific 
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(Eugene, OR).  Micron centrifugal filters ultracel regenerated cellulose 10 kDa molecular weight 

cut off (MWCO) columns were purchased from Millipore (Billerica, MA). Iodoacetamide 

(IAM), ammonium bicarbonate (ABC), Dulbecco’s modified Eagle’s medium – high glucose 

(DMEM), and DL-Dithiothreitol (DTT) were purchased from Sigma-Aldrich (St. Louis, MO). 

Sequence grade modified trypsin was purchased from Promega (Madison, WI). CorningÒ 

150cm2 cell culture flasks, sterile 0.22-micron filters, and cover glass number 1.5 were 

purchased from Corning (Corning, NY).  A Beckman OptimaTM L-90K preparative 

ultracentrifuge (Class S), a Type 35 rotor, a swinging 28 (SW28) rotor, and ultracentrifuge tubes, 

were purchased from Beckman Coulter (Brea, CA).  Purified anti-CD9 (a-CD9) antibody was 

purchased from Ancell (Bayport, MN).  Eppendorf BioPhotometer Plus and disposable single 

sealed cuvettes were purchased from Eppendorf (Hauppauge, NY). 

 
4.2.2 Cell Culture, Exosome Collection and Isolation by Differential Ultracentrifugation 
 
HepG2 and HeLa cells were cultured to confluency in four T150 flasks in DMEM containing 

10% v/v FBS.  Each flask was incubated with 25 mL of exosome collection media (DMEM 

without FBS) for 48 hours at 37 °C and 5% CO2.  This 48-hour incubation was repeated twice 

more, to collect a total of 300 mL from each cell culture.  After each 48-hour incubation, the 

media was centrifuged at 500 x g, filtered with a 0.22-micron filter and stored at -80 °C until 

differential ultracentrifugation.  Once 300 mL of media from each cell type was collected and 

filtered, the frozen media was thawed on ice and then centrifuged at 10,000 x g for 30 minutes to 

pellet larger vesicles.  The pellets were discarded, and the supernatant was centrifuged at 

100,000 x g for 1 hour.  The supernatant was then discarded, and each pellet was resuspended in 

10 mL of 1 x PBS and centrifuged once more at 100,000 x g for 1 hour.  Each pellet was re-

suspended in 30 µL of 1 x PBS and quantified using the BCA protein assay kit.     
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4.2.3 Nanoparticle Tracking Analysis (NTA) for Particle Size and Concentration 
 
NTA measurements were performed on a Malvern NanoSight LM10 Nanoparticle Analysis 

System equipped with a charge coupled device (CCD) camera and a 638 nm class 3B laser 

source to determine particle size and concentration. The position of the visual reference (thumb-

print-like shape) was checked to ensure the optimal imaging location was in place.  The chamber 

was flushed with 1 x PBS prior to introducing the exosome sample. Once the sample was 

injected into the chamber, the camera settings were adjusted until the particles appeared as single 

bright points in the field, and then 3 x 30 second videos were captured with a fresh volume of 

sample introduced into the chamber between each video.  The videos were processed with 

NanoSight NTA 3.2 software with the auto selection chosen for the following analysis 

parameters: detection threshold, blur, minimum tracking length, and minimum particle size.  

 
4.2.4 Liquid Chromatography – Multiple Reaction Monitoring – Mass Spectrometry (LC-

MRM-MS) for Exosomal and Non-Exosomal Marker Proteins 

The purity of the exosome isolation, for 3 biological replicates (n=3), was assessed based on the 

presence of exosomal marker proteins HSC70, CD9, ALIX, TSG101, and HSP90b and absence 

of non-exosomal marker proteins Prohibitin-1 (PHB1), Heat Shock Protein 60 kDa (HSP60), and 

Glucose Regulated Protein 78 kDa (GRP78). Briefly, 30 µg of exosomal protein and total cell 

lysate was reduced with 10 mM DTT in 20 mM ABC and denatured at 95 °C for 3 minutes. The 

protein samples were then loaded onto a 500 µL 10 kDa MWCO column, washed with 50 mM 

ABC by centrifugation at 14,000 x g for 20 minutes at 20 °C before adding 10 mM IAM to the 

samples, still on the 10 kDa MWCO column. The proteins were incubated in the dark at room 

temperature for 20 minutes and the excess IAM was removed by centrifugation at 14,000 x g for 

20 minutes at 20 °C.  Finally, the proteins were digested, on the 10 kDa MWCO column, with 1 
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µg of trypsin for 4 hours at 37 °C.  The peptides were recovered from the MWCO column by 

centrifugation into a clean protein low binding tube and spiked with arginine and lysine stable 

isotope-labelled crude peptides to serve as internal standards for the peptides in Table 1.  A total 

of 3 µg of digested protein with internal standard was separated on an analytical column 

(ACQUITY UPLC, C18, 1.7 µm, 2.1 x 100 mm) with a gradient of water with 0.1 % (v/v) 

formic acid (A) and acetonitrile with 0.1 % (v/v) formic acid (B).  The gradient increased from 

2 % B to 30 % B over the course of 9 minutes at a flow rate of 0.4 mL/minute. The gradient then 

increased from 30 % B to 95% B in 1.5 minutes, still at 0.4 mL/minute, and then re-equilibrated 

the column at 2 % B, 98 % A for 2 minutes at 0.4 mL/minute. Signature peptides for 

exosomal/non-exosomal marker proteins were detected using specific mass transitions, which 

can be seen in Table 1, on a Waters Xevo TQ-S triple-quadrupole MS operating in electrospray 

ionization positive (ESI+) mode. 

Table 1: Specific MRM transitions monitored in LC-MRM-MS method to analyze HLMs and 
Exosomes after pull-down with ⍺-ASGR1 modified Dynabeads..  

