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ARTICLE

High-fat diet fuels prostate cancer progression
by rewiring the metabolome and amplifying the
MYC program
David P. Labbé et al.#

Systemic metabolic alterations associated with increased consumption of saturated fat and

obesity are linked with increased risk of prostate cancer progression and mortality, but the

molecular underpinnings of this association are poorly understood. Here, we demonstrate in a

murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional

program through metabolic alterations that favour histone H4K20 hypomethylation at the

promoter regions of MYC regulated genes, leading to increased cellular proliferation and

tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC tran-

scriptional signature in prostate cancer patients. The SFI-induced MYC signature indepen-

dently predicts prostate cancer progression and death. Finally, switching from a high-fat to a

low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in

primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC

over expression, setting the stage for therapeutic approaches involving changes to the diet.
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Prostate cancer is a leading cause of cancer-related lethality1.
Systemic metabolic alterations can severely affect the course
of the disease. Indeed, epidemiological studies have repor-

ted that saturated fat intake and obesity are associated with
increased prostate cancer progression and mortality2–5. Con-
sidering the pandemic of obesity and diet-associated metabolic
diseases6–8 combined with the high frequency of newly diagnosed
prostate cancers in developed countries, a better understanding of
the mechanistic underpinnings of this link is of significant
importance.

Preclinical and clinical studies have shown that systemic
metabolic alterations associated with fat-enriched diets and obe-
sity cooperate with tumour initiating genetic alterations to foster
disease progression. Modulation of insulin/insulin-like growth
factor 1 levels, phosphatidylinositol-3-kinase/mammalian target
of rapamycin complex 1 pathway activation and pro-
inflammatory stimuli have been implicated9–14. However, it is
now clear that metabolic rewiring is tightly connected to changes
at the epigenetic level as metabolites act as substrates or cofactors
for epigenetic remodelling15,16.

In prostate cancer, the landscape of epigenetic alterations varies
greatly as the disease progresses from a confined tumour to the
incurable castration-resistant metastatic stage15,17. However,
the influence of metabolic alterations triggered by increased fat
intake and/or obesity on prostate cancer epigenome rewiring and
disease progression is still unexplored.

The oncogene c-MYC (MYC) is a key driver of human prostate
cancer tumorigenesis and progression. MYC protein is over-
expressed at early stages of the disease18, whereas chromosome 8q
gain, or focal amplification of 8q24.21, are associated with
amplification of the MYC oncogene in primary prostate cancer, a
feature exacerbated in metastatic disease and associated with poor
disease-specific survival19,20. In the murine prostate, MYC over
expression faithfully recapitulates the primary human disease21.

A hallmark of MYC over expression in tumours is the induc-
tion of a global metabolic reprogramming to support cancer cell
survival and growth22–25. Previous studies have shown that
increased dietary fat intake significantly alters the biological
behaviours of prostate cancers driven by MYC10,11 suggesting this
preclinical model as ideal to investigate the interplay between
HFD, oncogene-driven metabolic vulnerabilities, and epigenetic
alterations in prostate cancer progression.

Here, we integrate metabolome, epigenome and transcriptome
profiling to identify HFD-driven alterations that foster prostate
cancer progression in vivo. We demonstrate that increased fat
intake amplifies MYC hallmarks and further enhances MYC’s
transcriptional program. Importantly, we identified a fat-induced
MYC signature with clinical utility in identifying patients at
higher risk of a more aggressive, lethal disease. Altogether, our
findings suggest that a substantial subset of prostate cancer
patients, including some without MYC amplification, may benefit
from epigenetic therapies targeting MYC transcriptional activity
or from dietary interventions targeting the metabolic dependen-
cies regulated by MYC.

Results
HFD reprograms cancer metabolome and accelerates progres-
sion. To examine the potential role of high-fat diet (HFD) in
promoting metabolic rewiring of prostatic tissues, we compared
mice that overexpress a human c-MYC transgene (MYC) in the
prostate epithelium21 to wild-type littermates (WT) that were fed
either a HFD (60% kcal from fat; lard—rich in saturated fat) or a
control diet (CTD; 10% kcal from fat; Supplementary Table 1).
Irrespective of their genotype, mice that were fed with HFD
developed the hallmarks of a diet-induced obesity phenotype,

including increased body weight, liver steatosis, hyperinsulinemia,
hyperglycaemia and a decrease in circulating 1,5-anhydroglucitol
(a marker of short-term hyperglycaemia) (Fig. 1a and Supple-
mentary Fig. 1a–e). At 12 weeks of age, MYC over expression,
irrespectively of HFD, resulted in extensive cellular epithelium
transformation to prostatic intraepithelial neoplasia (PIN) in the
dorsolateral (DLP) and ventral (VP) prostate lobes, the latter with
almost complete penetrance. Conversely, the anterior prostate
(AP) remained mostly unaffected (Fig. 1b and Supplementary
Fig. 1f). No presence of PIN was detected in the prostate lobes of
WT animals fed a HFD (Supplementary Data 1). Increased
tumour weight (Fig. 1c) and cell proliferation (Ki-67; Fig. 1d)
were evident by 36 weeks of age in the HFD-fed mice compared
to the CTD group, confirming previous reports that HFD sig-
nificantly enhances the progression of MYC-driven prostate
cancer10,11.

The lack of a HFD-dependent phenotype at 12 weeks of age,
combined with the robust and uniform transition to PIN
triggered by MYC over expression observed in the VP (Fig. 1b,
c and Supplementary Data 1), enabled us to investigate metabolic
alterations driven by HFD before the appearance of a more
aggressive, HFD-dependent phenotype. Untargeted metabolomics
identified 414 metabolites in the prostate. As previously
described26, we confirmed that MYC induces a profound
metabolic reprogramming in the VP affecting more than half of
the metabolites detected, including metabolites related to
glutamine, glucose, lipid, nucleotide metabolism and protein
synthesis (Fig. 1e–g and Supplementary Data 2). Importantly, we
found that these MYC-driven metabolic vulnerabilities were
enhanced by HFD. Indeed, HFD resulted in increased levels of
metabolites from glycolysis (i.e. lactate), glutaminolysis (i.e.
glutamate), glutamine-metabolism related pathways including
substrates, intermediates and final products of the citric acid
cycle, nucleotide synthesis, amino acid metabolism (e.g. arginine,
proline, aspartate and histidine), urea cycle, lipid metabolism and
hexosamine biosynthesis (Fig. 1g and Supplementary Data 3);
those features were also supported by Metabolite Set Enrichment
Analysis (MSEA; Fig. 1h and Supplementary Data 4). Conversely,
HFD had little impact on the WT prostatic metabolome, affecting
only a total of 12 metabolites, nine of which were glyceropho-
spholipids, and lowering 1,5-anhydroglucitol levels, in line with
HFD-driven increase in circulating glucose and reduction of
serum 1,5-anhydroglucitol (Fig. 1g, Supplementary Fig. 1d, e, g
and Supplementary Data 5).

Notably, MYC over expression led to a significant decrease in
s-adenosylmethionine (SAM), a member of the methionine cycle
and the ultimate methyl donor required for methylation reactions
(Fig. 1i). The donation of a methyl group by SAM results in its
conversion to s-adenosylhomocysteine (SAH), which if accumu-
lated, is a potent inhibitor of methyltransferases27. MYC also
enhanced the levels of alpha-ketoglutarate (αKG), a critical co-
factor for histone demethylation mediated by Jumonji Domain-
containing Histone Demethylases (JHDM)28. Thus, these results
suggest that histone methylation processes may be severely
hindered during MYC-driven prostate cancer progression. Again,
this feature was further exacerbated by diet since increased SAH
levels (higher SAH/SAM ratio) were observed in the VP of HFD-
fed mice (Fig. 1i and Supplementary Fig. 1h–i). Altogether, our
data support the notion that HFD amplifies MYC-driven
metabolic reprogramming.

