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Abstract

Multiple-Input Multiple-Output (MIMO) systems with large-scale transmit antenna

arrays, often called massive MIMO, are a very promising direction for 5G due to their

ability to increase capacity and enhance both spectrum and energy efficiency. To get

the benefit of massive MIMO systems, accurate downlink channel state information

at the transmitter (CSIT) is essential for downlink beamforming and resource allo-

cation. Conventional approaches to obtain CSIT for FDD massive MIMO systems

require downlink training and CSI feedback. However, such training will cause a

large overhead for massive MIMO systems because of the large dimensionality of the

channel matrix. In this dissertation, we improve the performance of FDD massive

MIMO networks in terms of downlink training overhead reduction, by designing an

efficient downlink beamforming method and developing a new algorithm to estimate

the channel state information based on compressive sensing techniques. First, we de-

sign an efficient downlink beamforming method based on partial CSI. By exploiting

the relationship between uplink direction of arrivals (DoAs) and downlink direction

of departures (DoDs), we derive an expression for estimated downlink DoDs, which

will be used for downlink beamforming. Second, By exploiting the sparsity structure

of downlink channel matrix, we develop an algorithm that selects the best features

from the measurement matrix to obtain efficient CSIT acquisition that can reduce the
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downlink training overhead compared with conventional LS/MMSE estimators. In

both cases, we compare the performance of our proposed beamforming method with

traditional methods in terms of downlink achievable rate and simulation results show

that our proposed method outperform the traditional beamforming methods.
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Chapter 1

Introduction

1.1 Motivation

Mobile access technology has been undergoing various revolutionary changes over the years. The

rapid changes are due to capacity demands that result from growth of massive amounts of data

over the past decade. In wireless communication systems, there is a huge demand for reliability,

high data rates, energy efficiency, high mobility, and spectral efficiency. It is expected that mo-

bile and wireless traffic volume will increase a thousand-fold over the next decade, which will

be driven by the expected 50 billion devices connected to the cloud by 2020, all of which need

to access and share data, anywhere and anytime [1, 2, 3]. Higher data throughput is required in

the next generation of wireless cellular networks since the worldwide interest for data traffic is

consistently developing. This objective can be accomplished without the requirement for more

bandwidth or extra base stations if spectral efficiency is enhanced [4, 5]. Given the way that

spectrum is turning into a scarce resource in cellular networks, orthogonal frequency division mul-

tiple access (OFDMA) has been proposed as a cutting edge air interface innovation to empower
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spectrum efficiency and successfully battle frequency selective-fading. Because of its promising

highlights, OFDMA is adopted in several wireless networks like Long Term Evolution (LTE) and

IEEE 802.16m [6, 7]. To keep up with the fast wireless data traffic development, a vital objective

of the next generation of wireless cellular networks is to enhance the data throughput by orders

of magnitude; 100X and even 1000X higher throughput are often mentioned as 5G design goals

[8, 4]. 4G networks, on the other hand, have only reached theoretical limits on data with the

current technologies and, thus, are insufficient for accommodating these challenges. This means

that groundbreaking wireless technologies are needed for solving the problems that are caused by

trillions of wireless devices [9, 10, 11]. Researchers already have begun investigating beyond 4G

wireless techniques. Additionally, statistics demonstrate that relying upon time and position, the

use of both licensed and unlicensed spectrum could be low. In this manner, effective strategies re-

quired for spectrum sharing among various systems are of interest in a dynamic cellular network.

The idea of software defined radios and cognitive radios was introduced to improve the effective-

ness of frequency spectrum utilization [12]. The vision of next generation 5G cellular networks

lies in providing higher capacity, higher data rates, less latency, massive device connectivity, better

quality of service (QoS), and reduction in power consumption to improve battery life, compared

to current 4G cellular network. Therefore, next generation wireless networks ought to provide

economical power conservation mechanisms to realize longer battery life while at the same time

providing increased user expertise and quality of service (QoS) [13]. In any case, the developing

5G arrangements will require somewhere around 100 MHz bandwidth, hundreds of antennas, and

ultra-densely deployed base stations (BSs) to bolster an enormous number of clients as shown in

Figure 1 [14]. These individual changes demonstrate that applying Nyquist’s sampling theorem

to 5G systems reminiscent of the prior 2G/3G/4G arrangements may result in additional difficul-
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ties: restrictively huge overhead, excessively high complexity, and unexpected expense as well as

power consumption because of the vast number of samples required. Moreover, compressive sens-

ing (CS) offers a sub-Nyquist sampling method to deal with the under-determined linear system

in a computationally effective manner, accordingly offering us chances to handle the previously

mentioned difficulties.

Figure 1.1: Three promising technical directions for 5G.

Full dimension MIMO, or FD-MIMO, has pulled in significant attention in wireless cellular

networks in the past few years as a competitor innovation for next generation evolution. FD-MIMO

uses a large number of antenna elements placed in a 2D plane to improve the spatial multiplexing

and give more degrees of freedom in supporting users [15, 16]. 5G mobile communication tech-

nology beyond 2020 has the potential to provide access to information and sharing data anytime

and anywhere for anything and anyone [17, 18, 19]. Recently, only a few main technical param-

eters for efficient performance of 5G have been approved, such as spectrum allocations. Bands

with multiple frequencies can be introduced in 5G. Currently, bands at 6 GHz and lower have lim-

ited bandwidth and are fully occupied. In order to meet the growing expectation, millimeter wave
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(mmWave) spectrum ranging from 24–100 GHz also got approval from the World Radiocommu-

nication Conference 2015 (WRC-15). Many bands (in GHz: 24.25–27.5, 31.8–43.5, 45.5–50.2,

50.4–52.6, 66–76, and 81–86) were approved providing larger bandwidth [19, 20, 21]. However,

WRC-19 will approve the final list. Bands of 60 GHz, not yet licensed, may also be used in the

spectrum. mmWave spectrum will play a vital role in cutting edge 5G mmWave small cell sys-

tems. Unlike popular 6 GHz spectrum, mmWave spectrum has a lot of accessible bands, yet these

experience the ill effects of high path loss [22, 23]. However, mmWave has different benefits, in-

cluding limited inter-cell interference, low transmission latency, and improved security [24]. The

60 GHz spectrum demonstrates 20–40 dB expanded free space path loss and experiences 15–30

dB/km atmospheric absorption depending on climatic conditions. Luckily, as shown in Figure 2

[25], plenty of available spectrum around 60 GHz can be used to deliver these high rates.

Figure 1.2: International unlicensed spectrum around 60 GHz.

This collection of frequencies in the spectrum will give better results for 5G. For coverage over

wide areas, lower frequencies are included for personal and local communication; mmWave links

with high rates can be included. Moreover, the most valuable frequency bands are below 6 GHz

because these frequencies can provide good network coverage and service quality, while higher
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bands might only work well under short-range line-of-sight conditions. The spectral efficiency

(SE) has not seen any major improvements in previous network generations. Hence, it might

be a factor that can be greatly improved in the future and possibly become the primary way to

achieve high area throughput in 5G networks. Small cell (SC) networks are considered to be

a key solution for the next generation of wireless cellular networks. However, synchronization

between densely deployed small cells is one of the main issues in these networks. Even though

SCs are right now connected chiefly for traffic offloading and indoor coverage, they can provide

high capacity at a cost, in both indoor and outdoor situations. In principle, the system capacity

scales directly with the cell intensity, so decreasing the cell size could viably enhance system

capacity. Then again, since a shorter separation results in less path loss, the transmitting power

could be decreased [26, 27, 28]. One of the key technologies for 5G wireless communication is

massive MIMO. Massive MIMO significantly enhances spectral and energy efficiency [29, 30]. In

massive MIMO systems, the effect of uncorrelated noise and small scale fading are eliminated, the

number of users per cell are independent of the size of the cell and simple linear signal processing

methods such as matched filters (MFs) can be used [31, 32, 33]. The leveraging of time-division

duplexing (TDD) helps massive MIMO to scale to any desired degree with respect to number of

service antennas [34, 35]. The addition of more antennas can be useful to increase throughput,

reduce radiated power, uniformity in services everywhere in the cell and great simplicity in the

signal processing in 5G technologies [36]. The TDD operation mode permits massive MIMO to be

scalable in number of service antennas to any extent required. However, pilot contamination is the

main factor that limits the performance of TDD massive MIMO. Pilot contamination occurs when

users in adjacent cells share the same pilot sequences. The effect of pilot contamination is usually

quantified as SINR (signal-to-interference-plus-noise ratio) saturation due to intercell interference
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[37, 38]. If frequency-division duplexing (FDD) is utilized, the downlink and uplink use various

frequency bands, then the CSI corresponding to the downlink and uplink is also different. The

channel estimation for uplink through the BS is done by allowing the users to send different pilot

sequences. The time needed to uplink the pilot transmission does not depend on the number of

antennas at the BS. Moreover, for getting CSI for the downlink channels in the FDD systems, a

2-stage procedure is needed. The BS transmits the pilot symbols first to the users, and then the

user feeds back the estimated CSI, complete or partial, for downlink channels to the BS. Channel

sounding for FDD systems requires a large pilot overhead, which usually scales proportionally

to the number of transmit antennas, so exploring efficient channel estimation techniques is an

important issue for FDD massive MIMO systems [39, 32, 40, 41].

1.2 Proposed Research

Multiple-Input Multiple-Output (MIMO) systems with large-scale transmit antenna arrays, often

called massive MIMO, are a very promising direction for 5G due to their ability to increase capacity

and enhance both spectrum and energy efficiency. To get the benefit of massive MIMO, knowledge

of CSIT is essential [42, 43, 44, 45]. In a TDD system, the BS obtains the CSI via uplink channel

reciprocity, where the uplink training symbols scale linearly with the number of users, which is

much less than the number of BS antennas. However, in a TDD massive MIMO system, the CSI

estimation may be inaccurate because of calibration errors of RF chains and growing of reuse

uplink training pilots when the number of users increases, which leads to inter-user interference

and limits the system performance [46, 47]. In a FDD system, the uplink and downlink operations

occur at different frequencies. The frequency separation for cellular systems is typically on the
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order of 100 MHz and this is much larger than the coherence bandwidth of the channel (typically

about 1MHz). Therefore, the small-scale fading of the channel impulse responses in the uplink

and downlink are completely uncorrelated. In other words, the small-scale fading, and so, the

instantaneous impulse response of the channel, are different for uplink and downlink [48]. In FDD

systems, uplink and downlink channels fade independently if the frequency separation between

them is large enough compared to the coherence bandwidth of the channel. As a result, the uplink

channel information may not be applied directly for downlink beamforming. However, there are

some properties that can be exploited for downlink beamforming from uplink channel information.

The primary downlink direction of arrival (DoA) can be modeled from the uplink by the equa-

tion below:

θDL = θUL +∆θ (1.1)

where θDL and θUL are the primary downlink and uplink DoAs (elevation or azimuth) respectively,

and ∆θ is the angular perturbation modeled as a Laplacian random process [49, 50]. In terms

of spatial channel measurements, Hugl et al. [51] investigated the congruence of the directional

properties of uplink and downlink as seen from the BS. They showed that the directional properties

of the uplink and downlink radio channel are strongly correlated. According to measurement data

evaluation, it is shown that the dominant DoA in uplink and downlink has only a minor deviation.

Therefore, it is reasonable to utilize the dominant DoA which is estimated during uplink reception

for downlink beamforming purposes. As a consequence, adaptive antenna downlink beamforming

without terminal feedback is possible. The authors in [52] assumed that the dominant uplink DoA

and downlink direction of departure (DoD) are the same. Using this information, the authors first

7



construct a precoding matrix composed of the downlink steering vectors. Then they constructed

a second precoder to cancel the multi user interference. The second precoder is formed based on

the first precoder, and constructed it in a zero-forcing (pseudo-inverse) type format. Finally, they

computed the achievable rates based on these two beamformers. In [53], the authors assumed that

the amplitude of a downlink path is equivalent to that of uplink one but differs in phase. Therefore,

the user equipment (UE) only needs to feed the information of the phase back to the BS. The BS

then reconstructs the downlink CSIT and performs beamforming.

It is clear that using the estimated uplink DoA directly for downlink beamforming is not op-

timum. Therefore, in Chapter 2, we design an efficient downlink beamforming method based on

partial CSI. The partial CSI is the uplink dominant DoA which is obtained during uplink train-

ing phase. By exploiting the relationship between uplink (UL) direction of arrivals (DoAs) and

downlink (DL) direction of departures (DoDs), we derive an expression for estimated downlink

DoDs, which will be used for downlink beamforming to compare the performance with traditional

methods in terms of downlink achievable rate that we derived. Simulation results also verify that,

in terms of achievable rate, our proposed method outperform the traditional beamforming method.

In FDD sytems, the BS acquire CSI by broadcasting a sequence of downlink training pilots,

then users feed back the estimated CSI to the BS via uplink signaling channels. Traditional down-

link channel estimation techniques such as least square (LS) and minimum mean square error

(MMSE) estimators require that the downlink training length scales linearly with the number of

BS antennas, which becomes prohibitively large in massive MIMO systems. In addition, the CSI

feedback becomes challenging due to large number of BS antennas [54, 42]. Based on experimen-

tal results of massive MIMO channels, it turns out that the user channel matrices exhibit sparsity

due to limited local scatterers at the BS. In [42], the authors exploit the hidden joint sparsity struc-
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ture in the user channel matrices to reduce the downlink training overhead and develop a joint

orthogonal matching pursuit (OMP) algorithm to recover CSIT at the BS jointly. By exploiting the

spatially common sparsity of massive MIMO channels and the temporal channel correlation, the

author in [46] proposed an adaptive channel estimation scheme using compressive sensing (CS) to

acquire the CSI. In [54], a closed-loop CSIT estimation scheme with 1 bit feedback was proposed

to learn the minimum required pilot training overhead that leads to accurate CSIT acquisition.

By exploiting the block sparse nature of the angular domain channel representation, the author in

[55] proposed a weighted block l1 minimization based downlink CSI recovery scheme for FDD

massive MIMO systems with two stages. In the first stage, the common/individual supports of

the multiuser channel matrix are extracted, while the second stage uses the obtained support in-

formation for CSI recovery by conducting weighted block l1 minimization. Furthermore, FDD

system dominates current wireless cellular systems and exploring efficient downlink channel ac-

quisition schemes is important. In Chapter 3, we investigate the channel estimation problem in

FDD multi-user massive MIMO systems with spatially correlated channels and develop an efficient

channel estimation algorithm that exploits the sparsity structure of the downlink channel matrix.

