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Abstract

Recent research in multidimensional item response theory has introduced within-item

interaction effects between latent dimensions in the prediction of item responses. The

objective of this study was to extend this research to bifactor models to include an in-

teraction effect between the general and specific latent variables measured by an item.

Specifically, this research investigates model building approaches to be used when es-

timating these effects in empirical data and the potential adverse impact of ignoring

interaction effects when present in items modeled with the bifactor model. Two sim-

ulation studies were conducted with data generated to follow a bifactor 2-parameter

normal ogive model and a bifactor graded response model without interaction effects

and with varying numbers of items with interaction effects. Model parameters were

then estimated from a bifactor model without interactions, with all possible interac-

tions, and with interactions estimated to match the data-generated interactions. The

data-generating model was generally favored in relative model comparisons, indexed

by deviance information criteria (DIC). Item and respondent parameters were recov-

ered best when the generating model matched the estimated model across all data-

generating conditions. Item interaction parameters had small bias, absolute bias, and

root mean squared errors decreased with a larger sample size. Regarding model refine-

ment strategies, the highest density intervals and credible intervals correctly identified

noninteracting items as not having an interaction at a higher rate compared to interact-

ing items that were generated to have an interaction. A bifactor model with all, none,

and reduced interactions was estimated in two empirical data sets with applications

in educational measurement and psychological assessment. Results were evaluated
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in light of the poor performance of the parameter refinement and model comparison

strategies investigated in the simulation studies. Implications of this research and fu-

ture directions of study are discussed.

Keywords: Bifactor model, interactions, moderation, multidimensional item response

theory, latent variable modeling, model misspecification
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Chapter 1

Introduction

Recently, psychometric methods involving multidimensional latent variable models have become

more popular in psychological and educational measurement research. The popularity of multidi-

mensional models is likely driven by their focus on obtaining more fine-grained information about

latent constructs that is not readily available with unidimensional models. One such multidimen-

sional model that has received increased attention is the bifactor model (Reise, 2012; Gibbons &

Hedeker, 1992; Holzinger & Harman, 1941), also called the direct hierarchical model (Gignac,

2008) or the nested-factors model (Chen et al., 2006; Gustafsson & Blake, 1993). Originally intro-

duced in the 1930s (Holzinger & Swineford, 1937), the bifactor model has primarily been used in

intelligence research (Gustafsson & Blake, 1993), but also frequently in the measurement of psy-

chological constructs, such as well-being (Longo et al., 2016), quality of life (Chen et al., 2006),

and psychiatric distress (Thomas, 2012). These constructs are characterized by several interrelated

factors, making the bifactor model ideal for application.

The bifactor model simultaneously models multiple hypothesized specific dimensions (i.e., la-

tent variables) and a single general dimension that is independent of the specific dimensions. It is

useful in situations where construct heterogeneity exists, but specific dimensions are related by an

underlying dimension. By taking this modeling approach, researchers are afforded with conceptu-

ally narrow inference about construct subcomponents alongside a more abstract and general view

that is often sought, such as when validating the use of subscales (Reise et al., 2010). The bifactor

model can estimate the reliability of subscores and determine the extent to which subscores can

provide reliable information after controlling for the unique influence of the general factor (Reise

et al., 2013). Furthermore, with the bifactor model, researchers interested in general inferences
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about a construct can statistically control for multifaceted data that correlate for reasons other than

the underlying latent variable. These “nuisance” factors, such as method factors (common item

stems) or testlets (DeMars, 2012), introduce systematic covariability in responses that when left

unmodeled can bias model parameters and overestimate parameter precision (Sireci et al., 1991;

Li et al., 2006). Vice versa, researchers interested in a narrower scope can statistically control for

the general dimension and test the unique contribution of construct subcomponents. Other applica-

tions of the bifactor model in psychometric research include computerized adaptive testing (Seo &

Weiss, 2015; Weiss & Gibbons, 2007), vertical scaling (Li & Lissitz, 2012), and differential item

functioning in testlet-based tests (Jeon et al., 2012). Given these uses of the bifactor model, it is

not surprising that there has been increasing empirical research using these models (Reise, 2012).

The bifactor model is also useful in cases where multifaceted constructs exist that may relate

differently to an outcome (Chen et al., 2006). If the multidimensional structure is ignored but

exists in the population, a composite score or unidimensional model may mask the differential

contributions of the construct facets, causing incorrect characterizations of the relationships with

other variables (Carver, 1989). Interpretations based on the definition of a broader construct may

be confounded if only a subset of its unmodeled components is responsible for strong associations

with dependent variables. Comparatively, considering only the construct facets by modeling the

specific dimensions and ignoring the general dimension neglects to parcel out the variance the

facets share. In this case, the true pattern of associations between the construct facets and an

external criterion may be masked. To remedy this, the bifactor model targets the isolated effects

of the general dimension and the specific dimensions to drive theory refinement and improve the

predictive validity of the construct as a whole.

1.1 Extending the Bifactor Model

At present, bifactor models are applied with items having at most one parameter per dimension, of-

ten called a discrimination parameter in item response theory or a factor loading in factor analysis

literature. For the purpose of this study, this parameter is called a main effect once an interaction
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is included. Including only main effects assumes that the effect of the specific dimension on the

predicted item response does not depend on the general dimension (or vice versa). This research

extends the bifactor model to include interaction effects in the prediction of item responses between

the general and specific dimensions. This allows predicted relationships between the item response

and the general (or specific) dimension to change as a function of the specific (or general) dimen-

sion, a process that is often called moderation in applied linear models. Thus, researchers can test

the effect that high scores on one dimension have on the observed item response, conditional on

the scores on the other dimension the item also measures.

As an example, consider a test of math ability with a variety of item types. Often, math ability is

assessed with word problems where students use their reading comprehension to solve a problem

(Vilenius-Tuohimaa et al., 2008). The response options may include an equation to reach the

solution or the solution itself, and the item is scored correct or incorrect. However, if a student

struggles with word problems that require strong reading comprehension skills, they may do poorly

on the item, regardless of their overall math ability. In this context, a bifactor model is specified

with a reading comprehension dimension for the subset of items that involve word problems and

a general math ability dimension. With an interaction, the item’s relationship with one measured

dimension would depend on the values of the other. Thus, for example, the rate of increase in

the probability of a correct response with more math ability can become augmented with more

reading comprehension. Comparatively, having a low reading ability may also diminish the rate of

increase in probability with increasing math ability. Theoretically, patterns of interactions, coupled

with patterns for the conditional main effects, may reflect testing situations where respondents need

sufficient lower-level skills before they are able to complete more difficult items or exams.

1.2 Goals of this Research

The goal of adding an interaction parameter is to ensure accurate inferences and parameter esti-

mates that are unharmed by omitted variable biases in underspecified models that ignore interac-

tion effects. Similar to cases where interaction effects are present but unmodeled in a univariate
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regression or analysis-of-variance model, the inferences made about the relationship between the

observed and latent variables will be erroneous and there may be significant bias in other parameter

estimates. Thus, this research sought to extend the bifactor model to include interactions in order

to ensure the soundness of inferences made in subsequent analyses, such as in tests of differential

item functioning and the effects of explanatory variables.

Using generated and empirical data, this dissertation addresses the following three research

questions:

1. How well does the proposed bifactor model with interaction effects recover item and person

parameters in realistic data generating conditions?

2. What is the impact of ignoring interaction effects on model recovery of item and person

parameters when fitting a bifactor model with only main effects?

3. How well do model selection and parameter refinement strategies perform in identifying

underlying interactions in a bifactor model?

The first research question asks whether the proposed model can be estimated accurately and effi-

ciently in tests with varying sample sizes and proportions of items in an assessment with interac-

tions. The second question expands on the first to investigate the impact on parameter estimates

when a misspecified model is fit to the data. The objective is to determine whether extending

the bifactor model to include interactions is even necessary and whether the true data-generating

model can be accurately recovered. The final question inquires whether confirmatory model build-

ing procedures that rely on alternate model comparisons and parameter refinement strategies can

accurately identify interactions for use in empirical data.

1.3 Chapter Overview

This dissertation is organized as follows. The first chapter introduces the multidimensional item

response theory models surveyed in this manuscript, with sections that 1) describe previous re-
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search of latent variable models with and without interactions, and 2) present the traditional bi-

factor model and the proposed extension to have interactions for items having dichotomous and

polytomous item response options. In Chapter 3, the design of two simulation studies is described,

which is followed with results in Chapter 4. Informed by the results of the simulation studies,

Chapter 5 applies the knowledge learned to demonstrate two empirical analyses with applications

in education and psychology. These illustrations are presented with the goal of concretizing the

relevance of the proposed model in real-world constructs and to show how the model can be speci-

fied and refined with model building techniques. The final chapter concludes this dissertation with

a discussion of research findings and relevance to educational and psychological research.
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Chapter 2

Modeling Framework

Latent variable models are used to infer, from manifest variables that can be directly observed,

underlying hypothetical constructs that are hidden. For example, intelligence is one multifaceted

construct that can be inferred from observable responses to tasks or answers to questions of mem-

ory, verbal ability, and reasoning (Gustafsson & Blake, 1993). The latent variable, intelligence,

is a random variable with an assumed distribution that is formed by combining multiple observed

measurements about individual units (e.g., people). The goal is to determine the common cause or

causes (i.e., latent constructs) that account for the variation and covariation among a set of manifest

variables in terms of a smaller set of hypothetical variables. After taking into account the influence

of the latent variable(s) on the responses to manifest variables, the observed responses are thought

to be independent, a condition called conditional independence (Lord & Novick, 1968). For the

remainder of this manuscript, observable, manifest variables will be referred to as items measuring

the construct and units of analysis as respondents to those items.

In this chapter, the theoretical framework for bifactor models with interaction effects is dis-

cussed based on a latent variable framework called item response theory (IRT; e.g., Hambleton

et al., 1991; Embretson & Reise, 2000). The collection of item response models presented are

intended for ordered categorical item responses and continuous latent variables. The subsequent

sections offer a review of IRT model extensions to include multiple dimensions, bifactor structures,

and interaction effects.
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2.1 Multidimensional Item Response Theory

Item response theory is a family of latent variable models for categorical item types that are re-

lated by a continuous latent variable, often symbolized by θ and termed latent trait. IRT models

are designed to rank order individuals on one or more latent variables that are assumed to be nor-

mally distributed and traditionally unidimensional and broad in scope (Lord, 1980; Lord & Novick,

1968). Multidimensional IRT (MIRT; Reckase, 2009) is a field that generalizes unidimensional

IRT models to include more than one latent trait, such as the bifactor model.

There are a variety of IRT and MIRT models having different assumptions for data involving a

varying number of categories. Specifically, there are models designed for dichotomous and poly-

tomously ordered item responses (Samejima, 1969), unordered or nominal item responses (Bock,

1972), and partially ordered item responses (Muraki, 1992; Masters, 1982). For the purpose of this

dissertation, the focus was on models for ordered dichotomous and polytomous item responses that

do not model guessing (Birnbaum, 1968) and do not allow partial orderings. These models are the

multidimensional 2-parameter normal ogive model (M2PNO; Samejima, 1969; Lord & Novick,

1968, pp. 365-384) and the multidimensional graded response model (MGRM; Samejima, 1969),

as described next.

2.1.1 Multidimensional Two-Parameter IRT Models

The multidimensional 2-parameter normal ogive model is a model for dichotomous item responses,

such as those scored correct or incorrect, that relates the probability of an endorsed response to a

given latent variable through the use of a Bernoulli distribution. The M2PNO uses a probit link

function to transform the conditional mean to be predicted onto the probability metric, which is

bounded between 0 and 1. To illustrate the M2PNO, the following equation yields the probability

of a correct or endorsed response to a binary item, i, taken by a respondent, r:

P(yri = 1|θ) = Φ(ai(θr−bi)) =

(ai(θr−bi))ˆ

−∞

φ(z)dz. (2.1)
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The difficulty parameter of the item, bi, is on the same metric as the latent variable, θr, and rep-

resents the location where P(yri = 1) = 0.5. Put another way, when θr = bi, the respondent is

equally likely to answer the item with a 0 or 1 response. The difficulty parameter reflects how

much of the latent variable is needed to have a 50% chance of a correct or endorsed response. The

item discrimination, ai, represents how well the item can differentiate respondents with low and

high latent dimension levels. An assumption of IRT and MIRT models is that the probabilities of

endorsed responses are monotonically increasing, such that the sign of ai that multiples the latent

variable governs the direction of the monotonic function (e.g., Hambleton et al., 1991).

Because latent variables are unobserved, the scale must be assigned depending on the assumed

distribution of the latent variable. In the IRT framework, the latent variables are normally dis-

tributed with a mean and variance, θr ∼ N(µ,σ2). For model identification, either the mean of the

latent variable can be fixed to 0 to allow estimation of the item difficulties, or the latent variable

mean can be estimated by fixing the mean across item difficulties to zero or one item difficulty

per latent variable to 0. Similarly, the variance of the latent variable can be fixed to 1 to estimate

all item discriminations, or the discrimination parameter of a “marker” item can be fixed to 1 to

allow estimation of the latent variance. IRT models typically have standardized latent variables

where the latent variable means are fixed to 0 and variances are fixed to 1. The majority of latent

variable estimates will then fall between -4 and 4, analogous to z-scores or standard-deviation units

(though the actual range is from −∞ to ∞). Correlations between latent variables can be estimated

if desired.

When items measure one latent variable from a test with multiple dimensions, they have a fac-

torially simple loading structure and are referred to as having between-item multidimensionality

(Adams et al., 1997). Comparatively, if items have a factorially complex loading structure because

they measure a combination of latent variables, they are said to have within-item multidimension-

ality (Adams et al., 1997). In these cases, computation becomes easier when the response function

is written in slope-intercept form. The item discrimination parameter is multiplied through to result

in (aiθi−aibi). The term−aibi is replaced with βi0, an intercept for the item. The item discrimina-
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tions become slopes or main effects, ai = βi. Main effects are estimated per dimension for complex

items and are indexed with subscripts, βid . With standard normally distributed latent variables, the

item intercept becomes the probability of an endorsed response at the mean of all measured la-

tent variables. This transformation of item difficulties into intercepts and item discriminations into

main effects makes the response function more easily translatable to parameterizations of regres-

sions and factor analytic models for ordered categorical data (Cai et al., 2011). For more detail on

the relations between IRT and factor analysis models for categorical items, see Takane and Leeuw

(1987).

Traditionally in MIRT literature, the M2PNO is specified as a variation of the multidimensional

2-parameter logistic model (M2PL; Birnbaum, 1968). Item response theory was originally devel-

oped based on the normal ogive model building from probit regression (Samejima, 1969; Lord &

Novick, 1968). The primary difference in these models is that the M2PL uses a logit link rather

than a probit link. The logistic version of the M2PNO written in slope-intercept form for an item

response yri is specified as follows:

P(yri = 1|θ) = Ψ[D(βi0 +∑
d

βidθrd)] =
exp(D(βi0 +∑d βidθrd))

1+ exp(D(βi0 +∑d βidθrd))
(2.2)

where Ψ is the cumulative logistic function. The M2PL and M2PNO are nearly indistinguishable

when a constant scaling factor D = 1.702 is included in the exponent of the logistic response func-

tion to scale results from the logistic model onto the normal ogive model (Haley, 1952; Camilli,

1994). Given the close resemblance of the two models and their use in item response theory liter-

ature, both models will be referenced interchangeably throughout this manuscript.

2.1.2 Multidimensional Graded Response Model

A generalization of the M2PL and M2PNO is the multidimensional graded response model (MGRM;

Samejima, 1969) for items with ordered polytomous response categories, such as Likert-type items

(e.g., categories ranging from strongly disagree, disagree, neutral, agree, to strongly agree; Likert,
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1932). The MGRM can be thought of as an extension of the M2PNO and M2PL that generalizes

to more than two categories and uses a cumulative probit link function instead of a probit link

function (or a cumulative logit link function if using a logistic distribution). The MGRM assumes

that responses to an item require a number of ordered steps, such that previous steps must be ac-

complished before reaching the next steps. The categories k of an item begin at 1 up to the number

of response options, M (k = 1,2,3, ...,M). The probability of responding to a specific category is

conceptualized as the probability of responding in or above the category, minus the probability of

responding in or above the next category. Specifically, the probability of responding to category

k is monotonically increasing with the measured latent variable, θr, and is conceptualized as the

difference between two cumulative probabilities:

P(yri = k|θ) = P(yri ≥ k|θ)−P(yri ≥ k+1|θ) (2.3)

For an example item with three categories (coded 1, 2, 3), the probabilities of answering among

the different categories are given as "sub-items":

P(yri = 1|θ) = 1−P(yri ≥ 2|θ) (2.4)

P(yri = 2|θ) = P(yri ≥ 2|θ)−P(yri ≥ 3|θ) (2.5)

P(yri = 3|θ) = P(yri ≥ 3|θ)−0 (2.6)

The first option, P(yri = 1|θ), is the probability of responding to categories 1-3, versus the prob-

ability of responding to categories 2 through 3. The probability of responding to category 2 is the

difference in the probability of responding to categories 2 through 3 versus category 3. The prob-

ability of responding to the highest category is the probability of responding to category 3 minus

0 because it is the highest category. The MGRM models each of these directly as "sub-items," as
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defined next.

