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Practical diffusion Monte Carlo simulations for 
large noncovalent systems 

Kenta Hongo1,* and Ryo Maezono1 

1School of Information Science, Japan Advanced Institute of Science and 
Technology (JAIST), Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan 

Fixed-node diffusion Monte Carlo (FNDMC) simulations are one of 
the most promising methods for describing the noncovalent systems 
to high accuracy within reasonable computational times. The advent 
of massively parallel computers enables one to apply FNDMC to 
various noncovalent systems such as supramolecules and molecular 
crystals. It is, however, to be noted that a reliable description of 
subtle noncovalent interactions requires a much higher accuracy than 
that of typical chemical bindings, e.g., the subchemical accuracy of 
0.1 kcal/mol for small noncovalent complexes. This is a severe 
requirement for FNDMC based on stochastic approaches and raises 
the computational issues of reliable estimates of not only error bar, 
but also energy itself. Firstly, our recent works on several 
noncovalent systems are demonstrated. Then we address the issues 
and propose a new strategy for statistical estimates to meet the 
subchemical accuracy. 

Introduction 
 

Fixed-node diffusion Monte Carlo (FNDMC) is one of the most promising 
approaches to noncovalent systems among state-of-the-art ab initio simulations 
(1,2). Its accuracy is often compatible with the “gold standard” quantum 
chemistry, CCSD(T)/CBS (coupled cluster including single, double, and 
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noniterative triple excitations with complete basis set). This can be demonstrated 
by typical benchmark systems such as water (3–6) and benzene (3,7,8) dimers as 
well as systematic benchmarks with the S22 (8–10) and A24 (11) data sets. 
Moreover, it has been expected to be applicable to larger systems, because of its 
moderate computational scaling of N3-4 (N stands for the number of electrons in 
system), though FNDMC is a computationally intensive technique requiring a 
vast number of statistical accumulations (stats). Actually, recent advents of 
massively parallel computers enable FNDMC to treat larger and more realistic 
systems including bulk solid/liquid water (12–14), graphite (15) and graphene 
(16) layers, molecular crystals (17–19), biomolecules (20,21), host-guest 
complexes (22,23), and so on. In addition, FNDMC can be regarded as a useful 
tool of investigating industrial issues involving microscopic information about 
molecular interactions. For instance, FNDMC has very recently been used to 
evaluate Hamaker’s constants, which is closely related to control of wettability 
in solution processes (24). 

Despite its success, a qualitatively accurate evaluation of molecular 
interactions is still a serious challenge even for FNDMC. This arises from the 
fact that molecular interactions are generally complicated combinations of 
different types of interactions with different energy scales such as hydrogen 
bonding and dispersion (typically 0.5 ~ 30 kcal/mol). Hence their reliable 
description requires a much higher accuracy than typical chemical bindings such 
as covalent, ionic, and metallic bonds. For instance, “subchemical accuracy” of 
0.1 kcal/mol is necessary for small complexes (1,2), though in larger systems the 
desired maximum error grows proportionally. This is quite crucial in accurately 
estimating energies as well as their statistical errors. The latter is always taken 
into account in FNDMC simulations, while the former is not well recognized, 
which we shall mainly discuss in this chapter. To perform larger FNDMC 
simulations than ever, the following two issues are to be addressed: (i) efficient 
generation of vast number of sampling data points Nt and (ii) energy sampling 
scheme with less biases.  