 

 

4.2.5 LC-MRM-MS Data Analysis 
 

Retention Time
1 2 3 (Minutes)

VFESIG(K) 780.80 390.22 680.36 533.29 404.25 3.79
VLPSITTEIL(K) 1214.46 607.37 904.61 817.50 704.42 7.21
LSDGVAVL(K) 902.05 451.27 701.42 430.30 260.20 4.37
VTDALNAT(R) 961.04 480.76 760.39 645.37 461.25 3.34
LTPEEIE(R) 987.07 493.76 772.38 675.33 546.29 3.73
ITITNDQN(R) 1075.14 537.78 860.42 747.34 646.29 3.25
ITITND(K) 804.89 402.73 691.40 590.30 477.20 3.24

FEELNADLF(R) 1254.36 627.30 848.50 735.40 435.30 7.21
CD9 DVLETFTV(K) 1052.19 526.29 724.39 595.35 494.30 6.28
ALIX FTDLFE(K) 899.99 450.23 752.38 651.33 536.31 5.50
TSG101 GVIDLDVFL(K) 1119.32 559.83 849.47 734.44 506.33 9.82

HFSVEGQLEF(R) 1349.46 450.22 749.39 692.37 564.31 5.28
HLEINPDHPIVETL(R) 1783.99 594.98 827.50 740.50 617.36 5.20

CYP3A4 EVTNFLR 878.50 440.20 650.40 549.10 435.30 4.66

HSP60

GRP78

HSC70

HSP90B

Protein Signature Peptide Average Mass MH+ (Da) MRM Precursor Ion (m/z) MRM Product Ion (m/z)

PHB1
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The Waters Xevo TQ-S triple quadrupole MS was operated using the Waters MassLynx 4.1 

software (Waters, Millford, MA).  The data were analyzed with the TargetLynx Application 

Manager within the MassLynx software.  The chromatographic peaks of each peptide and its 

internal standard were integrated by the TargetLynx software to determine the area under the 

curve (AUC).  The response ratio was then calculated by dividing the AUC of the peptide from 

the digest (light peptide) by the AUC of the internal standard (heavy peptide). For assessing the 

purity of exosomes preparations, the “Fold Change” value on the y-axis was calculated by 

Equation 1. For the IP experiments, the “Fold Increase” value on the y-axis was calculated by 

Equation 2.   

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑖𝑛	𝑡ℎ𝑒	𝐶𝑒𝑙𝑙	𝐿𝑦𝑠𝑎𝑡𝑒	(𝑜𝑟	𝐸𝑥𝑜𝑠𝑜𝑚𝑒)	𝐷𝑖𝑔𝑒𝑠𝑡
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑖𝑛	𝑡ℎ𝑒	𝐶𝑒𝑙𝑙	𝐿𝑦𝑠𝑎𝑡𝑒	𝐷𝑖𝑔𝑒𝑠𝑡  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝐷𝑖𝑔𝑒𝑠𝑡	𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔	𝑡ℎ𝑒	a− 𝐴𝑆𝐺𝑅1	𝐴𝑛𝑡𝑖𝑏𝑜𝑑𝑦	𝐷𝑦𝑛𝑎𝑏𝑒𝑎𝑑𝑠	
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑅𝑎𝑡𝑖𝑜	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝐷𝑖𝑔𝑒𝑠𝑡	𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔	𝐷𝑦𝑛𝑎𝑏𝑒𝑎𝑑𝑠	𝑂𝑛𝑙𝑦	(𝑛𝑜	a− 𝐴𝑆𝐺𝑅1)  

 
 
4.2.6 Western Blot Analysis 
 
HepG2 and HeLa cell pellets were resuspended and lysed with 2x RIPA buffer supplemented 

with protease inhibitor cocktail for 30 minutes at 4 °C. The lysates were centrifuged at 10,000 x 

g for 5 minutes at 4 °C.  The supernatants were transferred to a clean protein low binding tube 

and the protein concentration was quantified using the BCA assay. A total of 15 µg of HLMs, 

HepG2 cell lysate and exosomes, and HeLa cell lysate were mixed with 4x Laemmli Sample 

Buffer and denatured at 95 °C for 5 minutes before being loaded into separate lanes on a Mini-

PROTEANÒ TGXTM Precast Gel for electrophoretic separation.   The separated proteins were 

transferred to a PVDF membrane using the Trans-BlotÒ TurboTM Transfer System and blocked 
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with 5 % non-fat milk prior to overnight treatment with a-ASGR1 antibody (1:500 dilution) at 4 

°C.  The blot was treated with an a-rabbit-HRP antibody prior to imaging with a Kodak Image 

Station 400.                 

 
4.2.7 IP of HLMs, HepG2 Exosomes and HeLa Exosomes by a-ASGR1 
 
A total of 5 µg of a-ASGR1 antibody was dialyzed into 1 x PBS prior biotinylation using the 

PierceTM Antibody Biotinylation Kit for IP.  Briefly, the antibody was incubated with 40-fold 

excess biotin for 30 minutes at room temperature with gentle mixing.  The excess biotin was 

removed with a desalting column, per the protocol in the Biotinylation Kit, and the biotinylated 

a-ASGR1 antibody was recovered. The biotinylated a-ASGR1 antibody was immobilized on 0.5 

mg of DynabeadsTM M-280 Streptavidin coated magnetic beads by a 30-minute incubation at 

room temperature, with gentle mixing, in a protein low binding tube.  A control sample was 

prepared identically, but with no biotinylated a-ASGR1 antibody. Afterwards, the Dynabeads 

were washed, resuspended in Tris-buffered saline with 0.05% Tween 20 (TBS-T20 (0.05 %)) 

and 30 µg of HLMs, HepG2 exosomes, and HeLa exosomes (in biological triplicate) were added 

to vials containing a-ASGR1 antibody modified Dynabeads and the control Dynabeads (no a-

ASGR1 antibody).  The samples were incubated overnight (~16 hours) at 4 °C.  MS sample vials 

were passivated by filling with 200 µL of 2 mg/mL BSA and incubating overnight at 4 °C.  

Post overnight incubation, the samples were removed from the 4 °C, centrifuged briefly, and 

placed on the magnet for 5 minutes.  The supernatant was discarded and the Dynabeads were 

washed and transferred to a clean protein low binding tube.  The Dynabeads were resuspended in 

90 µL of 50 mM ABC with 4 mM DTT and denatured at 95 °C for 11 minutes.  The samples, for 

biological triplicate IP (n=3), were centrifuged briefly, cooled for 10 minutes at room 
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temperature, spiked with 10 mM IAM, and incubated in the dark at room temperature for 20 

minutes.  The samples were digested with 1µg of trypsin for 4 hours at 37 °C with gentle mixing.  

The digests were placed on the magnet, and the supernatant was transferred to passivated MS 

sample vials and spiked with internal standards for LC-MRM-MS analysis as described above. 