HFD enhances transcriptional changes at H4K20me1 dynamic
genes. To validate whether MYC/HFD affects histone methyla-
tion, we characterised 69 distinct combinations of histone mod-
ifications that span H2, H3, and H4 from all four genotype/diet
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combinations in all murine prostatic lobes (DLP, VP, AP; Sup-
plementary Data 6) by using a targeted mass spectrometry
approach29. Unsupervised clustering of the different combina-
tions of histone modifications revealed a strong MYC-driven
signature in both DLP and VP (Fig. 2a). This was absent in the
AP (Supplementary Fig. 2a) in line with the marginal PIN
penetrance observed in this lobe (Fig. 1b). Among the histone
peptides monitored, H3K27/K36 and H4K20 were significantly
affected by MYC over expression. As previously described30,
MYC over expression induced a steep decrease in H3K27me3
(corresponding to the H3K27me3K36meX peptides). In parti-
cular, the H3K27me3 mark was hypomethylated in a stepwise
process that can be catalysed by multiple JHDM enzymes and
culminates with the unmethylated/acetylated H3K27 mark
(Supplementary Fig. 2b). A similar pattern was observed for the
H4K20 mark, but in this case the effect of MYC was significantly
enhanced by HFD, leading to greater levels of the unmethylated
mark (Fig. 2b). Importantly, HFD had no effect on the H4K20
mark in the WT tissues (Fig. 2b, c). H4K20me0 can be generated

from H4K20me1, a mark that is associated with transcriptional
elongation31, by the JHDM enzyme PHF832. Chromatin immu-
noprecipitation followed by sequencing (ChIP-seq) of H4K20me1
revealed highly dynamic levels of this mark along each gene body
upon MYC over expression with respect to the corresponding
CTD_WT reference (Fig. 2d). Interestingly, modulation of the
H4K20me1 mark at the gene body dictates levels of gene
expression: thus, loss of H4K20me1 is associated with a decrease,
while gain of H4K20me1 is associated with an increase in gene
expression (Supplementary Fig. 2c). When comparing the gene
expression levels for shared H4K20me1 dynamic gene body-
associated regions between CTD_MYC and HFD_MYC condi-
tions (Supplementary Fig. 2d), we found that the MYC-effect was
systematically enhanced by HFD (Fig. 2e). These results suggest
that HFD further enhances MYC-driven H4K20 hypomethylation
leading to transcriptional changes.

High-fat diet enhances MYC transcriptional activity. To
determine the cellular program specifically enhanced by HFD
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within a MYC context, we performed Gene Sets Enrichment
Analyses (GSEA) using the Hallmark gene sets (Supplementary
Data 7)33. As expected, MYC over expression led to the enrich-
ment of gene sets related to cell proliferation (E2F_targets,
G2M_checkpoint), as well as MYC-transcriptional activity per se
(Fig. 3a, left). Interestingly, HFD further enriched both gene sets
related to MYC transcriptional activity (V1/V2), but only in
MYC-transformed prostates (Fig. 3a, right). This feature was not
linked to an increased expression of the MYC transgene (Sup-
plementary Fig. 3a). Because the MYC transcriptional program is
highly context-specific34, we generated a murine prostatic MYC

signature by including the leading edge genes (n= 610) of MYC-
related gene sets that were significantly enriched by MYC and/
or HFD feeding (Supplementary Fig. 3b and Supplementary
Data 8–9). As expected, the expression levels of MYC signature
genes were elevated following MYC over expression, and further
increased by HFD (Fig. 3b). ChIP-seq of PHF8, the JHDM that
mediates H4K20me1 demethylation32 and a known MYC tran-
scriptional coactivator and regulator of proliferation35,36, revealed
that MYC over expression increases the recruitment of PHF8 to
the promoter regions of MYC signature genes. Again, we
observed that this effect was enhanced by HFD (Fig. 3c).
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However, only when MYC over expression was combined with
HFD, was a significant decrease in H4K20me1 observed at PHF8
recruitment sites (Fig. 3d, e). Taken together, these results suggest
that the observed HFD-induced enhancement of MYC tran-
scriptional program is, at least in part, mediated via an increased
recruitment and activity of PHF8 toward the H4K20me1 mark at
MYC signature genes. This program then culminates in aug-
mented cell proliferation and tumour burden (Fig. 1c, d).

A SFI MYC signature is associated with lethal disease. Since our
results in the preclinical model represent the combined effects of
both increased dietary animal fat intake (AFI) and the diet-
induced obesity phenotype, we next investigated whether dietary
AFI, independently of obesity, could recapitulate the HFD-driven
phenotype in humans. We used data on AFI, as documented in
the Health Professionals Follow-up Study (HPFS) and Physicians’
Health Study (PHS) cohorts, to stratify the 319 prostate cancer
patients for whom tumour (genetic background uncharacterised)
and adjacent-normal gene expression profiles were available
(Table 1). Using GSEA analysis, we identified the MYC_tar-
gets_V1 among the three gene sets that were significantly enri-
ched by high AFI, while no gene set was enriched in the adjacent-
normal prostatic tissues (Fig. 4a and Supplementary Data 10).
When the leading edge genes within the AFI-induced
MYC_targets_V1 signature (Fig. 4b, Table 1 and Supplementary
Data 11) were used to create a metagene score, we found that
prostate cancer patients with greater AFI-dependent MYC tran-
scriptional activation in their tumour tissues were more likely to
die of their disease (n lethal= 31, Odds Ratio (OR)= 3.44, 95%
CI= 1.69–7.38). This holds true after adjusting for gleason grade
and body mass index (BMI; Table 2). Conversely, when we used
the MYC signature genes not enriched by AFI (non-leading edges
genes) to create a similar metagene score, this score was unable to
predict lethal disease after adjusting for gleason grade and BMI

(Table 2). We next investigated which type of fatty acid con-
tributes to the enrichment of the MYC transcriptional program.
We identified the MYC_targets_V1 as the top gene set that was
enriched by high saturated fat intake (SFI; Fig. 4a, and Supple-
mentary Data 12), while neither monounsaturated nor poly-
unsaturated fat intake was associated with a positive enrichment
of any given gene set (Fig. 4a and Supplementary Data 13–14).
Importantly, the SFI-induced MYC_targets_V1 signature was
more robustly associated with prostate cancer lethality (n
lethal= 34, Odds Ratio (OR)= 4.02, 95% CI= 1.98–8.63;
Tables 1 and 2), a feature that was not recapitulated when using a
randomly picked MYC_targets_V1 signature (Supplementary
Table 2). Furthermore, the metagene score was more strongly
related to lethal disease in men with a high SFI than in men with
a low SFI (P for interaction= 0.03; Fig. 4c). These results indicate
that the MYC-transcriptional program specifically induced by SFI
drives prostate cancer lethality.

We confirmed the prognostic value of the SFI-induced MYC
signature in four independent clinical cohorts by analysing gene
expression in the tumours from 631 prostate cancer patients.
Strikingly, even in these cohorts lacking patient dietary informa-
tion, the high expression of the SFI-induced MYC signature
identified patients that were more likely to progress to a
metastatic disease in the Thomas Jefferson University (TJU),
Johns Hopkins Medical Institutions-I (JHMI-I), Mayo Clinic and
Cedar-Sinai cohorts (P= 1.33e-04), a feature that was much less
pronounced when using the non-SFI-associated MYC signature
(P= 1.26e-02; Fig. 4d). Importantly, in patients from the TJU/
JHMI-I/II cohorts, the SFI-induced MYC signature was not
associated with BMI (Supplementary Fig. 4). Additional uni-
variate and multivariate analyses confirmed the prognostic power
of the SFI-induced MYC signature in predicting prostate cancer
progression to a metastatic disease, even after adjusting for
gleason grade or the Cell Cycle Progression score consisting of 31
cell cycle genes (Supplementary Tables 3–5)37. Altogether, these
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results demonstrate that high SFI, independent of obesity or
features of it, fosters a MYC-driven cellular program, promoting
the progression to a metastatic and lethal disease.