The proposed algorithm selects the best features from the measurement matrix to obtain efficient

CSI acquisition that can reduce the downlink training overhead compared with the conventional

LS/MMSE channel estimators. We compare the performance of our proposed channel estimation

method with traditional ones in terms of normalized mean square error (MSE). Simulation results

verify that the proposed algorithm can significantly reduce the pilot overhead and has better per-

formance compared with the traditional channel estimation methods. In Chapter 4, we propose a

feedback scheme that exploits the sparsity structure of the downlink channel matrix and design a

low-complexity beam-forming scheme for FDD multi-user massive MIMO systems with spatially
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correlated channels. The proposed schemes consider codebook-based feedback, which is adopted

in the LTE/LTE-advanced systems. Specifically, after estimating the downlink channel for each

user during the downlink training phase, we design a low-complexity beam-forming scheme for

downlink transmission based on an estimated channel matrix. We next update the channel matrix

using limited feedback and calculate the downlink achievable rate as a performance metric to com-

pare the results. Simulation results verify that the proposed scheme can significantly reduce the

pilot overhead and has better performance compared with the traditional methods. Systems with

a large number of antennas at the BS are costly due to the large number of radio frequency (RF)

chains—one for each antenna—which in turn results in large power consumption. As the number

of transmit antennas increases at the BS, the circuit power consumption will gradually increase by

the number of antennas. Therefore, in Chapter 5, we investigate the problem of transmit antenna

selection for FDD multi-user massive MIMO networks and design an efficient antenna selection

algorithm that can reduce the hardware complexity and improve the system performance in terms

of achievable sum-rate.

1.3 Research Impact and Contribution

In this dissertation, first, we aim to design an efficient downlink beamforming approach for FDD

massive MIMO systems based on partial channel state information and considering the mismatch

error. Second, we estimate the downlink channel using compressive sensing techniques to reduce

the downlink training overhead and derive an efficient downlink beamforming based on CSI es-

timates. Figure 1.3 illustrates the summary of our contribution in each chapter. By completing

these research tasks, the proposed research is of value for the design and analysis of the current
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and emerging cellular networks.

• The novelty of this research lies in the ability to develop different solutions to help support

FDD massive MIMO systems and meet 5G technology requirements. We expect that this

research will provide great benefits to next generation networks by solving some of their

challenges, from training overhead to channel estimation to spectral efficiency.

• Downlink training overhead is the main challenge for FDD massive MIMO systems to ac-

quire channel state information at the BS, which is necessary for downlink beamforming.

Most of the past research exploits the reciprocity between the uplink and downlink bands

in terms of uplink dominant angles of arrival (AoAs), but they ignore the mismatch error

between them. The literature shows that the angular perturbation between uplink dominant

DoA and DoD can be modeled as a Laplacian random process. The proposed beamforming

based on partial channel state information along with the consideration of the mismatch error

can be considered as a promising solution for FDD massive MIMO systems to achieve better

performance.

• Accurate downlink channel state information is crucial for downlink beamforming and re-

source allocation to get the benefits of massive MIMO systems. Due to the large number

of antennas at the BS, conventional approaches for channel estimation are not efficient for

FDD massive MIMO systems because it requires the downlink training overhead to be scaled

with the number of BS antennas and hence large percentage of resources will be dedicated

to channel estimation and limit the system performance. The proposed channel estimation

algorithm improves the system performance in terms of downlink training overhead reduc-

tion.
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• The proposed limited feedback scheme along with channel estimation algorithm enhances

the overall system performance of FDD massive MIMO systems in terms of overhead reduc-

tion and spectral efficiency.

• The addition of more antennas at the BS can be useful to increase throughput, reduce radiated

transmit power, achieve uniformity in services everywhere in the cell, and simplify the signal

processing. Systems with a large number of antennas at the BS lead to a large number of

radio frequency (RF) chains, which increases power consumption and degrades the system

performance in terms of energy efficiency. Hence, we develop a low complexity iterative

algorithm to solve the antenna selection problem and enhance the system performance in

terms of downlink achievable sum-rate.

• System level simulation using MATLAB software is carried out to verify the analysis for

realistic network scenarios.

1.4 Notation

Throughout this dissertation, normal letters are used for scalars. Boldface capital and lower case

letters denote matrices and vectors, respectively. The transposition, the Hermitian transposition,

and the determinant of a complex matrix A are denoted by AT , AH and |A|, respectively. A N×K

matrix, with ones on its main diagonal and zeros on its off-diagonal entries, is denoted by IN×K ,

while the identity matrix of size N is simply denoted by IN . An N×K all-zeros matrix is denoted

by 0N×K . The sets of complex and real numbers are denoted by C and R, respectively. A circularly

symmetric complex Gaussian random variable (r.v.) is represented by Z = X + jY ∼ C N (0,σ2),

12



 

 1dcfvfbfdsbdfbdfbdfbdfbdfbdfb 

                       Chapter 2 

Design a downlink beamforming 

based on partial CSI with the 

consideration of the mismatch error 

between uplink and downlink. 

U
L 

an
d

 D
L 

si
m

ila
ri

ty
 

                             Chapter 5 

To address the issue of circuit power 

consumption with large number of 

antennas at the BS, we develop a low 

complexity algorithm that exploit the 

spatial selectivity and enhance the system 

performance. 

                              Chapter 3 

Develop an efficient channel estimation 

algorithm that exploit the sparsity of the 

channel to reduce the training overhead. 

                         Chapter 4 

Based on algorithm developed in 

previous chapter, we propose a 

feedback scheme that consider 

codebook-based feedback. 

 FDD Massive MIMO  
Training overhead 

Fe
e

d
b

ac
k 

sc
h

em
e

 

Power consumption 

Figure 1.3: Summary of our contribution in each chapter.

13



where X and Y are independent and identically distributed (i.i.d.) normal r.v.’s from N (0, σ2

2 ).

E[·] represents the expectation operator. The trace of a square matrix A = [ai j]n×n is defined as

Tr(A) = ∑
n
i=1 aii. The vec(·) operator aligns all the elements of a matrix into a column vector by

stacking the column vectors of the matrix, i.e., for A ∈ CM×N then vec(A) ∈ CMN×1. Moreover,

the Kronecker and Hadamard product between two matrices A and B are symbolized by A⊗B

and A�B, respectively. ‖a‖2 and ‖A‖F denote the two-norm of the vector a and the Frobenius

norm of the matrix A, respectively. The inner product and angle are symbolized by < ·, · >, and

∠, respectively.
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Chapter 2

Downlink Achievable Rate Analysis based

on partial CSI

2.1 Introduction

In this chapter, the downlink achievable rate for FDD massive MIMO systems based on partial

channel state information will be discussed. This chapter is organized as follows. We begin with

direction of arrival estimation in Section 2.2, after which the system model is discussed in Section

2.3. The uplink DoA estimation is discussed in detail in Section 2.4. The downlink framework

is discussed in Section 2.5. In Section 2.5.1, we derive an expression for the downlink DoD by

exploiting the relationship between uplink DoAs and downlink DoDs. The downlink achievable

rate is discussed in Section 2.5.2. The performance of the proposed downlink beamforming has

been discussed in Section 2.6.
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2.2 Direction of Arrival Estimation

DoA estimation of narrow-band signals is a fundamental problem in many sensor array systems

such as, direction finders (DF), radar, sonar, electronic surveillance, and mobile communications.

Over the years, numerous methods have been proposed, for example, the MUltiple SIgnal Classi-

fication (MUSIC) technique and the Maximum-Likelihood (ML) technique [56]. Estimating the

DoA of narrowband wave-fronts impinging on an array of sensors has long been of great research

interest. Early methods used beam-forming techniques to electronically steer the array in one direc-

tion at a time and measure the corresponding output power. The major drawback of this approach

is its low resolution, that is, the ability to resolve two closely spaced sources. The resolution was

greatly improved with the introduction of the MUSIC technique [57], which used a subspace-based

approach to find the DoA angles [58]. The goal of DoA estimation is to use the data received on the

downlink at the base-station sensor array to estimate the directions of the signals from the desired

sources as well as the directions of interference signals. The results of DoA estimation are then

used to adjust the weights of the antenna array so that the radiated power is maximized towards the

sources, and radiation nulls are placed in the directions of interference signals [59].

2.3 System Model

In this chapter, we consider a FDD Massive MIMO system with Nr antennas at the BS, and Nt

antennas at the UE. In the uplink, the Nr×1 received signal, yul , can be expressed as

yul = Hulxul +nul, (2.1)
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where Hul is the Nr×Nt uplink channel matrix, xul is the Nt × 1 uplink transmit signal from the

UE, and nul is the corresponding Nr × 1 noise vector. In this chapter, we consider a clustered

channel model, where each scattering cluster is assumed to contribute a single propagation path.

Considering a finite number of resolvable paths between the transmitter and the receiver, the uplink

channel matrix, Hul , can be represented as

Hul =
L−1

∑
`=0

αul(`)er,ul(`)eH
t,ul(`), (2.2)

where αul(`), er,ul(`), and eH
t,ul(`) are respectively, the channel gain, Nr× 1 receive antenna array

response, and Nt ×1 transmit antenna array response for the `-th path of the channel between the

BS and the UE. Moreover, L is the total number of paths for the channel, and (·)H denotes the

Hermitian. It is obvious that the transmit and receive antenna array responses depend on DoD

of the transmit signal and DoA of the received signal, respectively. For the transmitter equipped

with a uniform linear array (ULA), the transmit antenna array response can be described using the

Vandermonde structure: eH
t,ul(`) =

[
1 e jωul

` . . . e j(Nt−1)ωul
`

]T

, where ωul
` = (2π∆t/λ ul)cosΩul

` ,

∆t is the spacing between the adjacent transmit antenna elements, Ωul
` is the transmit angle (DoD)

for the `-th path of the uplink channel, and λ ul is the uplink carrier wavelength. The antenna array

at the BS is a planar array placed in the X–Z plane, with M1 and M2 antenna elements in vertical

and horizontal directions, respectively. Accordingly, the number of receive antenna elements at the

BS is Nr = M1M2.

Since the antenna elements at the BS are placed in a 2D plane, for each resolvable path, there

will be an azimuth DoA and an elevation DoA. Therefore, the receive antenna array response for

the `-th path can be expressed as er,ul(`) = a(vul
` )⊗ a(uul

` ), where ⊗ represents the Kronecker
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product, and a(uul
` ) =

[
1 e juul

` . . . e j(M1−1)uul
`

]T

and a(vul
` ) =

[
1 e jvul

` . . . e j(M2−1)vul
`

]T

can

be viewed as the receive steering vectors of the elevation and azimuth angles, respectively. Here,

uul
` = 2π∆r

λ ul cosθ ul
` and v` = 2π∆r

λ ul sinθ ul
` cosφ ul

` are the two receive spatial frequencies at the BS, ∆r

is the spacing between adjacent antenna elements in the receive antenna array, and θ ul
` and φ ul

` are

the elevation and azimuth DoAs for the `-th path of the channel, respectively.

2.4 Uplink DoA Estimation

In this section, we introduce a low complexity DoA-estimation algorithm based on Unitary ES-

PRIT in order to jointly estimate the elevation and azimuth angles. The uplink channel matrix in

(2.2) can be written as

Hul = AulDulBulH
, (2.3)

where Aul =

[
er,ul(0) er,ul(1) . . . er,ul(L−1)

]
, D = diag

[
αul(0) αul(1) . . . αul(L−1)

]
,

and B(k) =
[

et,ul(0) et,ul(1) . . . et,ul(L−1)

]
. Now, collecting the received signal for V snap-

shots, we can extend (2.1) as follows

Yul = HulXul +Nul, (2.4)

where Yul is the Nr×V received signal matrix, Xul is the Nt×V transmit signal matrix, and Nul is
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the corresponding Nr×V noise matrix. Using (2.3), we can write (2.4) in a compact form:

Yul = AulSul +Nul, (2.5)

where Sul = DulBulH
Xul can be regarded as equivalent uplink transmit signal.

In order to perform unitary ESPRIT, we need to use forward–backward averaging on the re-

ceived signal:

Yul f ba
=

[
Yul ΠΠΠNrYul∗ΠΠΠNt

]
=

[
AulSul ΠΠΠNrAul∗Sul∗ΠΠΠNt

]
+

[
Nul ΠΠΠNrNul∗ΠΠΠNt

]
, (2.6)

where A∗ represents the complex conjugate of A, and ΠΠΠp denotes the p× p exchange matrix with

ones on its antidiagonal and zeros elsewhere. The subspace decomposition of the signal space of

the received signal through singular value decomposition then can be written as:

[
AulSul ΠΠΠNrAul∗Sul∗ΠΠΠNt

]
=

[
Us Un

]ΣΣΣs 0

0 0


VH

s

VH
n

 (2.7)

The array manifold matrix of an M1×M2 rectangular antenna array can be expressed as:

Aul(u`,v`) = a(uul
` )a

T (vul
` ),

that is, the 2D steering matrix can be decomposed into product of two 1D steering vectors [60]. We
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can choose the two subarrays of the steering vector, a(uul
` ), with maximum overlap, that is, each

having M1−1 antenna elements. Because of the fixed displacement between the first and second

subarrays, if the first M1−1 elements are multiplied by e juul
` , the resulting vector will be equal to

the vector containing the last M1−1 components. This can be expressed as:

e juul
` J1a(uul

` ) = J2a(uul
` ), (2.8)

where, J1 is an (M1− 1)×M1 selection matrix constructed by taking the first (M1− 1) rows of

IM1 (M1×M1 Identity Matrix), and J2 is an (M1−1)×M1 selection matrix constructed by taking

the last (M1−1) rows of IM1 . A unitary and left-ΠΠΠ real matrix, QM1 can be constructed to change

a(uul
` ) to a real-valued transformed steering vector, aR(uul

` ),

aR(uul
` ) = QH

M1
a(uul

` ). (2.9)

Assuming M1 = 2K, QM1 can be constructed as

Q2K =
1√
2

 IK jIK

ΠΠΠK jΠΠΠK

 , (2.10)

where, IK is a K×K identity matrix, and ΠΠΠK is a K×K exchange matrix.

We have the following relation [61, 62]:

tan(
uul
`

2
)K1aR(uul

` ) = K2aR(uul
` ).
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Here, K1 = Re{QH
M1−1J2QM1}, K2 = Im{QH

M1−1J2QM1}. Extending the relation to a 2D antenna

array:

tan

(
uul
`

2

)
K1AR(uul

` ,v
ul
` ) = K2AR(uul

` ,v
ul
` ), (2.11)

where,

AR(uul
` ,v

ul
` ) = QH

M1
a(uul

` )a
T (vul

` )Q
∗
M2

= aR(uul
` )(a

R(vul
` ))

T .

Furthermore, we can rewrite the formulation in (2.11) as:

tan

(
uul
`

2

)
Kx1vec

{
AR(uul

` ,v
ul
` )
}
= Kx2vec

{
AR(uul

` ,v
ul
` )
}

where Kx1 , IM2 ⊗K1, Kx2 , IM2 ⊗K2, and vec{.} is the vectorization operation. Accordingly,

we can specify an M1M2×Nc real-valued array manifold matrix:

AR ,
[
vec
{

aR(uul
0 ,v

ul
0 )
}
, . . . ,vec

{
aR(uul

L−1,v
ul
L−1)

}]

Then, we have the shift-invariance equation:

Kx1AR
ΩΩΩx = Kx2AR (2.12)

where,

ΩΩΩx , diag

{
tan

(
uul

0
2

)
, . . . , tan

(
uul

L−1

2

)}
(2.13)

It is important to note that after the unitary transformation, the matrices all become real-valued
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matrices. This will significantly reduce the computational complexity.