 
4.2.8 Alexa 488 Conjugation to a-CD9 Antibody 
 
The Invitrogen Alexa FluorTM 488 Antibody Labeling Kit was used to label 75 µg of a-CD9 

antibody from Ancell.  Briefly, 75 µg of a-CD9 antibody was spiked with 0.1 M sodium 

bicarbonate and transferred to a vial of reactive dye, inverted 10 times to ensure the dye was 

dissolved, then incubated in the dark for 1 hour at room temperature. The vial was inverted 10 

times every 15 minutes throughout the incubation period.  Using the gel resin and a spin filter, 

components E and D respectively of the Labeling Kit, the labeled antibody was recovered by 

centrifugation at 16,000 x g for 1 minute, and the unreacted Alexa 488 was removed from the 

solution. The concentration of labeled protein was assessed based on the absorbance at 280 nm 

(A280), and the degree of labeling (DOL) was calculated based on the moles of dye/moles of 

protein (see Equations 3 and 4). 

𝐸𝑞𝑢𝑖𝑎𝑡𝑖𝑜𝑛	3: 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	(	𝑀) = 	
[𝐴280	– 	0.11(A494)]	x	Dilution	Factor

203,000  

 

 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	4: 

𝐷𝑂𝐿 =
𝑀𝑜𝑙𝑒𝑠	𝑜𝑓	𝐷𝑦𝑒
𝑀𝑜𝑙𝑒	𝑜𝑓	𝑃𝑟𝑜𝑡𝑒𝑖𝑛 =

𝐴494	𝑥	𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛	𝐹𝑎𝑐𝑡𝑜𝑟
71,000	𝑥	𝑃𝑟𝑜𝑡𝑒𝑖𝑛	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	(𝑀) 

A280 is the absorbance of the conjugated a-CD9 antibody at 280 nm 
A494 is the absorbance of the conjugated a-CD9 antibody at 494nm 

0.11 is the correction factor accounting for the fluorophore’s A280 contribution 
203,000 molar extinction coefficient cm-1M-1 for typical IgG 
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4.2.9 EPI of HLMs after IP 
 
The initial steps for EPI detection of HLMs after IP on Dynabeads by ASGR1 expression are the 

same as those described above in the IP of HLMs, HepG2 Exosomes, and HeLa Exosomes by 

ASGR1 Expression and LC-MRM-MS Analysis section.  However, after the overnight incubation, 

the Dynabeads were incubated again, overnight (~16 hours) with 2.25 µg of Alexa 488 

conjugated a-CD9 antibody.  After the second overnight incubation, the samples were placed on 

the magnet for 5 minutes, the supernatant was discarded, and the Dynabeads were washed.  

Twenty-microliter (20 µL) of sample was placed on a glass microscope slide with a cover glass 

and sealed nail polish.  The samples were imaged with an Olympus IX81/3I spinning disk 

confocal inverted microscope, with excitation/emission wavelengths of 495/519 nm. 

  

A494 is the absorbance of the conjugated a-CD9 antibody at 494nm 
71,000 is the molar extinction coefficient (cm-1M-1) 
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4.3 RESULTS AND DISCUSSION 

A liver-specific marker protein, ASGR1, has previously been discovered [6-9].  This protein is a 

transmembrane lectin protein which makes it an ideal candidate for developing IP methods for 

liver-derived exosome isolation for two reasons.  First, because exosomal formation occurs 

through an endosomal route, by initial inward budding of the plasma membrane, a majority of 

exosomal associated proteins are either plasma membrane or cytosolic proteins. Since ASGR1 is 

a transmembrane protein, this protein it is expected to be found with exosomes [11, 12]. The 

second advantage of using a transmembrane protein is that it can be used to isolate the intact 

exosomes.  If this protein were enclosed in the exosomal vesicle, the antibody used to capture the 

exosomes from the plasma would not be able to recognize the protein.  Furthermore, a previous 

proteomic study on exosomes derived from primary rat hepatocytes established the presence of 

ASGR1 in exosomes, and therefore ASGR1 expected to be present in primary human 

hepatocyte-derived exosomes as well [10].     

 

In this study we demonstrated, for the first time, the ability to isolate liver-derived exosomes 

using liver-specific marker protein ASGR1.  However, because only 150 – 300 µg of exosomal 

protein is isolated from 300 mL of cell culture medium, a feasibility study was done using 

commercially available HLMs.  These vesicles are typically 20 - 200 nm in diameter [13], lipid 

bound, isolated from cell lysate by differential ultracentrifugation.  HLMs are vesicles that form 

by the re-arrangement of the endoplasmic reticulum (ER) upon mechanical cell lysis of human 

hepatocytes [14].  However, while the HLM content is enriched with proteins and lipids from the 

ER, it is not a homogenous preparation [15].  Therefore, there are proteins and lipids from other 

cellular compartments including the plasma membrane, cytosol, mitochondria, and Golgi.  A 

previous proteomics study of HLMs established not only the presence of ASGR1 in HLMs, but 
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also that is was abundant in these vesicles. Thus, HLMs serve as a viable substitute to exosomes 

for the purpose of IP method development [15].   

 
4.3.1 Expression of ASGR1 in HLMs, HpeG2 and HeLa Cells 
 
Prior to IP of HLMs by ASGR1, the expression of ASGR1 in HLMs was confirmed along the 

specificity of the a-ASGR1 antibody by traditional Western blot methodology.  As seen in 

Figure 1 there appears to be definite expression of ASGR1 in HLMs based on the band present 

37 kDa in lane 1, which is near the expected molecular weight of 33 kDa [6].  In addition to 

HLMs, HepG2 cell lysate was also examined by Western blot in Figure 1 for ASGR1 

expression.  HepG2, a hepatoma cell line, was the cell line of choice to demonstrate the ability of 

the IP method to capture ASGR1 expressing exosomes [16].   

 

 

 

 

 

 

 

 

 

 

Figure 1: Presence of liver-specific marker protein ASGR1 in HLMs (1), HepG2 cell lysate (2), 
and HeLa cell lysate (3).  Normalized to protein loading amount of 15 µg. 
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While ASGR1 is known to be expressed in primary human hepatocytes, the expression of 

ASGR1 in HepG2 cells had to be confirmed, as protein expression profiles can be altered in 

disease states, such as cancer [6, 16-19]. If the ASGR1 expression was absent or low in the 

HepG2 cell line, it would not be a good cell line to use exosomes from for the IP studies.  