Finally, we investigated whether a dietary intervention could
reverse the HFD-induced MYC transcriptional program. While
the HFD robustly enhanced the MYC transcriptional program
induced by MYC over expression in the murine prostate,
switching to a CTD at 10 weeks of age was sufficient to dampen
the MYC_targets_V1 signature observed in 12-week-old mice
(Fig. 4e). This suggests that a dietary intervention aimed at
lowering AFI and potentially more importantly SFI in patients
might be able to directly impact the MYC transcriptional
program, thereby reducing or delaying the progression to a
lethal, metastatic disease.

Discussion
In this study, we report the effect of HFD-mediated systemic
alterations on prostate cancer progression. Our data demonstrate
that HFD synergises with oncogenic transformation of the
prostate to promote a MYC-driven program and disease pro-
gression. In the normal prostate, HFD impacts metabolites that
are primarily restricted to membrane lipid remodelling, has little
influence on histone modifications, and results in a distinct
transcriptional program compared to that induced by HFD in the
transformed prostate. Conversely, HFD profoundly alters an early

stage of MYC-induced prostate transformation characterised by
PIN, resulting in the enhancement of MYC-driven metabolic,
epigenetic, and transcriptional programs (Fig. 4f). These data
suggest that a premalignant condition such as PIN, which often
precedes the onset of invasive adenocarcinoma in humans38, is
required for HFD to exert its MYC-amplifying effects in the
prostate.

A substantial body of literature supports the notion that
cellular metabolism has a profound influence on epigenetic
modifications, which rely on metabolites as substrates or cofac-
tors39–42. Here, we provide the evidence that HFD acts as a
master effector of prostate cancer metabolism, creating an
environment that favours histone hypomethylation and results in
an enhanced MYC-driven transcriptional program. Notably, we
observed a decrease in the H4K20me1 mark at the promoter
region of MYC signature genes, a feature that was associated with
both an increased recruitment and activity of PHF8, a JHDM and
the only enzyme known to demethylate the H4K20me1 mark32.
Along this line, PHF8 has been documented in cell culture sys-
tems as a MYC transcriptional coactivator35 and a regulator of
prostate cancer cell proliferation, migration and invasion36,43,
supporting the idea that an incremental gain in PHF8 activity by
HFD at H4K20me1 might provide increased tumour fitness over
the course of prostate cancer development.

The unifying aspect that translates from mice to humans is the
fat-induced MYC signature, a feature that persists despite the

Table 1 Characteristics of 319 men diagnosed with prostate cancer from 1982 to 2005 in the Health Professionals Follow-up
Study and the Physicians’ Health Study according to fat intake MYC metagene scores

Characteristic All men
(n= 319)

Animal fat MYC metagene scorea Saturated fat MYC metagene scorea

Tertile 1 (low)
(n= 107)

Tertile 2
(n= 106)

Tertile 3 (high)
(n= 106)

Tertile 1 (low)
(n= 106)

Tertile 2
(n= 107)

Tertile 3 (high)
(n= 106)

Age at diagnosis, years, mean (SD) 65.0 (6.3) 65.6 (6.2) 64.9 (6.6) 64.5 (6.1) 65.6 (6.2) 64.7 (6.3) 64.7 (6.3)
Year of diagnosis, n (%)
Before 1990 (pre-PSA era) 28 (8.8) 9 (8.4) 10 (9.4) 9 (8.5) 8 (7.4) 12 (11.3) 8 (7.5)
1990–1993 (peri-PSA era) 83 (26.0) 32 (29.9) 27 (25.5) 24 (22.6) 32 (29.9) 27 (25.5) 24 (22.6)
After 1993 (PSA era) 208 (65.2) 66 (61.7) 69 (65.1) 73 (68.9) 67 (62.6) 67 (63.2) 74 (69.8)

BMI at diagnosis, kg/m2, mean (SD) 25.2 (2.9) 24.7 (2.6) 25.4 (2.9) 25.5 (3.1) 24.7 (2.6) 25.4 (2.8) 25.6 (3.2)
PSA at diagnosis, ng/ml, median 7.4 7.0 7.6 8.0 6.9 7.6 7.9
[25th – 75th percentile]b [5.3–11.6] [5.0, 11.9] [5.5, 12.9] [5.6, 11.1] [5.0–12.0] [5.4–13.0] [5.6–11.1]
Pathologic TNM stage, n (%)c

T2 N0 M0 192 (61.9) 73 (69.5) 60 (58.3) 59 (57.8) 72 (68.6) 60 (58.3) 60 (58.8)
T3 N0 M0 107 (34.5) 29 (27.6) 40 (38.8) 38 (37.3) 30 (28.6) 40 (38.8) 37 (36.3)
T4/N1/M1 11 (3.5) 3 (2.9) 3 (2.9) 5 (4.9) 3 (2.9) 3 (2.9) 5 (4.9)

Clinical TNM stage, n (%)d

T1/T2 N0 M0 297 (93.4) 103 (96.3) 98 (92.5) 96 (91.4) 102 (95.3) 99 (93.4) 96 (91.4)
T3 N0 M0 21 (6.6) 4 (3.7) 8 (7.5) 9 (8.6) 5 (4.7) 7 (6.6) 9 (8.6)

Gleason grade, n (%)
<7 51 (16.0) 24 (22.4) 16 (15.1) 11 (10.4) 22 (20.6) 17 (16.0) 12 (11.3)
3+4 124 (38.9) 49 (45.8) 39 (36.8) 36 (34.0) 49 (45.8) 40 (37.7) 35 (33.0)
4+3 81 (25.4) 19 (17.8) 32 (30.2) 30 (28.3) 20 (18.7) 32 (30.2) 29 (27.4)
>7 63 (19.7) 15 (14.0) 19 (17.9) 29 (27.4) 16 (15.0) 17 (16.0) 30 (28.3)

Tissue type, n (%)
RP 311 (97.4) 105 (98.1) 103 (97.2) 103 (97.2) 105 (98.1) 103 (97.2) 103 (97.2)
TURP 8 (2.5) 2 (1.9) 3 (2.8) 3 (2.8) 2 (1.9) 3 (2.8) 3 (2.8)

Cohort, n (%)
HPFS 213 (66.8) 61 (57.0) 73 (68.9) 79 (74.5) 65 (60.7) 68 (64.2) 80 (75.5)
PHS 106 (33.2) 46 (43.0) 33 (31.1) 27 (25.5) 42 (39.3) 38 (35.8) 26 (24.5)

SD standard deviation, PSA prostate-specific antigen, BMI body mass index, TNM tumour, lymph node, metastasis, RP radical prostatectomy, TURP transurethral resection of the prostate, HPFS Health
Professionals Follow-up Study, PHS Physicians’ Health Study
aThe genes identified in the enrichment analysis of MYC_targets_V1 pathway in tumour tissues were used to create a metagene score. A score was computed for each sample by averaging the
normalised (mean-centered and variance scaled) expression values of all member genes. The score was divided into tertiles
b29 men missing PSA at diagnosis
cNine men missing pathologic TNM stage
dOne man missing clinical TNM stage
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Fig. 4 A saturated fat-induced MYC signature is associated with lethal prostate cancer. a, b GSEA analysis (Hallmark) revealed that high animal fat and
high saturated fat intake enriches for the MYC_targets_V1 gene set (a, P < 0.05 and FDR < 0.1), as represented by the enrichment plot (b) in the HSPH/
PHS cohorts. c The lethality for every 0.1 unit increase of MYC score was significantly elevated among patients with high saturated fat intake compared
with those with low saturated fat intake. d High expression of the saturated fat-induced MYC signature is significantly associated with reduced metastatic-
free survival (T3) in four independent cohorts (TJU/JHMI-I/Mayo Clinic/Cedar-Sinai cohorts, n= 631). e Short-term dietary intervention (HFD switch to
CTD) dampens the HFD-induced MYC transcriptional activity in MYC-driven murine prostate cancer. f Graphical summary

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12298-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4358 | https://doi.org/10.1038/s41467-019-12298-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


genetic heterogeneity of human prostate cancers19,44. Indeed,
dietary fat intake does not only amplify the MYC transcriptional
program in MYC-driven prostate cancers, but can enrich for it,
even in cancers lacking MYC over expression. This suggests that
the enhancement of MYC-driven metabolic and epigenetic
reprogramming may be a general mechanism that underlies the
influence of dietary fat intake on prostate cancer progression
although this hypothesis remains to be tested across prostate
cancer molecular subtypes.