The MGRM directly models the probability of responding in category k or greater. With the

normal ogive link, the following equation yields the MGRM in slope-intercept form:

P(yri = k|θ) = Φ(βi(k)+∑
d

βidθrd)−Φ(βi(k+1)+∑
d

βidθrd). (2.7)

The item main effect, βid , for a latent variable θrd , has a similar interpretation as the M2PNO, but

there are now M− 1 ordered category-intercept parameters, βi(k). The higher categories require

higher levels of the latent variable to have a higher endorsed response probability. Because there

is one main effect parameter per latent variable, the relationship between the sub-items are parallel

in the probit function. As with dichotomous items, the logistic version of the MGRM is specified

by substituting the cumulative normal density function, Φ, with the cumulative logistic density

function, Ψ. The joint distribution of the latent variables is multivariate normal and standardized

for model identification. As before, inter-dimension correlations may be estimated.

2.2 Compensatory and Partially Compensatory MIRT

Compared to the multidimensional models defined previously which are compensatory in nature,

such that an increase in any latent variable measured by the item will increase the probability of

an endorsed response, some complex items are best modeled with “partially compensatory” or

“noncompensatory” models. These models suppose that high levels of one latent variable cannot

compensate for low levels of another dimension that is also measured by the item (Embretson

& Reise, 2000; Ackerman, 1989; Whitley, 1980). This reasoning is analogous to a conjunctive

relationship between latent variables that generates the latent response rather than a disjunctive

relationship because both abilities are necessary for a correct response (Maris, 1999).

Partially compensatory models were originally introduced to model item responses as a product

of probabilities of the individual response curves from separate unidimensional models (Sympson,

1977; Whitley, 1980). Conceivably, this modeling strategy is congruous with the interpretation
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that the probability of an item response should be limited by the lowest ability and therefore can-

not exceed the lowest predicted probability of the unidimensional models (Chalmers & Flora,

2014). Adapted from Sympson’s (1977) model, a partially compensatory M2PL product model

(PC-M2PL) for dichotomous ordered-categorical item responses with a logit link function and

notation consistent with Equation 2.2, is given as:

P(yri = 1|θ) =
D

∏
d=1

exp(β0id +βidθrd)

1+ exp(β0id +βidθrd)
(2.8)

where d is the dimension corresponding to the d element of the θ vector, (θ = [θ1,θ2, ....,θD]).

The item now has an intercept parameter, β0id , as in Equation 2.2, estimated for each dimension d

of item i. Thus, for an item measuring two dimensions, there will be two item intercept parameters

instead of one (for ordered polytomous items, there would be D∗ (k−1) category-intercepts) and

two main effects (as in a compensatory model). As before, the PC-M2PL can be adapted to the

normal ogive model with a probit link function in place of the logit link function and is abbreviated

as PC-M2PNO.

As an illustration, consider the contour plots and surface plots in Figures 2.1 and 2.2 that show

the response surfaces of a dichotomously scored item that measures two latent dimensions equally

(βi1 = βi2 = 1) when modeled using the compensatory M2PNO and the partially compensatory

product PC-M2PNO. Each contour corresponds to the probability of correctly responding to the

item for a respondent with a given level of θ1 and θ2. For compensatory models, the contours are

equally spaced and parallel. As the slopes become steeper, the contours become closer. The rate

of change of the probabilities corresponds to the size of the main effects and is constant for a given

point on the coordinate axes in the multidimensional θ -space. Comparatively, the PC-M2PNO

contours have curvilinear relationships between the item and the latent variables, which indicates

that the rate of change of the probabilities can vary depending on the location of the latent variables.
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Figure 2.1: Contour plot and surface plot of the probability of a one response for an item modeled
using a compensatory M2PNO
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Figure 2.2: Contour plot and surface plot of the probability of a one response for an item modeled
using a partially compensatory M2PNO
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Variations of the PC-M2PL involving different combinations of estimated or fixed intercepts,

slopes, or asymptotes (i.e., “guessing” parameters) also exist, such as the independent components

model (Whitley, 1980) when there are no discrimination (i.e., slope) parameters, and the multi-

component latent trait model (MLTM; Embretson, 1984) when there are no discrimination param-
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eters and an estimated upper asymptote. A variant of the MLTM is the conjunctive Rasch model

(Maris, 1995) that does not use a two-step procedure to model complex items, though this model

has greater difficulty in implementation. Additionally, the generalized MIRT model (GMIRT;

Simpson, 2005) is a hybrid of the compensatory M2PL and the PC-M2PL that allows the level of

compensation to vary by using an item-level variable to proportionally weight the two models.

Partially compensatory models for dichotomous item responses specified as products of prob-

abilities impose a strict set of assumptions about how the latent variables combine to produce an

item response. Further, these models have shown greater estimation difficulty and require more

data for accurate parameter estimates compared to compensatory models. Bolt & Lall (2003) used

an exploratory approach (i.e., all items measure all dimensions) to compare the MLTM and the

M2PL model with two dimensions using Markov Chain Monte Carlo methods (see Patz & Junker,

1999b; Albert & Chib, 1993, for applications in item response theory). They found that the MLTM

had much larger standard errors in an empirical dataset compared to the compensatory M2PL. In

their simulation study, Bolt & Lall (2003) found that compared to the M2PL, the MLTM inter-

cepts had larger root mean squared errors (RMSEs) and required more examinees (N = 3,000)

and items (I ≤ 50) with low to moderately correlated latent dimensions (ρ ≤ 0.30) to accurately

recover them. With highly correlated dimensions (ρ ≥ 0.60), recovery was inadequate. To resolve

the metric indeterminacy problem of exploratory models, the MLTM was identified by fixing the

difficulty parameters of the first items per dimension to zero to estimate parameters, which were

then equated onto the correct metric using the data-generating parameters (Bolt & Lall, 2003).

Because true parameters are unknown in real data, this exploratory approach is impossible in em-

pirical research.

With the addition of slope parameters for each dimension, Babcock (2011) used a confirmatory

approach where items measured a subset of dimensions to investigate the parameter recovery of the

PC-M2PL compared to the M2PL. He found that the PC-M2PL required a minimum of N = 4,000

respondents for accurate estimation and six unidimensional items per dimension to position the

axes of the latent variables for model identification. Similar to Bolt & Lall (2003), the PC-M2PL

14



functioned poorly when the correlation between dimensions was high. Another study by DeMars

(2016) found that with highly correlated dimensions, the M2PL fit data generated with the PC-

M2PL better than the PC-M2PL. Chalmers & Flora (2014) found decreased root mean-squared

deviation (RMSD) of item parameter estimates of the PC-M2PL with more simple structure items

(i.e., measuring one dimension) and larger sample size, but increasing the inter-dimension correla-

tions increased it. These authors note that the poor estimation of data with correlated dimensions

is because there are too few examinees in the response regions where one dimension is high and

the other is low. Thus, it appears that a large amount of both items and respondents and dissimilar

dimensions are necessary for accurate estimation of the PC-M2PL.

2.2.1 MIRT Interaction Effects

As an alternative, researchers have introduced interaction effects in multidimensional IRT models

to model items having a partially compensatory relationship (DeMars, 2016; Chalmers & Flora,

2014; Rizopoulos & Moustaki, 2008). Compared to the PC-M2PL and the MLTM, the interactive

model estimates an interaction effect to model partially compensatory relationships or determine

whether the model can be simplified to a compensatory model with only main effects. The rela-

tionship between latent dimensions in the prediction of an item response is accounted for because

the interaction term is inside of the item response function, whereas multiplying the individual

item response probabilities together assumes that they are independent. Specifically, the M2PNO

interaction model (I-M2PNO) with a probit link function for a binary item response, yri, for a

respondent, r, to an item, i, that measures two dimensions indexed as 1 and 2, is given as:

P(yri = 1|θ) = Φ(β0i +βi1θr1 +βi2θr2 +βi(1∗2)θr1θr2). (2.9)

The probability of a correct response from respondent r to the item i, given the θ vector of two

latent variables, θ·1 and θ·2, is a function of two conditional slopes or “simple main effects,” βi1 and

βi2, for each of the measured latent dimensions, and their interaction effect, βi(1∗2). The intercept,

15



β0i, is interpreted similarly to the M2PNO as the expected probability of a correct response for

a respondent with a mean value of the two standardized multivariate normally distributed latent

variables, θD ∼MV N(0,Σ). The first subscript of the interaction term, i, represents the item with

which the parameter is associated, and the second subscript, (1 ∗ 2), represents which interacting

dimensions are included in the effect.

Figure 2.3: Contour plot and surface plot of the probability of a one response for an item modeled
using an M2PNO with an interaction of βi(1∗2) = 0.3
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Figure 2.4: Contour plot and surface plot of the probability of a one response for an item modeled
using an M2PNO with an interaction of βi(1∗2) = 0.5
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Figures 2.3 and 2.4 show contour and surface plots of a binary item that measures two dimen-

sions equally with positive interaction effects of βi(1∗2) = 0.3 and βi(1∗2) = 0.5, respectively. With

positive main effects (βi1 = βi2 = 1), a strong positive interaction of the I-M2PL would indicate

that the item is partially compensatory and requires high values on both latent variables to endorse

the item. As either dimension increases, the probability of an endorsed response also increases,

but increases in both dimensions simultaneously can have an additional boost. Comparatively, if

the interaction coefficient is small and approaching zero, high values of either latent variable can

increase the probability of an endorsed response on the item, but increases together do not augment

the rate of increase. This would indicate that the item response process could be simplified to a

compensatory model where the contours are linear and parallel. Negative interaction coefficients

are also possible. Positive main effects can become less positive with negative interactions, corre-

sponding to diminishing gains in the probability of responding to higher categories with each unit

increase of the interacting latent variable.

As shown in Figure 2.4, a large interaction may cause response probabilities to start increasing

as θ values decrease after a certain point (Chalmers & Flora, 2014), which may not correspond to
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cognitive tests that assume that high ability levels relate to increasing probabilities of correct re-

sponses to test items. It may be that this shift in direction from decreasing probabilites to increasing

probabilities occurs in the response regions where θ values are less frequently observed. However,

this change in direction is conditional on the size and direction of the main effects (Buchholz,

2014, as cited in DeMars, 2016); with larger main effects of βi1 = βi2 = 2 and an interaction of

βi(1∗2) = 0.5, the inflection point (θ1,θ2) occurs at (−βi1/βi(1∗2),−βi2/βi(1∗2)) = (−4,−4). Com-

paratively, smaller main effects of βi1 = βi2 = 1 and an interaction of βi(1∗2) = 0.5, the direction of

the function changes at an inflection point of (−2,−2), as observed in the contour plot and surface

plot in Figure 2.4. Researchers have suggested placing boundaries on the main effects (Babcock,

2009), though this strategy has not been investigated.

Though not studied at the time of this research, the I-M2PL can be generalized to multiple-

category item response models like the MGRM (labeled as I-MGRM with interactions). The dif-

ference between the I-M2PL and the I-MGRM is that the main effects and interaction effect model

the probability of responding to higher categories of the item, and the model intercept corresponds

to multiple ordered category-intercepts as previously described for the MGRM. Each “sub-item”

that gives the probability of responding to a particular category, based on differences between two

cumulative probabilities as in Equation 2.3, uses the same interaction effect and two main effects

that are estimated, but with different category-intercepts. As an illustration, Figure 2.5 and 2.6

display the contour surfaces for an item having four response categories with category-intercepts

of {−1.5,−0.5,0.5,1.5}. The contours of each sub-item are linear for the compensatory MGRM

as in Figure 2.1 and nonlinear for the interactive MGRM as in Figure 2.3.

Past studies have yielded some important insights into the performance of the I-M2PL in sim-

ulated and empirical data. Rizopoulos & Moustaki (2008) fit the I-M2PL using an exploratory

approach to simulated data with two dimensions and to example data from a section of a survey

measuring workplace relations and employment practices. In their simulation, they manipulated

the sample sizes of respondents (N = 500, 1,000) and the number of items (I = 10, 30). For each

condition, 1,000 datasets were generated. Results showed a small bias of item parameter esti-
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Figure 2.5: Contour plots of the item response surface of a MGRM item with 4 ordered categories
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Figure 2.6: Contour plots of the item response surface of a MGRM interaction model item with 4
ordered categories
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mates, which decreased with larger sample sizes and test lengths. Of note, the main effects in this

study were simulated to be positive and negative, which may not reflect testing scenarios where en-

dorsed item responses are monotonically increasing with the latent variable. Using empirical data,

Rizopoulos & Moustaki (2008) also tested an interaction term between two latent dimensions at

the structural model level (Cudeck & Harring, 2009; McDonald, 1962), given the short test length

of 6 items. The interaction term was significant according to its Wald-based p-value and the model

was favored in model comparisons. Though this interaction effect does not directly resemble the

item-level interaction effects discussed in this manuscript, the example offers a conceptually inter-

pretable application of interactions in latent variable models.

Another study by Chalmers & Flora (2014) used a confirmatory approach to compare the PC-

M2PL and the I-M2PL. They fit the I-M2PL to data simulated from the product model and found

faster convergence, although the log-likelihood was higher and G2 goodness-of-fit statistic was

lower for the product model, indicating its better fit to the data. The recovery of latent dimensions

was greater for the product model, however this study did not compare the recovery of the I-M2PL

when data are generated from the I-M2PL.

Demars (2016) is the only published paper at the time of this research that generated simu-

lated data from the I-M2PL to investigate parameter recovery of item interaction effects in MIRT

models. In her study, Demars (2016) compared the I-M2PL to the compensatory M2PL and PC-

M2PL with and without lower asymptote parameters (an extension of the 2PL variants to include

[ci +(1− ci)] in the item response function). Manipulated data-generating conditions were two

numbers of dimensions (2- and 4-dimensions), three inter-dimension correlations (ρ = 0,0.7,0.9),

and two generating models (interaction and product model). The number of items per dimension

was fixed, with complex items measuring up to all possible dimensions. To address the issue of

local maxima in the multidimensional θ -space, Demars (2016) generated interaction coefficients at

0.3 for all interacting items, with half of the item discriminations equal to 0.9 for both dimensions

and the other half varying but satisfying the condition,
√

β 2
i1 +β 2

i2 = 1.3. These values were chosen

to restrict predicted probabilities from increasing as θ values decrease to regions where there are
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few respondents, an effect of large interactions as previously described (Chalmers & Flora, 2014).

This study generated 100 replications of the data generating conditions and fit each dataset with a

compensatory model, product model, and interaction model. Results showed that model fit indices

consistently favored the correct model (generated equals estimated) with no correlations between

dimensions, though the M2PL was selected more frequently for data generated with the PC-M2PL

model with increasing inter-dimension correlations. Recovery of item response functions, accord-

ing to their root mean squared errors (RMSE), was the lowest for the correct model across all data

generating conditions. The inter-dimension correlations were adequately recovered, though using

the product model on data generated as the interaction model overestimated the correlation(s) in

all conditions, whereas using the interaction model on product model data underestimated them

in all but the 4-dimension, ρ = 0.9 condition. Parameter recovery of thetas was similar for the

different models, suggesting that a compensatory model may be sufficient if one is primarily in-

terested in θ estimates. However, bias and RMSE for item parameters of the product model and

interaction model increased with more correlated dimensions. Specifically, with two uncorrelated

dimensions, the discrimination parameters of interacting items with varying values had small bias;

however, when ρ = 0.9, the larger discrimination parameter was negatively biased and the smaller

one was positively biased, indicating that higher correlations between dimensions tend to estimate

the discrimination parameters with similar magnitude. Similarly, for the product model, the inter-

cepts and discrimination parameters of items with different parameters per dimension had larger

RMSEs and bias when the correlations between dimensions were high.

In summary, each of the aforementioned studies of partially compensatory models has claimed

that 1) the interaction MIRT models are favored compared to the alternative product models, and

2) increasing inter-dimension correlations contribute to poor recovery of item parameters. With

highly correlated dimensions, it may be that a unidimensional model is preferred because the

dimensions are homogeneous (Drasgow & Parsons, 1983). Alternatively, a bifactor model that

parcels out common variance among items with a general dimension and simultaneously models

the unique influence of specific dimensions can offer an interpretive benefit. As such, this dis-
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sertation investigates interaction effects in bifactor models that do not have correlations estimated

between dimensions, which in turn results in a computational advantage compared to traditional

MIRT models. The next section describes bifactor models in depth and how they may be applied

with interaction effects.