However, based on the presence of a band between 37 and 50 kDa in lane 2 of Figure 1, the 

expression of ASGR1 is confirmed in the HepG2 cell line.  The molecular weight of ASGR1 in 

HepG2 cell lysate is slightly higher than that of HLMs, but this could be due to different 

glycosylation occurring at one or both of the glycosylation sites of the ASGR1 protein [6].  

Additionally, there appears to be higher molecular weight band in the HepG2 cell lysate (lane 2), 

between 75 and 100 kDa.  This could be due to (1) covalent dimerization of the ASGR1 protein 

that was not reduced in the sample preparation or (2) non-specific binding of the a-ASGR1 

antibody to another protein in the HepG2 cell lysate.  However, when looking at the negative 

control, HeLa cell lysate in lane 3 of Figure 1, no bands appeared.  HeLa cells are a cervical 

cancer cell line so the expression of a liver-specific marker protein is not expected [20].  Overall, 

this data demonstrated the presence of ASGR1 in HLMs, HepG2 cell lysate, and that the a - 

ASGR1 antibody to be used for IP method development is active and specific for the ASGR1 

protein.  

 
4.3.2 IP of HLMs Based on ASGR1 Expression and Analysis 
 
After demonstrating the presence of ASGR1 in HLMs as well as the activity and specificity of 

the a - ASGR1 antibody, the interaction between the a - ASGR1 antibody and ASGR1 antigen 

(protein) was then used to precipitate, or “pull-down”, the HLMs from solution on magnetic 

beads.  The general workflow for this method is summarized in Figure 2.  Essentially, the a - 

ASGR1 antibody is chemically biotinylated by non-specific conjugation of biotin to amine 
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groups [21].  The biotinylated a - ASGR1 antibody is exposed to the streptavidin coated 

magnetic beads (commercially available), which results in a - ASGR1 antibody coated magnetic 

beads (Figure 2a).  The a - ASGR1 antibody coated beads are then incubated with the HLMs to 

allow time for capture of the vesicles to the beads, via the antibody-antigen interaction (Figure 

2b).  Finally, the captured vesicles are pulled-down on the magnetic beads when placed on the 

magnet (Figure 2c). The supernatant containing uncaptured vesicles is discarded, resulting in 

isolation of ASGR1 expressing HLMs which then underwent trypsin digestion and analysis by 

LC-MRM-MS.  A control sample using beads without the a - ASGR1 antibody, was also 

digested and analyzed by LC-MRM-MS.   

Figure 2: General workflow for pull-down of HLMs using magnetic beads and the ASGR1 
protein – antibody interaction. Immobilization of ⍺ -ASGR1 on surface of magnetic beads (A), 
immobilization of HLMs on magnetic beads (B), pull-down of HLMs on the magnetic beads via 
a magnet and removal of supernatant and HLMs not attached to the beads (C). 
 

In Figure 3, the fold increase in protein on beads with biotinylated a - ASGR1 antibody over 

beads without the biotinylated a - ASGR1 antibody can be seen.  For ASGR1, there is a (mean 

+/- SD) 15 +/- 7-fold increase on beads with the a - ASGR1 antibody compared to beads with no 

a - ASGR1 antibody on their surface.  The GRP78 protein, which is an ER luminal marker 

protein, showed a 7.5-fold increase while Cytochrome P450 (CYP) 3A4, which is an ER 

A B C
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anchored protein, showed a 5-fold increase. Other proteins including PHB1, HSC70, and HSP60 

are proteins not necessarily associated with the ER, but still show a slight increase of 2-fold.   

Figure 3: Protein enrichment after HLM pull-down using biotinylated a - ASGR1 antibody 
immobilized on streptavidin coated beads.  The data is showing a fold increase in proteins 
digested on the beads containing the biotinylated a - ASGR1 antibody versus beads without 
biotinylated a - ASGR1 antibody for biological triplicate (n=3). Asterisks indicate a statistical 
difference between amount of protein on the beads with the a - ASGR1 antibody versus the 
beads without. 
 

Except for ASGR1, the standard deviations were within the 10 % range and statistical analysis 

revealed a statistical difference in the amount of protein on the beads with the a - ASGR1 

antibody versus the beads without for all proteins except actin.  The potential reason for such 

high variation for ASGR1 is likely due to the intrinsic factors of IP methods [22].  For example, 

a different aliquot of a-ASGR1 antibody was thawed and biotinylated, a different aliquot of 
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beads was used to immobilize the biotinylated a - ASGR1 antibody, and a different aliquot of 

HLMs were thawed and captured for each biological replicate.  Nevertheless, the purpose of this 

feasibility study was to demonstrate the ability to isolate ASGR1 expressing vesicles, which 

based on the enrichment of proteins observed in Figure 3 was successful. 

 
4.3.3 Characterization of HepG2 and HeLa Exosomes 
 
After successful pull-down of the HLMs by the ASGR1 IP method, the ability to isolate the 

ASGR1 expressing exosomes by IP could be investigated.  In order to have the best chance 

possible for IP of ASGR1 expressing exosomes, the exosomes were isolated by 

ultracentrifugation from HepG2 and HeLa cell culture medium prior to IP.  The isolated HeLa 

and HepG2 exosomal vesicles were characterized for particle size by NTA as seen in Figure 4a 

and 4b respectively.  The size of the particles as observed by NTA were 130 +/- 2 nm 139 +/ 3 

nm respectively for HeLa and HepG2 exosomes, which falls within the expected size range of 

exosomes, 30 – 150 nm in diameter [1].   

Figure 4: NTA analysis of HeLa (A) and HepG2 (B) exosomes isolated by differential 
ultracentrifugation. 
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However, NTA does not give any information regarding the content of the extracellular vesicles.  

Therefore, a 30 µg a loquat of HepG2 and HeLa exosomal protein was trypsin digested and 

analyzed by LC-MRM-MS analysis, which can be seen in Figure 5a and b.  All proteins in 

Figure 5 are normalized to the cell lysate, which is why each protein in the cell lysate shows a 1-

fold change (see Equation 1). Both HSC70 and HSP90b are exosomal marker proteins for 

HepG2 cells while CD9 and ALIX are exosomal marker proteins for HeLa cells; therefore, these 

proteins are expected to be found at higher levels in the exosomes than in the corresponding cell 

lysate, which is the trend observed in Figure 5a and b.  At the same time, PHB1, GRP78, and 

HSP60, are proteins expected to be observed in the cell lysate and at much lower levels in 

exosomes, which can be easily observed in Figure 5a and b [12, 23-25].  A combination of NTA 

and LC-MRM-MS analysis gives confidence that the isolated particles are exosomes. 