(i) The subchemical accuracy explicitly indicates a desirable error bar σ ~ 
0.1 kcal/mol can be obtained from a hundred times or more sampling points Nt 
than the case of chemical accuracy (1 kcal/mol), following σ2 ∼ Nt. In FNDMC 
simulations, the number of total sampling points Nt consists of the Monte Carlo 
time steps Ns times the random walker populations Nc (Nt = Ns × Nc). In practice, 
their values are set according to computational resources available. For instance, 
it has been reported that the CASINO code of FNDMC implementation (25) 
exhibits more than 99 % parallel efficiency on the K computer (26) using a “flat 
MPI” parallelization with fifty thousands cores (27). Here the term “flat MPI” 
means that instead of OpenMP, MPI is used for parallelization between cores of 
a CPU. In FNDMC simulations with the flat MPI parallelization, configurations 
(random walkers) are distributed among all the cores communicating with each 
other via MPI. This communication might give rise to a significant latency in 
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parallel computation, but the CASINO implementation circumvents this 
deficiency by using several techniques such as asynchronous communication 
(25). Therefore, without loss of efficiency, FNDMC can treat more Nc in parallel 
as the number of available cores Ncore increases. For a fixed σ, the larger Nc 
means the smaller Ns, leading to a significant saving of computational time, 
because the time is simply proportional to Ns. As described later, however, it is 
to be noted that the minimum value exists in choosing Ns so as to get a reliable σ 
value. In other words, the naive use of the more degree of parallelization does 
not necessarily imply the more efficient FNDMC simulations, even though more 
resources would be available with the advent of the next-generation 
supercomputers. 

(ii) So far, FNDMC has been applied mainly to covalent or metallic systems 
involving the chemical accuracy at the most. For noncovalent systems, however, 
the subchemical accuracy of 0.1 kcal/mol is crucial for the FNDMC energy 
estimator. This stems from that actual FNDMC simulations on computer do not 
realize “true” stochastic processes and may be biased. Although this has not 
been well recognized so far, for instance, it was reported that FNDMC estimates 
were biased due to a poor performance of (pseudo) random number generators 
and/or their seeds adopted (28,29). Ideally, bias-free sampling schemes would 
be needed to capture the very subtle interactions to the subchemical accuracy. In 
this chapter, we propose a simple sampling scheme useful for both (i) and (ii).  

In what follows, we first demonstrate the FNDMC performance of 
describing several types of noncovalent systems, referring to our recent works 
including molecular crystals, biomolecules, and precursor molecules in a liquid 
process. Next, we discuss computational issues arising from the above 
applications. In particular, we propose a simple but useful strategy appropriate 
for achieving the subchemical accuracy. Finally, we summarize and make 
remarks on future FNDMC simulations of large-scale noncovalent systems. 

 
 

FNDMC applied to noncovalent systems 
 

Cyclohexasilane dimer 
 
Despite its potential, much less has been reported so far on FNDMC 

applications to an industrially huge demand for better understanding and then 
controlling the interactions to open up novel technologies. Here we demonstrate 
our FNDMC framework of evaluating Hamaker (or van der Waals) constants of 
molecules a prior, which are obtained from their long-range asymptotic 
behaviors of binding curves (24). The Hamaker constant plays a crucial role in 
controlling wettability in liquid processes, but no ab initio approach has been 
developed because a handy but reliable energy solver is required. The FNDMC 
framework would extensively provide a reliable value of Hamaker constant even 
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for unknown molecules with no reference data, satisfying the industrial demand. 
We applied the framework to a practical size of liquid molecule, cyclohexasilane 
(Si6H12). Si6H12 is used as a precursor ink to fabricate amorphous silicon 
semiconductors by using a liquid process (30). The liquid process may 
significantly save running costs and material resources, but currently relies on 
control of wettability by trial and error. The wettability strongly affects a 
product quality and can be described in terms of Hamaker constants. Hence 
development of its reliable evaluation scheme is a first step towards a 
quantitative control of wettability from microscopic viewpoints. 