2.3 Bifactor Models

The bifactor model is widely used in the social sciences, stemming from the work of Holzinger and

Swineford (1937) and Holzinger and Harman (1941), with traditions in factor analysis (Thurstone,

1947; Spearman, 1904). The bifactor model is a measurement model for exploratory and confirma-

tory latent variable models, such as item response theory, that specifies that the covariance among

a set of items is accounted for by specific or grouping latent dimensions alongside a general latent

dimension. Though frequently applied to continuous item responses, the bifactor model has been

applied to data with dichotomous (Gibbons & Hedeker, 1992), polytomous (Gibbons et al., 2007),

and nominal responses (Cai et al., 2011) using item response theory methods.

Figure 2.7: Bifactor model with three specific dimensions

y1 y2 y3 y4 y5 y6 y7 y8 y9

θ1 θ2 θ3

θg

To demonstrate the relationships between items and latent variables, a path diagram in Figure

2.7 depicts a bifactor structure. As shown, all items (y1...y9) measure the general latent dimension,

θg, and at most one of multiple specific dimensions, θ1, θ2, or θ3. The pattern of the bifactor model
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for the items displayed in Figure 2.7 can be described as

β =



β1g β11 0 0

β2g β21 0 0

β3g β31 0 0

β4g 0 β42 0

β5g 0 β52 0

β6g 0 β62 0

β7g 0 0 β73

β8g 0 0 β83

β9g 0 0 β93



. (2.10)

The first column is the general factor, θg, and the subsequent columns are the three grouping or

specific dimensions in the pattern matrix. Typically, items will measure at most one specific di-

mension alongside the general dimension, though recent research has extended the bifactor model

to include multiple general dimensions (Cai, 2010) or multiple sets of specific dimensions in con-

firmatory factor analysis (Jeon et al., 2018).

Following the MGRM model for a polytomous item responses as in Equation 2.7 and the bifac-

tor model depicted in Figure 2.7, the bifactor model for an item measuring the general dimension

and at most one of the specific dimensions, completed by respondent r, is defined as follows:

P(yri ≥ k|θ) = Φ(βi(k)+βigθrg +βisθrs). (2.11)

The probability of an endorsed item response equal to k or greater becomes a function of the

general latent dimension, θrg, and the specific dimension, θrs, which are contained in vector θ

(θ = [θg,θs1, ....,θS]) with one element for the general dimension and up to S elements for specific

dimensions. The category intercept, βi(k), for category k is interpreted as the expected probability

of a k response for a respondent with average levels of the latent variables (where θg = θs = 0)
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measured by the item. There are two main effect parameters estimated per item i to indicate the

strength of association between the items and the corresponding dimension: βig for the θrg general

dimension and βis for the θrs specific dimension. When interpreting scores on these dimensions,

they must be conditioned at a point on the latent metric of the other dimension, such as at 0 (the

mean). For model identification, the general and specific dimensions are jointly standard normally

distributed and mutually orthogonal (i.e., uncorrelated) to each other (Gibbons & Hedeker, 1992).

The specific dimensions of the bifactor model measure subsets of items to allow modeling of

conditional dependence due to the unique influence of construct-relevant groupings or caused from

a “nuisance” factor, such as with method factors (similar item phrasing) or testlets (common item

stems) that threatens the validity of the psychometric model (Reise et al., 2010; Li et al., 2006;

DeMars, 2012). The general dimension is presumed to directly influence all facets underlying the

hypothetical construct by accounting for the relationships between all items measuring the con-

struct. This is in contrast to traditional multidimensional models that can only capture variance

associated with specific dimensions or unidimensional models that have a general dimension but

are distorted by conditional dependence among item subsets. With the bifactor model, dimension-

ality assessment is more interpretable because the specific dimension structure can be discovered

when the influence of the global construct and the unique contributions of the specific dimen-

sions are parceled out (Reise et al., 2007; Chen et al., 2006). The analysis becomes more easily

interpretable compared to other commonly applied models, as described next.

2.3.1 Frequently Compared Models

The bifactor model is advantageous for researchers interested in modeling specific constructs and

a single “breadth” dimension that is not hierarchical in nature. To further illustrate the bifactor

model and its applications, this explanation can be compared to competing models with similar

latent variable interpretations that are also used to explain covariation among sets of item subsets,

such as the correlated factor model (also called the oblique factor model, see Figure 2.8; DeMars,

2013; Jennrich & Bentler, 2012) and the second-order or higher-order factor model (see Figure
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2.9). These models estimate correlations between specific latent dimensions, which can imply

the presence of a general dimension when correlations are high. Though not the focus of this

dissertation, the correlated factor model and second-order model are frequently contrasted with

bifactor models. Thus, this section provides a brief comparison of these alternate models that have

comparable conceptual interpretations.

Figure 2.8: Correlated factor model with three dimensions

y1 y2 y3 y4 y5 y6 y7 y8 y9

θ1 θ2 θ3

The compensatory and partially compensatory MIRT models previously described are corre-

lated factor models when correlations between primary factors are estimated. The interpretation

of these models is straightforward, where correlations among dimensions are what represent the

general dimension. However, compared to the bifactor model, the correlated factors model is more

computationally intensive (Cai, 2010; Cai et al., 2011; Gibbons et al., 2007; Gibbons & Hedeker,

1992). For a more in-depth explanation of the differences in estimation methods between the

correlated factor model and the bifactor model, see DeMars (2013).

In the second-order model, a hierarchy represents the interrelationships between observed items

and latent variables. The general, higher-order factor accounts for covariation between the lower-

order (specific) dimensions, which account for the relationships between observed items. In this

model, the higher-order dimension is only related to items through its indirect relationships with

lower-order factors, such that the second-order factor is fully mediated by the first order-factors

(Yung et al., 1999). The second-order model and the bifactor model are mathematically equivalent

in confirmatory models when the ratio of general factor main effects to lower-order main effects in

the bifactor model are equal within group factors (Yung et al., 1999; Gignac, 2008; Rijmen, 2010),
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often referred to as a proportionality condition (Gignac, 2016).

In exploratory bifactor modeling, the Schmid-Leiman orthogonalization procedure (Schmid &

Leiman, 1957) allows researchers to partition variance common among all item subsets in a general

factor from unique, systematic variance attributable to specific dimensions. However, this method

relies on the proportionality condition which may not always result in an accurate solution be-

cause it relies on items having strictly simple structure (i.e., items measure at most one dimension)

(Brunner et al., 2012; Jennrich & Bentler, 2011, 2012; Yung et al., 1999; Mansolf & Reise, 2016).

The Schmid-Leiman orthogonalization works by starting with a correlated factor model obtained

from a factor analysis with an oblique rotation that involves only specific dimensions, which is

then converted into a second-order model with the addition of a general higher-order dimension.

The result is then orthogonalized into an exploratory bifactor solution with proportionality con-

straints. As the ratio of factor loadings diverge from the proportionality constraints, the bifactor

model tends to fit better and is preferred in likelihood ratio tests of nested models because it is less

restrictive (Yung et al., 1999). The bifactor model is favored when additional complexities exist,

such as cross-loadings and correlated errors (Murray & Johnson, 2013), though fit indices tend to

be biased in favor of the bifactor model compared to the second-order model (Mansolf & Reise,

2017).

Figure 2.9: Second-order factor model with three lower-order dimensions

y1 y2 y3 y4 y5 y6 y7 y8 y9

θ1 θ2 θ3

θH
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2.4 Bifactor Models with Interactions

The objective of this research was to extend the bifactor model to include interaction effects be-

tween the general and specific dimensions measured by an item. As described earlier, past research

of MIRT models with interaction effects have shown difficulties in estimation and poor recovery

of the item and person parameter estimates with increasing correlations between latent dimensions

(Chalmers & Flora, 2014; DeMars, 2016; Rizopoulos & Moustaki, 2008). This study offers a bi-

factor model as a solution because correlations between specific dimensions are orthogonal based

on the assumption that any relationships between specific dimensions are due to their shared vari-

ance with the general dimension (Reise, 2012; Reise et al., 2007). In other words, the correlations

among specific dimensions are attributed to their common link among items, which is accounted

for by the general dimension.

Similar to the I-M2PL and I-MGRM, bifactor models with interaction effects are useful in

situations where the effect that one dimension has on the observed item response is dependent

on the values of the other dimension the item measures. For example, consider a bifactor model

of the M2PL with dichotomous item responses and continuous latent dimensions. Positive main

effects and a positive interaction between the general and specific dimensions could correspond to

an over-additive effect (or an under-additive effect if the interaction coefficient is negative) on the

probability of endorsing the item when there are high scores on both the general dimension and

specific dimensions. However, this implies that the predicted probability can only be bolstered if

scores on both dimensions are high. If scores on the specific dimensions are low, high scores on

the general dimension may not greatly increase the probability of endorsing the item or a higher

category.

The proposed bifactor model with interactions for ordered-categorical responses, based on the

I-M2PNO model from Equation 2.9 and the bifactor MGRM model given in Equation 2.11, for an

item i completed by respondent r, is given as:

P(yri ≥ k|θ) = Φ(βi(k)+βigθrg +βisθrs +βi(g∗s)θrgθrs). (2.12)
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The two main effects for the general and specific dimension, βi1 and βi2, are now simple main ef-

fects as they are conditional on the interaction term, βi(g∗s). Interpreting the relative contribution of

one dimension is now dependent on the level of the other dimension and the value of the interaction

parameter. For example, a unit increase in a respondent’s score on the specific dimension increases

the probability of a correct response, depending on the level of their general dimension. The model

could lend itself to a conjunctive interpretation, depending on the values of the conditional main

effects and the interaction. Specifically, with positive simple main effects and a positive interaction

parameter, higher values of one dimension but not the other may not greatly increase the probabil-

ity of a k item response. Comparatively, if the interaction is close to zero, one dimension can make

up for low values of the other dimension as in a compensatory model, depending on the size of the

main effects.

Consider the illustrations in Figure 2.10, 2.11, and 2.12 for three binary items that both measure

the general and specific dimensions equally with main effects of 1 and an intercept of 1. The item

in Figure 2.10 does not have an interaction effect, whereas the items in Figures 2.11 and 2.12

have interactions of positive and negative 0.3, respectively. The main effects in Figure 2.10 are

marginal whereas those in Figures 2.11 and 2.12 are conditional on their interaction effect. As

either dimension increases, the probability of an endorsed response also increases, but increases

in both dimensions simultaneously can have an added boost or a diminishing return, depending

on the value and direction of the interaction. Comparatively, if the interaction coefficient is small

and approaching zero, high values of either latent variable will have approximately the same rate

of increase in the probability of an endorsed response on the item, similar to the contours in a

compensatory model.
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Figure 2.10: Probability of a one response for an item modeled with a bifactor model having no
interaction, βi(g∗s) = 0
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Figure 2.11: Probability of a one response for an item modeled with a bifactor model having a
positive interaction, βi(g∗s) = 0.3
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Figure 2.12: Probability of a one response for an item modeled with a bifactor model having a
negative interaction, βi(g∗s) = -0.3
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2.5 The Current Study

Previous research of interaction effects in item response models have focused on models that have

correlated factors and lack a general dimension to account for relationships between items. The

aims of this dissertation were to extend this area of investigation by assessing bifactor models with

interaction effects that specify a general dimension in addition to multiple specific dimensions to

model latent constructs. In the current study, simulated and empirical data were used to evaluate

three primary research questions. The first question investigates how well the proposed bifactor

model with interactions performs under a range of data generating conditions and whether it can be

estimated accurately and efficiently. The second question investigated the potential consequences

of ignoring interaction effects as in a traditional bifactor model. Finally, the third question aimed

to determine whether interactions can be uncovered when they are not known a priori and whether

commonly used model selection and parameter refinement strategies can identify the correct data-
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generating model. Using generated and empirical data, this dissertation addressed the following

three research questions:

1. How well does the proposed bifactor model with interaction effects recover item and person

parameters in realistic data generating conditions?

2. What is the impact of ignoring interaction effects on model recovery of item and person

parameters when fitting a bifactor model with only main effects?

3. How well do model selection and parameter refinement strategies perform in identifying

underlying interactions in a bifactor model?

To address research questions 1 and 2, two Monte Carlo simulation studies outlined in Chapter 3

demonstrate model recovery for the bifactor model with and without interactions present and eval-

uate adverse effects that may arise when fitting a misspecified model. Informed by the results of

these studies (Chapter 4), analyses of empirical data with applications in psychology and education

are demonstrated to further investigate research question 3 in Chapter 5.
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Chapter 3

Methods

Before investigating interaction effects in bifactor models with empirical data and demonstrating

its usefulness as an approach to modeling latent constructs, the current study evaluated the bifactor

model with interactions using Monte Carlo simulation. Monte Carlo simulation is a method that

allows researchers to create a controlled environment to test statistical models because population

parameter values are set by the researcher. With a simulation study, estimated model parameters

from different models, either correctly specified or misspecified, can be compared against true

values that were used to generate the data. As interaction effects in bifactor models have not been

studied in previous research, little is known about the sampling distribution of interaction effects

and how including them may affect model convergence in a range of data-generating conditions.

Furthermore, recovery of bifactor model parameters and the potential consequences that can arise

when fitting a misspecified model that ignores interaction effects has not been studied. Thus, Monte

Carlo simulation is an appropriate choice for the research questions posed in this dissertation.

The following chapter provides readers with a description of the design of two Monte Carlo

simulation studies: one for 2-category ordinal data that is typical of educational testing environ-

ments and one for 6-category ordinal data traditionally applied in psychological assessment re-

search. Although the models and data-generating conditions for the simulation studies are dif-

ferent, the research questions are the same. Thus, this chapter begins with a description of the

different study conditions that were chosen to investigate the theoretical properties of the bifactor

model with interactions present in fitting ordered-categorical data. Then, for each research ques-

tion, a description of the approach taken and various evaluation criteria used is given. Chapter

4 presents the results of the simulation studies, which is followed by empirical applications in
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Chapter 5.

3.1 Simulation Study Design

The design of the Monte Carlo simulation studies was selected to address the three primary re-

search questions. The first question focuses on the practicality of estimating the bifactor models

with interactions and the quality of parameter estimates under a range of data-generating condi-

tions. The second question compares the bifactor model with alternative specifications that do

not match the data-generating model to examine the extent to which model misspecification due

to omitted variables and model overfitting may impact the accuracy of the parameter estimates

and respondent scores. The third question shifts focus from model quality and accuracy to im-

plementation in empirical data. The performance of methods commonly used in the process of

confirmatory model building and parameter refinement are evaluated in terms of their ability to

identify interaction effects at the item level and select the true data-generating model.

3.1.1 Study Conditions

The variables manipulated in the simulation studies are presented in Table 3.1. The data-generating

conditions of the simulation studies were the sample sizes of respondents and the percentage or

number of items with interaction effects present. These variables were manipulated because it

was expected that the accuracy of the estimated parameters of the bifactor model with interac-

tions would depend on the number of interactions estimated and the sample size of respondents.

The sample sizes were chosen to be representative of common sample sizes found in psychology

research and large scale educational testing environments. The varying number of items with in-

teraction effects present was chosen to investigate the effect that increased model complexity has

on the ability of model building methods to detect interactions and the impact of model misspecifi-

cations resulting from over- and under-specified models. Furthermore, given the complexity of the

model, it may be impractical to estimate and a more parsimonious alternative may be sufficient.
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Table 3.1: Simulation study conditions
Label Condition 2-Category Levels 6-Category Levels
N Sample Size 500, 3,000 500, 1,000
Igen Items with Interaction Effects 0, 16 (25%), 32 (50%) 0, 8 (25%), 16 (50%)
Iest Item Interactions Modeled* Match, All, None Match, All, None
* Indicates a nested condition

Thus, this condition also tests whether an increasingly complex underlying data structure affects

parameter recovery accuracy and convergence. Accordingly, there are two sample size conditions

and three interaction effect conditions, resulting in six data-generating conditions per simulation.

For each replication, the six datasets were estimated with up to three variations of a bifactor

model (Iest = Match, All, None). The aim of estimating the data sets differently according to which

interactions are assumed was to ensure the recovery of the estimated parameters when the model

estimated matches the data-generating model (research question 1), weigh the potential conse-

quences of fitting a misspecified model that omits interaction effects (research question 2), and to

investigate model reduction strategies for use in empirical research when all possible item interac-

tions were estimated (research question 3). The first model estimated was the correctly specified

bifactor model that matches the data-generating model. The second fitted model had all item inter-

action effects estimated between the general and specific dimensions (no items measure more than

one specific dimension). The final fitted model was a bifactor model that omits interactions (i.e.,

main effects only bifactor model). The resulting design factors are fully crossed as displayed in

Table 3.1, with one exception: the models generated without interactions cannot be estimated with

matching interactions. Thus, each simulation has 2x3x2(3) = 16 conditions examined.