 
Figure 5: LC-MRM-MS analysis of HeLa exosomes (A) and HepG2 exosomes (B) after 
isolation by differential ultracentrifugation of 3 biological replicates (n=3). 
 
 
4.3.4 Expression of ASGR1 in HepG2 Exosomes 
 
Previously, the presence of ASGR1 in HepG2 and HeLa cell lysate was investigated (Figure 1).  

Since the HeLa cell lysate lacked ASGR1 expression, as expected, the HeLa exosomal vesicles 

were not probed for ASGR1 expression in order to conserve the exosomal protein.  The ASGR1 
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expression in HepG2 exosomes was confirmed by both LC-MRM-MS and Western blot as seen 

in Figure 6a and b respectively, prior to IP. If ASGR1 is not present in the HepG2 exosomes, 

the IP of HepG2 exosomes by the ASGR1 antibody-antigen interaction would not be successful.  

However, both LC-MRM-MS and Western blot suggest HepG2 exosomes contain ASGR1, 

though at a substantial lower level than the HepG2 cell lysate.    

Figure 6: Demonstrating the presence of ASGR1 in HepG2 exosomes isolated by differential 
ultracentrifugation by LC-MRM-MS (A) and Western blot, with 15 µg of exosomal protein in 
lane 1, and 15 µg of HepG2 cell lysate in lane 2 (B). 
 
 
4.3.5 IP of HepG2 and HeLa Exosomes Based on ASGR1 Expression and Analysis 
 
Following the exact protocol used for the HLM IP, (Figure 2a-c) the HepG2 and HeLa 

exosomes were exposed to the magnetic beads and pulled-down.  The exosomal proteins were 

trypsin digested and analyzed by LC-MRM-MS in the same way that the HLM samples were 

treated in the feasibility study.  The HepG2 and HeLa exosome pull-downs had a control sample 

of exosomes exposed to beads that did not have the biotinylated a - ASGR1 antibody.  Figure 7 

shows the fold increase of protein in the sample exposed to the beads with biotinylated a - 
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A

L y s a te E x o s o m e s
0

5 0

1 0 0

1 5 0

2 0 0
1 5 0 0

2 0 0 0

2 5 0 0

A S G R 1  E x p re s s io n  in  H e p G 2
 E x o s o m e s  a n d  L y s a te  b y  L C -M R M -M S

A
v

e
ra

g
e

 R
e

s
p

o
n

s
e

 R
a

ti
o

1        2  

250 kD

10

150

100
75

50
37

25
20
15

B



 127 

HepG2 proteins, there was a statistically different enrichment, typically between 5 and 7-fold 

suggesting that exosomes were successfully pulled out of the solution.  Not only does this data 

suggest a successful pull-down of HepG2 exosomes, it also demonstrates the specificity of the 

pull-down based on the results of the HeLa exosome pull-down (Figure 7).  Specifically, there 

was no enrichment of proteins on the beads with the a-ASGR1 antibody, which is expected as 

these exosomes do not contain the ASGR1 antigen.  

Figure 7: Protein enrichment after HepG2 and HeLa pull-down using biotinylated a - ASGR1 
antibody immobilized on streptavidin coated beads.  The data is showing a fold increase in 
proteins digested on the beads containing the biotinylated a - ASGR1 antibody versus beads 
without biotinylated a - ASGR1 antibody for biological triplicate (n=3). Asterisks indicate a 
statistical difference between amount of protein on the beads with the a - ASGR1 antibody 
versus the beads without.  
 

Finally, an alternative method to detect the isolated vesicles on the surface of the magnetic beads 

was investigated.  Using HLMs, since they are readily available and can be obtained without the 

P H B 1 H S C 7 0 H S P 6 0 A S G R 1 G R P 7 8 A c tin
0

5

1 0

1 5

2 0

P ro te in  E n r ic h m e n t A fte r  H e p G 2  a n d  H e L a  E x o s o m e

P u ll-D o w n  b y  A S G R 1  E x p re s s io n

F
o

ld
 I

n
c

re
a

s
e

 o
f 

P
ro

te
in

 o
n

 B
e

a
d

s
 w

it
h

a
-A

S
G

R
1

 a
n

ti
b

o
d

y
 v

s
. 

B
e

a
d

s
 W

it
h

o
u

t
a

-A
S

G
R

1
 a

n
ti

b
o

d
y

H e L a  E x o s o m e s
H e p G 2  E x o s o m e s

*

*
*

*
*

*



 128 

time-consuming cell culture and differential ultracentrifugation, the pull-down was repeated, and 

the particles were detected via EPI.  The difference for this experiment was that after the pull-

down and sample clean up (step in Figure 2c), the sample was incubated with an Alexa 488 

conjugated ⍺-CD9 antibody (DOL = 3.2).  The EPI images can be seen in Figure 8.  In the 

sample that was exposed to the biotinylated ⍺-ASGR1 coated beads (Figure 8a), there appears to 

be a higher amount, or larger regions, or fluorescent particles compared to the particles exposed 

to beads without biotinylated ⍺-ASGR1 (Figure 8b), which is consistent with the LC-MRM-MS 

data in Figure 3.  Thus, two different forms of analysis indicate the ASGR1 antibody-antigen 

interaction can be used to isolated vesicles from a sample.      

 
 
Figure 8: EPI of HLM pulled-down using the ASGR1 antibody-antigen interaction then exposed 
to an Alexa 488 conjugated ⍺-CD9 antibody for detection.  A sample exposed to beads with 
biotinylated ⍺-ASGR1 on its surface (A) is compared to a sample where no biotinylated ⍺-
ASGR1 was exposed to the surface of the beads (B). 
  

A B
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4.4 CONCLUSION 

The potential for exosomes to be used in the clinical setting for many purposes, such as 

diagnostic tools, has been well demonstrated and is of great interest simply given the vast 

amounts of literature in the area.  The ability to isolate a specific subset of exosomal vesicles 

based on their cell of origin would be beneficial, as it would potentially increase the ability to 

detect low levels of biomarkers for diseases, such as cancer, leading to early diagnosis.  Here, the 

ability to isolate liver-derived exosomes based on the expression of liver marker protein ASGR1 

is demonstrated.    
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5.1 MAJOR CONCLUSIONS 

The utility of exosomes in the clinical setting has been well demonstrated.  Specifically, it has 

been demonstrated that exosomes can act as carriers of biomarkers for different diseases, used 

as drug delivery systems, as antigen presentation vesicles, monitor patient response to treatment, 

and in vaccine development [1-14].  An additional advantage of these vesicles is that, since they 

are located in the extracellular space (i.e. blood, urine, saliva, etc..) they can be collected by 

minimally to non-invasive procedures.  