Similarly, for a(vul
` ), we can conduct the same process. Let K3 = Re

{
QH

M2−1J′2QM2

}
, and

K4 = Im
{

QH
M2−1J′2QM2

}
, where J′2 is the (M2− 1)×M2 matrix constructed by taking the last

(M2−1) rows of IM2 . Accordingly, we have

Ky1AR
ΩΩΩy = Ky2AR (2.14)

where Ky1 , K3⊗ IM1 , Ky2 , K4⊗ IM1 , and

ΩΩΩy , diag

{
tan

(
vul

0
2

)
, . . . , tan

(
vul

L−1

2

)}
(2.15)

Let Us be the signal subspace and T be the nonsingular transformation matrix, we have Us =

ART since the array steering matrix AR and the matrix Us span the same column space in the

absence of noise or with an infinite number of measurements. Under the noisy case or with a finite

number of measurements, this expression holds approximately [63]. Substituting this relation

into (2.12), we have

Kx1UsΨΨΨx = Kx2Us (2.16)

where ΨΨΨx , T−1ΩΩΩxT. Similarly, we also have

Ky1UsΨΨΨy = Ky2Us (2.17)

where ΨΨΨy , T−1ΩΩΩyT. From (2.16) and (2.17), we can solve for Ψ̂ΨΨx and Ψ̂ΨΨy based on the estimated

signal subspace using LS-type methods. Let the eigenvalues of the Nc×Nc complex matrix Ψ̂ΨΨx +
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jΨ̂ΨΨy be λ̂`, `= 1,2, . . . ,Nc. uul
` and vul

` can be estimated from:

ûul
` = 2tan−1

{
Re
(

λ̂
ul
`

)}
v̂ul
` = 2tan−1

{
Im
(

λ̂
ul
`

)}

Accordingly, 2D DoAs of interest are obtained through simple parameter transformation.

2.5 Downlink Framework

Accurate downlink channel state information at the transmitter (CSIT) is essential to utilize the

benefit of massive MIMO. Conventional approaches to obtain CSIT for FDD massive MIMO

systems require downlink training and CSI feedback. However, such training results in a large

overhead cost for massive MIMO systems because of the large dimensionality of the channel ma-

trix. In this section, we design an efficient downlink beamforming method based on partial CSI.

By exploiting the relationship between uplink (UL) DoAs and downlink (DL) DoDs, we derive

an expression for estimated downlink DoDs in Section (2.5.1), which will be used for downlink

beamforming to compare the performance with traditional method in terms of downlink achievable

rate that we derived in Section (2.5.2).

2.5.1 Downlink DoD Estimation

In this section, we will derive the expressions for downlink beamforming directions for both el-

evation (θ̃dl) and azimuth (φ̃dl) domains by using MMSE estimator. The joint estimation of the
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dominant elevation and azimuth angles can be expressed as:

(
θ̃dl, φ̃dl

)
= E

(
(θdl,φdl)|(θ̃ul, φ̃ul)

)
(2.18)

where θ̃ul = θul + e1 and φ̃ul = φul + e2 are the uplink estimated elevation and azimuth angles,

respectively; θul and φul are the true uplink angles, and e1 and e2 are the corresponding estimation

errors with zero mean. However, in this work, we assume that the uplink DoAs are perfectly

estimated, and hence e1 = 0 and e2 = 0. Incorporation of uplink DoA estimation error [45] into

the analysis is left for a future extension of the current work. Now, the relationship between uplink

dominant DoA and downlink DoD can be defined as [49]:

θdl = θ̃ul + ε1 (2.19)

φdl = φ̃ul + ε2 (2.20)

where ε1 and ε2 are the perturbations modelled as a Laplacian random process and we assume these

have zero mean. We can assume that the DoA-DoD mismatch errors of the elevation and azimuth

domains are independent of each other. In other words, the mismatch error variables perturbs the

elevation and azimuth angles independently, and therefore, we can carry out the analysis for the

elevation and azimuth angles estimators separately. Now, the estimated DoD of the elevation angle

can be expressed as:

θ̃dl = E{θdl; θ̃ul}=
ˆ π

2

− π

2

θdl
βθ√

2σθ ,dl
e
−
√

2 |θdl−θ̃ul |
σθ ,dl dθdl

=
βθ√

2σθ ,dl

ˆ π

2

− π

2

θdle
−
√

2 |θdl−θ̃ul |
σθ ,dl dθdl,

(2.21)

24



where βθ = 1

1−e
− π√

2σθ ,dl

is a normalization constant required for the function to integrate to one.

We can write the expression as:

θ̃dl =
βθ√

2 σθ ,dl

[ˆ
θ̃ul

− π

2

θdle

√
2(θdl−θ̃ul )

σθ ,dl dθdl

+

ˆ π

2

θ̃ul

θdle
−
√

2(θdl−θ̃ul )
σθ ,dl dθdl

]
(2.22)

Now, using integration by parts, we can calculate the integrals as follows:

ˆ
θ̃ul

− π

2

θdle

√
2(θdl−θ̃ul )

σθ ,dl dθdl

= θdl
σθ ,dl√

2
e

√
2(θdl−θ̃ul )

σθ ,dl

]θ̃ul

− π

2

−
ˆ

θ̃ul

− π

2

σθ ,dl√
2

e

√
2(θdl−θ̃ul )

σθ ,dl dθdl

=
θ̃ul σθ ,dl√

2
+

π σθ ,dl

2
√

2
e

√
2(− π

2 −θ̃ul )
σθ ,dl −

[
σ2

θ ,dl

2
e

√
2(θdl−θ̃ul )

σθ ,dl

]θ̃ul

− π

2

=
θ̃ul σθ ,dl√

2
+

π σθ ,dl

2
√

2
e

√
2(− π

2 −θ̃ul )
σθ ,dl −

σ2
θ ,dl

2
+

σ2
θ ,dl

2
e

√
2(− π

2 −θ̃ul )
σθ ,dl

(2.23)

Similarly, we calculate the second integral:

ˆ π

2

θ̃ul

θdle
−
√

2(θdl−θ̃ul )
σθ ,dl dθdl

=
θ̃ul σθ ,dl√

2
−

π σθ ,dl

2
√

2
e
−
√

2( π
2 −θ̃ul )

σθ ,dl +
σ2

θ ,dl

2
−

σ2
θ ,dl

2
e
−
√

2( π
2 −θ̃ul )

σθ ,dl

(2.24)

25



By adding these two integrals, we get the final expression of θ̃dl as:

θ̃dl =
βθ√

2 σθ ,dl

[
2θ̃ul σθ ,dl√

2
+

π σθ ,dl

2
√

2

(
e

√
2− π

2 −θ̃ul )
σθ ,dl

−e
−
√

2( π
2 −θ̃ul )

σθ ,dl

)
+

σ2
θ ,dl

2

(
e

√
2(− π

2 −θ̃ul )
σθ ,dl − e

−
√

2( π
2 −θ̃ul )

σθ ,dl

)]
(2.25)

Similarly, we can obtain the DoD estimation for azimuth angle as:

φ̃dl =
βφ√

2 σφ ,dl

[
2φ̃ul σφ ,dl√

2
+

π σφ ,dl

2
√

2

(
e

√
2(− π

2 −φ̃ul )
σφ ,dl

−e
−
√

2( π
2 −φ̃ul )

σφ ,dl

)
+

σ2
φ ,dl

2

(
e

√
2(− π

2 −φ̃ul )
σφ ,dl − e

−
√

2( π
2 −φ̃ul )

σφ ,dl

)]
, (2.26)

where βφ = 1

1−e
− π√

2σφ ,dl

.

2.5.2 Downlink Achievable Rate Analysis

In this section, we will derive the downlink achievable rate for our model. The downlink achievable

rate can be written as:

R = log2

[
det

(
I+

HdlQdlHdlH

σ2
n

)]
(2.27)

where σ2
n is the noise variance and Hdl is the downlink channel defined as:

Hdl = BdlDdlAdlH
(2.28)
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where D = diag
[

αdl(0) αdl(1) . . . αdl(L−1)

]
, L is the total number of paths, αdl(lth) is the

complex channel gain for lth path, Bdl =

[
er,dl(0) er,dl(1) . . . er,dl(L−1)

]
,er,dl(`) =

[
1 e jωdl

`

. . . e j(Nt−1)ωdl
`

]T

, where ωdl
` = (2π∆t/λ dl)cosΩdl

` , ∆t is the spacing between the adjacent receive

antenna elements, Ωdl
` is the receive angle (DoA) for `-th path of the downlink channel, and λ dl is

the downlink carrier wavelength. Moreover, Adl =

[
et,dl(0) et,dl(1) . . . et,dl(L−1)

]
, et,dl(`)=

a(vdl
` )⊗a(udl

` ) where⊗ represents the Kronecker product, and a(udl
` )=

[
1 e judl

` . . . e j(M1−1)udl
`

]T

and a(vdl
` ) =

[
1 e jvdl

` . . . e j(M2−1)vdl
`

]T

can be viewed as the transmit steering vectors of the el-

evation and azimuth angles, respectively. Here, udl
` = 2π∆r

λ dl cosθ dl
` and v` = 2π∆r

λ dl sinθ dl
` cosφ dl

` are

the two transmit spatial frequencies at the BS, ∆r is the spacing between adjacent antenna elements

in the transmit antenna array, and θ dl
` and φ dl

` are the elevation and azimuth DoDs for the `-th path

of the channel, respectively. Finally, Qdl is the covariance matrix of the transmit signal, which can

be defined as:

Qdl = E
[
wxdlxdlHwH

]
= w E

[
xdlxdlH

]
wH = wwH

(2.29)

where w is the beamformer in the dominant direction, and the second equality holds due to the fact

that the transmit signal x is a Gaussian random variable with zero mean and unit variance. Then

the achievable rate can be expressed as

R = log2

[
det

(
I+

BdlDdlAdlHwwHAdlDdl∗BdlH

σ2
n

)]

= log2

[
det

(
I+

AdlHwwHAdlDdl∗BdlHBdlDdl

σ2
n

)] (2.30)
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For the massive MIMO systems, BdlHBdl

Nt
≈ I so that the achievable rate can be simplified as

R = log2

[
det

(
I+

AdlHwwHAdlDdl∗DdlNt

σ2
n

)]
(2.31)

Now, the beamforming vector w can be defined as:

w =
1
Nr

ẽt,dl(ϕ̂ϕϕdl), (2.32)

where ẽt,dl(ϕ̂ϕϕdl) is steering vector corresponding estimated DoD. The term AdlHw can now be

written as:

AdlHw =
1
Nr



eH
t,dl(0)ẽt,dl(ϕ̂ϕϕdl)

...

eH
t,dl(`)ẽt,dl(ϕ̂ϕϕdl)

...

eH
t,dl(L−1)ẽt,dl(ϕ̂ϕϕdl)


, (2.33)
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where, for massive MIMO systems all elements, will be zero except for the one that correspond to

the dominant DoA, ϕ̂ϕϕul:

AdlHw =
1
Nr



0

...

eH
t,dl(ϕ̂ϕϕul)ẽt,dl(ϕ̂ϕϕdl)

...

0


. (2.34)

Hence, AdlHwwHAdl will be a diagonal matrix and the final expression for the achievable rate can

be expressed as

R = log2

(
1+
|eH

t,dl(ϕ̂ϕϕul)ẽt,dl(ϕ̂ϕϕdl)|2 |αdl(ϕ̂ϕϕul)|2Nt

N2
r σ2

n

)
, (2.35)

where αdl(ϕ̂ϕϕul) is the channel gain corresponding to the dominant path.

2.6 Performance Evaluation of Downlink Beamforming

In this section, we analyze DoD estimation for FDD massive MIMO systems. As a performance

metric, we use the downlink achievable rate to compare the results with the traditional method.

We first evaluate ESPRIT-based uplink DoA estimation for FDD massive MIMO systems. As a

performance metric, we use the root mean square error (RMSE) of the estimated elevation and

azimuth angles, and the RMSE of any angle (either azimuth or elevation) of path ` is defined

as
√
E{(θ`− θ̂`)2}, where θ` and θ̂` denote the true and estimated angles, respectively, and E
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represents expectation over different channel realizations.

To evaluate the performance of DoA estimation, we assume that there are 4 dominant clus-

ters, and each cluster contributes one resolvable path, which is typical for outdoor millimeter-wave

communication systems at both 28 GHz and 73 GHz. The antenna spacing for both the received

and transmit antennas, at the BS and the UE, is assumed to be 0.5λ . The number of receive anten-

nas at the UE is set as 8. The number of transmit antennas at BS is set as 8×8. The azimuth and

elevation DoAs are chosen randomly from the uniform distribution over support U [−180◦,180◦]

and U [50◦,80◦], respectively, In this work, we invoke the far field assumption, and the wavefront

impinging on the antenna array is assumed to be planar. Finally, the total available transmit power

at each MS is assumed to be unity, and the SNR is defined as the ratio of the received signal power

to the noise power.

The performance of the estimation of elevation and azimuth angles for 8× 8 and 16× 16 an-

tenna arrays is shown in Figure 2.1 and Figure 2.2, respectively, where the RMSE of DoA estima-

tion has been used as a performance metric.

It can be observed that as SNR increases, the estimation performance improves. Moreover, in

the high SNR regime, an increase in the total number of BS antennas also has a positive impact

on the estimation of both elevation and azimuth angles. In this work, we perform simulation for

the downlink achievable rate based on four cases. First, we assume that the downlink beamformer

is constructed by simply taking the uplink angles as the beamforming directions. This is the tra-

ditional way of beamforming. Second, the beamformer utilizes (2.25) just for elevation angles,

and the azimuth angle is chosen as the same as the uplink azimuth angle. The third case is just

the vice-versa of the second case—the BS uses (2.26) for azimuth and elevation angle is chosen as

that of uplink. Finally, in the proposed method, we assume for beamforming in both elevation and
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Figure 2.1: Elevation angle estimation for 8× 8 and 16× 16 antenna array for Gaussian and
uniform DoA distribution.
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Figure 2.2: Azimuth estimation for 8× 8 and 16× 16 antenna array for Gaussian and uniform
DoA distribution.
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azimuth domain, the BS utilizes both (2.25) and (2.26). The results are shown in Figure 2.1, from

which it is evident that the proposed beamforming method gives higher achievable rate than any of

the other three cases.
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Figure 2.3: Downlink achievable rate vs. SNR for 8×8 URA at the BS.
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Chapter 3

Channel Estimation for FDD Multi-User

Massive MIMO systems

3.1 Introduction

In this chapter, channel estimation techniques for FDD multi-user massive MIMO systems will be

discussed. This chapter is organized as follows. We begin with compressive sensing in Section 3.2,

after which the system model is discussed in Section 3.3. The downlink framework is discussed in

detail in Section 3.4. In Section 3.4.1 channel estimation techniques are discussed. In Section 3.5,

Uplink CSIT feedback is discussed. The performance of channel estimation methods is discussed

in Section 3.6.
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3.2 Compressive Sensing

3.2.1 Motivation

The traditional method to acquire and reconstruct a continous-time bandlimited signal from a set

of uniformly spaced samples is based on the Shannon–Nyquist sampling theorem, which states

that the sampling rate (Nyquist rate) should be at least twice the highest frequency present in the

signal of interest. Unfortunately, in many important and emerging applications including digital

image and video cameras, the Nyquist rate is high, which results in many samples and makes

compression a necessity prior to storage or transmission. One of the most popular techniques for

signal compression is known as transform coding, which is based on finding a basis that provides

a sparse or compressible representation for signals in a class of interest. A sparse representation

of a signal of length N means that we can represent it with K nonzero coefficients where K << N.