To accurately evaluate the Hamaker constant for Si6H12, we attempted to 
apply the CCSD(T)/cc-pVTZ level to the dimer using the Gaussian09 code (31), 
but it is too large to be tractable even using our Altix UV1000 supercomputer 
with 512GB memory shared by 64 parallel cores; CCSD(T)/cc-pVDZ  was the 
most accurate method available for the dimer. Therefore, instead of adopting a 
usual CBS extrapolation with cc-pVDZ and cc-pVTZ, the CCSD(T)/CBS 
estimate was obtained from a semi-empirical treatment combining CCSD(T)/cc-
VDZ with MP2/CBS and MP2/cc-pVDZ (32). This has been known to work 
well for π-π interaction systems. It is not obvious, however, whether or not it 
also works for the σ-σ interaction in the Si6H12 dimer because little attention to 
such interactions has been paid so far. In this work, the Hamaker constant is 
evaluated from a coefficient of R-6 term in 6-12 Lennard-Jones potentials, to 
which ab initio binding curves are fit. Consequently, the binding curve should 
be as accurate as possible not only at its equilibrium, but also at its long-range 
distances. Relying on FNDMC, we calibrated the performance of the “semi-
empirical” CCSD(T)/CBS as well as various DFT approaches. Our FNDMC 
simulations were done using the CASINO code (25), employing B3LYP single 
Slater determinants as the fixed nodes (denoted FNDMC/B3LYP). As has been 
reported previously (33-36), FNDMC/B3LYP gave the better variational 
energies than the LDA and PBE nodes. Our FNDMC and CCSD(T)/CBS 
binding curves are in good agreement with each other, leading to the Hamaker 
constants of 104 ± 4 [zJ] and 99 [zJ], respectively. From their computational 
viewpoints, however, FNDMC is more advantageous over CCSD(T). In 
particular, the FNDMC accuracy generally shows less dependence on basis sets, 
compared with CCSD(T). In other words, FNDMC converges to its “exact” 
solution much faster than CCSD(T) with respect to basis sets (1). 

We also benchmarked the performance of several exchange-correlation 
(XC) functionals developed recently for describing van der Waals interactions. 
It is remarkable that M06-2X/B97-D gives good/poor equilibrium properties, but 
poor/good long-range behaviors. Within the DFT framework, B3LYP-GD3 
revealed a fairly good performance on both equilibrium and long-range 
properties. At short range, however, any XC functionals significantly deviate 
from FNDMC and CCSD(T)/CBS. This may be attributed to the fact that most 
DFT approaches cannot generally remove their self-interactions, giving rise to a 
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poor description of the exchange repulsion there. Although the attraction of DFT 
is its cost, its accuracy at long range also strongly depends on its functional. 
There is no a priori knowledge of selecting XC functionals appropriate for a 
certain problem. In this sense, FNDMC is much more useful even for this kind 
of industrial applications. Finally, we comment on accuracy of our Hamaker 
constants. Since no reference value was available for the constant, its 
experimental value was estimated from a linear regression between the constant 
and the corresponding molecular weight, being reasonably comparable with our 
numerical results. 
 

B-DNA 
 
In contrast to the above case, biomolecular systems are more challenging 

for state-of-the-art ab initio simulations in both theoretical and computational 
sense. FNDMC was first applied to the stacked and Watson-Crick bound 
adenine/thymine (A/T) and cytosine/guanine (C/G) DNA base pair dimers (8). 
Generally, biomolecular structures are preserved by noncovalent interactions 
among not only their basic building blocks, but also their surroundings. Such 
interactions drastically change depending on molecules involved. To better 
understand how DNA stabilizes its structure, the more realistic DNA modeling 
is Watson-Crick base-pair steps in DNA as shown in Figure 1 (a). We applied 
FNDMC/B3LYP to the Adenine-Thymine base-pair step (AA:TT) (20). Similar 
to the Si6H12 case, the B3LYP node was variationally better than the other two 
nodes, i.e., LDA and GGA-PBE. It was found that our FNDMC stacking energy 
reasonably agrees with the CCSD(T)/CBS one. We also benchmarked various 
DFT functionals. It is remarkable that some recent XC functionals (CAM-
B3LYP/LC-ωPBE) predicted it to be unbound (see Figure 1). 