3.1.2 Data Generation

Data sets were generated according to the bifactor MGRM with item interactions as in Equation

2.9 using the R software package, version 3.5.1 (R Core Team, 2018). Test length was fixed; the

2-category simulation had 64 items and the 6-category simulation had 32 items. The 2-category

simulation was designed based on large-scale testing environments that typically involve large

35



numbers of items for an accurate estimation of θ . Comparatively, psychological assessments typi-

cally involve shorter assessments and several dimensions to measure a latent construct.

The items measured at most one of four normally distributed and orthogonal specific dimen-

sions and the general dimension. Thus, each specific dimension had an equal number of items

measuring each (calculated as the total number of items divided by the number of specific dimen-

sions). When data were generated with interactions, the number of items having interactions per

specific dimension was also equal. Though items could theoretically measure multiple general or

specific dimensions with or without an interaction (Jeon et al., 2018; Cai, 2010), this study only

considers items that measure one specific dimension and one general dimension.

Data-generating parameters for the two simulations are shown in Table 3.2 and described in

terms of the parameters of Equation 2.12. General and specific dimensions were simulated from

a multivariate standard normal distribution (θ ∼ MV ND(0,Σ)) with mean 0 and an identity co-

variance matrix, Σ, to correspond to bifactor model identification. Item parameters for the two

simulations were simulated for each replication from distributions to generalize results to empir-

ical data where items have varying item parameters. Item intercepts were obtained by randomly

drawing values using βi0 ∼ uni f orm(−1,1) for the 2-category simulation to simulate tests with

conditional item means centered around the latent variable means. For the item intercepts of the

6-category simulation study, the random draws were βi(k) ∼ uni f orm(−3,3) and sorted to reflect

the cumulative ordering of the response options. The main effects, βig and βis, were drawn per item

and per dimension using ∼ uni f orm(0,2) to reflect the assumption that items do not necessarily

relate to the general and specific dimensions equally.

Given the relatively few studies on parameter recovery of partially compensatory MIRT mod-

els with interaction effects, this study used parameter-generating values for interaction effects in-

formed by DeMars (2016). In the present study, it is believed that item interaction effects can

be positive, negative, or zero. Thus, item interactions were drawn from a uniform distribution,

βi(g∗s) ∼ uni f orm(−0.5,0.5), with an interval that contains positive and negative values, centered

at zero. Interaction values for an item were not conditional on their main effects.
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Table 3.2: Data-generating parameters
Parameter Label Distribution
2-Response Item Intercepts βi0 ∼Uni f (−1,1)
6-Response Item Intercepts βi(k) ∼Uni f (−3,3)
Main Effects βig, βis ∼Uni f (0,2)
Interactions βi(g∗s) ∼Uni f (−0.5,0.5)
Latent Variables θrs, θrg ∼MV ND(0,Σ)

3.2 Model Estimation

This study used Bayesian estimation with Markov chain Monte Carlo (MCMC) simulation tech-

niques. This method was chosen given its greater flexibility in the estimation of complex models

with high-dimensional parameter spaces and large numbers of item parameters that would other-

wise be problematic using traditional frequentist methods such as maximum likelihood. A number

of studies estimating IRT models have used MCMC methods and found comparable results to

other common estimation methods such as Marginal Maximum Likelihood and the Expectation-

Maximization (EM) Algorithm (Patz & Junker, 1999a,b; Kim & Bolt, 2007; Wollack et al., 2002;

Kieftenbeld & Natesan, 2012; Gelfand et al., 1990).

All models were estimated using JAGS (version 4.3.0), abbreviated from “Just another Gibbs

Sampler,” a Bayesian software program (Plummer, 2017). JAGS uses a variety of sampling meth-

ods to estimate models, depending on the distribution of parameters (Plummer, 2017). In this

study, slice sampling (Neal, 2003) was used to sample item parameters coming from continuous

scalar prior distributions and an adaptive random walk Metropolis algorithm (Metropolis et al.,

1953; Hastings, 1970; Chib & Greenberg, 1995) for respondent parameters having a multivariate

normal prior distribution. JAGS model code for ordered 2-category data and K-category data is

presented in Appendix A and B, respectively. Because the models considered here were confirma-

tory, the model code includes two I×D indicator matrices (“designMain” and “designInt”) with

ones and zeros to specify whether to estimate main effects and interaction effects.

Informed by preliminary testing, MCMC estimation was completed with the following spec-

ifications: 7,000 iterations per 2 chains with 3,500 discarded burn-in iterations and a thinning
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interval of 3. Priors to estimate item parameters were βi· ∼ N(0,1), with the exception of main

effects, which were drawn from a standard normal distribution truncated at 0 for positive main

effects. These informative priors were chosen to restrict the range of the intercepts and interac-

tions to values that tend to lie between -4 and 4 and the main effects (conditional and marginal)

to tend to lie between 0 and 4. Latent variable priors for the general and specific dimensions were

drawn from a multivariate normal distribution, θ ∼MV ND(0,Σ), with 0 mean vector and identity

covariance matrix, Σ, with 1’s on the diagonal and 0’s on the off-diagonals. Estimates of parameter

values were obtained from the mean of the retained iterations.

For both simulations, each replication had unique random seeds and random number genera-

tors per MCMC chain. Starting values were set to their prior means of zero for all parameters, with

the exception of the category-intercepts in the 6-category simulation: starting values for category-

intercepts were sorted draws from normal distributions with means, µ = [−3,−1,−0,1,3], and

standard deviations of 1. These starting values were used for all models estimated within a repli-

cation. Random seeds for generating starting values were set to their replication seeds, per chain.

3.3 Evaluation Criteria

Output analysis was completed with R (R Core Team, 2018) using built-in functions and func-

tions within the coda package (Plummer et al., 2006). All models were checked for convergence

using traditional methods, including the Gelman-Rubin estimated potential scale reduction factor

(PSRF; Gelman & Rubin, 1992; Brooks, S. & Gelman, 1998) and Geweke’s Z-score diagnostic

(Geweke, 1992). Geweke’s Z-score assesses convergence by comparing the mean and variance at

the beginning and end of a single chain. If the z-scores are comparable at the two endpoints, it can

provide evidence of convergence. The PSRF uses multiple chains to compare how similar they are

according to their between-chain variance and within-chain variance. A PSRF threshold value of

1.2 was used to indicate convergence. A replication was included in subsequent analyses if at least

80% of all parameters converged according to both Geweke’s Z score and the estimated PSRF.

Model parameter recovery was evaluated by looking at the posterior mean of the parameters
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compared to their true generated values. Since item parameters (intercepts, main effects, and

interactions) and respondent scores on the latent variables (general and specific dimensions) were

generated as random variables within a replication, recovery for parameter type was aggregated at

the test level. For each estimated model parameter within each simulated replication of a condition,

this simulation study used the following statistics to evaluate parameter recovery: average Pearson

correlations between true and estimated respondent parameters, average parameter bias, average

absolute parameter bias (ABS), and average root mean squared errors (RMSE). These statistics are

calculated as follows:

Average Bias(δ ) =
1
R

R

∑
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K

∑
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where δk is the true value of a parameter of type k compared against its estimated parameter, δ̂k,

averaged over K parameters for a condition within a replication, r, which is then averaged over R

replications.

To compare the model-data fit of the different models estimated and evaluate the performance

of model selection strategies in identifying the true underlying model, this study used deviance

information criterion (DIC; Spiegelhalter et al., 2002), a Bayesian measure of the relative quality

of a model. The DIC is a Bayesian analog of the commonly used Akaike’s information criterion

(AIC; Akaike, 1974) that combines the goodness-of-fit of a model and a penalty factor for model

complexity. As with AIC, the DIC is an estimate of the expected predictive error, and therefore the

model with smaller values is preferred when comparing alternative models.
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The DIC of a model is calculated as

DIC = D̄+ pD (3.4)

where D is the posterior mean of the deviance (D̄ = Eθ |Y[D]). The deviance D is calculated at each

iteration as the sum of the deviance of all the observed stochastic nodes (Plummer, 2017). The

penalty factor, pD, is an estimate of the effective number of parameters of the model (Spiegelhalter

et al., 2002). The value of pD used in this study is described by Plummer (2002) and is based on the

Kullback-Leibler information divergence between predictive distributions at two different values

of θ . Defined in mathematical form, the Kullback-Leibler information divergence is:

I(θ 0,θ 1) = EYi|θ 0

[
log
{

p(Y 0
i |θ 0)

p(Y 0
i |θ 1)

}]
. (3.5)

In the context of MCMC sampling, pD for an iteration i is the sample mean of the Kullback-Leibler

information divergence between the distributions of θ for two chains (indexed by superscripts 0

and 1). The sample mean of pD was used to calculate the DIC of the model.

When estimating interactions, the rate in which items with and without data-generated interac-

tions were correctly identified was evaluated by calculating the average proportion of items across

replications within a data-generating condition that contained their true parameter value, either

βi(g∗s) or zero, within their 95% highest posterior density intervals (HDI) and credible intervals

(CI). The HDI gives the endpoints of the highest part of the density, which are created from the

empirical cumulative distribution function (CDF) of the posterior simulations that contain 95% of

the posterior probability. The CI endpoints are the upper and lower quantiles around the mean of

the posterior. The lower and upper limits of the HDI and CI used in this study were 0.025 and 0.975

quantiles of sampled draws, post burn-in. For non-interacting items, false positives would be items

identified as having interactions when they are not present in the underlying data structure (they

do not contain zero within the estimated interaction HDI or CI). Comparatively, the proportion of

misidentified interacting items is the rate in which generating values for true interacting items were
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not contained within their HDI or CI.

3.3.1 Pilot Study

An initial pilot study was completed to evaluate the between-simulation sampling variability of the

aforementioned Monte Carlo estimators using Monte Carlo error (MCE; Koehler et al., 2009) to

ensure that there were enough replications of each simulation condition. The MCE is a measure of

uncertainty that estimates the extent to which differences across simulation replications depends

on the differences between simulation runs (i.e., the structure and distributional assumptions of the

simulation) and the number of replications (Koehler et al., 2009). Given a condition, the MCE for

a ϕ quantity of interest (e.g., average RMSE of intercept parameters) becomes:

MCE(ϕ) =

√
∑

R
r=1(ϕ̂r− ϕ̄)2

R−1
(3.6)

where ϕ̂r denotes the estimate of ϕ for a replication, r, and ϕ̄ is the mean of ϕ over R replications.

Because parameter estimates were generated from a range of possible values instead of fixed for all

items for each replication and the model itself is complex, there may be high MCE variability that

demands more replications. Thus, an initial run of 100 replications per data-generating condition

was done to estimate MCE and determine whether more replications were needed.
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Chapter 4

Results

In this chapter, results are presented from the simulation studies dealing with the estimation and

parameter accuracy of the bifactor model with interactions, the potential consequences of model

misspecifications, and the effectiveness of model selection and parameter refinement strategies in

recovering the true data-generating model. Specifically, the primary purpose of the simulation

studies was to evaluate the convergence of models and recovery of parameters for the bifactor

model when interactions are present using simulated data with known generating models and pa-

rameters. Additionally, this study investigated the effects on parameter recovery when interactions

were omitted and when interactions were estimated for all items. Finally, the third objective was

to determine strategies for use in empirical data that are most effective in identifying underlying

interactions for individual parameters and choosing the correct model when making model com-

parisons.

4.1 Simulation Run Time

The cluster computing facility at the University of Kansas was used to complete the data generation

and estimation for the simulation studies. Given the complexity of the model combined with

Bayesian methods for estimation, a replication required a large amount of time to run. JAGS was

initiated via the command line interface on a single computing core. For the 2-category simulation,

time and RAM utilized to estimate a single model took on average 0.50 days with 623 MB of

RAM when N = 500 and 7.49 days with 3.41 GB of RAM when N = 3,000 across all other study

conditions. Comparably, an estimated model in the 6-category simulation with N = 500 required
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approximately 2.29 days and 560 MB of RAM, whereas data with N = 1,000 required 4.79 days

and 1 GB of RAM. The amount of time to complete 100 replications (with three models estimated

per replication) took several months for each simulation. In light of this, practitioners should

allocate enough time for model testing and estimation when using these models.

4.2 2-Category Simulation

4.2.1 Convergence

Of the 1600 estimations (16 conditions x 100 replications), the proportion of replications that

had over 80% of all parameters converge according to both Geweke’s Z-score diagnostic and the

estimated PSRF for each condition was 100%, except for data generated with a sample size of 500

and all interactions estimated. For the three levels of interactions generated, Igen = 0, 16, and 32,

overall convergence rates were 0.94, 0.95, and 0.93, respectively. From these results, it appears

that the degree of estimation complexity, defined by the increase in estimated model parameters,

increases the rate of nonconvergence regardless of data complexity. However, this effect was not

observed in the N = 3,000 sample size conditions where all model estimations converged. This

finding suggests that larger sample sizes may overcome convergence issues, though looking closer

at nonconvergence according to Geweke’s Z-score diagnostic for each of the different types of

parameters as shown in Table 4.1 can help illuminate this finding.

Overall, the differences in convergence rates did not vary substantially among the different

simulation conditions, and differences within a parameter type tended to be in the hundredth deci-

mal place. The intercept parameters had the lowest rates of convergence among all the parameters,

regardless of the data-generating condition or model estimated. The general and specific latent

dimensions tended to have slightly higher rates of convergence in the larger sample size condition,

which could explain the higher overall rate of convergence when N = 3,000. Considering main

effects, the general dimension main effects had higher rates of convergence compared to specific

main effects for all conditions. Interactions converged at a higher rate when they were estimated to
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match the data-generating model compared to when all interactions were estimated, and the overall

rates of convergence tended to be higher when the sample size was N = 3,000.

When there were no interactions generated, estimating all interactions tended to have lower

convergence rates for all model parameters compared to estimating no interactions (matching data-

generating model) in the N = 500 conditions, but not in the N = 3,000 conditions. With a larger

sample size and no generated interactions, convergence rates were equal for the different estimated

parameters with the exception of the intercept, which had a minimal increase in the rate of conver-

gence by 0.02 when all interactions were estimated compared to none. A similar finding was not

observed when the data had either 16 or 32 interactions generated. For an item parameter type, the

convergence rates per data-generating condition when interactions were generated did not appear

consistently higher or lower when all interactions were estimated compared to the none or match

estimated interactions conditions. The 18 non-converged estimations were excluded in subsequent

analyses.

Table 4.1: Binary response average proportion of converged parameters according to Geweke’s
Z-score diagnostic under different conditions

Estimated Parameter
N Igen Iest βi0 βig βis βi(g∗s) θrg θrs

500 0 All 0.80 0.88 0.92 0.91 0.92 0.95
None 0.84 0.90 0.95 * 0.94 0.96

16 All 0.82 0.88 0.92 0.91 0.92 0.95
Match 0.84 0.88 0.95 0.95 0.94 0.96
None 0.82 0.90 0.94 * 0.94 0.96

32 All 0.82 0.87 0.91 0.90 0.91 0.94
Match 0.84 0.91 0.93 0.95 0.94 0.96
None 0.81 0.90 0.94 * 0.93 0.96

3000 0 All 0.85 0.89 0.95 0.94 0.96 0.97
None 0.83 0.89 0.95 * 0.96 0.97

16 All 0.87 0.89 0.95 0.94 0.96 0.97
Match 0.82 0.89 0.94 0.95 0.96 0.97
None 0.81 0.90 0.95 * 0.96 0.97

32 All 0.80 0.89 0.93 0.95 0.96 0.97
Match 0.83 0.90 0.93 0.95 0.97 0.97
None 0.86 0.89 0.95 * 0.97 0.97

* Non-estimated parameter
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4.2.2 Parameter Recovery

The recovery of item parameters and respondent parameters according to their bias, absolute bias,

and RMSE can be seen in Figures 4.1-4.3 with corresponding Monte carlo errors (MCE) in Tables

4.2 and 4.3. The pilot study showed small MCEs for item and respondent parameters, so additional

replications were not completed. For the different data-generating conditions, MCE was largest

for bias parameters in the smaller sample size condition. Recall that the data generated with the

main effects only bifactor model has a nested estimation condition, such that the no interactions

estimated condition is the same as the match interactions estimated condition when there are no

interactions generated.

RMSE for the general and specific main effects shown in Figure 4.1 did not vary substantially

among the study conditions, and was only slightly larger when the main effects only bifactor

model was fitted to data with underlying interactions. Comparatively, bias and absolute bias for

the general and specific main effects differed among the study conditions. Firstly considering the

main effects, bias increased for all estimated models when data were generated with more items

having interactions, though absolute bias was comparable for the different levels of generated

interactions. For the baseline model with no interactions generated, the bias was negative when

estimated to match the data-generating model, and positive when all interactions were estimated.