A compressible representation of a signal of length N means that it is well-approximated by a

signal with only K nonzero coefficients. Both sparse and compressible signals can be represented

with high accuracy by preserving only the values and locations of the largest coefficients of the

signal. This process is called sparse approximation, and forms the foundation of transform coding

schemes that exploit signal sparsity and compressibility, including the JPEG, JPEG2000, MPEG,

and MP3 standards. In practice, signals tend to be compressible, rather than sparse. Mathemati-

cally, a compressible signal has a representation whose entries decay rapidly when sorted in order

of decreasing magnitude. Leveraging the concept of transform coding, compressive sensing (CS)

has emerged as a new framework for signal acquisition and sensor design that enables a potentially

large reduction in the sampling and computation costs for sensing signals that have a sparse or

compressible representation [64, 65, 66, 67, 68]
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3.2.2 Fundamentals of Compressive Sensing

Compressive sensing (CS) is a simple and efficient signal acquisition technique that collects a few

measurements about the signal of interest and later uses optimization techniques for reconstructing

the original signal from what appears to be an incomplete set of measurements. There are two

important aspects in CS: information preservation and recovery information. In CS, we obtain a

unique solution for underdetermined linear system of equations y = Ax, where y ∈ RM, A ∈ RM×N

and x ∈ RN , exploiting the fact the signal is sparse (which means it has at most k elements that

are non-zero, where k� N). The matrix (A) is called the sensing matrix, measurement matrix, or

dictionary. If the signal has a sparse representation then we can transform it into a certain subspace

as a linear combination of some basis. Because the CS model is nonlinear, it presents a difficulty in

the algorithms that perform the sparse recovery. In addition, it turns out to find the unique solution,

the sensing matrix must satisfy certain properties:

• Restricted Isometry Property (RIP):

Any k columns in A must be linearly independent. This property is difficult to calculate and

takes time if N is large. However, it turns out that there is class of matrices that satisfy this

property:

– Gaussian Random Matrices.

– Bernoulli Random Matrices.

All the matrix that obey the RIP property provided that:

M ≥ c k log
(

N
k

)
(3.1)
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where c is small constant [66, 69, 70].

• Null Space Property (NSP):

If we wish to be able to recover all sparse signals x from the measurements Ax, then it is

immediately clear that for any pair of distinct vectors x, x̀∈∑k we must have Ax 6= Ax̀, since

otherwise it would be impossible to distinguish x from x̀ based solely on the measurements y.

More formally, by observing that if Ax = Ax̀ then A(x− x̀) = 0 with (x− x̀) ∈ ∑2k, we see

that A uniquely represents all x ∈ ∑k if and only if N(A) contains no vectors in ∑2k. While

there are many equivalent ways of characterizing this property, one of the most common

is known as the spark. Therefore, the smallest number of columns in A that are linearly

dependent, which is called spark (A), should be greater than 2k [67].

• Mutual coherence:

The mutual coherence of a matrix A, µ(A) is the largest absolute normalized inner product

between different columns of A.

µ(A) = max
1≤i< j≤N

|〈 ai,a j〉|
||ai||2||a j||2

(3.2)

where ai is the ith column of A. The coherence of a matrix is always in the range µ(A) ∈[√
N−M

M(N−1) ,1
]
, where the lower bound is known as the Welch bound. The lower bound

is approximately µ(A) ≥ 1√
M

[67, 65]. The definition of incoherence usually states that

distances between sparse signals are approximately conserved as distances between their

respective measurements generated by the sampling process. The following condition on A
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are required to guarantee uniqueness.

k <
1
2

(
1+

1
µ(A)

)
(3.3)

Compressive sampling is mainly concerned with low coherence. Random matrices are

largely incoherent with any fixed basis matrix [66, 70].

There are two methods to recover the sparse signal. The first are l1 minimization methods,

such as Basis Pursuit (BP), which use a linear programming optimization to recover the signal.

This method provides strong guarantees and stability, but it requires large computational cost, in

particular for large-scale applications. For example, a solver based on the interior point method

has an associated computational complexity order of O(m2n3). For many real-time applications,

including wireless communication applications, the computational cost and time complexity of the

l1-norm minimization solver might be burdensome [69]. The second method, which uses greedy

methods, calculate the support of the signal iteratively, such as Matching Pursuit (MP) and Or-

thogonal Matching Pursuit (OMP). In the OMP algorithm, columns of the matrix A are chosen one

at a time using a greedy strategy. Specifically, in each iteration, a column maximally correlated

with the modified observation is chosen. This is not necessarily optimal since the choice does not

guarantee to pick the column associated with the nonzero element of x. These methods are usually

much faster than BP, but they cannot provide the same guarantees as the BP method [71, 67].

38



3.3 System Model

In this chapter, we consider a flat and block-fading FDD multi-user massive MIMO system with

one BS equipped with Nt antennas that serves K non-cooperating users. Each user has Nr antennas.

For the downlink, the Nr×1 received signal for k-th user, ydl
k , can be expressed as

ydl
k = Hdl

k xdl +ndl
k , (3.4)

where Hdl
k ∈ CNr×Nt is the downlink channel matrix for the k-th user with zero mean and spatial

CCM
(
Rk ∈ CNrNt×NrNt

)
, which is defined on the column stacking of the downlink channel matrix.

Thus, vec(Hdl
k ) ∈ C N (0,Rk). We assume that users have different spatial CCM. We compute the

spatial CCM for each user based on different models include the one-ring model, the Laplacian

model, and the exponential model, which are described in Section 3.6. xdl ∈CNt×1 is the transmit-

ted signal and ndl
k ∈ CNr×1 is a complex Gaussian noise vector, where ndl

k ∼ C N (0,INr). In this

chapter, we consider the angular domain representation of the downlink channel matrix [72, 42],

where the downlink channel matrix for the k-th user Hdl
k can be represented as:

Hdl
k = ARHw

k AH
T (3.5)

where Hw
k ∈ CNr×Nt is the angular domain channel matrix for the k-th user and AR ∈ CNr×Nr and

AT ∈ CNt×Nt are defined as unitary matrices for the angular domain transformation at the UE and

BS respectively. Based on [42, 47, 54], the angular domain channel matrix Hw
k is sparse due to

limited local scattering effects at the BS as shown in Figure 3.1. The (i, j)-th nonzero entry of

Hw
k indicates there is a spatial path from the j-th transmit direction of the BS to the i-th receive
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direction of UE. We define the i-th row vector of Hw
k as hki and supp(hki) denotes the index set of

nonzero elements in hki. Due to the fact that the row vectors of Hw
k usually have the same sparsity,

the following assumption for Hw
k is considered as in [42]:

Figure 3.1: Sparsity structure of downlink channel matrix due to limited local scattering at the BS.

Assumption 1. Define hki as the i-th row vector of Hw
k , then there exists an index set Ωk,0 <

|Ωk| � Nt ,∀k, such that

supp(hk1) = supp(hk2) = · · ·= supp(hkNr)
∆
= Ωk (3.6)

3.4 Downlink Framework

Accurate downlink channel state information at the transmitter (CSIT) is essential to utilize the

benefit of massive MIMO. Conventional approaches to obtain CSIT for frequency-division duplex

(FDD) multi-user massive MIMO systems require downlink training and uplink CSI feedback.

However, such training results in large overhead for massive MIMO systems because of the large

dimensionality of the channel matrix. In this section, we investigate the channel estimation prob-
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lem in FDD multi-user massive MIMO systems with spatially correlated channels and develop an

efficient channel estimation algorithm that exploits the sparsity structure of the downlink channel

matrix. The proposed algorithm selects the best features from the measurement matrix to obtain

efficient CSI acquisition that can reduce the downlink training overhead compared with the con-

ventional LS/MMSE channel estimators.

3.4.1 Downlink Channel Estimation

In this section, CSI estimation techniques using traditional methods such as least squares (LS),

minimum mean squared error (MMSE), compressive sensing (CS), and backward feature selection

(BFS) are considered. During the downlink training phase, the BS broadcasts a sequence of T < τ

pilot vectors [x(1) . . .x(t) . . .x(T )], where τ is the channel coherence interval and data will be

transmitted for a fraction
(

τ−T
τ

)
. Moreover, E||x(t)||2 = P, t = 1, . . . ,T , where P is the average

transmit power at the BS per training time slot. The received signal vector for k-th user in the t-th

time slot, i.e. yk(t) ∈ CNr×1 can be written as:

yk(t) = Hdl
k x(t)+nk(t), t = 1, . . . ,T (3.7)

where Hdl
k ∈ CNr×Nt is the quasi-static block fading downlink channel matrix, and nk(t) ∈ CNr×1

is a complex Gaussian noise vector with i.i.d. entries having zero mean and unit variance. Let

X = [x(1) . . .x(T )] ∈ CNt×T , Yk = [yk(1) . . .yk(T )] ∈ CNr×T and Nk = [nk(1) . . .nk(T )] ∈ CNr×T ,

respectively, be the pilot matrix with total power constraint tr(XXH) = PT , received signal at k-

th user during downlink training phase, and the noise matrix. The received signal in 3.7 can be
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equivalently represented as:

Yk = Hdl
k X+Nk, k = 1, . . . ,K (3.8)

The CSI estimation based LS approach can be expressed as [73]:

H̃dl
k,LS = YkX† (3.9)

where X† = XH(XXH)−1 is the pseudoinverse of X and (·)H denotes the Hermitian transpose.

By vectorizing the received signal in (3.8) and applying vec(ABC) =
(
CT ⊗A

)
vec(B), where

vec(X) is the column vector obtained by stacking the columns of X, the received training signal at

k-th user can be expressed as:

vec(Yk) = X̃vec(Hdl
k )+vec(Nk) (3.10)

where X̃ ∆
= (XT ⊗ INt ) and In denotes the n-dimension identity matrix. The MMSE estimator

H̃dl
k,MMSE of the downlink channel matrix for k-th user can be written as [74]:

vec(H̃dl
k,MMSE) = RkX̃H(X̃RkX̃H + IT Nt )

−1vec(Yk) (3.11)

The traditional channel estimation methods such as LS and MMSE require that the optimal training

length be at least the same as the number of transmit antennas [75], T ≥ Nt , which leads to large

overhead in downlink training and CSI feedback for FDD multi-user massive MIMO systems due

to large number of BS antennas. Therefore, these methods are not efficient for FDD multi-user
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massive MIMO systems. Since the downlink channel matrix exhibits sparsity structure in the

angular domain, channel estimation based on the CS approach provides efficient CSI acquisition by

utilizing prior knowledge of the downlink channel sparsity structure so that the overhead reduction

can be achieved [46, 54]. In the CS method, the BS sends compressive training symbols X∈CNt×T

with T �Nt during the downlink training phase, then users estimate their respective downlink CSI

and feed it back to the BS during uplink feedback. By using Equation 3.5, the received signal

for the k-th user during the downlink training phase in (3.8) can be rewritten into the noisy CS

recovery problem as:

Ỹk = X̃H̃dl
k + Ñk (3.12)

where,

Ỹk =

√
Nt

PT
YH

k AR ∈ CT×Nr

X̃ =

√
Nt

PT
XHAT ∈ CT×Nt

H̃dl
k = (Hw

k )
H ∈ CNt×Nr

Ñk =

√
Nt

PT
NH

k AR ∈ CT×Nr

(3.13)

In the CS approach, the measurement matrix X̃ must satisfy the restricted isometry property (RIP)

in order to obtain efficient CSI recovery. The RIP is defined as follows: The measurement matrix

X̃∈CT×Nt satisfies the RIP of order k with isometry constant δk if 0 < δk < 1 and δk is the smallest
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number such that:

(1−δk) ||h||2 ≤ ||X̃h||2 ≤ (1+δk) ||h||2 (3.14)

holds for all k sparse h [67]. The following theorem shows that the measurement matrix X̃ satisfies

the RIP.

Theorem 1. The measurements matrix X̃ =
√

Nt
PT XHAT with pilot matrix X ∈ CNt×T drawn from

Rademacher distribution satisfies the RIP property.

Proof. We have

[X]i, j =


√

P
Nt

with probability = 0.5

−
√

P
Nt

with probability = 0.5

(3.15)

where i = 1, . . . ,Nt , j = 1, . . . ,T . Observe that the rows of matrix X have l2 norm equal to
√

PT
Nt

.

We have AT as a unitary matrix and ‖AT‖2 = 1. Let B =
√

Nt
PT XH , then we observe that the

columns bi of matrix B hav `2 norm equal to one. Let h∈CNt be a sparse vector with ‖h‖0 = s > 1
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and z = AT h. Thus, we have:

|‖BAT h‖2
2−‖h‖2

2|= |‖BAT h‖2
2−‖AT h‖2

2|

= |‖Bz‖2
2−‖z‖2

2|

= |(z1b11 + . . .+ zNt b1Nt )
2 + . . .+

(z1bT 1 + . . .+ zNt bT Nt )
2−

Nt

∑
i=1

z2
i |

= |2 ∑
i< j

ziz j〈bi,b j〉|

≤ 2µ ∑
i< j
|ziz j|

≤ µ

(∑
i
|zi|

)2

−‖z‖2
2


≤ µ

(
‖z‖2

1−‖z‖2
2
)

≤ µ
(
Nt‖z‖2

2−‖z‖2
2
)

≤ µ (Nt−1)‖z‖2
2

= µ (Nt−1)‖h‖2
2

Where ‖z‖2
1 ≤ Nt‖z‖2

2 and µ = max
i 6= j
|〈bi,b j〉| is the mutual coherence of matrix B. If we let δ =

µ(Nt−1), then the matrix X̃ = BAT satisfies the RIP property:

(1−δ )‖h‖2
2 ≤ ‖BAT h‖2

2 ≤ (1+δ )‖h‖2
2

The OMP algorithm is an iterative greedy algorithm that selects a column from X̃ that is most
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Algorithm 1: OMP algorithm for CSI recovery
Input : Ỹk, X̃,AT ,AR and sparsity level (s)
Output : Ĥdl

k

• Initialization : r0
k = ỹk j, h̃dl

k j = 0 where ỹk j and h̃dl
k j is the j-th column of Ỹk, H̃dl

k respectively,
j = 1 : Nr, supp0

k = /0

• while i≤ s do

• li
k = argmax |〈r(i−1)

k , X̃〉|

• suppi
k = suppi−1

k ∪ li
k

• (h̃dl
k j)

i = (X̃suppi
k
)†ỹk j

• ri
k = ỹk j− X̃suppi

k
(h̃dl

k j)
i

• end (while)

• Ĥdl
k = AR(H̃dl

k )
HAH

T

correlated with the current residuals. Then, this column is added to the support set and the al-

gorithm updates the approximation for the sparse vector by projecting ỹk j orthogonally onto the

columns of X̃ associated with the current support set. The proposed OMP algorithm is summa-

rized in Algorithm 1. The performance of the OMP algorithm depends on the selection of the best

column’s index from the measurement matrix X̃. According to the CS literature, there is a high

probability that OMP algorithm fails to select a correct element at the first iteration for certain ran-

dom matrices [67]. To address this issue, in this chapter, we develop a BFS algorithm to acquire

CSI. The BFS algorithm depends on the cost function. In our scenario, since we are interested in

CSI estimation, we choose least squares as the cost function. The BFS algorithm selects the best

features from the measurement matrix X̃ based on `1 norm minimization and updates the feature

set at each iteration. The proposed BFS algorithm is summarized in Algorithm 2.