Very recently, we have evaluated the stacking interactions of ten unique 
DNA base-pair steps in B-DNA (see Figure 1 (a)) using the same FNDMC 
procedure as our previous study. (20) Figure 1 (c) plots the stacking energies for 
the ten cases evaluated from B3LYP, CCSD(T)/CBS, and FNDMC/B3LYP. 
B3LYP does not reproduce the stacking, while FNDMC/B3LYP does, even 
though starting with such a poor wave function. FNDMC gives an overall trend 
similar to CCSD(T)/CBS, but quantitatively deviates more than 1 kcal/mol from 
CCSD(T)/CBS for GA:TC and AG:CT. Since experimental values are not 
available, it is impossible to tell which is more reliable. Here we just make 
remarks on their methodological issues. Similar to the Si6H12 case, the 
CCSD(T)/CBS results were obtained using both the BSSE and CBS corrections, 
but the 6-31G** basis sets (less reliable than cc-pVDZ) were adopted due to the 
cost (37). In contrast, our FNDMC/B3LYP with the VTZ basis set is found to be 
accurate enough to describe the binding curve, comparing the VTZ and VDZ 
levels. In this sense, FNDMC has the more advantage over the other correlated 
methods in quantum chemistry. 
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Figure 1. (a) Ten unique Watson-Crick base-pair steps in B-DNA. (b) Stacking 
energy of AA:TT evaluated from various methods (20). (c) Stacking energies of 
all the ten cases evaluated from B3LYP/VTZ and FNDMC with the B3LYP/VTZ 
nodes. For comparison, the corresponding CCSD(T)/CBS (37) results are also 

plotted. All energies are given in units of kcal/mol. 
 

 
Molecular crystal polymorphism 

 
Molecular crystal polymorphism is one of the most important issues in 

theoretical and applied chemistry, and has been investigated by various ab initio 
simulations (38). FNDMC had not been an appropriate choice of treating this 
issue due to its intensive cost, and hence its applicability was limited to 
benchmark cases such as some ice polymorphs (39). Using FNDMC, we have 
for the first time attempted to investigate the polymorphism of para-
diiodobenzene (p-DIB), which requires more accuracy and cost because of their 
π-π stacking interactions involving dispersion (17-19). 

Our p-DIB study in 2010 (17) could conduct only a 1×1×1 simulation cell 
because only a 128-core machine was available. We thus restricted ourselves to 
use of semi-empirical scheme due to Kwee, Zhang, and Krakauer (KZK) (40) in 
order to investigate the finite size effects (FSEs) in the p-DIB polymorphs. 
Unlike standard DFT approaches, our FNDMC approach predicted the p-DIB 
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polymorphism correctly. It was not evident, however, that the KZK correction 
scheme is appropriate for strongly anisotropic systems like p-DIB because its 
parameterization was obtained from isotropic systems using LDA (40,41). In 
order to address this issue, with the help of the K computer, we performed 
FNDMC simulations with a 1×3×3 simulation cell (1,512 electrons), which was 
the largest and most expensive simulations, consuming 6.4×105 core hours for 
each polymorph (19). We studied in detail the FSEs analyzing several correction 
schemes, and found the 1×3×3 simulation cell still gives rise to a large error in 
the total energies for each of the two polymorphs, but a significant error 
cancellation between them leads to the correct prediction. 

For comparison, we also investigated the FSEs within the DFT framework. 
It was found that 1×3×3 deviates by 0.1 kcal/mol from 2×6×6 that converges to 
4×4×12 within 0.01 kcal/mol. This may be regarded as a good measure of the 
one-body contribution to the FSEs, though not the two-body one. We therefore 
considered several possible two-body corrections in FNDMC and found their 
differences between the two polymorphs are less than the total energy difference 
(i.e., relative stability). To calibrate the two-body contribution more precisely, 
however, we should have directly dealt with the 2×6×6 cell size at least. This 
simulation cell includes 12,096 electrons and hence requires 512 (= 83) times 
more cost than the 1×3×3 one (1,512 electrons). Hence its cost would be 
estimated to be 3.3×108 core hours. Realistically, this is intractable for current 
petascale supercomputers, and can be still challenging even for exascale 
supercomputers. We shall discuss computational issues in more detail in the next 
section. 