Finally, we show that the saturated fat-induced MYC tran-
scriptional signature is not only a tumour biomarker for the
patients’ diet, but it is prognostic for progression to metastatic,
lethal prostate cancer. Indeed, the SFI-induced MYC signature is
able to predict prostate cancer lethality, independently of the
degree of tumour differentiation and patient obesity status and
the robustness of this finding was validated in four independent
cohorts. Importantly, the non-fat-induced MYC signature was
unable to predict lethal disease in the HPFS/PHS cohorts and was
only marginally significant as prognostic marker in the validation
cohorts. This highlights the fact that saturated fat intake not only
enriches the expression of MYC-regulated genes but does so
especially for the most predictive subset of genes, possibly
reflecting the convergence of oncogenic signalling pathways on
dysregulated lipid metabolism, a key feature for prostate cancer
development and progression to a metastatic disease45.

Several in vitro studies showed that MYC drives the de novo
synthesis of fatty acids and increases the expression of the key
lipogenic enzymes such as the ATP Citrate Lyase (ACLY), Acetyl-
CoA carboxylase (ACC) and fatty acid synthase (FASN)46–48.
Moreover, previous metabolic profiling performed by our group
on MYC engineered prostate cells, in vivo models, and human
prostate cancers showed that MYC overexpression specifically
enhances lipid metabolism underlying lipid deregulation as key
metabolic feature of MYC oncogenic activity in prostate cancer26.
Recently HFD has been shown to induce an intra-tumoural
lipogenic signature driving metastasis formation in Pten deficient
mouse model49. We are currently performing lipidomics analysis
to investigate the interplay between diet-derived fats and MYC-
driven de novo lipogenesis in shaping the tumour lipidome and
promoting a more aggressive phenotype.

Collectively, our results suggest that extrinsic risk factors—such
as saturated fat intake—contribute to prostate cancer lethality by
enriching for a MYC-transcriptional program; and either

synergise with MYC over expression, which is observed in 37% of
metastatic prostate cancers50, or phenocopy MYC amplification
(Fig. 4f). While neither MYC protein nor MYC mRNA over-
expression measured in primary tumours from patients subjected
to radical prostatectomy are strong prognostic markers51, our
findings suggest that a SFI-dependent MYC signature can be used
in the clinical setting to identify patients with a worse prognosis.
Finally, our study raises the possibility that a nutritional program
such as that involving the reduction of animal fat and specifically
saturated fat consumption in men with early-stage cancer may
dampen the MYC transcriptional program and diminish or delay
the risk of disease progression.

Methods
Animal husbandry. FVB Hi-MYC mice (strain number 01XK8), expressing the
human c-MYC transgene in prostatic epithelium, were obtained from the National
Cancer Institute Mouse Repository at Frederick National Laboratory for Cancer
Research21. Upon weaning (3 weeks), male mice heterozygous for the transgene
(MYC), together with their wild type littermates (WT), were fed a purified control
diet (CTD; Harlan Laboratories, TD.130838) consisting of 10% fat, or a high-fat
diet (HFD; Harlan Laboratories, TD. 06414) consisting of 60% fat (Supplementary
Table 1) until 12, 24 or 36 weeks of age; ingredients were adjusted on a kcal basis
(Supplementary Table 6). For dietary intervention experiments, mice assigned an
HFD were switched to a CTD at 10 weeks of age for the folllowing 2 weeks until the
experimental endpoint. Litters were randomly assigned to each diet. Group allo-
cation was performed in a non-blinded fashion. Food was changed on a weekly
basis, and mice were weighed every three weeks, starting at weaning. Animals were
kept on a 12-h light/12-h dark cycle, and allowed free access to food and water at
the Dana-Farber Cancer Institute (DFCI) Animal Resources Facility. The animal
protocol was reviewed and approved by the DFCI Institutial Care and Use Com-
mittee (IACUC), and was in accordance with the Animal Welfare Act. Mice sample
size estimate for analyses was based on published literature.

Tissue collection. At defined time points, mice were weighed and euthanized by
CO2, followed by cervical dislocation; blood was collected by cardiac puncture, and
serum was collected using serum-separating tubes (#41.1378.005, Sarstedt), ali-
quoted, and stored at −80 °C. Urogenital apparatus and liver tissues were fixed in
10% buffered formalin and processed for paraffin embedding. Alternatively, mouse
prostate lobes (anterior prostate, AP; dorsolateral prostate, DLP; ventral prostate,
VP) were immediately dissected, weighed and flash-frozen in liquid nitrogen.
Serum and tissues were consistently collected during the same periods to minimise
inter-samples and circadian rhythm variability.

Histopathologic and immunohistochemical analyses. Formalin-fixed, paraffin-
embedded mouse urogenital apparatus and liver tissues were sectioned (5 μm) and
stained with hematoxylin and eosin (H&E). Histopathological slides were analysed
by expert murine uropathologist, who were blind to the experimental conditions.
Hepatic steatosis was also assessed for liver tissues (M.L.). The presence and extent

Table 2 Fat-induced and non-fat-induced MYC signature score in relation to risk of prostate cancer death among men diagnosed
with non-metastatic prostate cancer

MYC score n Leading edge genes (fat-induced)a n Non-leading edge genes (non-fat-induced)b

OR (95% CI)c OR (95% CI)d OR (95% CI)e OR (95% CI)c OR (95% CI)d OR (95% CI)e

Animal fat
Tertile 1 (low) 13 1.00 1.00 1.00 17 1.00 1.00 1.00
Tertile 2 18 1.58 (0.73, 3.53) 1.31 (0.57, 3.08) 1.27 (0.55, 2.99) 19 1.17 (0.57, 2.44) 1.03 (0.47, 2.30) 0.96 (0.43, 2.16)
Tertile 3 (high) 31 3.44 (1.69, 7.38) 2.50 (1.14, 5.70) 2.37 (1.07, 5.43) 26 1.79 (0.90, 3.64) 1.07 (0.81, 3.70) 1.66 (0.78, 3.61)
P, linear trendf 0.001 0.019 0.03 0.09 0.15 0.17

Saturated fat
Tertile 1 (low) 13 1.00 1.00 1.00 16 1.00 1.00 1.00
Tertile 2 15 1.23 (0.55, 2.80) 1.07 (0.45, 2.59) 1.05 (0.44, 2.54) 18 1.24 (0.59, 2.64) 1.17 (0.52, 2.65) 1.09 (0.48, 2.48)
Tertile 3 (high) 34 4.02 (1.98, 8.63) 3.21 (1.47, 7.35) 3.04 (1.38, 7.01) 28 2.34 (1.18, 4.82) 1.93 (0.90, 4.23) 1.86 (0.87, 4.08)
P, linear trendf 0.0001 0.002 0.004 0.015 0.085 0.107