46



Algorithm 2: BFS algorithm for CSI recovery
Input : Ỹk, X̃,AT ,AR and sparsity level (s)
Output : Ĥdl

k

• Initialization : initialize feature set F = {1, . . . ,Nt} .

• for i = Nt− s, do

• compute (H̃dl
k )F = X̃†

FỸk

• compute ||hi||1 = ∑
Nr
l=1 |hli|,where hi is the i-th

column of (H̃dl
k )

H
F .

• update F = F−{i : min||hi||1}

• end (for)

• Ĥdl
k = AR(H̃dl

k )
HAH

T , where (H̃dl
k )

F = X̃†
FỸk,

(H̃dl
k )

[Nt ]\F = 0

3.5 Uplink CSIT Feedback

As we discussed earlier, in FDD multi-user massive MIMO systems, each user measures the down-

link MIMO channel through the reference signals/pilots, and then feeds back the CSI to the BS us-

ing codebook-based channel feedback [76]. In this work, we consider the limited feedback scheme

used in FDD LTE/LTE-Advanced standards. The CSI feedback in LTE/LTE-Advanced standards

usually contains two kinds of information: the channel direction information (CDI), which is re-

lated to the eigen-directions of the underlying MIMO channel, and the channel quality indicator

(CQI), which is related to the strength of the corresponding spatial directions.

In limited feedback systems such as multi-user massive MIMO systems, each user feeds back

its CQI and CDI to the BS. CQI feedback is relatively straightforward where user k feeds back

the quantized version of the singular values using scalar or vector quantization methods. CDI

feedback is generally more involved relying on codebook-based feedback. After obtaining each
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of the eigen-directions of the MIMO channel, say h̃(`)
k = h(`)

k /‖h(`)
k ‖ for the `-th eigen-direction,

∀` ∈ {1, . . . ,Nr}, user k quantizes it to ĥ(`)
k using a random vector quantization codebook C , which

is known to both the BS and the user. In general, there will be multiple CDIs of the underlying

MIMO channel; the exact number of CDIs to be fed back will impact the system performance

and the feedback overhead. The indices of the quantized CDIs will be sent to the BS through a

feedback link. Accordingly, the BS obtains ĥ(`)
k and then uses these for downlink MIMO precoding.

A quantization codebook C consisting of 2β Nt-dimensional unit norm vectors is given by C =

{c1,c2, . . . ,c2β }, where 2β is the codebook size, β is the number of feedback bits per user, and

cm ∈ CNt×1 is a unit norm codeword, i.e., ‖cm‖2 = 1.

Each user chooses the CDI in the codebook that is closet to its eigen-direction, where close-

ness is usually measured in terms of the angle between the eigen-direction and the codeword in

the codebook or equivalently the inner product. Hence, user k computes quantization index q(`)k

according to

q(`)k = argmax
m=1,...,2β

|〈h̃(`)
k ,cm〉|= argmin

m=1,...,2β

sin2(∠(h̃(`)
k ,cm)),

and feeds the index back to the BS. Upon reception of the index q(`)k , the BS can recover the CDI

by searching for the corresponding entry in the codebook. In this way, the feedback overhead is

significantly reduced with a penalty of quantization error in the finite rate feedback systems [77].

3.6 Performance Evaluation of Channel Estimation Techniques

In this section, we investigate the performance of channel estimation techniques that we discussed

in Section 3.4.1 and compare the results of the proposed BFS algorithm with the CS based OMP
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algorithm and traditional LS/MMSE estimators through Monte Carlo simulations. As a perfor-

mance metric, we use normalized mean square error (NMSE) to evaluate the performance of each

estimator. The NMSE for each user is defined as E
(
||Hdl

k −Ĥdl
k ||

2
F

||Hdl
k ||

2
F

)
. The antenna spacing for both

the transmit and receive antennas, at the BS and the user, is assumed to be 0.5λ . The number of

receive antennas at the user is set to be 8. The number of transmit antennas at the BS is set to be

64. The average transmit SNR is 30 dB. For simplicity, we assume that all users have the same

channel sparsity level, which is s = 8. First, we evaluate three methods to generate the CCM for

an arbitrary user. The CCM for k-th user (Rk) can be modeled by:

• One-ring model (OR): The (i, j)-th element of Rk for a uniform linear array (ULA) is given

by [78, 79]

[Rk]i, j =
αk

2∆

ˆ
∆+θk

−∆+θk

e− j2π
d
λ
(i− j)sin(x)dx (3.16)

Where ∆,αk,θk,d,and λ refer to the angular spread, average large-scale fading, mean an-

gle of arrival (AoA) of the k-th user in the azimuth direction, antenna spacing, and carrier

wavelength, respectively.

• Laplacian model: The (i, j)-th element of Rk for a uniform linear array (ULA) is given by

[80, 81]

[Rk]i, j =
αk√
2∆

ˆ
π+θk

−π+θk

e−
√

2
∆
|x−θk|− j2π

d
λ
(i− j)sin(x)dx (3.17)

where ∆,αk,θk,d,and λ are defined in the OR model.
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• Exponential model: The (i, j)-th element of Rk is given by [82, 83]

[Rk(ρ,θk)]i, j =


(
ρe jθk

) j−i i≤ j

(
ρe− jθk

)i− j i > j

(3.18)

where ρ is the correlation factor, 0≤ ρ ≤ 1. For simplicity, ρ is the same for all users while

the AoA (θk) is different and uniformly distributed in [−π,π).

Figure 3.2 shows the cumulative distribution function (CDF) for the three models discussed above

under different parameters. We use the empirical CDF, F̂(x) = ∑i λi≤x
n , where λi, i = 1, . . . ,n are the

singular values of the CCM Rk ∈ Cn×n. The figure shows that a large number of singular values

are close to zero, while a few are large for both OR and Laplacian models. The exponential model

provides a slight variation in its singular values. Figure 3.3 shows the distribution of singular

values for the three models discussed above. From this figure, we observe that both OR and

Laplacian model curves are L-shaped, where many singular values are close to zero. This suggests

their respective CCMs are not full rank and the effective rank (ER), (number of singular values

that contribute to 99 percent of the total singular values), for ∆ = π/12,d = 0.5λ , and ρ = 0.6,

varies between 1 and 50, 1 and 106, and 1 and 491 for the OR, Laplacian and exponential models,

respectively (observe the corner of the L-curve). On the other hand, the exponential model provides

full-rank CCM because it has a slow variation in its singular values. In what follows, we consider

the exponential model with correlation factor ρ = 0.6.

Figure 3.4 shows the average NMSE of each estimator vs. the training overhead (T). We

observe that LS/MMSE estimators have poor performance due to the large number of BS antennas.

The OMP algorithm shows better performance than traditional LS/MMSE estimators because it
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Figure 3.2: The CDF of the singular values of CCM for an arbitrary user with Nt = 64,Nr = 8,α =
1 and θ = π/3.
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Figure 3.3: The distribution of the singular values of CCM for an arbitrary user with Nt = 64,Nr =
8,α = 1 and θ = π/3.
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exploits the sparsity structure of the downlink channel matrix, but it has poor performance at the

first iteration, which is a well-known property of the CS based greedy algorithm. Moreover, we

observe that the BFS algorithm has better performance than the OMP algorithm especially at the

first iteration because of its ability to select the best features from the measurement matrix based

on `1 norm minimization.
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Figure 3.4: The normalized MSE performance of CSI vs. downlink training overhead (T) for
Nt = 64 antennas at the BS.

In Figure 3.5, we compare the average NMSE of each estimator versus the transmit SNR. In

this figure, we set the sparsity level to s = 8 and T = 30. The figure shows the proposed algorithm

outperforms the traditional estimation methods and the CS based OMP algorithm under the same

training length. Moreover, it shows the proposed algorithm achieves a better performance gain in
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the high SNR region.
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Figure 3.5: The normalized MSE performance of CSI vs. transmit SNR for T = 30,s = 8,Nt =
64,Nr = 8 and K = 40.

The average NMSE performance of each estimator versus the sparsity level is depicted in Fig-

ure 3.6. In this figure, we set the training length to T = 30 and the transmit SNR = 30dB. The

figure shows the performance of traditional LS/MMSE estimators is not affected by the sparsity

level, while channel estimation based on the CS approach depends on the sparsity level. We ob-

serve that as the sparsity level increases, the average NMSE increases and the proposed algorithm

outperforms the traditional CS based OMP algorithm.

Figure 3.7 shows the average NMSE of each estimator vs. the number of transmit antennas at

the BS. From this figure, we observe that as the number of transmit antennas at the BS increases,
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the average NMSE increases and the proposed algorithm outperforms the traditional CS based

OMP algorithm.
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Figure 3.6: The normalized MSE performance of CSI vs. sparsity level for T = 30,Nt = 64,Nr =
8 and K = 40.
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Figure 3.7: The normalized MSE performance of CSI vs. number of transmit antennas at the BS
for T = 30,Nr = 8 and K = 40.
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Chapter 4

Downlink Achievable Rate Analysis for

FDD massive MIMO systems under Limited

Feedback

4.1 Introduction

Massive multiple input multiple output (MIMO) (also called Large-Scale Antenna) systems are

considered to be a promising technique for 5G cellular networks. In massive MIMO systems,

a base station (BS) equipped with hundreds or thousands of active antenna elements (M) com-

municate with a limited number of scheduled users (K) such that M/K > 10 [30, 84, 85]. Due

to the large number of antennas used at the BS, massive MIMO can significantly increased the

system capacity by orders of magnitude compared to current 4G wireless systems and improve

both energy consumption and spectrum efficiency. Another benefit of massive MIMO systems

is alleviating inter-user interference with a simple linear precoder and receiver combiner such as

57



zero-forcing (ZF), matched filter (MF), and minimum mean square error(MMSE). Massive MIMO

systems depends on spatial multiplexing, which requires the knowledge of the channel transfer

function on both the uplink and downlink [86, 32, 87]. To take advantage of massive MIMO

systems, knowledge of channel state information at the transmitter (CSIT) is essential in order to

perform downlink beamforming and resource allocation [88, 42, 89]. In time-division duplexing

(TDD) systems, the base station (BS) acquires CSI via uplink channel reciprocity, where uplink

training symbols scale linearly with the number of users, which is much less than the number of

the BS antennas. However, in TDD massive MIMO systems, the CSI estimation may be inaccurate

because of calibration errors in the radio frequency (RF) chains [46, 47, 90]. In frequency-division

duplex (FDD) systems, uplink and downlink channels fade independently if the frequency sepa-

ration between them is large enough compared to the coherence bandwidth of the channel. As

a result, the uplink channel information may not be applied directly for downlink beamforming.

However, there are some properties that can be exploited for downlink beamforming from uplink

channel information [88, 91]. In FDD massive MIMO systems, the BS obtains CSIT via uplink

feedback. The length of the downlink pilot training is proportional to the number of transmit an-

tennas, which is challenging in FDD massive MIMO systems due to the large number of transmit

antennas at the BS. The experimental results for massive MIMO systems show that the downlink

channel matrix exhibits sparsity in the angular domain representation due to limited local scatterers

at the BS [88, 81]. In order to reduce the downlink training overhead, the authors in [42] exploited

the hidden joint sparsity structure of the user channel matrices and developed a joint orthogonal

matching pursuit (OMP) algorithm to recover CSIT at the BS jointly. The authors in [92] devel-

oped an optimal block OMP algorithm to estimate CSI at the BS based on user grouping in order

to reduce the pilot overhead. They assumed that users in each group have the same channel cor-
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relation matrix (CCM), which results in beam block sparsity for the channel of each group. The

authors in [93] proposed a two stage algorithm to obtain downlink CSI for FDD massive MIMO

systems by exploiting the common and individual sparsity structure of the angular domain repre-

sentation of the downlink channel matrix. In the first stage, the algorithm extracts the common

and individual channel support of each user channel matrix. The second stage obtains the support

information for CSI acquisition based on weighted block `1-minimization. Most of the research

that adopts the angular domain representation of the downlink channel matrix in FDD multi-user

massive MIMO systems obtains the CSI jointly for all users at the BS based on their respective

training measurement feedback. However, such feedback is not applicable in practice.

The performance of MIMO systems with limited feedback has been studied extensively in the

literature. In [94], the author used a zero-forcing precoder to perform downlink transmission based

on quantized downlink channels from each receiver, where each receiver sends only B feedback

bits to the base station. The downlink achievable rate is analyzed for the system by using random

vector quantization (RVQ) as a codebook. The authors in [95] assume that the BS is equipped

with a uniform rectangle antenna array. They proposed a new codebook design by exploiting

the array correlation structure. A low complexity precoding scheme was proposed in [77] for

multi-cell LTE-advanced systems. They designed a downlink beam-forming scheme based on

limited feedback to mitigate inter-cell interference. The authors in [96] proposed a strategy for a

limited feedback scheme for massive MIMO systems called hybrid limited feedback with selective

eigenvalue information (HLFSEI). They fed back only quantized channel information of selective

eigenvalues to the BS and designed an optimal feedback allocation that maximizes the system

capacity. The authors in [97] proposed an algorithm that minimized the upper bound of rate loss in

MIMO uplink networks with a finite rate feedback channel. A new channel quantization scheme
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was proposed in [98] for MIMO systems to improve the performance of MIMO channels in terms

of interference alignment with limited feedback. They designed additional filters for each user that

minimize the chordal distance to decrease the channel quantization error. However, all previous

works consider a TDD system and the receiver has perfect knowledge of CSI. In FDD systems, the

BS acquires the CSI via the feedback link. However, the knowledge of downlink CSI is much more

complex in FDD massive MIMO systems due to the large dimensionality of the channel matrix,

which leads to large overhead and degrades system performance [99, 100].

In this chapter, we investigate the problem of limited feedback for a downlink multi-user mas-

sive MIMO network and design an efficient limited feedback scheme. By exploiting our previous

work for channel estimation of FDD multi-user massive MIMO systems [101], we are able to

analyze the system performance in terms of downlink achievable rate.

This research differs from the previously mentioned studies particularly in its aim to reduce the

training and feedback overhead further by exploiting the sparsity structure of the massive MIMO

downlink channel matrix. Furthermore, this work also takes into account the effects of the finite-

rate codebook based feedback adopted in the frequency division duplex (FDD) LTE-Advanced

system. The main contributions of this research can be summarized as follows.

• We consider FDD multi-user massive MIMO systems with a correlated channel model and

imperfect CSI. Most of the existing work considers TDD systems with perfect CSI available

at the receiver. Channel estimation during downlink training phase is done based on our

previous work.