 
 

Computational issues 
 

Computational costs 
 
Table I summarizes computational conditions and costs to achieve the 

chemical accuracy for the above-mentioned systems. Moderate amounts of 
computational costs and resources were necessary for the isolated molecular 
systems, while huge amounts of them for the molecular crystal system. Note that, 
unlike the former, the latter suffers from twice longer queuing time (14 days) 
than the execution time (7 days), which was submitted to a SMALL job class 
with Ncore = 2,048 parallel cores on the K computer. This queuing time arose 
from that we chopped up a statistical accumulation (stats) job with Ns = 6,500 
and Nc = 20,480 into 13 sequential stats jobs with Ns/13 = 500 and Nc = 20,480, 
each of which is executable within the CPU time limit of 12 hours for the job 
class on the K computer. This indicates that prior to running large FNDMC 
simulations on supercomputers having a large number of batch queues, it is very 
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important in practice to consider their feasibility according to the actual status of 
machine utilization. 

 
 

Table I. Computational conditions and costs for single-point FNDMC 
simulations to achieve the chemical accuracy. In “Timing” column, the 
queuing time is negligible and hence not shown for the isolated molecular 
systems, while that is shown in parenthesis for the p-DIB with the 1×3×3 
simulation cell. 
 

System Nelec Machine Ncore Core-hour Timing (real) 

(Si6H12)2  72  Altix UV1000  32  1.0×102 3 hours 
B-DNA  196 Fujitsu CX250 320 1.5×104 2 days 
p-DIB 1,512 K computer 2048 6.4×105 7 days (+14 days) 

 
 

A simple way of circumventing large amounts of queuing times is just to 
remarkably increase Nc and reduce Ns, if more computational resources (i.e., 
Ncore) are available. Based on our p-DIB simulations using the flat MPI 
parallelization with Ncore = 2,048, Nc = 20,480, and Ns = 6,500, we may estimate 
the cost-performance of the Ncore = 512,000 case on getting the same Nt = Nc × 
Ns, where Ncore  = 512,000 is almost the largest available on the K computer. 
Assuming an ideal MPI scaling holds even for Ncore = 512,000, as reported in 
Ref. (27), we could set Nc = 5,120,000 and Ns = 26, without deceleration at each 
Monte Carlo step. Thus we could achieve a speedup of 250 times at stats, as 
shown in Figure 2 (a). It is to be noted that this holds only for stats, not for the 
equilibrium procedure (equil), if we rely only on the flat MPI parallelization. A 
converged DMC distribution is achieved by propagating the configurations in a 
fixed period (the number of equil steps, Neq), which is just determined by how 
far the initial distribution is from the converged one. This means that Neq is 
incapable of being decreased by any parallelization. In order to accelerate the 
equil procedure, computations in the propagation should be accelerated. In the 
flat MPI parallelization, however, all the cores are devoted to the parallelization 
for configurations, and cannot afford to accelerate any computation in the 
propagation. Hence the flat MPI parallelization is not able to achieve any 
speedup at equil. Here we consider a computational efficiency in terms of the 
total CPU times including both equil and stats. Figure 2 (b) highlights a 
comparison of the cost between Ncore = 2,048 and 512,000. In this case, the 
effective speedup would be only 5 times in spite of exploiting 250 times more 
resources. 
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Figure 2. Computational times (CPU-time) for (a) stats and (b) the whole 
process including equil and stats. In each case, the time for Ncore = 2,048 is 
actually observed in the FNDMC simulations of p-DIB on the K computer, while 
the one for Ncore = 512,000 is estimated using an extrapolation from Ncore = 
2,048 assuming an ideal scaling in parallel efficiency is valid up to Ncore = 
512,000. The corresponding speedups are also shown in each case. 