n lethal events, OR odds ratio; CI confidence interval
aAnimal fat: n= 122; Saturated fat: n= 113
bAnimal fat: n= 78; Saturated fat: n= 87
cLogistic regression model adjusted for age and year at diagnosis (continuous)
dLogistic regression model adjusted for age and year at diagnosis (continuous), and gleason grade (continuous: <7, 3+ 4, 4+ 3 >7)
eLogistic regression model adjusted for age and year at diagnosis (continuous), gleason grade (continuous: <7, 3+ 4, 4+ 3, >7), and BMI at diagnosis (continuous)
fEstimated by modeling tertiles of MYC score as continuous variable (tertile 1= 0, tertile 2= 1, tertile 3= 2)
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of PIN in 12-weeks-old mice (AP, DLP, VP) was estimated for each mouse, by
evaluating the percentage of the gland affected for each prostate lobe and reported
in Supplementary Data 1 (M.L.). For Ki-67 staining, slides were baked for 60 min in
an oven set to 60 °C. They were then loaded into the Bond III staining platform
with appropriate labels. Slides were antigen retrieved in Bond Epitope Retrieval 2
for 20 min, and incubated with rabbit monoclonal anti-Ki-67 antibody (#VP-RM04
(clone SP6), Vectors Laboratories) at dilution 1:250 for 30 min, room temperature.
Primary antibody was detected using Bond Polymer Refine Detection kit. Slides
were developed in 3,3′-diaminobenzidine (DAB), dehydrated, and coverslipped.
The percentage of Ki-67 positive cells was evaluated by counting the number of cell
that expresses nuclear Ki-67 as a function of the total number of cells per high
power field. Whenever possible, up to 10 high power fields for each VP lobe were
counted, averaged, and counts were reported as each sample’s score (F.G. and M.
F.). Sample size for histological evaluation was estimated based on previous lit-
erature data, using the same model10. For Ki-67 analysis, we performed sample size
calculation using the software G*power version 3.1, extrapolating the effect size (d
= around 0.87) from the data of Kobayashi et al.11 in MYC mice fed with HFD.
Based on this assumption, we calculated that at least 22 mice/group should be used
to detect a significant difference in Ki-67 positivity using a two-sided t-test for
change in mean between two independent groups, with an alpha-error of 0.05 and
a priori power of 0.8.

Insulin ELISA. Serum insulin levels were measured using an insulin-1 ELISA kit
from Sigma-Aldrich (#RAB0817). Briefly, samples were diluted 1:3 or 1:5 in diluent
buffer C (provided in the kit) and the assay was performed according to the
manufacturer’s instructions. Each sample was measured twice (technical duplicate).
Outliers (identified using the ROUT method, Q= 0.1%), and samples in which
insulin levels were under the detection limit of the assay, were removed from the
analysis. Statistical analysis and graphical representation were performed with use
of GraphPad Prism version 7.0.

Metabolic profiling. For Metabolic profiling of serum and prostatic tissues (VP),
we used the platform from Metabolon Inc. (Durham, NC, USA). Mice sample size
to ensure adequate power for metabolomics analysis was based on previous lit-
erature data using a similar model26. Information regarding sample preparation,
quality assurance (QA) and control (QC), and metabolite quantification was
provided by the company as follows:

Sample preparation: Biological samples were stored at −80 °C and then thawed
on ice just prior to extraction. Tissue samples were weighed at Metabolon on a 4-
position analytical scale (1/10th mg) and then soaked overnight in 80% methanol/
20% deionized water with recovery standards at a 60 μL: 1 mg ratio. The methanol
contained four recovery standards (DL-2-fluorophenylglycine, tridecanoic acid, d6-
cholesterol and 4-chlorophenylalanine) to allow confirmation of extraction
efficiency. For serum, 100 μl sample volume was extracted with 500 μl of methanol
containing recovery standards. All extracts were divided into four fractions: one for
Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/
MS) with positive ion mode electrospray ionisation (IMEI); one for (UPLC-MS/
MS) with negative IMEI; one for liquid chromatography (LC) polar platform; the
final fraction was reserved as a backup. Aliquots were dried and then the first
aliquot was reconstituted in 80 μL of 6.5 mM ammonium bicarbonate in water (pH
8) for the negative ion analysis, the second aliquot was reconstituted using 80 μL
0.1% formic acid in water (pH ~3.5) for the positive ion method, while the third
aliquot was reconstituted in 80 µL of hydrophilic interaction liquid
chromatography (HILIC) solvent (15%H2O: 5% MeOH: 80% ACN) with 10 mM
ammonium formate (pH~10) for the HILIC method.

QA/QC: Several types of controls were analysed together with the experimental
samples: (1) a pooled matrix sample specific for each sample type (i.e. prostate and
serum) was generated by combining 20 μl of each experimental sample and
injecting the pooled sample six times for each data set to serve as a technical
replicate to assess process variability; (2) five water aliquots were extracted and
analysed to serve as process blanks for artifact determination; (3) a cocktail of
internal standards, carefully chosen to not interfere with the measurement of
endogenous compounds, was spiked into every analysed sample to monitor
instrument performance and serve as retention markers for chromatographic
alignment. The list of internal standards is provided in Supplementary Table 7.
Instrument variability was evaluated during the entire procedure. Experimental
samples were randomised across the platform run.

UPLC Method: Separations were performed using a Waters Acquity UPLC
(Waters, Milford, MA). Reverse-phase (RP) positive ion method analysis used
mobile phase consisting of 0.1% formic acid in water (A) and 0.1% formic acid in
methanol (B). Reverse-phase negative ion analysis used mobile phase consisting of
6.5 mM ammonium bicarbonate in water, pH 8 (A) and 6.5 mM ammonium
bicarbonate in 95% methanol/5% water (B). The sample injection volume was 5 μL
and a 2x needle loop overfill was used. Separations utilised separate acid and base-
dedicated 2.1 mm × 100 mm Waters BEH C18 1.7 μm columns held at 40 °C.
HILIC used mobile phase consisting of 10 mM ammonium formate in 15% water,
5% methanol, 80% acetonitrile (effective pH 10.16 with NH4OH) (A) and 10 mM
ammonium formate in 50% water, 50% acetonitrile (effective pH 10.60 with
NH4OH) (B). The sample injection volume was identical to RP method. The
stationary phase consisted of a 2.1 mm × 150 mm Waters BEH Amide 1.7 μm

column held at 40 °C. The gradient profiles for RP and HILIC methods can be
found in Supplementary Table 8.

High Resolution Accurate Mass (HRAM) method: A ThermoFisher Scientific
(Waltham, MA) Q-Exactive was the HRAM instrument used52. Detailed source
and MS settings can be found in Supplementary Table 9 (conditions are also
described in supplementary information from Evans et al.)53. The scan range was
80–1000m/z with a scan speed of ~9 scans per second (alternating between MS and
MS/MS scans), and the resolution was set to 35,000 (measured at 200m/z). Mass
calibration was performed as needed to maintain <5 ppm mass error for all
standards monitored.

Biological sample analysis: Metabolon has developed a chemocentric approach
that was used in peak detection and integration, and is described in detail
elsewhere54–56. This in-house peak detection and integration software was used, the
data output of which was a list of m/z ratios, retention indices (RI) and area under
the curve (AUC) values. User specified criteria for peak detection included
thresholds for signal to noise ratio, area and width. Relative standard deviations
(RSDs) of peak area were determined for each internal and recovery standard to
confirm extraction efficiency, instrument performance, column integrity,
chromatography and mass calibration. The biological data sets, including QC
samples, were chromatographically aligned based on a retention index that utilised
internal standards assigned a fixed RI value. The RI of the experimental peak was
determined by assuming a linear fit between flanking RI markers whose RI values
are set. Peaks were matched against an in-house library of authentic standards and
routinely detected unknown compounds specific to the respective method. The
library consisted of 3200 endogenous and exogenous metabolites for which super
and subpathway designations were provided. Identifications were based on
retention index values, experimental precursor mass match to the library authentic
standard within 10 ppm, and quality of MS/MS match. MS/MS forward and reverse
match scores were based on a comparison of the ions present in the experimental
spectrum to the ions present in the library spectrum. A forward score of 100 would
mean all the ions present in the experimental spectrum were present in the library
at the correct ratios. Any deviations in ion ratios or additional experimental ions
not present in the library reduced the forward score, thus the forward score is a
good indication of the purity of the compound being detected. Co-elution with
another molecule with the same mass add ions to the experimental spectrum and
reduce the forward score. Similarly, a reverse score of 100 indicated that all ions
present in the library were present in the experimental spectrum at the correct
ratios and deviations in ion ratios or ions in the library not present in the
experimental spectrum reduced the reverse score. Identification was automatically
approved if all the above criteria were met and the MS/MS forward and reverse
scores were above 80. Compounds which met the above criteria but had low MS/
MS scores, below 35 for both forward and reverse, were automatically rejected.
Compounds with intermediate MS/MS forward and reverse scores, 36–79, were
marked for manual review. If an MS/MS spectrum was not obtained for a given
ion, the identification was based on retention and parent mass alone and marked
for analyst reviews. In this case, identification can still be confirmed if it has
historical precedent in the specific matrix. Further details can be found in Evans
et al.56.