• We propose a simple downlink transmission scheme based on limited feedback. To be spe-

cific, each user estimates its downlink channel during the downlink training phase. Next,
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each user quantizes its channel estimate to B bits and feeds back a limited CSI to the BS.

The BS receives B feedback bits from each user and uses our proposed scheme to perform

downlink precoding based on the channel quantizations. The proposed scheme takes into ac-

count spatial channel correlation, the effects of finite-rate codebook based limited feedback

adopted in the LTE-Advanced system, channel quantization errors, and CSI errors.

• We generate numerical results to evaluate the system performance. We consider the one-ring

channel model, the Laplacian channel model, and the exponential channel model. We use the

downlink achievable rate as a performance metric to compare our proposed limited feedback

scheme in FDD multi-user massive MIMO systems in terms of imperfect CSI under various

system parameters.

4.2 System Model

Consider a flat and block-fading FDD multi-user massive MIMO system with one BS equipped

with Nt antennas that serves K non-cooperating users. Each user has Nr antennas. It is assumed that

each co-scheduled user operating in the FDD MU-MIMO mode receives only one spatial stream

(rank 1 transmission) as specified by the Rel-10 LTE-Advanced standard [102, Chapter 11]. A

spatially correlated flat Rayleigh fading channel is assumed in this chapter where the elements

of Hdl
k are modeled as i.i.d. complex Gaussian variables with zero-mean and spatial CCM. It is

worth mentioning that in this chapter we assume users have different spatial CCM. Therefore, we

compute the spatial CCM for each user based on different models including the one-ring model, the

Laplacian model, and the exponential model (more details are discussed in Section 5.4). Moreover,

we consider the angular domain representation of the downlink channel matrix [72, 42], where the
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downlink channel matrix for the k-th user Hdl
k can be represented as:

Hdl
k = ARHw

k AH
T (4.1)

where Hw
k ∈ CNr×Nt is the angular domain channel matrix for the k-th user and AR ∈ CNr×Nr and

AT ∈ CNt×Nt are defined as unitary matrices for the angular domain transformation at the UE and

BS respectively. Based on [42, 47, 54], the angular domain channel matrix Hw
k is sparse due to

limited local scattering effects at the BS as shown in Fig. 4.1. The (i, j)-th nonzero entry of Hw
k

indicates there is a spatial path from the j-th transmit direction of BS to the i-th receive direction of

the UE. We define the i-th row vector of Hw
k as hki and supp(hki) denotes the index set of nonzero

elements in hki. Due to the fact that the row vectors of Hw
k usually have the same sparsity, the

following assumption for Hw
k is considered as in [42]:

Assumption 2. Define hki as the i-th row vector of Hw
k , then there exists an index set Ωk,0 <

|Ωk| � Nt ,∀k, such that

supp(hk1) = supp(hk2) = · · ·= supp(hkNr)
∆
= Ωk (4.2)

The BS plans to communicate a symbol vector s = [s1, . . . ,sK]
T ∈ CK×1 to its associated re-

ceivers, where sk is the transmit symbol from the BS to the k receiver with unit power of E{|sk|2}=

1. Prior to transmitting, the BS linearly precodes its downlink data vector x=∑
K
k=1
√

ρkwksk where

ρk stands for the transmit power allocated to user k; wk denotes the beam-former that the BS uses

to transmit the signal sk to user k; and W = [w1, ...,wk, ...,wK] ∈ CNt×K indicates the transmit

precoding matrix with unit-norm columns. Hence, the transmit power constraint at the BS can be
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Figure 4.1: Illustration of downlink channel sparsity.

expressed as p = E{‖x‖2} = ∑
K
k=1 ρkE{‖wk‖2} = ∑

K
k=1 ρk. Under our assumptions, the received

signal vector yk ∈ CNr×1 at user k can be written as:

ydl
k = Hdl

k xdl +ndl
k (4.3)

=
√

ρkHdl
k wksk︸ ︷︷ ︸

desired signal

+
K

∑
i=1,i 6=k

√
ρiHdl

k wisi︸ ︷︷ ︸
intra-cell interference

+ndl
k

where ndl
k ∈C

Nr×1 is a complex Gaussian noise vector, i.e., ndl ∼C N (0,INr), and Hdl
k ∈C

Nr×Nt is

the downlink channel matrix for the k-th user with zero mean and spatial CCM
(
Rk ∈ CNrNt×NrNt

)
,

which is defined on the column stacking of the downlink channel matrix. Thus, vec(Hdl
k ) ∈

C N (0,Rk). Accordingly, the signal-to-interference-plus-noise ratio (SINR) at the kth user can
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be expressed as:

SINRk =
ρk|Ĥdl

k wk|2

σ2
k +∑

K
i=1;i 6=k ρi|Ĥdl

k wi|2

=

ρkTr
(

wH
k Ĥdl

k

H
Ĥdl

k wk

)
σ2

k +∑
K
i=1;i 6=k ρiTr

(
wH

i Ĥdl
k

H
Ĥdl

k wi

) (4.4)

and the downlink achievable transmission rate for the kth user can be expressed as Rk = log2(1+

SINRk), Therefore, the sum rate of the whole network can be written as:

Rsum =
K

∑
k=1

log2

1+
ρkTr

(
wH

k Hdl
k

HHdl
k wk

)
σ2

k + Ik

 (4.5)

where Ik = ∑
K
i=1;i 6=k ρiTr

(
wH

i Hdl
k

HHdl
k wi

)
denotes the multi-user interference caused by other

users in the cell.

In order to calculate the throughput, first we estimate the channel and then based on the channel

matrix we will find the optimum beamformers. To design the optimal linear precoding scheme, it is

often desirable to maximize the output SINR for each user. However, this problem is known to be

challenging due to its coupled nature and unavailability of closed-form solutions. A more tractable

but suboptimal design is to enforce a zero-CCI requirement for each user, such as zeroforcing (ZF)

beam-forming [103, 104]. However, the sum-rate of ZF beam-forming under codebook-based

feedback usually suffers significantly from the feedback error [105]. In [106], the authors intro-

duced the concept of signal-to-leakage-and-noise ratio (SLNR) as the optimization metric for a

linear precoder design. This metric transforms a coupled optimization problem into a completely

decoupled one, for which a closed-form solution is available. Therefore, in this chapter we will
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maximize the SLNR with respect to the beamforming vectors. To further improve the system

capacity, we adopt the coordinated beam-forming (CB) algorithm proposed in [107] that jointly

optimizes the transmit and receive beam-forming via iteration. Also, we consider the existence of

quantization errors in designing the beamformer vectors. In the next section we will estimate the

downlink channel. Knowing the channel, the optimum beamformer, in the sense of maximizing

SLNR, will be calculated.

4.3 Downlink Channel Estimation

In this section, CSI estimation techniques using traditional methods such as least squares (LS),

minimum mean squared error (MMSE), compressive sensing (CS), and backward feature selection

(BFS) are considered. During the downlink training phase, the BS broadcasts a sequence of T < τ

pilot vectors [x(1) . . .x(t) . . .x(T )], where τ is the channel coherence interval and data will be

transmitted for a fraction
(

τ−T
τ

)
. Moreover, E||x(t)||2 = P, t = 1, . . . ,T , where P is the average

transmit power at the BS per training time slot. The received signal vector for k-th user in the t-th

time slot, i.e. yk(t) ∈ CNr×1 can be written as:

yk(t) = Hdl
k x(t)+nk(t), t = 1, . . . ,T (4.6)

where Hdl
k ∈ CNr×Nt is the quasi-static block fading downlink channel matrix, and nk(t) ∈ CNr×1

is a complex Gaussian noise vector with i.i.d. entries having zero mean and unit variance. Let

X = [x(1) . . .x(T )] ∈ CNt×T , Yk = [yk(1) . . .yk(T )] ∈ CNr×T and Nk = [nk(1) . . .nk(T )] ∈ CNr×T ,

respectively, be the pilot matrix with total power constraint tr(XXH) = PT , received signal at the
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k-th user during the downlink training phase, and the noise matrix. The received signal in (4.6) can

be equivalently represented as:

Yk = Hdl
k X+Nk, k = 1, . . . ,K (4.7)

The CSI estimation based LS approach can be expressed as [73]:

H̃dl
k,LS = YkX† (4.8)

where X† = XH(XXH)−1 is the pseudoinverse of X and (·)H denotes the Hermitian transpose. By

vectorizing the received signal in (4.7) and applying vec(ABC) =
(
CT ⊗A

)
vec(B), the received

training signal at k-th user can be expressed as:

vec(Yk) = X̃vec(Hdl
k )+vec(Nk) (4.9)

where X̃ ∆
= (XT ⊗INt ), the MMSE estimator H̃dl

k,MMSE of the downlink channel matrix for k-th user

can be written as [74]:

vec(H̃dl
k,MMSE) = RkX̃H(X̃RkX̃H + IT Nt )

−1vec(Yk) (4.10)

The traditional channel estimation methods such as LS and MMSE require that the optimal training

length be at least the same as the number of transmit antennas [75], T ≥ Nt , which leads to large

overhead in downlink training and CSI feedback for FDD multi-user massive MIMO systems due

to large number of BS antennas. Therefore, these methods are not efficient for FDD multi-user
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massive MIMO systems. Since the downlink channel matrix exhibits sparsity structure in the

angular domain, channel estimation based on the CS approach provides efficient CSI acquisition by

utilizing prior knowledge of the downlink channel sparsity structure so that the overhead reduction

can be achieved [46, 54]. In the CS method, the BS sends compressive training symbols X∈CNt×T

with T �Nt during downlink training phase, then users estimate their respective downlink CSI and

feed it back to the BS during uplink feedback. By using Equation (4.1), the received signal for the

k-th user during the downlink training phase in (4.7) can be rewritten into the noisy CS recovery

problem as:

Ỹk = X̃H̃dl
k + Ñk (4.11)

where,

Ỹk =

√
Nt

PT
YH

k AR ∈ CT×Nr

X̃ =

√
Nt

PT
XHAT ∈ CT×Nt

H̃dl
k = (Hw

k )
H ∈ CNt×Nr

Ñk =

√
Nt

PT
NH

k AR ∈ CT×Nr

(4.12)

Assuming the channel state information is given by either Algorithm 3 or Algorithm 4, the

problem of finding the optimum beamforming vectors can be formulated as follows.
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Algorithm 3: OMP algorithm for CSI recovery
Input : Ỹk, X̃,AT ,AR and sparsity level (s)
Output : Ĥdl

k

• Initialization : r0
k = ỹk j, h̃dl

k j = 0 where ỹk j and h̃dl
k j is the j-th column of Ỹk, H̃dl

k respectively,
j = 1 : Nr, supp0

k = /0

• while i≤ s do

• li
k = argmax |〈r(i−1)

k , X̃〉|

• suppi
k = suppi−1

k ∪ li
k

• (h̃dl
k j)

i = (X̃suppi
k
)†ỹk j

• ri
k = ỹk j− X̃suppi

k
(h̃dl

k j)
i

• end (while)

• Ĥdl
k = AR(H̃dl

k )
HAH

T

max
wk

K

∑
k=1

SLNRk (4.13)

s.t.
K

∑
k=1

ρk ≤ P

where SLNRk can be written as

SLNRk =
Tr
(
wH

k ĤdlH

k Ĥdl
k wk

)
σ2

k
ρk

+Tr
(
wH

k (∑i 6=k ĤdlH

i Ĥdl
i )wk

) (4.14)

The following result is adapted from [77] to express the optimal precoders in a closed form solu-

tion.

Proposition 1. The optimal downlink beam-forming vector wk that the base station uses to send
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Algorithm 4: BFS algorithm for CSI recovery
Input : Ỹk, X̃,AT ,AR and sparsity level (s)
Output : Ĥdl

k

• Initialization : initialize feature set F = {1, . . . ,Nt} .

• for i = Nt− s, do

• compute (H̃dl
k )F = X̃†

FỸk

• compute ||hi||1 = ∑
Nr
l=1 |hli|,where hi is the i-th

column of (H̃dl
k )

H
F .

• update F = F−{i : min||hi||1}

• end (for)

• Ĥdl
k = AR(H̃dl

k )
HAH

T , where (H̃dl
k )

F = X̃†
FỸk,

(H̃dl
k )

[Nt ]\F = 0

data to the kth user in order to maximize the signal-to-leakage-plus noise ratio can be expressed as

wopt
k = υmax

{(σ2
k

ρk
I+ H̄dlH

k H̄dl
k
)−1ĤdlH

k Ĥdl
k

}
(4.15)

where υmax(A) is the eigenvector corresponding to the largest eigenvalue of the matrix A, and

H̄dl
k = [Ĥdl

1 , . . . ,Ĥdl
k−1,Ĥ

dl
k+1, . . . ,Ĥ

dl
K ]H represents the corresponding concatenated leakage chan-

nel.

4.4 Uplink CSIT Feedback

As we discussed earlier, in FDD multi-user massive MIMO systems, each user measures the down-

link MIMO channel through the reference signals/pilots, and then feeds back the CSI to the BS

using codebook-based channel feedback [76]. In this chapter, we consider the limited feedback
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scheme used in FDD LTE/LTE-Advanced standards. The CSI feedback in LTE/LTE-Advanced

standards usually contains two kinds of information: the channel direction information (CDI),

which is related to the eigen-directions of the underlying massive MIMO channel, and the channel

quality indicator (CQI), which is related to the strength of the corresponding spatial directions.

In limited feedback systems such as multi-user massive MIMO, each user feeds back its CQI

and CDI to the BS. CQI feedback is relatively straightforward where user k feeds back the quan-

tized version of the singular values using scalar or vector quantization methods. CDI feedback

is generally more involved relying on codebook-based feedback. After obtaining each of the

eigen-directions of the downlink massive MIMO channel, say h̃(`)
k = h(`)

k /‖h(`)
k ‖ for the `-th eigen-

direction, ∀`∈ {1, . . . ,Nr}, user k quantizes it to ĥ(`)
k using a random vector quantization codebook

C , which is known to both the BS and the user. In general, there will be multiple CDIs of the

underlying downlink massive MIMO channel; the exact number of CDIs to be fed back will im-

pact the system performance and the feedback overhead. The indices of the quantized CDIs will

be sent to the BS through a feedback link. Accordingly, the BS obtains ĥ(`)
k and then uses these

for downlink MIMO precoding. A quantization codebook C consisting of 2β Nt-dimensional unit

norm vectors is given by C = {c1,c2, . . . ,c2β }, where 2β is the codebook size, β is the number of

feedback bits per user, and cm ∈ CNt×1 is a unit norm codeword, i.e., ‖cm‖2 = 1.

Each user chooses the CDI in the codebook that is closest to its eigen-direction, where close-

ness is usually measured in terms of the angle between the eigen-direction and the codeword in

the codebook or equivalently the inner product. Hence, user k computes quantization index q(`)k

according to

q(`)k = argmax
m=1,...,2β

|〈h̃(`)
k ,cm〉|= argmin

m=1,...,2β

sin2(∠(h̃(`)
k ,cm)),
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and feeds the index back to the BS. Upon reception of the index q(`)k , the BS can recover the CDI

by searching for the corresponding entry in the codebook.