 
 
Furthermore, we may claim that it is not necessarily beneficial to use much 

larger supercomputers only with a flat MPI parallelization for larger systems. To 
see this, consider the core hours as a figure of merit for the cost-performance in 
parallel computing. Figure 3 indicates that a percentage of equil to total core 
hours is 18.75% for Ncore = 2,048, while that is 98.34% for Ncore = 512,000. 
Since the computational cost consumed at equil is not used at all to obtain the 
final result, almost all the cost would be in vain for Ncore = 512,000. 

 
 

 
Figure 3. Total computational costs including equil and stats in terms of core 

hours for Ncore = 2,048 (observed) and Ncore = 512,000 (estimated). 
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The above consumption at equil occurs when using only a flat MPI 
parallelization because each of the cores is allocated to the task of driving a set 
of walkers in the FNDMC simulations. A hybrid parallelization with MPI and 
OpenMP could be one of the possible solutions, but it is not obvious if it would 
be absolutely in success. Instead, GPGPU would be one of the most promising, 
because an equil procedure does not require numerical precision. Indeed, such 
implementation has been reported to achieve a remarkable speedup in the 
FNDMC simulations (42,43). The procedure is as follows: First, one performs a 
preliminary FNDMC simulation with smaller values of Nc and Ns, compared 
with the corresponding production run. After warming up the walkers and 
executing stats, one record the walkers at each step. The collected population 
according to the equilibrium distribution is used as an initial one for the 
production run and then allocated into each of the cores. 
 

Reblocking for an accurate estimate of error bar 
 
Except the above problem, the use of massively parallel computers could be 

regarded as useful for large-scale FNDMC simulations. This can be mostly true, 
but there still exist issues to be addressed in order to achieve the subchemical 
accuracy for both an energy E and its uncertainty (error bar σ). We begin with 
the issue of σ, and discuss E in the next subsection. A usual FNDMC simulation 
adopts the so-called reblocking technique to estimate σ properly (44,45). This is 
because sequentially sampled data points generally have a serial correlation with 
a positive length (e.g. τcorr) and hence a naive estimate of error bar, σraw, is 
usually underestimated compared with a true σ. According to statistics, σ2 = σ2

raw 
(1 + τcorr), where τcorr (called integrated correlation length) is given as a total sum 
of autocorrelation functions over all intervals. Although σ can be evaluated from 
the above relation, the reblocking scheme is used in practice, which is simpler 
and more convenient than the above relation. The reblocking procedure is as 
follows: (i) it divides the raw data into contiguous blocks of length B, (ii) 
averaging the data over each block to generate a new data set (blocked data set), 
(iii) evaluating a naive error bar σB from the blocked data set, (iv) changing B 
values, plot log2(B) versus σB (“reblocking plot”) and find the peak or plateau to 
give a desirable σ (σreblock). This is computationally advantageous to on the fly 
monitor the current σ during simulations. In particular, the CASINO suite of 
program codes (4) has a more sophisticated implementation to evaluate σreblock 
without plotting and searching the peak or plateau (45). 

Here we compare the above two estimates of σ for the p-DIB case with Ns = 
6,500, Nc = 20,480, and δτ = 0.001. For those data points, we obtained σraw = 
0.0876 ± 0.007 and τcorr = 109 ± 47, arriving at σ = 0.92 ± 0.20. The reblocking 
plot in Figure 4 finds the peak appearing at B = 29 = 512, giving σreblock = 0.94 ± 
0.19. We thus found that the reblocking is practically equivalent to the above 
relation and each of blocked data sets with B = 512 is statistically independent. 
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Note that Ns should be much larger than τcorr to properly evaluate σ using the 
reblocking. In other words, there exists a minimum value of Ns for a reliable σ 
evaluation by the reblocking.  