Metabolite quantification and data normalisation: Peaks were quantified using
area-under-the-curve. Data was normalised, to correct variations that resulted from
differences in the inter-day tuning of the instruments. Essentially, each compound
was corrected in run-day blocks, by registering the medians to equal one, and
normalising each data point proportionately. Each biochemical in OrigScale data
was then rescaled, to set the median equal to 1. Compounds in which more than
50% of values were missing were not included in the statistical analyses. Scaled data
are provided in Supplementary Data 2 and 15. Raw and OrigScale data for VP are
provided in Supplementary Data 16 and 17. Raw serum data are provided in
Supplementary Data 18. These tables include RI, accurate mass values, mean
differences in the detected metabolite, and conversion to parts per million (PPM).
Metabolomic data were log-transformed (applying the natural logarithm to the
data plus one) before data analysis.

Data analysis: Principal Component Analysis (PCA) using R software was used
to visualise the metabolomic data. Before PCA, data were imputed using a k-nearest
neighbour (kNN) algorithm57 (with k= 5); they were then mean-centered and scaled
to unit variance. Two-way ANOVA was used to compare the diets (irrespective of
genotypes) or genotypes (irrespective of diets) and a t test was used for two groups’
comparison (Supplementary Data 2 and Supplementary Data 15). Differences were
considered significant if the P was <0.05; and to account for multiple testing, a FDR58

of <0.15. Qlucore Omics Explorer (http://www.qlucore.com; version 3.1) was used
for heatmap representation and unsupervised clustering of metabolites that were
significantly altered by HFD in a WT or a MYC context, or by MYC overexpression
irrespective of the diet. Metabolites were grouped into 8 different classes (lipids,
aminoacids, nucleotides, peptides, carbohydrates, cofactors and vitamins, energy, or
xenobiotics), according to Metabolon’s classification. Biochemical annotations were
assigned by PhD level biochemists at Metabolon, integrating information from
literature and public databases (e.g. HMDB). Metabolite Set Enrichment Analysis
(MSEA) was performed using a hand-curated metabolite set (Supplementary
Data 19) and run using the Gene Set Enrichment Analysis platform (GSEA; Broad
Institute)33 using 1000 permutations. Metabolite sets including fewer than three
metabolites were excluded from the analysis. Metabolite sets were considered
significantly enriched at P < 0.05 and FDR < 0.15.
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Global chromatin profiling. The global chromatin profiling assay was performed
as described in Creech et al.59, with the following modifications:

Cell lysis, tissue lysis, and histone extraction: Flash-frozen tissue samples, 10–40
mg in mass, were thawed on ice and resuspended in 200 μL ice-cold PBS. Samples
were homogenised for about 2 min using a motorised pestle (VWR, 47747–370),
and were spun down at 4 °C, at 1500 g for 5 min. Supernatant was removed and 0.5
mL ice-cold nucleus buffer was added to the resultant pellet. Nuclei were
centrifuged at 4 °C, at 10,000 g for 1 min and supernatant was removed. The
nucleus isolation procedure was repeated twice, removing supernatant each time.
Histones were extracted from the remaining pellet, with 400 μL 0.4 N H2SO4 at
room temperature for 16 h, while shaking; at this point, histone isolation proceeded
using the same protocol as described59. In addition to the flash-frozen tissue,
histones were extracted from one 25 million cell pellet each of Arg-15N6,13C4

SILAC-labeled HeLa, K562, and 293 T (as in Jaffe et al.29), following the protocol
described by Creech et al.59.

Histone derivatization: The sample set used SILAC standardisation, with
histones extracted from HeLa, K562 and 293T cell lines, as described above. In this
workflow, input amount was reduced to 10 μg per sample (5 μg sample and 5 μg
SILAC heavy standards), based on the protocol. Samples were adjusted to 100 mM
sodium phosphate, pH 8.0, by adding 3 μL 500 mM sodium phosphate, pH 8.0; the
total volume of the sample was brought up to 15 μL with HPLC-grade water.
Phosphate-buffered samples were reacted with 60 μL of 400 mM NHS propionate
in anhydrous methanol at room temperature, with shaking. Three hundred
microliters of 0.1% trifluoroacetic acid (TFA) was added, to bring samples to a
volumetric concentration of 20% organic solvent. Samples were desalted on a 96-
well Oasis HLB 5 mg/cc plate (Waters, 186000309). Activation, equilibration, and
wash volumes were 200 μL for each step, and sample elution volume was 100 μL.
For the trypsin digestion, 1 μg trypsin was used in 10 μL of 50 mM ammonium
bicarbonate, pH 8.0, while all other conditions were as described59. After digestion
and lyophilization, new N-termini were derivatized, by resuspending peptides in
40 μL of 400 mM NHS propionate/anhydrous methanol, and adjusting to 18 mM
sodium phosphate, pH 8.0, with 10 μL 100 mM sodium phosphate, pH 8.0. The
reaction was quenched with 10 μL 15% hydroxylamine solution and incubated for
30 min at room temperature with shaking. Samples were brought up to a total
volume of 260 μL with HPLC-grade water, frozen, and lyophilised via vacuum
concentrator. Samples were resuspended in 200 μL 0.1% TFA, and desalted on a
SepPak tC18 96-well μElution plate (Waters, 186002318). All activation and wash
volumes were 200 μL. Elution volume was 100 μL. Desalted peptides were
lyophilised via vacuum concentrator, and were brought up to a volume of 10 μL
with 3% acetonitrile (ACN)/5% formic acid (FA). Samples were further diluted 1:10
with 3% ACN/5% FA, before introducing them into the mass spectrometer.

LC-MS/MS assay parameters: The gradient was modified so that peptides were
separated at a flow rate of 200 nL/minute, with a 60 min linear gradient from 97%
solvent A (3% ACN/ 0.1% FA) to 33% solvent B (90% ACN/ 0.1% FA). This
gradient was followed by a 15 min linear gradient, from 33% solvent B to 65%
solvent B. This gradient was followed by a 5 min linear gradient from 65% solvent
B to 90% solvent B, at which point the 90% solvent B was held for an additional 5
min. Including sample loading and column equilibration times, each sample took
120 min to completion, 90 min of which was taken up by active data acquisition.

Scheduling for H3, H4, H2A, H2A.Z and H2B targets: To determine each
peptide’s retention time, we employed a scheduling sample, comprising three
samples in a 1:1:1 ratio instead of a synthetic peptide mix. Most method parameters
were the same as in Creech et al.59, except that peptides were scheduled within a
23-min window, based on hypothesised elution time; also, the total run time for
each scan was 0–90 min. The isolation width for MS1 and MS2 scans were
narrowed to 1.7 m/z with a 0.3 m/z offset: these data were acquired on a Q-Exactive
Plus (Thermo Scientific) mass spectrometer. A list of peptides targeted in addition
to published histone marks in Creech et al.59 is presented in Supplementary
Data 20.

Scheduled data acquisition: After determining retention times, 1 μL of sample
was injected onto the same column that was utilised for scheduling, using the same
gradients with previously described modifications. MS1 and MS2 scans used the
same parameters as described in Creech et al.59, with the same scan run time and
isolation width modifications as described above. The inclusion list was turned on
for each MS2 scan, and included heavy as well as light versions of each peptide to
be observed, its charge state, new acquisition windows based on the scheduling
runs, and optimal collision energies.

Heatmap generation: GENE-E (http://www.broadinstitute.org/cancer/software/
GENE-E/) was used for heatmap representation as well as statistical analysis of the
data, using the comparative marker selection suite60. Differences were considered
significant if the p-value was <0.05, and FDR was <0.1. Unsupervised clustering of
histone marks (one minus Pearson correlation) was done on normalised values,
based on the median level of each mark in the three WT prostate lobes (VP, DLP
and AP).