Absolute bias of the general main effects within this condition was only slightly larger when all

interactions were estimated versus none. With a larger sample size, bias and absolute bias were

close to zero when no interactions were generated. In the N = 500 condition when either 16 or

32 items had interactions generated, general main effect bias was more negative and absolute bias

was larger when the model estimated omitted interactions compared to models estimated with all or

matching interactions, which reversed when N = 3,000. The negative direction of bias indicated

that the general main effects tended to be more underestimated with more omitted underlying

interactions, but when N = 3,000, bias was largest when interactions were modeled to match the

data-generating model. In fact, the bias of general main effects when matched interactions were

estimated was similar to bias when no interactions or all interactions were modeled. Interestingly,
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bias of general main effects was smaller when estimated with all interactions than with matching

interactions for both sample sizes, however the absolute bias was approximately the same for the

different estimated models in the larger sample size condition.

Compared to the general main effects, recovery was best for specific main effects also shown in

Figure 4.1 when the data-generating model matched the estimation model for N = 500, and when

all interactions were estimated when N = 3,000. However, in the larger sample size, bias and ab-

solute bias when interactions were present and modeled with either all or matched interactions was

nearly the same. As in the general main effects, specific main effects were positively biased when

the sample size was small and all interactions were estimated, substantially more so compared to

the correctly specified model. Omitting interactions had the largest bias, absolute bias, and RMSE

when interactions were generated for all data-generating conditions, though overall main effect

parameters were recovered well for the different study conditions.
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Figure 4.2 shows bias, absolute bias, and RMSE for intercepts and interactions. The intercepts

were recovered well for all estimated models, particularly in the larger sample size condition.

Intercept bias and absolute bias was largest for data with a larger proportion of items and a small

sample size that was fit with the main effects only bifactor model. Intercept RMSE was comparable

between estimated models within a sample size condition, though fitting only main effects when

interactions are present resulted in a larger RMSE compared to estimating either all or matched

interactions. Interaction parameters had adequate parameter recovery. Bias and absolute bias

was small, though RMSE was highest compared to other item parameters when N = 500 for all

estimation conditions. This finding supports the notion that more data is required for increased

accuracy of the interaction effects.

Correlations between true and estimated respondent scores on the latent variables were consis-

tent between conditions, having values of either 0.94 or 0.95 for the general dimension and 0.88

or 0.89 for specific dimensions. As shown in Figure 4.3, RMSE of respondent parameters was

recovered similarly for the data-generating and model estimation conditions, with average RMSE

equal to 0.309 for the general dimension and 0.466 for the specific dimensions. Bias and absolute

bias also shown in Figure 4.3 for the respondent parameters was small and decreased with a larger

sample size for all other study conditions. With N = 500, the general dimension bias for this con-

dition became slightly less negative when estimating all interaction effects when there were none.

The decrease in bias for the general dimension was not observed in other conditions, where bias

was generally the same for the different estimated models within a data-generating condition. For

the specific dimension with N = 500, the bias and absolute bias was the same when no interactions

were generated and models were fit with either no or all interactions.
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Figure 4.1: Binary response bias, absolute bias, and root mean squared error (RMSE) for general
and specific main effect parameters
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Figure 4.2: Binary response bias, absolute bias, and root mean squared error (RMSE) for intercept
and interaction parameters
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Figure 4.3: Binary response bias, absolute bias, and root mean squared error (RMSE) for general
and specific dimension respondent parameters
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4.2.3 Model Selection

Model selection frequencies are displayed in Table 4.4. Model comparisons were only made for

a replication within a data-generating condition if it had all variations of interactions estimated

(none, all, and matching) available to compare. Thus, the totals displayed in Table 4.4 will not

sum to 100 for some conditions because there were 18 analyses removed due to nonconvergence.

Generally, the true data-generating model was favored in relative fit model comparisons, regardless

of sample size or the proportion of items having underlying interactions. The DIC preferred the

misspecified main effects only bifactor model in only 9 out of 282 estimations (3.2%) for data with

sample sizes of N = 500 but otherwise selected the correct model. Comparatively, the main effects

only bifactor model was not favored over the data-generating model in larger sample sizes, though

the DIC favored all interactions in 11 estimations out of 300 (3.7%) compared to the correct model.

These results may be due to the penalty parameter, pD, which penalizes more complex models.

Table 4.4: Binary response model selection frequencies
Estimated Interactions, Iest

N Igen None Match All Total
500 0 * 94* 0 94

16 8 87 0 95
32 1 92 0 93

3000 0 * 100* 0 100
16 0 100 0 100
32 0 89 11 100

Total 9 562 11 582
* Indicates a nested condition

4.2.4 Model Reduction

To evaluate the effectiveness of highest density intervals (HDI) and confidence intervals (CI) in

identifying underlying interactions, the average proportion of items that contained their true data-

generating interaction value within the corresponding interval were evaluated for items estimated

and generated with interactions and items estimated but not generated to have interactions. Firstly,

the average proportion of interacting items containing their generating value within each interval
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was evaluated for the model estimated that matched the data-generating model to serve as a base-

line and is presented in Table 4.5. The proportion of items that did not contain their data-generating

value within their HDI and CI was higher in the larger sample size condition, regardless of whether

there were 16 or 32 items having interactions. Specifically, when there are 32 interacting items in

the larger sample size of 3,000, 19.3% of items on average did not contain their true interaction

value within their highest density interval, which amounts to approximately 6 items. Results for

the CI and HDI were nearly the same across the different data-generating conditions.

Table 4.5: Binary response average proportions (and Monte Carlo error) of true parameters outside
of highest density intervals and credible intervals in models estimated with matched interactions

N Igen HDI CI
500 16 0.084 (0.076) 0.089 (0.079)

32 0.078 (0.055) 0.089 (0.060)
3000 16 0.161 (0.095) 0.159 (0.094)

32 0.193 (0.100) 0.194 (0.102)

Figure 4.4: Binary response proportion of items with true parameters outside of highest density
intervals in models estimated with all possible interactions
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Figure 4.5: Binary response proportion of items with true parameters outside of credible intervals
in models estimated with all possible interactions
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For the models estimated with all possible interactions, Figures 4.4 and 4.5 show the propor-

tion of misidentified interactions for items without interactions generated and interaction-generated

items according to their highest density intervals (HDI) and confidence intervals (CI). As in the

model estimated with interactions to match the data-generating model, the proportion of misiden-

tified underlying interactions when N = 3,000 increased with more underlying interactions, but not

when the sample size was N = 500. A similar effect occurred with items that were not generated

to have interactions, though it was less pronounced; the proportion of non-interacting items that

were falsely identified as having interaction increased in the larger sample size condition and in

conditions with more items within a test were generated to have interactions.

4.3 6-Category Simulation

4.3.1 Convergence

Convergence rates in the 6-category simulation were comparable to the 2-category simulation. For

the 100 replications, only 18 of the 1600 estimations had below 80% of all parameters converged
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as indicated by both the estimated PSRF and Geweke’s Z-score diagnostic. The nonconverged es-

timations occurred only when all possible interactions were estimated. With a sample of N = 500,

overall convergence rates were 0.92, 0.98, and 0.95 for the three levels of interactions generated,

Igen = 0, 16, and 32, respectively. In the N = 1,000 sample size condition with all interactions

estimated, overall convergence was 0.99 for all levels of interactions generated.

The proportion of converged parameters according to Geweke’s Z-score diagnostic by parame-

ter type is presented in Table 4.6. As in the 2-category simulation, intercept parameters (βi1 through

βi5) had the lowest convergence rates for all data-generating and model estimation conditions, par-

ticularly for the highest and lowest categories. When no interactions were generated, intercepts

converged at a higher rate when all interactions were estimated compared to none in the larger

sample size of N = 1,000, but otherwise estimating the matching data-generating model with no

interactions had a higher convergence rate for all parameters. In conditions when there were ei-

ther 8 or 16 interactions generated, convergence rates for intercepts tended to be higher when the

model estimated matched the model generated, except in the smaller sample size of N = 500 and

all interactions were estimated. However, these comparisons were in the hundredth decimal place

and likely not significantly different.

The rates of convergence for general and specific respondent parameters were comparable in

the different conditions, and the general dimension parameters tended to have a higher rate of

convergence than the specific dimension parameters. Interaction parameters had a higher rate

of convergence when the model estimated matched the data-generating model, particularly for

the sample size of N = 1,000. The 18 non-converged solutions were excluded in the following

analyses.
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4.3.2 Parameter Recovery

Parameter recovery of the 6-category simulation is presented in Figures 4.6 through 4.11 with

Monte Carlo error in Tables 4.7 and 4.8 for item and respondent parameter bias, absolute bias,

and RMSE. MCEs of bias, absolute bias, and RMSE were small, and largest for the general main

effects and intercept parameters. As in the 2-category simulation, models estimated with matched

interactions are nested in the no estimated interactions condition when data are generated with only

main effects.

Figure 4.6 shows the bias, absolute bias, and RMSE of the general and specific main effects.

The pattern of results was similar to the 2-category simulation. Considering first the general main

effects, bias and absolute bias was smallest in data generated with no interactions, a larger sample

size of N = 1,000, and the model estimated had no interactions to match the data-generating model.

The recovery of this baseline bifactor model without interactions generated or estimated had only

a small negative bias when N = 500. When these data were fit with a bifactor model having all

possible interactions, the bias was positive and only slightly larger in magnitude. However, the

absolute bias and RMSE when only main effects were generated for a sample size of N = 1,000

was about the same for the models estimated with matched (no) interactions and all interactions

estimated. There was minor fluctuation of RMSE for the different estimated models within a

data-generating condition. RMSE was largest when interactions were generated but not estimated,

and smallest when all interactions were estimated. Bias and absolute bias was smallest when

all interactions were estimated when a proportion of items had generated interactions. A similar

finding occurred with the 2-category simulation where the data-generating model with interactions

had a larger bias and absolute bias than the model with all possible interactions. However, the

differences in parameter recovery between the models estimated for the different data-generating

conditions were minor, and overall general main effect parameters were recovered well.
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Figure 4.6: Graded response bias, absolute bias, and root mean squared error (RMSE) for general
and specific main effects
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Specific main effects were recovered well, with less overall bias and absolute bias compared

to the general main effects as displayed in Figure 4.6. Bias and absolute bias was largest when a

bifactor model having only main effects was fit to data with generated interactions. In the larger

sample size of N = 1,000, the model estimated with all interactions when interactions were gen-

erated had the least amount of bias and absolute bias. Comparatively, in the smaller sample size

condition, bias and absolute bias of the model fit with all interactions were larger when data were

generated with interactions compared to the model with matched interactions. The direction of

bias when all interactions were estimated was positive in the N = 500 condition, indicating that es-

timated values were overestimated, compared to underestimated as observed for the general main

effects. However, the overall bias was small and absolute bias was less than or approximately

equal to 0.02 for the specific main effects. RMSE decreased in the larger sample size data and

was largest when the model estimated only included main effects and omitted generated interac-

tions. The models estimated with matched interactions and all interactions when interactions were

simulated had approximately the same RMSE in the different sample size conditions.

Recovery of interaction parameters according to bias, absolute bias, and RMSE is presented in

Figure 4.7. Bias was generally negative, with the exception of data generated with 16 items (50%)

having interactions and N = 500, where bias was positive when data were estimated with matched

interactions. Bias and absolute bias tended to be smaller when the model was estimated with all

interactions compared to the data-generated matched interactions, though RMSE for these models

estimated were similar within a data-generating condition. Thus, in data with more respondents

and interactions generated, the data-generating model performed best at recovering the interactions

but otherwise fitting all interactions had the least bias and absolute bias. Compared to general and

specific main effects, interactions had less bias, but similar absolute bias and RMSE.

The bias and absolute bias of the 5-category intercepts are displayed in Figures 4.8 and 4.9 with

RMSE in Figure 4.10. Overall, bias and absolute bias was small, and was smallest in the middle

category 3 intercept, and largest in the extreme category intercepts, 1 and 5. When there were

no interactions generated, the lower categories had a negative bias which became positive with
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increasing categories up to category 5. The opposite pattern occurred when there were 16 items

with simulated interactions; bias was positive for category 1 and became less positive to negative

with increasing categories. However, the bias and absolute bias of the intercepts were small and

differences between the study conditions were minor. RMSE for the category intercepts was small

overall and decreased with a larger sample size.

To understand the recovery of general and specific latent dimensions for respondents, bias,

absolute bias, and RMSE are displayed in Figure 4.11. Bias and absolute bias was minimal for

all study conditions for both the general and specific dimensions, and there was little fluctuation

among estimated models within a data-generating condition. Bias was lowest for both general and

specific dimensions in the larger sample size conditions, though the decrease was minimal. When

the model estimated omitted interactions when generated in the data, RMSE was only slightly

worse. RMSE was largest for the specific dimension across all study conditions (Mean = 0.496)

compared to the general dimension (Mean = 0.328). This was expected given the larger number

of items measuring the general dimension compared to the specific dimensions. Correlations be-

tween true generating parameters and estimated parameters were between 0.94-0.95 for the general

dimension and 0.86-0.87 for the specific dimension for all study conditions.
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Figure 4.7: Graded response bias, absolute bias, and root mean squared error (RMSE) for interac-
tion effects
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Figure 4.8: Graded response bias and absolute bias for categories 1 through 3 intercept parameters
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Figure 4.9: Graded response bias and absolute bias for categories 4 and 5 intercept parameters
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Figure 4.10: Graded response root mean squared errors (RMSE) for item category intercept pa-
rameters
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Figure 4.11: Graded response bias, absolute bias, and root mean squared error (RMSE) for general
and specific dimension respondent parameters
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4.3.3 Model Selection

For some or all iterations of the Markov chains for estimations in the 6-category simulation, the

penalty parameter, pD, was estimated to be infinity. The majority of estimations had at least one

occurrence of an infinite pD for an iteration (across both chains), and 42 of the 1,582 estimations

(after 18 were removed due to nonconvergence) had an infinite pD for all iterations of the two

chains. An infinite pD can occur because of how it is calculated as shown in Equation 3.5 and

again defined as

log
{

p(Y 0
i |θ 0)

p(Y 0
i |θ 1)

}
(4.1)

for an iteration, i. In the context of MCMC sampling defined by Plummer (2002), the Kullback-

Leibler (KL) information divergence is between the two parallel chains (superscripted as 0 and

1). The KL can be estimated as infinity if the denominator of the function, p(Y 0
i |θ 1), is zero

and the numerator, p(Y 0
i |θ 0), is greater than zero. Given this, another variant of pD was also

compared and is calculated as the posterior mean deviance minus the deviance of the posterior

means (Spiegelhalter et al., 2002):

pD = Eθ |Y[D]−D(Eθ |Y[θ ]) = D̄−D(θ̄). (4.2)

KL-based pD was calculated as the mean pD for an estimation with infinite iterations removed,

and the 42 estimations with infinite pD were excluded in model comparisons. If a replication

within a data-generating condition had missing estimations due to nonconvergence, they were also

excluded. Thus, totals displayed in the following tables will not sum to tne number of estimations

performed in the corresponding condition.
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Table 4.9: Graded response model selection frequencies according to KL-based penalty parameter,
pD

Estimated Interactions, Iest
N Igen None Match All Total
500 0 * 88* 2 90

8 11 84 2 97
16 3 78 9 90

1000 0 * 81* 8 89
8 2 79 12 93
16 0 65 27 92

Total 16 475 60 551
* Indicates a nested condition

Table 4.10: Graded response model selection frequencies according to variant penalty parameter,
pD

Estimated Interactions, Iest
N Igen None Match All Total
500 0 * 16* 76 92

8 0 25 73 98
16 0 22 73 95

1000 0 * 18* 81 99
8 0 25 74 99
16 0 27 71 98

Total 0 133 448 581
* Indicates a nested condition

Model selection frequencies according to these different estimates of pD are displayed in Ta-

bles 4.9 and 4.10. As shown, the KL-based pD tended to perform better than the variant pD in

selecting the true data-generating model, with 475 of the 551 estimations (86%) selected as the

correct data-generating model. The variant pD tended to favor the more complex model, suggest-

ing that the penalty for the effective number of parameters was not large enough to identify the

true model that has fewer parameters. The inaccuracy of the KL-based pD results compared to the

2-category simulation are likely due to the small number of finite pD used to estimate the sample

average of pD. In fact, some estimations had at most one iteration with a finite pD estimated.