As reviewed in Chapter 1, there are a number of different types extracellular vesicles secreted 

by cells into the extracellular space and the vesicles are differentiated by size, biogenesis, and 

biological purpose [15-17].  While the study of exosomal vesicles are of highest interest, due to 

their endosomal route of formation, no isolation technique has been developed to isolate 

exosomal vesicles from all other extracellular vesicles secreted by the cells.  That is, different 

isolation methods result in a different mixture of extracellular vesicles with the exosomal 

vesicles being enriched in the given mixture [15, 16].  Additionally, there are numerous ways in 

which isolated exosomes can be assessed for purity and quality.   Due to various isolation and 

analysis methods and the lack of standardization in exosome isolation and analysis, benefits of 

exosomes in the clinical setting are yet to be realized. 

In Chapter 2, the lack of standardization and challenges associated with developing standard 

methods was addressed.  Specifically, the gold standard for exosome isolation, differential 

ultracentrifugation, was compared to a more clinically friendly method of exosome isolation, a 

commercially available exosomes precipitation kit.  The protein content of the isolated exosomal 

vesicles, for two different cell lines, were assessed by traditional Western blot and a newly 

developed liquid chromatography – multiple reaction monitoring – mass spectrometry (LC-

MRM-MS) based method.  Not only is the LC-MRM-MS based methodology more selective 
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and specific than traditional Western blotting, it is inherently better multiplexed requiring 30-

fold less exosomal protein to monitor the presence/absence of the same proteins in any given 

sample.  The advantages of LC-MRM-MS analysis in exosomal research were demonstrated. 

In Chapter 3, the new LC-MRM-MS method was employed to study the presence of drug 

metabolizing enzymes (DMEs) in isolated exosomal vesicles.  The idea is that the DME content 

of exosomes can correlate to the DME activity of the liver, thus providing a minimally-invasive 

blood based biopsy for an individual’s liver DME activity and providing a new bases for 

personalized medicine.  For the first time, we demonstrated the presence of DMEs in HepG2 

exosomes and the ability of the exosomal DMEs to reflect a change in DME content occurring 

within the cells.   

In Chapter 4, methods for isolating liver-derived exosomes were investigated in order to try 

to make the idea of using liver-derived exosomes in the clinical setting more realistic.  The 

presence of liver specific marker protein, Asialoglycoprotein -1 (ASGR1), was identified is 

exosomes derived from primary rat hepatocytes, thus is expected to also be found in exosomes 

derived from primary human hepatocytes [18].  Due to the expense of human liver tissue for 

culture and exosome collection, HepG2 cells were used as a model system.  The presence of 

ASGR1 in HepG2 cell lysate and exosomes was confirmed by both Western blot and LC-MRM-

MS based techniques.  The ability to capture HepG2 exosomes based on the ASGR1 expression 

was then established using immunomagnetic precipitation.   

 Overall, the purpose this dissertation was to develop LC-MRM-MS based methods to aid in 

the development of standardization of exosomal analysis methods.  Further, the developed 

method was then used to study the DME content of HepG2 exosomes and the ability of exosomal 

DME content to be altered to reflect a change occurring within the cell from which they are being 

secreted.  Finally, methods for isolating liver-derived vesicles was investigated in order to 
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establish a clinical friendly protocol that can be used to isolate a patient’s liver-derived exosomes 

from a single blood draw.    
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5.2 FUTURE DIRECTIONS 

5.2.1 Use Liver-Derived Exosomes to Diagnose Early Stage Hepatoma 
 
Currently, the biomarker used to diagnose patients with hepatoma in the clinical setting is a-

fetoprotein, or AFP [19, 20].  However, due to lack of sensitivity, once this biomarker is identified 

in a patient’s bloodwork, the cancer is late stage and gives the patient a grim prognosis [19].  

Preliminary data, in Figure 1 suggests AFP is present in HepG2 and Huh7 cell lysate and 

exosomes, which is expected as these are hepatoma cell lines.  If immunomagnetic precipitation 

methods are developed to isolate liver-derived exosomes from plasma, the presence of AFP in 

exosomes can be probed and potentially allow for earlier diagnosis of hepatoma due to increased 

sensitivity, ultimately giving patients a better prognosis. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1. Presence of AFP in HeLa, Huh7, and HepG2 cell lysate and exosomes isolated by 
differential ultracentrifugation.  AFP protein expression was assessed by LC-MRM-MS analysis 
after trypsin digestion and sample preparation by qFASP.  
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Interestingly, AFP is a protein found abundant in fetal livers and another hepatoma biomarker of 

interest, midkine (MDK), is also found in fetal livers but associated with cancer or precancerous 

lesions in adults [20].  Thus, two biomarkers for hepatoma are fetal liver associated proteins, 

suggesting that maybe the liver becomes more fetal like when hepatoma develops.  Much like AFP 

and MDK, Cytochrome P450 3A7 (CYP3A7) is a fetal liver associated protein, if the liver becomes 

more fetal like in hepatoma, perhaps the expression of CYP3A7 increases in hepatoma, and 

therefore is also a potential biomarker for hepatoma.  By looking at AFP in liver-derived exosomes, 

hepatoma maybe able to be diagnosed at earlier stage and the potential for MDK and CYP3A7 to 

act as additional biomarkers for hepatoma and their presence in exosomes is a potential future 

direction to this project, and that could have significant impact on hepatoma diagnosis and 

prognosis in the clinical setting.  Further, the presence of glypican – 1 in exosomes has been 

identified as a specific marker for cancer exosomes, by further investigating the presence or 

absence of glypican – 1 in addition to AFP, MDK, and CYP3A7 the confidence in a true hepatoma 

diagnosis can be increased [21].   