ChIP-sequencing. The ChIP-sequencing was performed as described in Ku et al.61,
with the following modifications. Fresh-frozen VP tissues from 12-week-old mice
were pulverised (Cryoprep Impactor, Covaris), resuspended in PBS+ 1% for-
maldehyde, and incubated at room temperature for 20 min. Fixation was stopped
by the addition of 0.125M glycine (final concentration) for 15 min at room

temperature, then washing in ice-cold PBS+ EDTA-free protease inhibitor cocktail
(PIC; #04693132001, Roche). Multiple biological replicates were combined for each
condition in two distinct pools (replicates). Chromatin was isolated by the addition
of lysis buffer (0.1% SDS, 1% Triton X-100, 10 mM Tris-HCl (pH 7.4), 1 mM
EDTA (pH 8.0), 0.1% NaDOC, 0.13 M NaCl, 1X PIC)+ sonication buffer (0.25%
sarkosyl, 1 mM DTT) to the samples, which were maintained on ice for 30 min.
Lysates were sonicated (E210 Focused-ultrasonicator, Covaris) and the DNA was
sheared to an average length of ~ 200–500 bp. Genomic DNA (input) was isolated
by treating sheared chromatin samples with RNase (30 min at 37 °C), proteinase K
(30 min at 55 °C), de-crosslinking buffer (1% SDS, 100 mM NaHCO3 (final con-
centration), 6–16 h at 65 °C), followed by purification (#28008, Qiagen). DNA was
quantified on a NanoDrop spectrophotometer, using the Quant-iT High-Sensitivity
dsDNA Assay Kit (#Q33120, Thermo Fisher Scientific). On ice, ChIP-validated
H4K20me1 (2 μg, #ab9051, Abcam) or PHF8 (5 μg, #A301–772A, Bethyl
Laboratories) antibodies62 were conjugated to a mix of washed Dynalbeads protein
A and G (Thermo Fisher Scientific), and incubated on a rotator (overnight at 4 °C)
with 1.5 μg (H4K20me1) or 5 μg (PHF8) of chromatin. ChIP’ed complexes were
washed, sequentally treated with RNase (30 min at 37 °C), proteinase K (30 min at
55 °C), de-crosslinking buffer (1% SDS, 100 mM NaHCO3 (final concentration),
6–16 h at 65 °C), and purified (#28008, Qiagen). The concentration and size dis-
tribution of the immunoprecipitated DNA was measured using the Bioanalyzer
High Sensitivity DNA kit (#5067–4626, Agilent). Dana-Farber Cancer Institute
Molecular Biology Core Facilities prepared libraries from 2 ng of DNA, using the
ThruPLEX DNA-seq kit (#R400427, Rubicon Genomics), according to the man-
ufacturer’s protocol; finished libraries were quantified by the Qubit dsDNA High-
Sensitivity Assay Kit (#32854, Thermo Fisher Scientific), by an Agilent TapeStation
2200 system using D1000 ScreenTape (# 5067–5582, Agilent), and by RT-qPCR
using the KAPA library quantification kit (# KK4835, Kapa Biosystems), according
to the manufacturers’ protocols; ChIP-seq libraries were uniquely indexed in
equimolar ratios, and sequenced to a target depth of 40 M reads on an Illumina
NextSeq500 run, with single-end 75 bp reads; Bowtie2 (version 2.2.1) was used to
align the ChIP-seq datasets to build version NCB37/MM9 of the mouse genome63.
Alignments were performed using default parameters that preserved reads map-
ping uniquely to the genome without mismatches.

H4K20me1. H4K20me1 read density between transcriptional start site (TSS) and
transcriptional end site (TES) was averaged for each gene, and reported against the
CTD_WT (reference) for the HFD_WT, CTD_MYC or HFD_MYC conditions.
Waterfall plots of rank-ordered log2-fold changes were used to visualise H4K20me1
dynamic changes. Genes with a loss (<1.15 fold-change) or a gain (>1.15 fold-
change) of the H4K20me1 mark between TSS and TES relative to the CTD_WT
(reference) were identified for the HFD_WT, CTD_MYC and HFD_MYC condi-
tions, and were associated with their corresponding transcript abundance. Venn
diagrams were generated using the ‘VennDiagram’ R package (version 1.6.9).

RNA-sequencing. Fresh VP tissues from 12-week-old mice were dissociated to
form a single cell suspension. RNA from a similar number of cells was extracted
using the miRNeasy Micro Kit (#217084, Qiagen) coupled with on-column DNAse
treatment (#79254, Qiagen). RNA sample concentration was measured and sub-
jected to quality evaluation, using a Bioanalyzer RNA 6000 Nano kit (#5067–1511,
Agilent). The Dana-Farber Cancer Institute Molecular Biology Core Facilities
prepared libraries from 500 ng of purified total RNA, using TruSeq Stranded
mRNA sample preparation kits (#RS-122–2101, Illumina) according to the man-
ufacturer’s protocol; submitted the finished libraries to quality control analyses as
described in the ChIP-seq Methods section, pooled uniquely indexed RNA-seq
libraries in equimolar ratios, and sequenced these to a target depth of 40M reads on
an Illumina NextSeq500 run with single-end 75 bp reads. Fastq files were aligned to
the mm9 genome using tophat with default parameters (version 2.0.11). Transcript
abundances were calculated using the cuffquant module of Cufflinks (version
2.2.0). FPKM values were calculated and normalised using the cuffnorm module of
Cufflinks (version 2.2.0). Paired t-test was calculated using the t.test function in R
(version 3.3.2).

Murine gene set enrichment analysis and MYC signature. Gene expression
values from biological triplicates were input for Gene Set Enrichment Analysis
(GSEA)33 using the Hallmark (H, v5.01; Supplementary Data 7) or the Chemical
and Genetic Perturbations (C2.cgp, v5.1; Supplementary Data 8) Molecular Sig-
nature Databases (MSigDB) with 10,000 permutations. The Normalised Enrich-
ment Score (NES)—associated with gene sets that were significantly enriched or
depleted (p < 0.05 and FDR < 0.1)—was used for heatmap generation, using a
custom-made R script. A murine prostatic MYC signature was obtained by com-
bining leading edge genes from all MYC-related gene sets that were significantly
enriched (P < 0.05 and FDR < 0.1) in the H and C2.cgp MSigDB (Supplementary
Data 9). Aggregate read density profiles of PHF8 and H4K20me1, and their
quantification around MYC signature genes, were generated using deepTools64.
Mapped regions were visualised using the Integrated Genomics Viewer (IGV,
version 2.3.68)65.
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Protein analysis. Fresh-frozen VP tissues from 12-week-old mice were pulverised
(Cryoprep Pulvrizer, Covaris) and lysed on ice in RIPA buffer (20 mM Tris-HCl
pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40) with the addition of
phosphatases and protease inhibitor cocktail tablets (Complete Mini, EDTA-free,
Roche). MYC-CaP cells (kindly provided by Dr. Charles Sawyers, Memorial Sloan
Kettering Cancer Center, New York, NY)66 were rinsed on ice with PBS and lysed
as for the mouse prostates. Cells were authenticated via STR profiling (DDC
Medical, 16 January 2015). Cells were tested negative for mycoplasma con-
tamination using MycoAlert™ Mycoplasma Detection Kit (Lonza). Equal amounts
of protein (15–20 μg; Bradford protein assay, Bio-Rad) were resolved on precast
4–12 or 4–20% Tris-glycine SDS-polyacrylamide gels (Invitrogen), and transferred
to Nitrocellulose Blotting membranes (Amersham), following standard procedures.
Membranes were probed with the following antibodies according to the manu-
facturer’s instructions: rabbit monoclonal [Y69] anti-c-MYC (#ab32072, Abcam),
or rabbit polyclonal anti-β-Actin (#4967, Cell Signaling Technology). Densitometry
analyses were made with ImageJ (U.S. NIH, Bethesda, MD; http://imagej.nih.gov/ij/
). Results were normalised to β-actin and expressed as arbitrary units.