Though not ideal, DIC comparisons based on the KL-based pD may at the very least identify

the correct data-generating model with accuracy ranging between 70.65% to 97.78%, depending
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on the sample size and underlying interactions. As in the 2-category simulation, DIC misidentifi-

cations of the true model in the larger sample size condition of N = 1000 tended toward the model

estimated with all interactions compared to no interactions, particularly when more underlying

interactions were present. In the larger sample with interactions generated, the main effects only

bifactor model was rarely selected over the data-generating model or the model with all estimated

interactions. However, I emphasize that these results should be interpreted with caution given the

unreliability in estimating pD as noted previously.

4.3.4 Model Reduction

The rate of misidentified interactions according to the highest density intervals (HDI) and cred-

ible intervals (CI), as defined by the proportion of estimated interaction parameters that did not

contain their true data-generating parameter within the interval, are presented in Table 4.11 for

models estimated with interactions that matched the data-generating model. This baseline model

had higher misidentification of interactions in the larger sample size of N = 1,000 compared to

N = 500. However, like the 2-category simulation, MCE of the average proportion over simu-

lated replications was high, though it is unlikely that increasing the accuracy of these results with

more replications will provide a more favorable inference. The rate of misidentified interactions

was large, even when the model estimated matched the data-generating model, suggesting that an

alternate strategy of model parameter refinement should be used instead.

Table 4.11: Graded response average proportions (and Monte Carlo error) of true parameters out-
side of highest density intervals and credible intervals in models estimated with matched interac-
tions

N Igen HDI CI
500 8 0.118 (0.135) 0.114 (0.143)

16 0.108 (0.099) 0.111 (0.103)
1000 8 0.121 (0.125) 0.121 (0.127)

16 0.144 (0.101) 0.144 (0.102)

Figures 4.12 and 4.13 display the inaccuracy of the HDI and CI in correctly identifying the true

interaction parameter when models are estimated with interactions for all items. The differences
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in HDI and CI are nearly indistinguishable. In the smaller sample size condition of N = 500,

there does not appear to be a large difference in the proportion of correctly identified interaction

items when the data is generated with either 8 or 16 items having interactions, similar to the

2-category simulation. Comparatively, the proportion of misidentified interacting items in data

with N = 1,000 respondents increases with more underlying interaction effects. The accuracy in

identifying non-interacting items as not having an interaction was better for all the data-generating

conditions at a rate of around 5% of items not containing their true value within their HDI, with a

slight increase with more items having interactions generated in the data.

Figure 4.12: Graded response proportion of items with true parameters outside of highest density
intervals in models estimated with all possible interactions
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Figure 4.13: Graded response proportion of items with true parameters outside of credible intervals
in models estimated with all possible interactions
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Chapter 5

Empirical Applications

In simulation studies, data are generated to match the model under study and true parameters are

known. Comparatively, empirical data will generally not fit as well because the true underlying

model is not known. Thus, this chapter presents an example of the bifactor model using two empir-

ical data sets: one for dichotomous data in educational testing, and one for graded response data in

psychology. The aim was to evaluate the rate in which different model parameters converge, assess

the prevalence of interactions, show how model parameters compare among different estimated

models, and demonstrate how interpretations of interactions can be made in real-world constructs.

The bifactor model with interactions and the competing main effects only bifactor model were

used to test the underlying structure of the measures and illustrate confirmatory model building

procedures and parameter refinement techniques. Model refinement and comparison methods that

were assessed in the simulation study were used to identify interactions when the true parameters

are not known. Specifically, the bifactor model with interactions and traditional main effects only

bifactor model were compared to determine whether building a model with all interaction effects

and refining individual item parameters using highest density intervals results in the selection of a

reduced model compared to a simpler model that omit interaction effects. To this end, each data

set was fitted with three variations of the bifactor model:

1. A main effects only bifactor model that omits interaction effects,

2. A bifactor model with all interactions estimated, and

3. A reduced bifactor model with interactions estimated for items that did not contain zero

within their highest density intervals from the model estimated with all interactions.
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5.1 Application 1: Mathematics Ability

The 2011 cycle of the Trends in International Mathematics and Science Study (TIMSS; Mullis

et al., 2012) math test for 8th grade students was selected to illustrate the bifactor model with

interactions in dichotomously scored data. The data selected for analysis was taken from students

in the top 10 highest-scoring countries completing Booklet 8, resulting in a sample size of 3,720

students. Sample sizes by country are presented in Table 5.1. Students having unique identifiers

appearing in multiple countries were removed (N = 26). For a complete description of the sample

characteristics and data collection process, see the original report published by TIMSS in Mullis

et al. (2012).

Table 5.1: TIMSS sample sizes by country
Rank Country N
1 Republic of Korea 369
2 Singapore 421
3 Chinese Taipei 353
4 Hong Kong SAR 280
5 Japan 299
6 Russian Federation 357
7 Israel 324
8 Finland 305
9 United States 740
10 England 272

The TIMSS math assessment has 34 items that measure one of four content domains: Number

(I = 11), Data and Chance (I = 5), Algebra (I = 13), and Geometry (I = 5). There were 15

multiple choice items that were scored correct and incorrect and 19 constructed response items that

were scored with up to 2 points; for the purpose of this study, responses to constructed response

items were recoded from partial credit scoring to either correct (score equal to 1 or 2 becomes

a score of 1) or incorrect (score equals 0) so that a dichotomous item response bifactor model

could be used. Though the constructed response items could be modeled with a partial credit

bifactor model having interactions, this illustration is restricted to only dichotomous ordered item

responses.
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5.1.1 Model Estimation

The same MCMC specifications and prior values of the simulation study were used to estimate the

model. Estimation was completed with 7,000 iterations per 2 chains with 3,500 burn-in iterations

and a thinning interval of 3. Priors were standard normal (∼ N(0,1)) for item parameters, which

was truncated at zero for main effects. Latent dimensions had multivariate standard normal priors,

θr. ∼MV N(0,Σ), with identity covariance matrix. The JAGS model code for dichtomously scored

items as specified in Appendix A was used.

Convergence assessment was completed using the estimated potential scale reduction factor

(PSRF; Gelman & Rubin, 1992; Brooks, S. & Gelman, 1998), and Geweke’s Z-score diagnostic

(Geweke, 1992). The proportion of converged parameters for the three estimated models per each

criterion is presented by parameter type and overall in Table 5.2. Similar to the convergence

rates by parameter type observed in the 2-category simulation study, the TIMSS bifactor models

had poor convergence of intercept parameters according to Geweke’s Z-score diagnostic. Overall,

the bifactor model estimated with all interactions had the lowest convergence rates for both the

estimated PSRF and Geweke’s Z-score diagnostic. To address the poor convergence according to

Geweke’s Z-score, a more diffuse prior could be specified, especially because true parameters are

not known. However, a more diffuse prior would require more iterations of the Markov chains to

reach convergence, thereby requiring more time to estimate the model. Thus, practitioners should

carefully consider the choice of prior distribution and number of MCMC iterations in preliminary

testing of their specified model.
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Table 5.2: Proportion of converged parameters for TIMSS data analyzed with different estimated
interactions

Estimated Interactions, Iest
None All Reduced

Parameter PSRF Geweke PSRF Geweke PSRF Geweke
Intercepts 0.941 0.647 0.882 0.235 0.971 0.912
Main Effects

General 0.941 0.765 0.912 0.765 1.000 0.882
Specific 0.941 0.794 0.765 0.676 0.971 0.706

Interaction Effects * * 0.735 0.647 1.000 0.857
Latent Variables

General 1.000 0.966 0.994 0.878 1.000 0.967
Specific 0.999 0.902 0.854 0.710 1.000 0.936

Total 0.999 0.914 0.881 0.742 0.999 0.941
*Non-estimated parameter

5.1.2 Model Selection

Differences in DIC between the bifactor models that have estimated interactions and the tradi-

tional bifactor model with only main effects estimated were compared to see if adding interaction

effects and reducing to only those interactions that do not contain zero within their highest density

intervals (HDI) results in a significant improvement in model fit. The bifactor model with all in-

teractions between the general and specific dimensions estimated was favored for having a smaller

DIC value of 116,607.06 (D̄ = 105,827.2, pD = 10,779.82) compared to the DIC of the main ef-

fects only model, 116,836.37 (D̄ = 106,639.7, pD = 10,196.68). As displayed in Table 5.4, 58% of

the interactions estimated contained zero within their HDI. These parameters were then removed

and the dataset was fit with reduced interactions. The DIC for this reduced model was 116,265.9

(D̄ = 105,455.9, pD = 10,810.03), which is smaller than the DIC of the models estimated with all

interactions or no interactions, thereby making it the preferred model.

5.1.3 Parameter Estimates

Because true parameters are not known in empirical data, parameter estimates from the different

models estimated were compared to each other rather than to true parameters. Posterior means of
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the main effect and interaction estimates and their corresponding standard deviations for the three

estimated models, no interactions, all possible interactions, and reduced interactions, are presented

in Tables 5.3, 5.4, and 5.5, respectively. Intercept mean estimates for all models are presented

in Table 5.6. Generally across the different bifactor models estimated, general and specific main

effects and intercept parameter estimates were comparable with some fluctuation. All main effects

for all the bifactor models estimated did not contain zero within their highest density intervals,

supporting the hypothesized bifactor pattern matrix that defines the relationships between the items

and the latent dimensions.

The general dimension main effects in the bifactor models estimated with all interactions and no

interactions were similar, though parameter estimates tended to be closer to zero in the main effects

only bifactor model for all but 8 of the 34 items. Considering the results of the simulation study,

the main effects only bifactor model main effect parameters tended to be downwardly biased when

more underlying interactions were present but unmodeled in the data. Interaction effects in the

reduced bifactor model were predominantly for items measuring the number dimension (4/14) and

algebra dimension (9/14), with one item of the data and chance dimension having an interaction.

The direction of the main effects were positive for 8 interactions and negative for 6 of the 14

interactions. Of the reduced interactions, the majority of items were constructed response (10/14)

rather than multiple choice.

Two example illustrations of the probability of correct responses for items 5 and 16 of the

TIMSS assessment are displayed in Figures 5.1 and 5.2. Item 5 was estimated to have a nega-

tive interaction, such that the rate of increase in probability of answering the item correctly for

a respondent with average general math ability is lower with high (+1 standard deviation) levels

of the Number dimension. However, with more general math ability, the difference in the rate of

increase in the probability is less noticeable because the probability with slightly above average

ability has approached the ceiling of a one probability. The second example item on the other

hand has a much different interpretation. The three predicted curves of the specific dimensions at

plus and minus one standard deviation around the mean cross at below average levels of general

78



math ability. The rate of change in the probability of a correct response becomes less positive with

lower Data and Chance ability. However, at lower general math ability levels, the probability of

getting the item correct is actually higher for a respondent with low versus high data and chance

ability. This conflicts with inferences about cognitive ability that is typically modeled such that the

probability of correctly responding is monotonically increasing with the latent ability.

Figure 5.1: Probability of a one response for item 5 of the TIMSS assessment modeled with a
bifactor model having reduced interactions
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Figure 5.2: Probability of a one response for item 16 of the TIMSS assessment modeled with a
bifactor model having reduced interactions
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Table 5.3: TIMSS main effect parameter means (and standard deviations) estimated from a bifactor
model with no estimated interactions
Item Reference General Number Algebra Geometry Data & Chance
1 M052413 0.69 (0.03)* 0.02 (0.02)*
2 M052134 0.81 (0.04)* 0.47 (0.06)*
3 M052078 0.56 (0.03)* 0.34 (0.05)*
4 M052034 0.70 (0.03)* 0.27 (0.05)*
5 M052174A 0.78 (0.04)* 0.59 (0.09)*
6 M052174B 0.82 (0.04)* 0.49 (0.08)*
7 M052130 0.71 (0.03)* 0.24 (0.04)*
8 M052073 1.01 (0.04)* 0.20 (0.04)*
9 M052110 1.33 (0.05)* 0.06 (0.03)*
10 M052105 0.95 (0.04)* 0.02 (0.01)*
11 M052407 0.90 (0.14)* 0.73 (0.32)*
12 M052036 0.72 (0.03)* 0.14 (0.07)*
13 M052502 0.90 (0.04)* 0.25 (0.08)*
14 M052117 0.40 (0.03)* 0.07 (0.05)*
15 M052426 0.67 (0.04)* 0.33 (0.09)*
16 M042183 0.46 (0.03)* 0.19 (0.05)*
17 M042060 0.89 (0.04)* 0.45 (0.06)*
18 M042019 0.50 (0.03)* 0.35 (0.05)*
19 M042023 1.25 (0.04)* 0.07 (0.04)*
20 M042197 0.83 (0.03)* 0.05 (0.03)*
21 M042234 0.92 (0.04)* 0.15 (0.04)*
22 M042066 0.66 (0.03)* 0.03 (0.02)*
23 M042243 1.22 (0.05)* 0.10 (0.04)*
24 M042248 1.33 (0.05)* 0.11 (0.04)*
25 M042229A 7.42 (0.45)* 5.85 (0.35)*
26 M042229B 1.88 (0.08)* 0.83 (0.05)*
27 M042229Z 7.45 (0.45)* 5.88 (0.35)*
28 M042080A 1.03 (0.04)* 0.18 (0.04)*
29 M042080B 1.39 (0.06)* 0.25 (0.04)*
30 M042120 0.90 (0.04)* 0.04 (0.03)*
31 M042203 1.17 (0.28)* 0.67 (0.46)*
32 M042264 0.79 (0.03)* 0.03 (0.03)*
33 M042255 0.58 (0.03)* 0.42 (0.10)*
34 M042224 0.81 (0.05)* 0.51 (0.12)*
*Does not contain zero within its Highest Density Interval
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Table 5.4: TIMSS main effect and interaction parameter means (and standard deviations) estimated
from a bifactor model with all possible estimated interactions
Item General Number Algebra Geometry Data & Chance Interaction
1 0.71 (0.04)* 0.06 (0.04)* 0.12 (0.06)*
2 0.81 (0.04)* 0.39 (0.06)* -0.09 (0.08)
3 0.59 (0.03)* 0.42 (0.05)* -0.12 (0.07)
4 0.72 (0.03)* 0.31 (0.05)* 0.02 (0.06)
5 0.76 (0.03)* 0.33 (0.05)* -0.26 (0.08)*
6 0.91 (0.05)* 0.28 (0.06)* -0.42 (0.08)*
7 0.70 (0.03)* 0.25 (0.04)* 0.05 (0.07)
8 1.01 (0.04)* 0.23 (0.04)* -0.05 (0.07)
9 1.37 (0.06)* 0.09 (0.04)* -0.20 (0.08)*
10 0.95 (0.04)* 0.02 (0.02)* 0.06 (0.06)
11 0.80 (0.05)* 0.30 (0.21)* 0.11 (0.11)
12 0.77 (0.05)* 0.29 (0.15)* 0.17 (0.10)
13 1.06 (0.16)* 0.23 (0.20)* 0.15 (0.52)
14 0.40 (0.03)* 0.05 (0.04)* -0.01 (0.09)
15 0.66 (0.05)* 0.08 (0.07)* 0.02 (0.38)
16 0.61 (0.05)* 0.50 (0.07)* 0.35 (0.08)*
17 0.91 (0.04)* 0.46 (0.06)* -0.04 (0.07)
18 0.55 (0.03)* 0.44 (0.05)* 0.11 (0.06)
19 1.26 (0.05)* 0.04 (0.03)* -0.01 (0.07)
20 0.83 (0.03)* 0.07 (0.04)* 0.00 (0.06)
21 0.96 (0.05)* 0.13 (0.04)* -0.25 (0.08)*
22 0.68 (0.03)* 0.03 (0.02)* 0.13 (0.05)*
23 1.28 (0.05)* 0.09 (0.04)* -0.27 (0.08)*
24 1.37 (0.06)* 0.16 (0.04)* -0.20 (0.09)*
25 7.32 (0.44)* 6.02 (0.37)* 0.85 (0.29)*
26 1.86 (0.08)* 0.85 (0.06)* 0.07 (0.09)
27 7.31 (0.46)* 6.01 (0.37)* 0.85 (0.28)*
28 1.19 (0.07)* 0.11 (0.04)* 0.48 (0.08)*
29 1.44 (0.07)* 0.12 (0.06)* 0.42 (0.10)*
30 0.94 (0.04)* 0.11 (0.07)* 0.03 (0.16)
31 1.20 (0.10)* 0.30 (0.23)* -0.10 (0.68)
32 0.82 (0.04)* 0.03 (0.02)* -0.13 (0.12)
33 0.57 (0.03)* 0.18 (0.15)* 0.11 (0.17)
34 0.93 (0.11)* 0.49 (0.36)* 0.36 (0.12)*
*Does not contain zero within its Highest Density Interval
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Table 5.5: TIMSS main effect and interaction parameter means (and standard deviations) estimated
from a bifactor model with reduced estimated interactions
Item General Number Algebra Geometry Data & Chance Interaction
1 0.72 (0.04)* 0.06 (0.04)* 0.14 (0.06)*
2 0.82 (0.04)* 0.44 (0.06)*
3 0.58 (0.03)* 0.40 (0.05)*
4 0.71 (0.03)* 0.32 (0.04)*
5 0.75 (0.04)* 0.34 (0.06)* -0.28 (0.09)*
6 0.92 (0.05)* 0.30 (0.05)* -0.44 (0.08)*
7 0.70 (0.03)* 0.25 (0.04)*
8 1.00 (0.04)* 0.23 (0.04)*
9 1.37 (0.05)* 0.08 (0.04)* -0.2 (0.08)*
10 0.94 (0.04)* 0.02 (0.02)*
11 0.97 (0.15)* 0.91 (0.30)*
12 0.72 (0.03)* 0.16 (0.05)*
13 0.90 (0.04)* 0.20 (0.06)*
14 0.40 (0.03)* 0.05 (0.04)*
15 0.66 (0.04)* 0.19 (0.08)*
16 0.58 (0.05)* 0.48 (0.07)* 0.30 (0.07)*
17 0.91 (0.04)* 0.48 (0.06)*
18 0.52 (0.03)* 0.41 (0.05)*
19 1.25 (0.04)* 0.04 (0.03)*
20 0.83 (0.03)* 0.07 (0.04)*
21 0.95 (0.04)* 0.13 (0.04)* -0.24 (0.08)*
22 0.67 (0.03)* 0.03 (0.02)* 0.13 (0.05)*
23 1.27 (0.05)* 0.09 (0.04)* -0.27 (0.07)*
24 1.37 (0.06)* 0.15 (0.04)* -0.19 (0.08)*
25 7.33 (0.44)* 5.99 (0.37)* 0.78 (0.26)*
26 1.86 (0.08)* 0.85 (0.05)*
27 7.32 (0.47)* 5.98 (0.38)* 0.78 (0.27)*
28 1.20 (0.07)* 0.10 (0.04)* 0.48 (0.09)*
29 1.46 (0.08)* 0.10 (0.06)* 0.45 (0.10)*
30 0.90 (0.04)* 0.04 (0.03)*
31 1.03 (0.06)* 0.43 (0.11)*
32 0.79 (0.03)* 0.03 (0.02)*
33 0.57 (0.03)* 0.30 (0.07)*
34 1.17 (0.18)* 1.14 (0.31)* 0.31 (0.10)*
*Does not contain zero within its Highest Density Interval
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Table 5.6: TIMSS item intercept parameter means (and standard deviations) estimated from a
bifactor model with different estimated interactions