It is worth noting that feedback overhead of the system depends on 1) the number of CDIs to

be fed back to each BS, and 2) the number of BSs in the cooperating set. Hence, in this way, the

feedback overhead is significantly reduced with a penalty of quantization error in the finite rate

feedback systems [77].

The relationship between the full CDI and the quantized CDI can be established by the follow-

ing lemma [105]:

Lemma 1. The relationship between the full CDI and the quantized CDI can be expressed by

h̃(`)
k =

√
1− z(`)k ĥ(`)

k +

√
z(`)k r(`)k , (4.16)

where z(`)k = 1−|h̃(`)H

k ĥ(`)
k |

2 is distributed according to the quantization error distribution and is

independent of r(`)k ∈ CNt×1 which represents a unit norm vector isotropically distributed in the

null space of ĥ(`)
k .

As we mentioned earlier, the downlink channel matrix for the k-th user can be represented as

Hdl
k = ARHw

k AH
T (4.17)

where Hw
k ∈C

Nr×Nt is the angular domain channel matrix for the k-th user and is sparse. Moreover,

AR ∈CNr×Nr and AT ∈CNt×Nt are the unitary matrices for the angular domain transformation at the

UE and BS, respectively. In the case of limited feedback, only a quantized version of the estimated

channel matrices, namely Ĥdl
k , are available at the BSs, where each user uses B bits to quantize
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Ĥdl
k to Ĥdl,Q

k . We can then perform the beamformer design where Ĥdl,Q
k are treated as the estimated

channels while we maximize the sum SLNR. To distinguish these beam-forming matrices from

those designed in the previous section, we denote these beam-forming matrices as Ŵk. To this

end, let Ĥdl
k = UĤdl

k
ΛΛΛĤdl

k
VH

Ĥdl
k

be the singular value decomposition (SVD) of the Nr×Nt channel

matrix Ĥdl
k , with UĤdl

k
and VĤdl

k
, [v(1)k , . . . ,v(Nt)

k ], two unitary matrices with dimension Nr×Nr

and Nt×Nt , respectively, and ΛΛΛĤdl
k

an Nr×Nt matrix with main diagonal (λ (1)
Ĥdl

k
, . . . ,λ

(d)
Ĥdl

k
) and zeros

on its off-diagonal, which d , min(Nt ,Nr).

It is clear that the BS only needs to know the quantized version of CDI, V̂Ĥdl
k

, and CQI, Λ̂ΛΛĤdl
k

,

to obtain the transmit beam-formers. To this end, user k feeds back the quantized version of the

singular values using scalar or vector quantization methods while employing a codebook-based

feedback to send the CDI to the BSs. In this regard, after obtaining each of the eigen-directions

of the estimated downlink massive MIMO channel, say ṽ(`)k , user k quantizes it to v(`),Qk using a

random vector quantization codebook C , as discussed earlier in this section.

The following lemma shows that the subspace of the true channel matrix can be decomposed

as the weighted sum of the quantized channel and an independent and isotropic quantization error

term [77].

Lemma 2. The quantization ΛΛΛ
Q
Ĥdl

k
VH,Q

Ĥdl
k

of the estimated channel ΛΛΛĤdl
k

VH
Ĥdl

k
follows the following

decomposition:

Λ̃ΛΛĤdl
k

ṼH
Ĥdl

k
, AĤdl

k
VQ

Ĥdl
k
+BĤdl

k
RĤdl

k
(4.18)

where Λ̃ΛΛĤdl
k

ṼH
Ĥdl

k
∈ CNr×Nt is an orthonormal basis for the subspace spanned by the columns of

ΛΛΛĤdl
k

VH
Ĥdl

k
; AĤdl

k
, ΛΛΛ

Q
Hdl

k
(INt−ZĤdl

k
)1/2; BĤdl

k
, ΛΛΛ

Q
Ĥdl

k
Z1/2

Ĥdl
k

; ZĤdl
k

is a Nt×Nt matrix with main diago-
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nal (z(1)k , . . . ,z(Nt)
k ) and represents the quantization error and satisfies Tr

{
ZH

Ĥdl
k

ZĤdl
k

}
, d2(Ĥdl

k ,Ĥ
dl
k );

and RĤdl
k
= [r(1)k , . . . ,r(Nt)

k ]H ∈CNt×Nt is an orthonormal basis for an isotropically distributed (com-

plex) Nt-dimensional plane in the null space of ΛΛΛ
Q
Ĥdl

k
VH,Q

Ĥdl
k

. The quantities AĤdl
k

, BĤdl
k

and VQ
Ĥdl

k
are

distributed independent of each other, as are the pair RĤdl
k

and ZĤdl
k

.

Taking Lemma 2 into account, the precoding vector ŵk can be designed by solving (4.13).

However, due to the limited feedback framework, it is reasonable to consider the beam-forming

design via maximizing an expected SLNR, averaging over all possible channel realizations. Hence,

the problem of interest can be formulated as

max
ŵk

K

∑
k=1

EH{SLNRk} (4.19)

s.t.
K

∑
k=1

ρk ≤ P

It is worth mentioning that, not only it is difficult to derive a closed-form expression of E{SLNRk},

but it is also hard to obtain a low-complexity algorithm to obtain the beam-forming vectors. To

tackle this issue, instead of maximizing the expected value of SLNR, we maximize the lower bound

of E{SLNRk}. The following result adapted from [77, Theorem 2] allows us to provide a closed

form solution for each transmitter precoder.

Proposition 2. The optimal precoders that are able to maximize the lower bound of ∑
K
k=1EH{SLNRk}

can be obtained by extracting the leading K columns of matrix Jk, where Jk is the generalized

eigenmatrix of the pair ∑
K
k=1E{ĤdlH

k Ĥdl
k } and σ2

k
ρk

Ik +∑i6=k ĤdlH

i Ĥdl
i as follows

Ŵk = µJk[Ik;0] (4.20)
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where µ is a scaling factor so that ∑
K
k=1 ρk ≤ P.

Feedback strategies: In the following, we introduce two feedback strategies: “Rank 1 feed-

back” and “Rank 2 feedback.” In a typical cellular network, usually the largest singular value is

dominant over the other singular values. In order to reduce the feedback overhead, each user only

needs to feed back the quantized version of the dominant singular value and the corresponding

eigen-direction, which is usually termed as “Rank 1 feedback,” Without loss of generality, we

assume that the first singular value is the largest one. Then, the optimal transmit beam-forming

vectors ŵk calculated by the BS can be expressed as (4.20), where the quantized channel matrix

has the form [λ̂
(1)
Ĥdl

k
v(1)

H

k ,0(Nr−1)×Nt ]
T .

Alternatively, each user can feed back two dominant directions: both singular values and their

corresponding eigen-directions are fed back to the BS. Without loss of generality, we assume that

the first two singular values are the dominant ones. Similar to Rank 1 feedback, the optimal solu-

tions for the transmit beam-forming vectors can be expressed as (4.20) where the quantized chan-

nel matrix is of the form [λ̂
(1)
Ĥdl

k
v(1)

H

k , λ̂
(2)
Ĥdl

k
v(2)

H

k ,0(Nr−2)×Nt ]
T . Note that Rank 2 feedback doubles the

overhead as opposed to Rank 1 feedback.

Performance analysis: To characterize the performance of the introduced algorithm with lim-

ited feedback, we examine the rate loss incurred by the proposed beam-forming algorithm, where

channel estimates are used to calculate the columns of the precoders wk. The mean loss in sum-

rate is then defined as 4Rsum = EH{Rsum}−EH{R̂sum} where EH{Rsum} is the average sum rate

from the introduced algorithm with estimated CSI and EH{R̂sum} is the rate achieved with limited

feedback of estimated CSI. Using the received signal, the upper bound on mean loss in sum-rate

will be achieved similar to the one in [77, (37)].
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4.5 Performance Evaluation

In this section, we investigate the performance of the introduced limited feedback scheme for FDD

multi-user massive MIMO systems that we discussed in Section 4.4 and compare the results of

Rank 1 and Rank 2 feedback via Monte Carlo simulations. As a performance metric, we use nor-

malized mean squared error (NMSE) for the channel estimation to evaluate the performance of

each estimator and downlink achievable rate for the limited feedback scheme to evaluate the per-

formance of Rank 1 and Rank 2 feedback. The NMSE for each user is defined as E
(
||Hdl

k −Ĥdl
k ||

2
F

||Hdl
k ||

2
F

)
.

The antenna spacing for both the transmit and receive antennas, at the BS and the user, is assumed

to be 0.5λ . The noise at each receiver is assumed to be Gaussian with zero mean and unit variance.

The number of receive antennas at the user is selected as 8. The number of transmit antennas at the

BS is selected as 64. The transmit power at the BS is fixed at 43 dBm. The system bandwidth is

taken to be 10 MHz. Codebook based random vector quantization is used through the simulation.

For simplicity, we assume that all users have the same channel sparsity level, which is s = 8. First,

we evaluate three methods to generate the CCM for an arbitrary user. The CCM for the k-th user

(Rk) can be modeled by:

• One-ring model (OR): The (i, j)-th element of Rk for a uniform linear array (ULA) is given

by [78, 79]

[Rk]i, j =
αk

2∆

ˆ
∆+θk

−∆+θk

e− j2π
d
λ
(i− j)sin(x)dx (4.21)

Where ∆,αk,θk,d,and λ refer to the angular spread, average large-scale fading, mean an-

gle of arrival (AoA) of the k-th user in the azimuth direction, antenna spacing, and carrier
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wavelength, respectively.

• Laplacian model: The (i, j)-th element of Rk for a uniform linear array (ULA) is given by

[80, 81]

[Rk]i, j =
αk√
2∆

ˆ
π+θk

−π+θk

e−
√

2
∆
|x−θk|− j2π

d
λ
(i− j)sin(x)dx (4.22)

where ∆,αk,θk,d,and λ are defined in the OR model.

• Exponential model: The (i, j)-th element of Rk is given by [82, 83]

[Rk(ρ,θk)]i, j =


(
ρe jθk

) j−i i≤ j

(
ρe− jθk

)i− j i > j

(4.23)

where ρ is the correlation factor, 0≤ ρ ≤ 1. For simplicity, ρ is the same for all users while

the AoA (θk) is different and uniformly distributed in [−π,π).

Figure 4.2 shows the cumulative distribution function (CDF) for the three models discussed above

under different parameters. We use the empirical CDF, F̂(x) = ∑i λi≤x
n , where λi, i = 1, . . . ,n are the

singular values of the CCM Rk ∈ Cn×n. The figure shows that a large number of singular values

are close to zero, while a few are large for both OR and Laplacian models. The exponential model

provides a slight variation in its singular values. From here on, we consider the exponential model

with correlation factor ρ = 0.6.

The average NMSE of each estimator versus the downlink training overhead (T ) is shown in

Figure 4.3. It is obvious that LS/MMSE estimators are not efficient for FDD multi-user massive

MIMO systems compared with channel estimation based on the CS approach. The OMP algorithm
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shows better performance than traditional LS/MMSE estimators because it exploits the sparsity

structure of the downlink channel matrix. Moreover, we observe that the BFS algorithm has better

performance than the OMP algorithm especially at the first iteration because of its ability to select

the best features from the measurement matrix based on `1 norm minimization.
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Figure 4.2: The CDF of the singular values of CCM for an arbitrary user with Nt = 64,Nr = 8,α =
1 and θ = pi/4.

In Figure 4.4, we plot the average sum-rate curve when Nt = 64 and Nr = 8 of our system

versus the SNR under different feedback strategies: Rank 1 feedback and Rank 2 feedback with

β = 12 with perfect CSI and imperfect CSI. We observe that Rank 2 feedback exhibits enhanced

performance compared to Rank 1 feedback, as expected, because with Rank 2 feedback, each user
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feeds back the two dominant eigenvectors and their corresponding eigenvalues to the BS. In this

figure, we observe a performance gain of 22.9% for Rank 2 feedback at SNR = 10 dB under

perfect CSI. The performance gain become more substantial in the high SNR regime because the

second dominant eigenvalue cannot be ignored in this regime. However, Rank 2 feedback doubles

the overhead as opposed to Rank 1 feedback. For the comparison with a different number of

feedback bits, we depict the performance of feedback strategies when β = 14, Nt = 64 and Nr = 8

in Figure 4.5. In this figure, we observe that the performance gain exhibits better performance

compared to the previous case because more feedback bits are required with large number of

antennas in order to maintain the system performance. Moreover, we observe that the performance

gap between Rank 1 feedback and Rank 2 feedback decreased as the number of feedback bits β

increases due to reduction in channel quantization error.
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Figure 4.3: The average NMSE performance of CSI versus overhead (T) for Nt = 64 antennas at
the BS.
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Figure 4.4: Average sum-rate versus SNR with Nt = 64,Nr = 8,, and β = 12.
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Figure 4.5: Average sum-rate versus SNR with Nt = 64,Nr = 8,, and β = 14.
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Chapter 5

Antenna Selection for FDD Multi-User

Massive MIMO systems

5.1 Introduction

Massive multiple-input multiple-output (MIMO) systems are a promising technique for next-generation

wireless communication systems. MIMO has been widely studied recently to enhance the spectral

and energy efficiency of cellular networks with simple linear signal processing methods or com-

bining techniques, such as matched filter (MF) and zero-forcing (ZF) [108]. The addition of more

antennas at the BS can be useful to increase throughput, reduce radiated transmit power, unifor-

mity in services everywhere in the cell, and simplicity in the signal processing in 5G technologies.

However, systems with a large number of antennas at the BS result a hardware cost due to the large

number of radio frequency (RF) chains needed for each antenna, high computational complexity,

and more power consumption [109, 110]. As the number of antennas increases at the BS, circuit

power consumption will gradually increase by the number of antennas.
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To address the issue of increasing circuit power consumption in massive MIMO systems, trans-

mit antenna selection techniques can be used to limit the number of RF chains and enhance the sys-

tem diversity gain by exploiting the spatial selectivity introduced by a large number of antennas.

The optimal subset of antennas can be obtained by using an exhaustive searching method such as a

brute force search. However, the computational complexity of an exhaustive search method grows

exponentially with the number of antennas available at the BS [111]. Therefore, a low complex-

ity suboptimal transmit antenna selection algorithm is required to improve system performance in

terms of power consumption.

Antenna selection algorithms have been widely studied for conventional MIMO systems and a

few works have been extended for massive MIMO systems. The authors in [111], propose a new

algorithm for joint antenna selection and user scheduling that maximizes the achievable sum-rate

of the system. The algorithm iteratively removes the transmit antennas and users that have mini-

mum contribution to the system performance gain. In [112], the authors introduced the concept of

sub-array antenna selection for massive MIMO systems. The idea of sub-array antenna selection

is to divide the full-array antenna into sub-arrays and use only one antenna for each sub-array. The

authors in [113] consider a point-to-point system and proposed a low complexity antenna selection

algorithm based on the norm and correlation to enhance the energy efficiency in massive MIMO

systems under a total power constraint. An iterative algorithm for transmit antenna selection based

on `1/2 regularity and group sparsity was proposed in [114]. They formulate an optimization prob-

lem that minimizes the transmission power at certain number of RF chains subject to SINR con-

straints at all users. The authors in [115] develop a transmit antenna selection strategy for massive

MIMO systems that can reduce the CSI overhead and computational complexity and improve the

system performance in terms of achievable sum-rate. They assume that each user can share infor-
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mation about CSI feedback with other users. Later, each user will remove the channel coefficients

corresponding to a certain subset of antennas and then send it back to the BS. The authors in [116],

consider transmit antenna selection in the downlink of massive MIMO systems with measured

massive MIMO channels. They select the set of antennas that maximizes the achievable sum-rate.