 
 

 
Figure 4. Plot of block length versus error bars evaluated from reblocked data 

points for the p-DIB case (see text for detailed computational conditions). 
 
 

Next, we investigate τcorr in more detail, which relates to a choice of Ns. Our 
production run for p-DIB gave τcorr = 107 ± 47 for Nc = 20,480 and Ns = 6,500, 
while a preliminary one gave τcorr = 104 ± 13 for Nc = 1,280 and Ns = 74,000, 
both of which achieved the chemical accuracy. Therefore, τcorr ≈ 100 = 1/δτ 
holds for both the cases, though the latter has a smaller error bar of correlation 
length because of its larger Ns. Consequently, we may expect the Nc = 5,120,000 
case to have almost the same τcorr. Recalling our choice of Ns = 26 for Nc = 
5,120,000, Ns < τcorr holds. This indicates that the use of Ncore = 512,000 MPI 
parallelization could achieve the 250 times speedup, but its choice of Ns is too 
short to properly estimate σ by reblocking. The above is for our case study, but 
should be kept in mind whenever using supercomputers. 

 
A new sampling strategy 

 
FNDMC evaluates E and σ from random sampling, according to the law of 

large numbers and the central limit theorem (46), respectively. Occasionally, 
biases in E may arise from an artifact of finite sampling. Actually, it has been 
reported that some combinations of random numbers and systems give rise to 
biases more than the chemical accuracy (28,29). Obviously, such biases do not 
satisfy the requirement of the subchemical accuracy, implying that one might 
draw an incorrect conclusion from such biased E values. 

We propose a simple but robust scheme against such biases based on the 
reproductive property of the normal distribution (46). FNDMC usually generates 
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data points from a single time-series job. Assume the total data points Mtot in the 
single job give the estimates of E and σ. We start by chopping the single job 
with Mtot into statistically independent Np jobs with Ns = Mtot/Np steps. We then 
individually perform the Np jobs with Ns using different random seeds, thereby 
generating a data set of {Ei, σi ; i = 1, ···, Np}. Finally, we average them 
following: 

		
E
ave

=
1
N

p

E
i

i=1

N
p

∑   and   

		
σ

ave
=
1
N

p

σ
i

2

i=1

N
p

∑  ,                     (1) 

where Eave = E and σave = σ can be derived from the reproductive property of the 
normal distribution (46). We may call this scheme “chopped-up stats and job-
averaging” scheme. Note that the scheme assumes the distribution of the data 
set to be the normal one. This assumption is, however, invalid in some cases 
(47) where the data sets follow stable ones, and more consideration is needed. 

We demonstrate the above scheme by adopting the DMC simulation of the 
ground-state He atom. This was chosen because: (i) The “exact” E of -2.903724 
Hartree is available (48); (ii) Its wave function is free of the fixed-node bias 
because it has no nodes; (iii) The time-step bias is negligibly small (less than 
0.01 mHartree at δτ = 0.001). We first perform Np = 16 jobs with Ns = 250 as 
shown in Figure 5 (a). According to Eq. (1), we average them to get Eave and σave, 
which is denoted ‘ave’ in Figure 5 (b). It is found Eave is in good agreement with 
the exact energy within σave. For comparison, we also run 16 single jobs with 
Mtot = Ns = 4,000 steps, resuming stats from the above 16 jobs with Ns = 250, as 
shown in Figure 5 (b). In each figure, Ns is common to each of the single jobs, 
and one differs from the other only in random seed. We found that artifacts exist 
in the single job estimates of E and σ depending on their seeds. Let us consider 
the artifacts in more detail below. 