  

5.2.2 Develop LC-MRM-MS Methods for Lipid Analysis of Exosomes 

The primary focus of this dissertation was on the proteomic analysis of exosomes and developing 

methods to assess the protein profiles of exosome isolations.  However, as was the case with 

proteins, the lipid profiles of exosomes are expected to be different than that of the originating cell 

[15, 22].  Specifically, the abundance of sphingomyelin (SM) and phosphatidylserine (PS) are 

expected to be enriched in exosomes compared to the cell however phosphotidylcholine (PC) and 

phosphotidylethanolamine (PE) are expected to be less abundant in exosomes than in the secreting 

cell [23, 24].  As was done for proteins in Chapter 2, an LC-MRM-MS method was developed for 

exosomal phospholipid analysis.  The chromatogram in Figure 2 demonstrates the ability to detect 
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several phospholipids extracted from healthy human plasma. The phsopholipids associated with 

each peak in the chromatogram are defined in Table 1, with arachidonic acid serving as the internal 

standard (IS).  Future studies can focus on validating this method, using it to assess exosomal and 

lysate phospholipids, and be expanded to include other lipids such as cholesterol.   

 
Figure 2. Detection of phospholipids by LC-MRM-MS isolated from 100 µL of healthy human 
plasma by addition of acetonitrile at a 2:1 ratio (acetonitrile: plasma) followed by brief 
centrifugation.  The species associated with each peak is listed in Table 2.    
 
 
Table 1. Phospholipid species associated with the different peaks in the chromatogram of Figure 
2.   

Peak Phospholipid Intensity 
A1 2-acyl LysoPC (C16:0) 

6.08E+06 
A2 1-acyl LysoPC (C16:) 
B LysoPE (C16:0) 2.08E+05 

C1 2-acyl LysoPA (C16:0) 
8.60E+04 

C2 1-acyl LysoPA (C16:0) 
D1 2-acyl LysoPS (C18:1) 

4.22E+04 
D2 1-acyl LysoPS (C18:1) 
E1 2-acyl-LysoPC (C18:0) 

7.68E+06 
E2 1-acyl LysoPC (C18:0) 

F Aracaidonic Acid 
(C20:4) 1.88E+07 
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G PC (C16:0/C18:1) 8.07E+06 
H1 

PS (C18:0/C22:6) 1.56E+04 
H2 
I1 

PC (C16:0/C18:2) 1.99E+07 
I2 

 
5.2.3 Develop LC-MRM-MS Methods for RNA Analysis of Exosomes 
 
Most commonly, mRNA analysis is done by sequence based indirect methods, such as real time 

polymerase chain reaction (RT-PCR), and requires preamplification and/or chemical or 

enzymatic modification of the mRNA of interest [26, 27].  While these methods have proven to 

be highly sensitive (down to 100 fM), they are expensive and labor intensive [26].  Mass 

spectrometry (MS) based techniques to study biomolecules, such as proteins, lipids, and RNAs 

are appealing since they are highly sensitive, selective, and have wide dynamic ranges [27].  

Thus, it would be ideal to develop an LC-MRM-MS based method for investigating exosomal 

RNA, which would build further on the proteomic and lipidomic methods.  Due to the fact RNA 

is composed of four different nucleotides, different RNA sequences result in similar MS patterns, 

making MS analysis of RNA complicated [27].  However, methods have been developed to 

change an RNA signal into a peptide signal for MS detection [27].  Briefly, exosomal RNA can 

be extracted and incubated with a biotinylated DNA-peptide probe.  When the DNA (which is 

specific for an RNA of interest) hybridizes to the RNA, the DNA is cleaved by duplex specific 

nuclease (DSN) separating the 3’end with the peptide probe and the biotinylated 5’ end.  The 

exosomal RNA is now available for additional hybridization with the DNA-peptide probe, 

allowing for amplification of the exosomal RNA signal.  Eventually, the unreacted biotinylated 

DNA-peptide probe and cleaved 5’ end of the DNA (which is biotinylated) is removed using 

streptavidin coated beads.  By using different peptide probes for different DNA sequences, 

specific to different RNAs of interest, the method can be multiplexed as it would allow for 
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identification of different RNAs of interest based on the presence/absence of different peptides.  

By implementing this method, or a similar method, the primary cargo of exosomes (proteins, 

lipids, and RNA) can be investigated using LC-MRM-MS based methods in this laboratory. 
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Appendix 1: A Mechanistic Understanding of Polysorbate 80 Oxidation in 

Histidine and Citrate Buffer Systems 
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Abstract 

In our previous published work, we reported rapid PS80 oxidation in histidine buffer after brief 

stainless steel exposure and the ability of citrate and EDTA to prevent this oxidation. The focus 

of our current study was to mechanistically understand PS80 oxidation by studying the impact of 

temperature, light, stainless steel and the role of citrate and EDTA.  Additionally, PS80 oxidation 

was studied in three different buffer systems: histidine, citrate, and phosphate. When the PS80 

containing buffers were exposed to elevated temperature of 50 °C in glass containers, no PS80 

oxidation was observed in either histidine and citrate buffer systems after 30 days; however, 

PS80 oxidation was observed in phosphate buffer within 14 days.  This study demonstrated that 

temperature does not initiate PS80 oxidation in histidine or citrate buffer systems but may be a 

factor in phosphate buffer.  When the 3 buffer systems containing PS80 were exposed to 20, 50, 

and 100 % ICH light conditions and subsequently incubated at 50°C, the PS80 in phosphate 

buffer underwent oxidation within 7 days, whereas the PS80 in histidine and citrate buffer 

systems showed oxidation products only after 14 and 35 days, respectively.  While PS80 in 

phosphate buffer seemed to be most vulnerable to light, PS80 in both histidine and citrate buffers 

underwent oxidation at a much slower rate, with the rate higher in histidine buffer compared to 

citrate buffer.  Finally, the ability of citrate and EDTA to act not only as chelators, but also as a 

radical quencher/scavenger was demonstrated when metal ions such as Fe (2+) were spiked into 

histidine buffer containing PS80.  While no radicals were detected by NMR or EPR, the 

observation of PS80 oxidation products indicate the presence of free radicals at concentrations 

below the limit of detection of these techniques. 

 

For complete publication see:  
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Doyle, L. M., Sharma, A. N., Gopalrathnam, G., Huang, L., & Bradley, S. (2019). A Mechanistic 

Understanding of Polysorbate 80 Oxidation in Histidine and Citrate Buffer Systems – Part 2. 