Estimated Interactions, Iest
Item None All Reduced
1 1.00 (0.03) 1.01 (0.03) 1.02 (0.03)
2 1.18 (0.04) 1.14 (0.04) 1.17 (0.04)
3 0.02 (0.02) 0.00 (0.03) 0.02 (0.03)
4 0.50 (0.03) 0.51 (0.03) 0.51 (0.03)
5 0.52 (0.03) 0.45 (0.03) 0.45 (0.03)
6 -0.42 (0.03) -0.46 (0.04) -0.47 (0.04)
7 0.05 (0.03) 0.05 (0.03) 0.05 (0.03)
8 0.51 (0.03) 0.51 (0.03) 0.51 (0.03)
9 0.06 (0.03) 0.06 (0.04) 0.06 (0.03)
10 -0.82 (0.03) -0.82 (0.03) -0.82 (0.03)
11 1.12 (0.17) 0.96 (0.06) 1.21 (0.19)
12 0.12 (0.03) 0.14 (0.03) 0.12 (0.03)
13 1.06 (0.04) 1.18 (0.14) 1.05 (0.04)
14 -1.02 (0.03) -1.02 (0.03) -1.02 (0.03)
15 1.40 (0.05) 1.39 (0.04) 1.36 (0.04)
16 0.68 (0.03) 0.83 (0.05) 0.81 (0.05)
17 1.00 (0.04) 1.00 (0.04) 1.01 (0.04)
18 0.19 (0.02) 0.21 (0.03) 0.19 (0.03)
19 0.20 (0.03) 0.20 (0.03) 0.20 (0.03)
20 -0.26 (0.03) -0.25 (0.03) -0.26 (0.03)
21 0.80 (0.03) 0.81 (0.03) 0.81 (0.03)
22 0.15 (0.03) 0.15 (0.03) 0.15 (0.02)
23 0.76 (0.04) 0.78 (0.04) 0.78 (0.04)
24 -0.16 (0.03) -0.16 (0.04) -0.16 (0.04)
25 -0.74 (0.20) -0.38 (0.22) -0.41 (0.22)
26 -0.40 (0.05) -0.37 (0.05) -0.39 (0.05)
27 -0.75 (0.2) -0.39 (0.22) -0.41 (0.22)
28 0.13 (0.03) 0.13 (0.03) 0.13 (0.03)
29 -1.03 (0.05) -1.04 (0.05) -1.05 (0.05)
30 0.86 (0.03) 0.88 (0.04) 0.86 (0.03)
31 1.06 (0.26) 0.93 (0.05) 0.93 (0.05)
32 -0.67 (0.03) -0.68 (0.03) -0.67 (0.03)
33 0.75 (0.04) 0.73 (0.03) 0.73 (0.03)
34 0.63 (0.04) 0.73 (0.12) 0.98 (0.17)
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5.2 Application 2: Exercise Dependence

The Exercise Dependence Scale-Revised (EDS; Downs et al., 2004; Hausenblas & Downs, 2002)

is a self-report measure of exercise dependence that is characterized by excessive exercise en-

gagement as well as physiological, psychosocial, and cognitive symptoms. The EDS is a 21 item

measure with seven subscales (3 items each) that are based on the seven criteria of the DSM-IV

criteria for substance dependence: withdrawal, intention effects, lack of control, time, reduction

in other activities, continuance, and tolerance (Hausenblas & Symons Downs, 2002; American

Psychiatric Association, 1994). The EDS instructs participants to answer questions in reference to

their current exercise beliefs and behaviors that have occurred in the past three months on a 6-point

Likert scale (1 = Never, 6 = Always). The items and corresponding subscales are presented in Ta-

ble 5.7. The general bifactor dimension may indicate the general severity of exercise dependence

disorder, while the subscales indicate the different criteria that can indicate the various dimensions

of exercise dependence.

Participants were 406 undergraduate students from a northeastern university in the United

States, between the ages of 17 and 53 (M = 20.23, SD = 3.65). There were 273 females and

130 males in the study (N = 3 unspecified). The sample was mostly Caucasian (N = 329), but

also included African American (N = 20), Latin-American (N = 20), Asian-American (N = 18)

and others (N = 15). The students were recruited through the psychology subject pool and were

mostly from introductory psychology, but some professors of other courses grant extra credit in

return for their participation. After reviewing a consent letter that informed participants of their

rights, participants responded to a paper and pencil survey in groups of one to ten. IRB approval

was obtained for this study and participants were treated in accordance with APA guidelines.

5.2.1 Model Estimation

The models were estimated using the same MCMC specifications as were used in the simulation

study: 2 chains estimated with 7,000 total iterations, 3,500 burn-in iterations, and a thinning in-

85



terval of 3. JAGS model code for K-category data used for this analysis is presented in Appendix

B.

Table 5.7: Exercise Dependence Scale-Revised items and subscales
Item Subscale
1 Withdrawal I exercise to avoid feeling irritable.
2 Withdrawal I exercise to avoid feeling anxious.
3 Withdrawal I exercise to avoid feeling tense.
4 Continuance I exercise despite recurring physical problems.
5 Continuance I exercise when injured.
6 Continuance I exercise despite persistent physical problems.
7 Tolerance I continually increase my exercise intensity to achieve the desired

effects/benefits.
8 Tolerance I continually increase my exercise frequency to achieve the desired

effects/benefits.
9 Tolerance I continually increase my exercise duration to achieve the desired

effects/benefits.
10 Lack of Control I am unable to reduce how long I exercise.
11 Lack of Control I am unable to reduce how often I exercise.
12 Lack of Control I am unable to reduce how intensely I exercise.
13 Reduction in Other

Activities
I would rather exercise than spend time with family/friends.

14 Reduction in Other
Activities

I think about exercise when I should be concentrating on school/-
work.

15 Reduction in Other
Activities

I choose to exercise so I can get out of spending time with fami-
ly/friends.

16 Time I spend a lot of time exercising.
17 Time I spend most of my free time exercising.
18 Time A great deal of my time is spent exercising.
19 Intention Effects I exercise longer than I intend.
20 Intention Effects I exercise longer than I expect.
21 Intention Effects I exercise longer than I plan.
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Table 5.8: Proportion of converged parameters for exercise dependence data analyzed with differ-
ent estimated interactions

Estimated Interactions, Iest
None All Reduced

Parameter PSRF Geweke PSRF Geweke PSRF Geweke
Intercepts 1.000 0.829 0.952 0.914 0.942 0.581
Main Effects

General 0.857 0.905 0.857 0.762 0.714 0.571
Specific 0.952 0.857 0.952 1.000 0.904 0.952

Interaction Effects * * 0.714 0.810 1.00 1.00
Latent Variables

General 1.000 0.929 1.000 0.921 1.000 0.857
Specific 1.000 0.956 1.000 0.954 1.000 0.954

Total 0.999 0.948 0.996 0.947 0.996 0.929
*Non-estimated parameter

5.2.2 Model Selection

Model selection according to DIC could not be completed using pD because it was estimated to

be infinity for all iterations in the chain, as discussed in the 6-category simulation study results.

Though the variant pD (calculated as the posterior mean deviance minus the deviance of the pos-

terior means) could be used instead, it did not provide reliable identification of the true underlying

model in the simulation. Thus, model selection in this application relies on a priori specifica-

tion of the pattern matrix, the substantive interpretation of the parameters, the convergence of the

parameters, and the highest density intervals for individual parameters.

5.2.3 Parameter Estimates

Posterior means of the intercepts, main effects, and interaction effects and corresponding standard

deviations for the three estimated models (no interactions, all interactions, and reduced interac-

tions) are presented in Tables 5.9 through 5.14. Main effects were strong in the different models

estimated and did not contain zero within their HDI, supporting the confirmatory structure of the

bifactor pattern. As in the TIMSS data, parameter estimates were comparable among the different

estimated models with minor fluctuation.
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As indicated by the highest density intervals, 85.7% of the interaction effects estimated in

the model with all interactions contained zero within the interval. Thus, these interactions were

removed and the model was re-fit with a reduced model having 3 interactions out of the 21 possible.

These interactions were estimated for the following three items (and subscale):

1. I am unable to reduce how often I exercise. (Lack of Control)

2. I am unable to reduce how intensely I exercise. (Lack of Control)

3. I exercise longer than I intend. (Intention Effects)

The first two items are for the lack of control subscale and had positive interactions of 0.48 (SD =

0.15) and 0.86 (SD = 0.14), respectively. The third item belongs to the intention effects subscale

and had a negative interaction of -0.21 (SD = 0.15) that when re-estimated with reduced interactions

did contain zero within its HDI. Given this, it is likely that items’ relationships with the general

exercise dependence dimension and the specific lack of control dimension is a conditional one, but

not for items measuring the intention effects dimension.
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Table 5.9: Exercise dependence scale intercept parameter means (and standard deviations) esti-
mated from a bifactor model with no estimated interactions

Item βi1 βi2 βi3 βi4 βi5
1 -1.80 (0.14) -0.77 (0.11) -0.07 (0.11) 0.97 (0.12) 1.89 (0.15)
2 -1.22 (0.16) -0.46 (0.14) 0.41 (0.13) 1.56 (0.17) 2.68 (0.25)
3 -1.84 (0.19) -0.68 (0.15) 0.09 (0.14) 1.22 (0.17) 2.60 (0.25)
4 -1.11 (0.15) -0.15 (0.13) 0.49 (0.13) 1.73 (0.18) 2.61 (0.24)
5 -0.38 (0.12) 0.54 (0.12) 1.33 (0.14) 2.18 (0.18) 3.22 (0.27)
6 -0.31 (0.14) 0.53 (0.13) 1.32 (0.14) 2.25 (0.17) 3.74 (0.29)
7 -2.81 (0.19) -1.84 (0.15) -0.86 (0.13) 0.35 (0.13) 1.83 (0.17)
8 -2.60 (0.22) -1.37 (0.18) -0.29 (0.15) 0.96 (0.16) 2.67 (0.24)
9 -1.85 (0.18) -1.12 (0.16) -0.01 (0.14) 1.24 (0.15) 3.01 (0.24)

10 -0.74 (0.12) 0.48 (0.12) 1.32 (0.15) 2.39 (0.22) 3.08 (0.29)
11 -0.45 (0.14) 0.85 (0.14) 1.92 (0.17) 2.64 (0.20) 3.38 (0.27)
12 -0.44 (0.13) 0.76 (0.13) 1.60 (0.14) 2.50 (0.18) 3.05 (0.22)
13 -0.14 (0.11) 1.04 (0.14) 1.83 (0.17) 2.60 (0.23) 3.35 (0.32)
14 -0.35 (0.11) 0.66 (0.11) 1.20 (0.12) 1.84 (0.14) 2.97 (0.25)
15 0.58 (0.11) 1.67 (0.14) 2.30 (0.17) 2.79 (0.21) 3.53 (0.35)
16 -2.19 (0.20) -0.80 (0.14) 0.48 (0.13) 1.59 (0.16) 2.72 (0.23)
17 -0.96 (0.15) 0.37 (0.14) 1.41 (0.16) 2.41 (0.20) 3.58 (0.29)
18 -1.09 (0.17) 0.32 (0.14) 1.43 (0.15) 2.54 (0.18) 4.09 (0.31)
19 -1.40 (0.17) -0.03 (0.14) 1.06 (0.14) 2.12 (0.17) 3.53 (0.27)
20 -1.20 (0.19) 0.06 (0.15) 1.42 (0.15) 2.77 (0.20) 4.18 (0.32)
21 -0.79 (0.14) 0.20 (0.14) 1.52 (0.15) 2.59 (0.19) 4.05 (0.34)
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Table 5.11: Exercise dependence scale intercept parameter means (and standard deviations) esti-
mated from a bifactor model with all possible estimated interactions

Item βi1 βi2 βi3 βi4 βi5
1 -1.83 (0.15) -0.79 (0.12) -0.09 (0.11) 0.95 (0.12) 1.86 (0.15)
2 -1.27 (0.16) -0.50 (0.14) 0.38 (0.14) 1.53 (0.17) 2.67 (0.24)
3 -1.89 (0.19) -0.74 (0.16) 0.02 (0.15) 1.14 (0.17) 2.54 (0.24)
4 -1.18 (0.17) -0.22 (0.15) 0.43 (0.15) 1.70 (0.19) 2.61 (0.25)
5 -0.38 (0.13) 0.55 (0.14) 1.33 (0.16) 2.16 (0.19) 3.20 (0.27)
6 -0.43 (0.16) 0.45 (0.16) 1.30 (0.18) 2.29 (0.22) 3.89 (0.35)
7 -2.86 (0.21) -1.84 (0.16) -0.84 (0.14) 0.36 (0.13) 1.81 (0.17)
8 -2.54 (0.21) -1.35 (0.17) -0.30 (0.16) 0.91 (0.16) 2.57 (0.23)
9 -1.96 (0.20) -1.18 (0.17) 0.01 (0.16) 1.32 (0.19) 3.14 (0.28)

10 -0.71 (0.13) 0.47 (0.12) 1.28 (0.14) 2.30 (0.20) 2.97 (0.27)
11 -0.41 (0.15) 0.88 (0.16) 1.94 (0.19) 2.64 (0.22) 3.39 (0.29)
12 -0.38 (0.15) 0.87 (0.16) 1.74 (0.18) 2.69 (0.24) 3.33 (0.30)
13 -0.18 (0.12) 1.00 (0.14) 1.79 (0.17) 2.56 (0.23) 3.32 (0.33)
14 -0.37 (0.11) 0.63 (0.11) 1.16 (0.12) 1.80 (0.15) 2.93 (0.26)
15 0.51 (0.12) 1.66 (0.16) 2.33 (0.20) 2.85 (0.24) 3.63 (0.36)
16 -2.24 (0.19) -0.84 (0.13) 0.44 (0.13) 1.55 (0.16) 2.69 (0.23)
17 -1.06 (0.15) 0.29 (0.15) 1.37 (0.16) 2.41 (0.20) 3.63 (0.31)
18 -1.14 (0.15) 0.27 (0.15) 1.39 (0.17) 2.51 (0.20) 4.09 (0.34)
19 -1.54 (0.17) -0.15 (0.15) 0.97 (0.16) 2.10 (0.19) 3.61 (0.31)
20 -1.24 (0.17) -0.04 (0.15) 1.28 (0.16) 2.63 (0.20) 4.06 (0.32)
21 -0.86 (0.15) 0.13 (0.14) 1.46 (0.16) 2.54 (0.19) 4.03 (0.36)
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Table 5.13: Exercise dependence scale intercept parameter means (and standard deviations) esti-
mated from a bifactor model with reduced estimated interactions