(i) σ: Looking at Figure 5 (a), it seems that seed Nos. 4, 6, and 14 have 
much larger σ than the other, while seed No. 10 has a smaller σ. Increasing stats 
steps as in Figure 5 (b), such an artifact disappears for Nos. 4 and 6, but still 
remains for No. 14. During stats simulations, one sometimes monitors current σ 
values to estimate how many steps are additionally needed to achieve a desired 
accuracy, which is useful for computation plan. If one grabs such an unreliable σ, 
it is useless to expect the completion time. This calls attention to the risk of 
using a single job scheme only. On the other hand, Figure 5 (b) shows the job-
averaging scheme has a reasonable σ value, comparable with most of the single 
job values. 

(ii) E: In addition to σ, a finite sampling of the single job causes a 
significant bias larger than the subchemical accuracy for many cases, while the 
job-averaging gives quite a good estimate of the exact energy. We found biases 
at Nos. 1, 5, 9, 12, 13, and 14 appear in Figure 5 (a), but disappear in Figure 5 
(b). Note that a new bias at No. 3 in Figure 5 (b) emerges, regardless of 
increasing the steps. This implies that this kind of bias accidentally occurs when 



 

Hongo.doc Printed 2016/08/01  13 

relying on the single job because of the finite sampling. In contrast, the 
statistically independent averaging can weaken biases, leading to more reliable 
estimates. 

 
 

 
Figure 5. Energy deviations from the exact He energy for (a) Np  = 16 jobs with 
Ns = 250 using different random seeds, and (b) job-averaging scheme (denoted 
‘ave’) and 16 jobs with Mtot = 4,000 (see text in detail). Energies are in units of 

kcal/mol. 
 
 
Here we verified the “chopped-up stats and job-averaging” scheme 

provides more reliable estimates of E and σ than the single job scheme. We can 
conclude that it well satisfies the requirement of the subchemical accuracy, 
which is crucial for describing the noncovalent interactions. Furthermore, our 
job-averaging scheme would enable one to carry out large-scale FNDMC 
simulations without using supercomputers, but with using a large number of 
small/middle class computers available everywhere. In practice, the latter is 
more favorable than the former in the sense that the former may impose much 
more queuing time on users than the latter. Besides that, the queuing time 
randomly varies and hence it is difficult to prediction when stats completes. 

 
 

Concluding Remarks 
 
We demonstrate our recent FNDMC works on successfully describing 

noncovalent interactions in both isolated and periodic molecular systems. 
Evidently, FNDMC exhibits a high ability of tackling noncovalent problems. 
Nevertheless, a major challenge in FNDMC still lies in describing the 
noncovalent interactions to the subchemical accuracy of 0.1 kcal/mol even when 
using state-of-the-art massively parallel computers. That is, the subchemical 
accuracy requires numerically reliable estimates of not only error bar σ, but also 
energy E itself. 
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To achieve σ within 0.1 kcal/mol, the hundred times more sampling points 
are needed, compared with the requirement of the chemical accuracy of 1.0 
kcal/mol. Ideally, exascale supercomputers could solve this issue, but practically, 
one should keep in mind the following two points: (i) A flat MPI parallelization 
does not accelerate the equil procedure, just giving rise to a huge consumption 
of computational resources in terms of core hours. (ii) Stats steps Ns should be 
large enough to estimate a reliable σ by using the reblocking technique. The 
other acceleration techniques such as OpenMP and GPGPU might be useful for 
circumventing these issues. 

Occasionally, a finite sampling gives rise to a biased energy estimate, 
depending on a system and pseudo random numbers. Although this has not been 
recognized seriously so far, within the energy scale of the subchemical accuracy, 
the biased E could make a misprediction theoretically. To avoid this issue, we 
propose a new scheme named “chopped-up stats and job-averaging”, where the 
serial stats with long steps is equally divided into a number of statistically 
independent stats with shorter steps and their estimates of E and σ are averaged, 
based on the reproductive property of the normal distribution. We found our 
averaging scheme is more stable than the single one. Furthermore, this is 
applicable to large-scale FNDMC simulations, without using supercomputers, 
but using a bunch of small/middle-class computers. 
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