The authors in [117], propose an antenna selection algorithm for massive MIMO systems based on

rectangular maximum volume (RMV) approach. The proposed algorithm can choose a rectangular

submatrix with maximum volume from the channel matrix. A low complexity antenna selection

algorithm based on constructive interference performance metric was proposed in [118] to reduce

the computational costs. The proposed algorithm exploits the antenna diversity by selecting the

antenna set with optimal inter channel interference (ICI).

In this chapter, we investigate the problem of transmit antenna selection for multi-user massive

MIMO networks and design an efficient antenna selection algorithm that can reduce the hardware

complexity and improve the system performance in terms of achievable sum-rate. This chapter is

organized as follows. We begin with the system model in Section 5.2, after which the problem

formulation is discussed in Section 5.3. The performance evaluation of the proposed algorithm is

discussed in Section 5.4.

5.2 System Model

In this chapter, we consider a flat and block-fading single-cell FDD multi-user massive MIMO sys-

tem with one BS equipped with Nt antennas that serves K single-antenna non-cooperating sched-

uled users, Nt � K. The BS performs antenna selection by choosing K antennas among the Nt

83



antennas, and scheduling K users within the cell to be served simultaneously. The BS determines

A : the set of transmit antennas selected (5.1)

In the downlink, the K × 1 received signal vector y at the K scheduled users antennas can be

expressed as

y = HHx+n, (5.2)

where (·)H denotes the Hermitian of the matrix H. x ∈ CNt×1 is the signal vector transmitted

by the BS, which satisfies the power constraint E
{
‖x‖2} = P, where P is the average transmit

power available at the BS. n ∈ CK×1 is a complex circularly symmetric Gaussian noise vector,

where n ∼ C N (0,IK). H ∈ CNt×K is the overall downlink channel matrix between the BS and

the scheduled users, where H = [h1 . . .hk . . .hK]. In this chapter, we consider Rayleigh correlated

channel coefficients, where the channel vector hk ∈ CNt×1 for user k has zero mean and spatial

channel correlation matrix (CCM), Rk ∈ CNt×Nt . Thus, hk ∈ C N (0,Rk).

In this chapter, we adopt a one ring (OR) model, which is a appropriate model to capture the

antenna correlation in massive MIMO systems. In the OR model, the BS is elevated with no

significant local scatters and each user is located at azimuth θ and distance D from the BS, which

is surrounded by a ring of local scatters at radius R. The angular spread (AS) is approximated as

∆≈ arctan( R
D) because D and R are typically large compared to the antenna spacing. Throughout

the chapter, we assume that each user k is characterized by (θk,∆) of its angle of arrival (AoA) and
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AS. The correlation between the channel coefficients of antennas for k-th user is given by

[Rk]i, j =
αk

2∆

ˆ
∆+θk

−∆+θk

e− j2π
d
λ
(i− j)sin(x)dx (5.3)

where αk, θk, d, and λ refer to the average large-scale fading, mean angle of arrival (AoA) of

the user k in the azimuth direction, antenna spacing, and carrier wavelength, respectively. The

singular-value-decomposition (SVD) of CCM for user k can be written as

Rk = UkΛkUH
k (5.4)

where Uk ∈ CNt×rk is a tall unitary matrix that contains the eigenvectors corresponding to the rk

eigenvalues of Rk. Λk is rk× rk diagonal matrix whose elements are the eigenvalues of Rk. In

addition, the channel vector hk for user k can be rewritten using Karhunen–Loeve representation

as

hk = UkΛ
1
2
k vk (5.5)

where vk ∈ Crk×1 is an i.i.d. vector, vk ∼ C N (0,Irk).

The BS sends Ns downlink data streams to the K scheduled users. Each user receives one

spatial stream, which means Ns = K. The BS selects K antennas to transmit the downlink data

streams to the scheduled users with K << Nt . The BS linearly precodes its downlink data vector.
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Thus, the transmitted signal x ∈ CNt×1 can be written as

x = Ws =
K

∑
k=1

√
ρkwksk (5.6)

where s∈CK×1 is the downlink symbol vector transmitted by the BS to the K scheduled users. sk is

the transmitted symbol to the user k with E
{
|sk|2

}
= 1. ρk is the transmit power allocated for user k

and wk ∈CNt×1 denotes the beamformer vector that the BS uses to transmit the symbol sk to user k,

where W = [w1, . . . ,wk, . . . ,wK] ∈CNt×K is the precoding matrix with unit-norm columns. Hence,

the transmit power at the BS can be expressed as P = E
{
‖x‖2} = ∑

K
k=1 ρkE

{
‖wk‖2} = ∑

K
k=1 ρk.

The received signal yk ∈ C at user k can be written as

yk =
√

ρkhH
k wksk +

K

∑
i=1;i6=k

√
ρihH

k wisi +nk (5.7)

where sk ∈C and nk ∼C N (0,σ2
k ) is the downlink data symbol and the noise associated with user

k, respectively. The signal-to-interference-plus-noise ratio (SINR) at user k is given by

SINRk =
ρk|hH

k wk|2

σ2 +∑
K
i=1;i6=k ρi|hH

k wi|2
(5.8)

We denote the interference term by Ik = ∑
K
i=1;i 6=k ρi|hH

k wi|2. The sum rate can be expressed as

Rsum (A ) =
K

∑
k=1

log2

(
1+

ρk|hH
k wk|2

σ2
k +∑

K
i=1;i 6=k ρi|hH

k wi|2

)

=
K

∑
k=1

log2
(

1+
ρk|hH

k wk|2

σ2
k + Ik

) (5.9)
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5.3 Problem Formulation

In this section, we consider the problem of finding the best subset of BS antennas that maximizes

the downlink achievable rate under a total power constraint. The problem can be written as

max
A

Rsum (A )

s.t |A | ≥ K

K

∑
k=1

ρk ≤ P

(5.10)

In this chapter, we assume that the BS has perfect knowledge of the CSI. Moreover, the BS will

use zero-forcing (ZF) as a linear precoder. Due to the assumption of perfect CSI available at the

BS and since we use the ZF precoder, the downlink achievable sum-rate in (5.9) can be rewritten

as

Rsum (A ) =
K

∑
k=1

log2
(

1+
ρk|hH

k wk|2

σ2
k

)
(5.11)

Then the problem discussed above can be rewritten as

max
A

K

∑
k=1

log2
(

1+
ρk|hH

k wk|2

σ2
k

)
s.t |A | ≥ K

K

∑
k=1

ρk ≤ P

(5.12)

For optimal power allocation, we apply the water-filling algorithm [72] and the optimal power
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allocated for user k can be written as

ρk =

(
µ− 1
|hH

k wk|2

)+

(5.13)

where x+ is equal to max(0,x) and µ should satisfy the following equation

∑
Nt∈A

(
µ− 1
|hH

k wk|2

)+

= P (5.14)

The antenna selection problem is difficult to solve because it is a combinational optimization prob-

lem. We can use an exhaustive search method such as a brute force approach to find the optimal

set of antennas. However, the computational complexity of this method increases exponentially as

the number of antennas grows. Hence, we develop a low complexity iterative algorithm to solve

the problem and compare the proposed algorithm with JASUS algorithm developed in [111]. The

JASUS algorithm and the proposed algorithm are summarized in Algorithm 1 and Algorithm 2,

respectively. The JASUS algorithm starts by initializing a set A with the set of all antennas. Then,

the algorithm iterates over all the elements in the set, trying to remove the index of the antenna

that degrades the performance gain. The algorithm terminates when it reaches (M−N) iterations.

However, the JASUS algorithm uses a sequential backward selection method. In this method, once

a feature is discarded in the backward selection, there is no possibility for it to be reconsidered

again. We improve the JASUS algorithm by using a forward selection method to obtain a better

set of antennas selected. The proposed algorithm starts by initializing a set of antennas required

randomly. Then, the algorithm iterates between the current set and the remaining set to obtain the

best set that maximize the achievable sum-rate.
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Algorithm 5: JASUS [111]
Input : Channel coefficients H
Output : The set of antennas A
Initialization :

• t←− 1

• A←− {1, . . . ,M}

• while t < (M−K) do

– maxRate←− 0

– for each m in A do

∗ R−m = Rsum(A\m)

∗ if R−m > maxRate then
· maxRate←− R−m

· mbad ←− m
∗ end if

– end for

– A←− A\{mbad}
– t←− t +1

• end while

5.4 Performance Evaluation

In this section, we investigate the performance of antenna selection in FDD multiuser massive

MIMO systems. As a performance metric, we use the downlink achievable sum-rate to compare

the results of the proposed algorithm with the JASUS algorithm through Monte Carlo simulations.

Simulation results are provided to demonstrate the performance of the proposed algorithm. Simu-

lations were conducted using MATLAB. The antenna spacing for the transmit antennas at the BS

is assumed to be 0.5λ . The number of users in the cell is set to be K = 16. The number of receive

antennas at the user is set to be 1. The number of transmit antennas at the BS is set to be 64. The

average transmit SNR is 16 dB. We generate the channel correlation matrix using the one-ring
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Algorithm 6: Proposed algorithm
Input : Channel coefficients H
Output : The set of antennas A
Initialization :

• select a current set A randomly

• compute the sum-rate RA

• set the difference between current set and the remaining set as B

• for each m in B do

• for each k in A do

– update the current set

– calculate the sum-rate R

– if R > RA

∗ update the current set
∗ update RA

∗ update the difference set B
∗ else
· keep the current set

– end if

• end for

• end for

(OR) model as follows:

[Rk]i, j =
αk

2∆

ˆ
∆+θk

−∆+θk

e− j2π
d
λ
(i− j)sin(x)dx (5.15)

where αk = 1 ∀k, ∆ = 12, and θk is uniformly distributed over [0,2π). Figure 5.1 shows the

average downlink achievable rate versus the SNR for K = 16 users and Nt = 64 antennas at the BS.

We observe that the proposed algorithm outperform the JASUS algorithm because our proposed

algorithm does not ignore any index, which means that once an index is discarded, there is a
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possibility to select this index with other possible resulting combinations. In Figure 5.2, we plot

the downlink achievable sum-rate versus the number of transmit antennas selected at the BS. In

this figure, we set the number of users to be K = 16, the number of transmit antennas at the BS

is Nt = 64, and transmit SNR = 16 dB. The figure shows that the proposed algorithm gives better

performance compared with the JASUS algorithm, especially when the number of the transmit

antennas selected is much less than the number of antennas available at the BS. We expected this

result because, as the number of transmit antennas selected increases, the number of combinations

searched decreases.

0 5 10 15 20 25

SNR (dB)

0

20

40

60

80

100

120

S
pe

ct
ra

l E
ffi

ci
en

cy
 (

bi
t/s

/H
z)

JASUS
Proposed

Figure 5.1: The average achievable sum-rate versus SNR for Nt = 64 antennas at the BS.
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Figure 5.2: The average achievable sum-rate versus the number of transmit antennas selected for
K = 16, SNR = 16 dB and Nt = 64 antennas at the BS.
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Chapter 6

Conclusions

In wireless communication systems, there is a huge demand for reliability, high data rates, high en-

ergy efficiency, high mobility, and high spectral efficiency as it is required by the modern wireless

applications. To keep up with the fast wireless data traffic development, a vital objective of next

generation of wireless cellular networks is to enhance the data throughput by orders of magnitude;

100X and even 1000X higher throughput are often mentioned as 5G design goals. One of the key

technologies for 5G wireless communication is massive MIMO. Massive multiple input multiple

output (MIMO) systems are a promising technology for next generation wireless communications

due to their ability to increase capacity and enhance both spectrum and energy efficiency. Most

existing work on massive MIMO considers time-division duplexing (TDD) systems and relies on

channel reciprocity to perform precoding and resource allocation. However, frequency-division

duplex (FDD) systems dominate current cellular networks and offer many benefits over TDD sys-

tems in delay-sensitive services and traffic applications. To utilize the benefit of massive MIMO

systems, accurate downlink channel state information at the transmitter (CSIT) is essential. Con-

ventional approaches to obtain CSIT for FDD multi-user massive MIMO systems require downlink
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training and uplink CSI feedback. However, such training results in large overhead for massive

MIMO systems because of the large dimensionality of the channel matrix.

In this dissertation, first, we aim to improve the performance of wireless cellular networks by

designing an efficient downlink beamforming for FDD massive MIMO systems based on partial

channel state information and considering the mismatch error. Second, we estimate the downlink

channel using compressive sensing techniques to reduce the downlink training overhead and design

an efficient downlink beamforming based on CSI estimated.

In Chapter 2, we designed an efficient downlink beamforming method based on partial CSI.

The partial CSI is the uplink dominant DoA which is obtained during uplink training phase. By

exploiting the relationship between uplink (UL) direction of arrivals (DoAs) and downlink (DL)

direction of departures (DoDs), we derived an expression for estimated downlink DoDs, which

will be used for downlink beamforming to compare the performance with traditional method in

terms of downlink achievable rate that we derived. Simulation results also verified that, in terms

of achievable rate, our proposed method outperform the traditional beamforming method.

In Chapter 3, we introduced a new method to estimate the channel state information for each

user in FDD multi-user massive MIMO systems based on a compressive sensing technique. The

downlink channel estimation scheme based BFS algorithm for FDD multi-user massive MIMO

systems was proposed. We considered a spatially correlated channel and evaluated three models

to generate the channel correlation matrix. Moreover, an uplink feedback based limited feedback

scheme was proposed. We analyzed the performance of the CSI estimator in terms of normal-

ized mean squared error. To this end, by exploiting the sparsity structure of the downlink channel

matrix, we designed an efficient algorithm to acquire CSI. We verified our analysis using simula-

tions. Our simulation results showed that our proposed method outperforms the traditional channel
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estimation methods.

In Chapter 4, we proposed a feedback scheme that exploits the sparsity structure of the down-

link channel matrix and design a low-complexity beam-forming scheme for FDD multi-user mas-

sive MIMO systems with spatially correlated channels. The proposed schemes consider codebook-

based feedback, which is adopted in the LTE/LTE-advanced systems. Specifically, after estimat-

ing the downlink channel for each user during the downlink training phase, we designed a low-

complexity beam-forming scheme for downlink transmission based on the estimated channel ma-

trix. We next updated the channel matrix using limited feedback and calculated the downlink

achievable rate as a performance metric for the limited feedback scheme to compare the results of

rank 1 and rank 2 feedback through Monte Carlo simulations.

Finally, in Chapter 5, we investigated the problem of transmit antenna selection for FDD multi-

user massive MIMO systems and developed a new low complexity algorithm that finds the best set

of antennas required at the BS. The proposed algorithm starts by initializing a set of antennas

required randomly. Then, the algorithm iterates between the current set and the remaining set to

obtain the best set that maximize the downlink achievable rate.
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