PDA Journal of Pharmaceutical Science and Technology. DOI:10.5731/pdajpst.2018.009639 
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Appendix II: Development of an In Vitro Model to Screen CYP1B1-Targeted 

Anticancer Prodrugs 
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Abstract 

Cytochrome P450 1B1 (CYP1B1) is an anticancer therapeutic target due to its overexpression in 

a number of steroid hormone-related cancers. One anticancer drug discovery strategy is to 

develop prodrugs specifically activated by CYP1B1 in malignant tissues to cytotoxic 

metabolites. Here, we aimed to develop an in vitro screening model for CYP1B1-targeted 

anticancer prodrugs using the KLE human endometrial carcinoma cell line. KLE cells 

demonstrated superior stability of CYP1B1 expression relative to transiently transfected cells 

and did not express any appreciable amount of cognate CYP1A1 or CYP1A2, which would have 

compromised the specificity of the screening assay. The effect of two CYP1B1-targeted probe 

prodrugs on KLE cells was evaluated in the absence and presence of a CYP1B1 inhibitor to 

chemically "knock out" CYP1B1 activity (CYP1B1 inhibited). Both probe prodrugs were more 

toxic to KLE cells than to CYP1B1-inhibited KLE cells and significantly induced G0/G1 arrest 

and decreased the S phase in KLE cells. They also exhibited pro-apoptotic effects in KLE cells, 

which were attenuated in CYP1B1-inhibited KLE cells. In summary, a KLE cell-based model 

has been characterized to be suitable for identifying CYP1B1-targeted anticancer prodrugs and 

should be further developed and employed for screening chemical libraries. 

 

For complete publication see: 

 

Wang, Z., Chen, Y., Drbohlav, L. M., Wu, J. Q., & Wang, M. Z. (2016). Development of an In 

Vitro Model to Screen CYP1B1-Targeted Anticancer Prodrugs. Journal of Biomolecular 

Screening. DOI:10.1177/1087057116675315 
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Appendix III: Quantification of Human Hepatic Drug-metabolizing Enzymes 

by Quantitative Filter-aided Sample Preparation (qFASP) 
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Abstract 
 
Quantification of drug metabolizing enzymes (DMEs) is essential for the characterization of 

developmental expression patterns and determination of environmental and regulatory 

influences. Absolute DME expression levels also are important inputs for mechanistic 

physiologically-based pharmacokinetic models aimed at predicting drug exposure and drug 

response in diverse populations (e.g., pediatric, geriatric and ethnic groups). Liquid 

chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS)-based targeted 

proteomics has provided specific and multiplexed quantification of DMEs in human liver 

microsomes (HLM) but required synthesis of stable isotope-labeled peptide standards and/or 

recombinant protein standards to achieve absolute quantification. Here we report the 

development of LCMSE global proteomics and quantitative filter-aided sample preparation 

(qFASP) protocol to achieve robust, proteome-scale, label-free absolute quantification of DMEs 

in HLM. The qFASP protocol reduced sample-to-sample variability and improved recovery of 

hydrophilic and hydrophobic peptides, while maintaining efficient removal of phospholipids 

from protein digests and wide dynamic range for quantification. A total of 48 DMEs were 

identified and quantified from a pooled HLM, including 19 cytochrome P450s (CYPs), 2 flavin-

containing monooxygenases (FMOs), 16 UDP-glucuronyltransferases (UGTs) and 11 other 

enzymes. Furthermore, using a panel of 8 individual donor HLMs, inter-individual variability in 

the DME expression was demonstrated using LCMSE global proteomics and quantification 

results strongly correlated with those determined by LC-MRM targeted proteomics, although 

concentration values could differ significantly. Hence, label-free LCMSE global proteomics 

coupled with robust sample preparation protocols (e.g., qFASP) may help expand our 

understanding of developmental expression patterns and environmental/regulatory influences on 

clinically important, as well as under-recognized, human hepatic DMEs.  
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For complete publication see: 

 

Chen, Y., Doyle, L. M., Qiu, I. X., & Wang, M. Z. Quantification of Human Hepatic Drug-

metabolizing Enzymes by Quantitative Filter-aided Sample Preparation (qFASP). Submitted to 

Journal of Drug Metabolism and Deposition, under review.  
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Appendix IV: Lack of Efficacy of Miltefosine for Amebic Encephalitis Despite 

Higher-Than-Recommended Dosing 
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We present a patient with Acquired Immunodeficiency Syndrome (AIDS) and Acanthamoeba 

encephalitis treated with miltefosine. Despite high dosing and therapeutic plasma levels, 

concentration of the drug in the cerebrospinal fluid was negligible. Further research is needed to 

assess miltefosine brain parenchyma penetration, and its role in the treatment of amebic 

encephalitis. 

 

For complete publication see: 

 

Monogue, M. L., Watson, D., Alexander, J. S., Doyle, L. M., Wang, M. Z., Prokesch, B.C. 

Standard and High-Dose Miltefosine is Sub-Optimal for Treatment of Late Stage Amebic 

Encephalitis. Submitted to Journal of Clinical Infectious Disease, under review. 
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Appendix V: Development of Liquid Chromatography – Multiple Reaction 

Monitoring – Mass Spectrometry (LC-MRM-MS)-Based Targeted Proteomics 

Method for Analysis of Exosome Marker Proteins and Its Application in 

Evaluating Different Exosome Preparations 
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Abstract 

The ability of exosomes to act as carriers of biomarkers has been demonstrated and shown 

potential for clinical applications.  A major challenge, however, is the lack of standardized 

methods for exosome isolation and analysis.  Traditionally, immunoassays are used for 

assessing exosome preparations, however these assays are not well multiplexed and require 

the use of antibodies.  Here, a liquid chromatography – multiple reaction monitoring – 

mass spectrometry (LC-MRM-MS) method is developed and used to assess exosome 

preparations from HeLa and HepG2 cell lines isolated by differential ultracentrifugation 

and a Total Exosome Isolation Kit (TEIK). LC-MRM-MS analysis indicated the 

abundance of exosomal marker proteins in exosomes isolated by the TEIK were generally 

lower than in the exosomes isolated by differential ultracentrifugation, indicating a higher 

purity exosome preparation by differential ultracentrifugation. LC-MRM-MS analysis was 

consistent with traditional Western blot methods, with lower levels of non-exosomal 

marker proteins in the exosome preparations compared to the corresponding cell lysate, 

and higher levels of exosomal marker proteins in the exosome preparations relative to the 

lysate. The LC-MRM-MS method is consistent with traditional Western blot assay, but 

requires 40-fold less protein, is quantitative, inherently specific and multiplexed, and does 

not require the use of antibodies.     
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