Item βi1 βi2 βi3 βi4 βi5
1 -1.81 (0.15) -0.77 (0.11) -0.07 (0.11) 0.97 (0.12) 1.89 (0.16)
2 -1.24 (0.16) -0.47 (0.14) 0.41 (0.14) 1.57 (0.17) 2.71 (0.25)
3 -1.81 (0.18) -0.68 (0.15) 0.08 (0.14) 1.19 (0.17) 2.56 (0.24)
4 -1.09 (0.15) -0.14 (0.13) 0.50 (0.14) 1.73 (0.21) 2.59 (0.28)
5 -0.37 (0.12) 0.56 (0.12) 1.34 (0.14) 2.19 (0.18) 3.23 (0.27)
6 -0.29 (0.14) 0.55 (0.13) 1.33 (0.15) 2.26 (0.19) 3.73 (0.31)
7 -2.83 (0.21) -1.84 (0.16) -0.86 (0.13) 0.35 (0.12) 1.83 (0.17)
8 -2.61 (0.22) -1.37 (0.16) -0.30 (0.15) 0.96 (0.17) 2.69 (0.25)
9 -1.88 (0.17) -1.14 (0.15) -0.02 (0.14) 1.26 (0.17) 3.05 (0.25)

10 -0.73 (0.13) 0.47 (0.12) 1.30 (0.14) 2.36 (0.20) 3.04 (0.27)
11 -0.39 (0.14) 0.86 (0.13) 1.89 (0.14) 2.57 (0.18) 3.31 (0.24)
12 -0.36 (0.14) 0.92 (0.15) 1.81 (0.16) 2.77 (0.20) 3.42 (0.24)
13 -0.13 (0.11) 1.04 (0.13) 1.83 (0.16) 2.60 (0.21) 3.35 (0.32)
14 -0.34 (0.11) 0.66 (0.11) 1.20 (0.12) 1.84 (0.15) 2.96 (0.25)
15 0.58 (0.12) 1.67 (0.15) 2.30 (0.19) 2.79 (0.23) 3.53 (0.35)
16 -2.19 (0.19) -0.79 (0.13) 0.49 (0.12) 1.59 (0.16) 2.72 (0.23)
17 -0.96 (0.15) 0.37 (0.14) 1.43 (0.16) 2.44 (0.19) 3.60 (0.28)
18 -1.06 (0.15) 0.33 (0.13) 1.42 (0.15) 2.51 (0.19) 4.05 (0.32)
19 -1.47 (0.18) -0.07 (0.15) 1.05 (0.16) 2.17 (0.19) 3.66 (0.29)
20 -1.14 (0.17) 0.07 (0.15) 1.38 (0.16) 2.68 (0.20) 4.05 (0.32)
21 -0.77 (0.14) 0.21 (0.14) 1.51 (0.15) 2.57 (0.19) 4.00 (0.34)
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Chapter 6

Discussion

This study examined the parameter recovery of bifactor models that include interaction effects

between the general and specific latent dimensions and the potential consequences of omitting

interactions in misspecified models. In doing so, a bifactor model was defined with interactions

for constructs that involve multiple factors and the risk of fitting bifactor models with only main

effects was judged for both item and respondent parameters. In this chapter, I present a summary of

the major results of this study centered around the research questions outlined previously, followed

with a discussion of study limitations, possible directions for future research, and implications in

psychological and educational measurement research.

6.1 Review of Study Findings

The three primary questions can be summarized as follows. First, how well does the proposed

bifactor model with interaction effects recover item and person parameters in realistic data gener-

ating conditions? Second, what is the impact of ignoring interaction effects on model recovery of

item and person parameters when fitting a bifactor model with only main effects? Third, how well

do model selection and parameter refinement strategies perform in identifying underlying interac-

tions in a bifactor model? For each of these questions, the study findings are summarized in the

following sections.
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6.1.1 Parameter Recovery

The results from the simulation studies indicated that the bifactor model with interactions had

little bias and adequate root mean squared error (RMSE) for the estimated parameters, and few

non-converged solutions. Respondent parameters for all data-generating and estimation conditions

were recovered well and did not vary much among the conditions. This finding suggests that

the correct specification of the interaction effect parameters may not be necessary for practical

applications where the modeling purpose is to estimate the respondent parameters. However, if

the researcher is interested in understanding the relationships between items and the measured

latent dimensions, such as in assessing item dimensionality or violations of local independence,

interaction effects should be evaluated in the model building process.

6.1.2 Model Misspecification

Typical model building procedures involve 1) the development of a prior model that identifies the

hypothesized patterns of associations among manifest and latent variables, 2) a test of the hypoth-

esized model with a sample of data, 3) evaluation of the solution in terms of model-data fit and

parameter estimates, and 4) modification of the model to identify the most parsimonious model

without sacrificing goodness of fit or substantive meaning (MacCallum, 1986). In confirmatory

model building, particularly in factor analytic and item response theory traditions, only main ef-

fects are specified between items and latent variables, and a bifactor structure is often tested only

after identifying multidimensionality in data. Given this tradition, this study investigated the im-

pact of ignoring interactions when they are present in the underlying data.

As demonstrated by the simulation studies, the main effect parameters had a greater bias when

the interactions were present in the underlying data but unmodeled. The main effects tended to have

a negative bias when the interactions were omitted, which could potentially cue the researcher to

remove the main effect parameter(s) to simplify the model in favor of parsimonious results. Thus,

the new constrained model is estimated and potentially supported in model-data fit comparisons.

In some situations, consistently underestimated general main effect parameters may indicate that

96



a bifactor model is not necessary and instead a simpler model may be preferred instead. The same

could be said for the specific dimension main effects. Subsequent inferences about the construct

based on the invalid result, such as in tests of explanatory variables, may be incorrect because the

true complexity of the data is masked when the interactions are omitted. However, bias, absolute

bias, and RMSE were averaged in this study for each parameter type. It may be that parameter bias

and RMSE varies depending on the size of the effect, such that smaller main effects may show a

positive bias whereas large main effects may show a negative bias (or vice versa). Further research

should evaluate the impact of model misspecification on parameter recovery, conditional on the

values of the generated effects.

6.1.3 Model Selection and Parameter Refinement

As indicated by the high frequency of deviance information criteria (DIC) to select the true under-

lying interaction model, particularly with the 2-category data, these findings suggest that including

interaction effects in bifactor models could provide a better fit to the data, even with the added

model complexity. However, model selection based on information criteria is not devoid of error.

The DIC is calculated based on two statistics, deviance and pD, that also have sampling variability

and are measured with a certain degree of precision. Particularly in the graded response data sim-

ulation and empirical application, pD was non-estimable in some or all iterations of the Markov

chains. For many replications in the graded response simulation, the sample mean pD was only

calculated from a very small handful of iterations. This may be a function of the model estimated or

arising from a glitch or miscalculation in JAGS software. Comparatively, there were no instances

of infinite pD in the 2-category simulation. Researchers interested in using DIC with a penalty for

the effective number of parameters should consider examining their performance using simulation

with generating values based on their empirical data prior to using them to make model selection

decisions.

The methods used in this study to uncover the true interactions in empirical data were unreli-

able in the simulation studies. Interaction effects were poorly identified using the highest density
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intervals and credible intervals for parameter refinement when estimating all interactions. Fu-

ture research should compare alternate methods of model parameter refinement and provide clear

guidelines for model parameter identification. As with any latent variable model, the items should

be evaluated from a substantive perspective to consider the skills involved that elicit responses,

defined by what construct represents the general and specific dimensions and the interpretations

that would follow with the addition of an interaction for an item. For example, is it likely that the

rate of increase in the probability of a correct response for a word problem item would be aug-

mented with more math ability in respondents with below average reading comprehension? These

results emphasize the importance of using multiple sources of substantive and statistical evidence

to identify misfit in model-data fit and select an appropriate model.

6.2 Directions for Future Research

The simulation studies were not exhaustive with respect to relevant assessment design and mis-

specification conditions, and different outcomes were not investigated, including reliability and

conditional bias or RMSE (e.g., differences in parameter bias as a function of θ ). Generalizability

of findings are dependent on the limitations in the design of the simulations, including the fixed

test length, the number of specific dimensions, distributions of latent and observed variables, and

types of misspecification. The choice of design factors and corresponding levels were selected for

their relevance to psychological assessment and educational measurement research, and parameter

generating values were selected for generalizability. However, the data simulated was generated

under ideal conditions, where the latent variables were multivariate normal without skewness, the

specific dimensions were uncorrelated, and bifactor models were estimated with accurate design

matrices for main effects.

Recovery of the respondent parameters were robust to misspecification of the interaction ef-

fects in all data generating conditions, though this result may not be observed when the measure-

ment model is misspecified in other ways (i.e., omitted main effects or latent dimensions). Future

research should evaluate the performance of the bifactor model with interactions in unfavorable
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conditions, such as with dimensions measured with few items and respondents, in data with few

respondents endorsing different categories in a graded response bifactor model, or in situations

where monotonicity is violated for an item, such as when the values of the main effects and inter-

actions indicate a change in the direction of the probability of a response with increasing levels of

the latent variables. At points where this occurs, using conditional evaluation criteria may inform

how the shift in direction from increasing to decreasing probabilities as a function of θ affects bias

or RMSE. This strategy would help illuminate cases where bias at one end of the θ distribution is

balanced at the other end, such that bias averages out to zero.

Given that estimating the number of effective parameters (i.e., pD) in the graded response

data is not always possible, further research is needed to evaluate methods to estimate the penalty

parameter when applied to different statistical distributions of the data and parameters. In the

context of this study, other methods to estimate the effective number of parameters and other types

of information criteria that may be better suited to make model comparisons should be further

explored. Furthermore, alternative methods of parameter refinement at the item level should be

investigated. This study used Bayesian estimation and therefore relied upon the highest density

intervals and confidence intervals to identify whether an interaction parameter could be constrained

in a reduced model. However, the results of this study suggest that over-specification by including

all possible interactions to estimate a model does not adversely impact model parameter estimates

of other item parameters, and in fact had a comparable bias with the model estimated to match the

data-generating model for both graded response and binary response bifactor models.

An interesting area of future work would be investigating interaction effects for items that mea-

sure more than two dimensions, such as items that measure two specific dimensions in addition to

the general dimension. This would entail a substantial increase in the number of estimated ef-

fects per item: a 3-way interaction, three 2-way interactions, three main effects, and an intercept.

However, this increased complexity may cause a significant strain on model estimation and conver-

gence. Furthermore, the complex model may have a greater propensity to overfit the data, resulting

in a model that may not replicate in repeated samples.
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6.3 Implications for Measurement Research

While previous studies have investigated parameter recovery of interaction effects in traditional

multidimensional IRT models with correlated factors, this study extended this research to bifac-

tor models that may be more suitable for multifaceted data with correlated secondary dimensions

alongside a common general dimension. The benefit of the bifactor model as applied to partially

compensatory interpretations is that it is structured to have uncorrelated dimensions because the

commonality between specific dimensions is due to their common core reflected in the general

dimension. In previous research, one of the contributors of poor parameter recovery of item and

respondent parameters and difficulty in estimation in partially compensatory product models was

due to correlated dimensions (Chalmers & Flora, 2014; Babcock, 2011; DeMars, 2016; Bolt &

Lall, 2003). Thus, this research expands on these studies to investigate response processes that

can vary depending on the levels of the general and specific latent variables in a bifactor model

that can accommodate highly correlated secondary dimensions by way of a common general di-

mension. Adding an interaction effect to allow diminishing and augmented rates of returns in the

probabilities of endorsed responses to items (conditional on the levels of the latent dimensions)

could have interesting insight into alternative conceptual interpretations, or at the very least give

and a more accurate measure of the relationships between items and latent variables without the

added estimation burden inherent in traditional MIRT models.

The simulation studies and empirical analyses in this study informs practitioners interested in

using bifactor models with interactions between specific and general dimensions about 1) how item

main effect parameters may be underestimated when interactions are omitted but not respondent

parameters, and 2) the risk of using traditional approaches of model selection and parameter refine-

ment in Bayesian analysis. Larger sample sizes are ideal for having sufficient accuracy to estimate

effects, but the simulations showed that having a larger sample size actually resulted in a higher

rate of misidentification of interacting items. The root mean squared errors, on the other hand,

were smaller with the larger sample size, supporting increased accuracy. Instead, estimating all

interactions compared to matched interactions did not severely impact model parameter estimates.
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In fact, bias and absolute bias was often smaller when all interactions were estimated compared to

the matched interaction model for main effect parameters. Thus, though the highest density inter-

vals and credible intervals were often inaccurate for interaction items, estimating all interactions

may be advantageous, but at a cost to model parsimony.

In summary, this study expands the researcher’s toolbox with new strategies to explore different

patterns of associations between items and latent variables that could result in a more accurate

solution and resulting inference. As with any research, bifactor models with interactions applied

to empirical data should be cross-validated in repeated samples for replicability and in different

populations for generalizability (MacCallum, 2003).
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Appendix A

JAGS Model Code for 2-Category Ordinal Data

model {

f o r ( j i n 1 : n ) { ## Persons

f o r (m i n 1 : n I t e ms ) { ## I t e m s

f o r ( d i n 1 :D) { ## A l l Dimens ions

pdim [ j ,m, d ] <− b e t a 1 [m, d ]∗ t h e t a [ j , d ] +

b e t a 2 [m, d ]∗ t h e t a [ j , 1 ] ∗ t h e t a [ j , d ]

}

p r o b i t ( p [ j ,m] ) <− ( sum ( pdim [ j ,m, 1 : D] ) + b e t a 0 [m] )

d a t [ j ,m]~ dbe rn ( p [ j ,m] )

}

}

f o r ( j i n 1 : n ) {

t h e t a [ j , 1 : D] ~ dmnorm (mu , SIG )

}

f o r (m i n 1 : n I t e ms ) {

b e t a 0 [m] ~ dnorm ( 0 , 1 )

f o r ( d i n 1 :D) {

b _ s t a r [m, d ] ~ dnorm ( 0 , 1 ) T ( 0 , )

b e t a 1 [m, d ] <− des ignMain [m, d ]∗ b _ s t a r [m, d ]

112



x _ s t a r [m, d ] ~ dnorm ( 0 , 1 )

b e t a 2 [m, d ] <− d e s i g n I n t [m, d ]∗ x _ s t a r [m, d ]

}

}

}
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Appendix B

JAGS Model Code for K-Category Ordinal Data

model

{

f o r ( j i n 1 : n ) { ## Persons

f o r (m i n 1 : n I t e ms ) { ## I t e m s

d a t [ j ,m] ~ d c a t ( prob [ j ,m, 1 : K] )

}

f o r (m i n 1 : n I t e ms ) {

f o r ( d i n 1 :D) { ## A l l Dimens ions

pdim [ j ,m, d ] <− b e t a 1 [m, d ]∗ t h e t a [ j , d ] +

b e t a 2 [m, d ]∗ t h e t a [ j , 1 ] ∗ t h e t a [ j , d ]

}

}

f o r (m i n 1 : n I t e ms ) {

f o r ( k i n 1 : ( K−1) ) {

p r o b i t ( P [ j ,m, k ] ) <− ( sum ( pdim [ j ,m, 1 : D] ) + b e t a 0 [m, k ] )

}

P [ j ,m,K] <− 1 . 0

}

f o r (m i n 1 : n I t e ms ) {

prob [ j ,m, 1 ] <− P [ j ,m, 1 ]
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f o r ( k i n 2 :K) {

prob [ j ,m, k ] <− P [ j ,m, k ] − P [ j ,m, ( k−1) ]

}

}

t h e t a [ j , 1 : D] ~ dmnorm (mu , SIG )

}

f o r (m i n 1 : n I t e ms ) {

f o r ( k i n 1 : ( K−1) ) { ## T h r e s h o l d s

k _ s t a r [m, k ] ~ dnorm ( 0 , 1 )

}

b e t a 0 [m, 1 : ( K−1) ] <− s o r t ( k _ s t a r [m, 1 : ( K−1) ] )

}

f o r (m i n 1 : n I t e ms ) {

f o r ( d i n 1 :D) { ## Main e f f e c t s and I n t e r a c t i o n s

b _ s t a r [m, d ] ~ dnorm ( 0 , 1 ) T ( 0 , )

b e t a 1 [m, d ] <− des ignMain [m, d ]∗ b _ s t a r [m, d ]

x _ s t a r [m, d ] ~ dnorm ( 0 , 1 )

b e t a 2 [m, d ] <− d e s i g n I n t [m, d ]∗ x _ s t a r [m, d ]

}

}

}
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