Epidemiological studies. Study population: We tested our hypothesis among
prostate cancer patients who were enrolled in two prospective studies: the Physi-
cians’ Health Study (PHS) and the Health Professionals Follow-up Study (HPFS).
PHS I and II began in 1982 and 1997, respectively, as randomised trials of aspirin
(PHS I) and dietary supplements (PHS II), and enrolled 29,067 male U.S. physi-
cians for the primary prevention of cardiovascular disease and cancer67–70. The
HPFS was initiated in 1986, when 51,529 U.S. men, 40–75 years of age and working
in health professions, completed a biennial questionnaire mailed to them71. In both
studies, participants were followed by means of regular questionnaires, and self-
reported data on diet, lifestyle behaviours, medical history, and disease outcomes
were collected. We confirmed the incidence of prostate cancer cases in this
population by reviewing medical records and pathology reports. Following the
confirmation of diagnosis, we retrieved archival formalin-fixed paraffin-embedded
(FFPE) prostate tissue specimens, collected during radical prostatectomy or
transurethral resection of the prostate. Pathologists undertook a standardised
histopathologic review, including Gleason grading72, and standardised clinical data
were abstracted from medical records. Deaths were ascertained via mail, telephone,
and through periodic systematic searches of the National Death Index. Lethal
prostate cancer was defined as the occurrence of distant metastases, or death due to
prostate cancer. Men were followed through March 2011 for PHS and through
December 2011 for HPFS. We obtained written informed consent from all parti-
cipants, and the study was approved by institutional review boards at the Harvard
T.H. Chan School of Public Health and Partners Health Care.

Whole-transcriptome expression profiling: In the current study, we undertook
gene expression profiling of archival tumour tissue among 402 men with prostate
cancer in the cohorts using an extreme case control design. Cases were men with
lethal prostate cancer (developed metastatic disease or died from prostate cancer)
and controls were men with indolent cancer (those survived at least 8 years after
prostate cancer diagnosis, without any evidence of metastases). In total, there were
113 lethal cases and 289 indolent cases. We also included adjacent normal tissue for
a subset of these tumour tissues (n= 200). Gene expression profiling of archival
FFPE tissue was performed as described73. Briefly, two to three 0.6-mm cores were
sampled from regions of high-density tumour, and from adjacent normal prostate
tissue. RNA was extracted with the Agencourt FormaPure kit (Beckman Coulter),
with use of the Biomek FXP automated platform. Whole-transcriptome
amplification was performed using WT-Ovation FFPE System V2 (NuGEN) and
the amplified cDNA was hybridised to a GeneChip Human Gene 1.0 ST
microarray (Affymetrix). For the expression profiles generated, we regressed out
technical variables and then shifted the residuals to derive the original mean
expression values, and normalised these using the robust multi-array average
method74,75. NetAffx annotations were used to map gene names to Affymetrix
transcript cluster IDs, as implemented in the Bioconductor annotation package pd.
hugene.1.0.st.v1; this resulted in 20,254 unique gene names.

Diet assessment: Self-administered semi-quantitative food frequency
questionnaires (FFQs) were collected every four years from 1986 for the HPFS, and
were administered once between 1999 and 2002 for the PHS. The FFQs asked men
to report their usual intake of approximately 130 foods and beverages during the
previous year, and also their fried food consumption, the type of cooking fat they
used, and whether they consumed the visible fat on meat. Fat intake levels were
estimated by multiplying the frequency of intake by the amount of the fat in the
specific portion of each food (based on nutrient composition data from the US
Department of Agriculture, supplemented with food manufacturer data), and were
summed across all foods. The FFQ was validated among 127 men in the HPFS. The
correlations between the FFQ and four prospectively collected one-week weighed
diet records were 0.67 for total fat, and 0.75 for saturated fat76. Because FFQ was
mainly administered after the diagnosis of prostate cancer for the PHS participants,
we estimated post-diagnostic fat intakes in both HPFS and PHS, to maintain a
bigger sampler size and harmonize the two cohorts. In HPFS, we calculated
cumulative average post-diagnostic intake from the FFQ preceding diagnosis until
the end of the follow-up in HPFS77. Fat intake (g/d) was multiplied by 9 kcal and
divided by total calories per day to calculate the percent of daily calories from each
fat of interest.

Statistical analysis: Fat intake after diagnosis was estimated in 4577 men enrolled
in the HPFS and in 926 men from the PHS, all of whom had non-metastatic
prostate cancer. Cohort-specific quintiles were determined based on fat intake
distributions for each cohort, with the highest quintile denoted as the high-fat group
and the lower four quintiles grouped as the low-fat group (Supplementary Data 21).
The categorised fat intake groups were then integrated with gene expression data in
tumour or in adjacent normal tissues. Finally, we had 319 tumour tissues from
patients (213 from the HPFS and 106 from the PHS) for whom we had complete fat
intake estimation (animal fat: high-fat group n= 65 vs. low-fat group n= 254;
saturated fat: high-fat group n= 62 vs. low-fat group n= 257; monounsaturated fat:
high-fat group n= 66 vs. low-fat group n= 253; polyunsaturated fat: high-fat group
n= 55 vs. low-fat group n= 264) and a total of 157 adjacent normal tissues after
merging with fat intake data (animal fat: high-fat group n= 33 vs. low-fat group
n= 124; saturated fat: high-fat group n= 29 vs. low-fat group n= 128;
monounsaturated fat: high-fat group n= 33 vs. low-fat group n= 124;
polyunsaturated fat: high-fat group n= 24 vs. low-fat group n= 133).

Gene set enrichment analysis: Gene expression profiles of tumour and adjacent
normal prostate tissues were input for GSEA33, with use of the Hallmark (H, v4.0)
MSigDB with 10,000 phenotype-based permutations, to identify predefined sets of
functionally related genes correlated with specific fat intakes (Supplementary
Data 10, 12–14). Gene sets with P < 0.05 and FDR < 0.1 were considered for
subsequent analyses. Animal fat and saturated fat intake-dependent MYC
signatures were obtained by combining either the leading edge or the non-leading
edge genes from the MYC_targets_V1 gene set from the H MSigDB in tumour
tissues (Supplementary Data 11), to create a metagene score as previously
described78. This was computed for each sample by averaging the normalised
(mean-centered and variance scaled) expression values of all member genes. An
additional signature was derived from 113 randomly selected genes from the
MYC_targets_V1 gene set (Supplementary Data 11). Odds ratios and 95%
confidence intervals were obtained by logistic regression for the association
between the metagene score and lethal prostate cancer. The score was modelled as
categorical (tertiles). We tested for linear trend across score categories by modelling
the tertiles as a continuous variable. All models were adjusted for age and year at
diagnosis. We further adjusted for Gleason grade to test whether the score is an
independent predictor of lethal prostate cancer and BMI at diagnosis, to
differentiate the effect from overweight/obesity. To assess whether the association
between the score and lethal prostate cancer was modified by saturated fat intake,
we obtained P for interaction by including an interaction term (saturated fat intake
x MYC score) in the multivariable model using a Wald test. All analyses were
conducted using SAS version 9.3 and R version 3.1.0.

Validation cohorts: To investigate the power of SFI-induced and non-SFI-
induced MYC signatures to predict metastatic disease, we utilised genome-wide
expression profiles of 751 patients with metastatic outcome follow-up from the
Decipher Genomic Resource Information Database (GRID; NCT02609269). These
patients were pooled from four studies of either case-cohort or cohort design.
Patients for these studies came from four institutes: Thomas Jefferson University
(TJU; n= 139)79, Johns Hopkins Medical Institutions-I (JHMI-I; n= 260)80, Mayo
Clinic (n= 235)81, Cedars-Sinai (n= 117)82. A total of 120 non-randomly selected
patients from case-cohort studies were removed before pooling the studies to avoid
bias in estimating the hazard ratio. 631 patients were thus eligible for analysis, 70 of
which developed metastasis. Median follow-up time for censored patients was 8
years and the median age at radical prostatectomy was 61 years.

The fat-induced MYC signature (113 genes) and non-fat-induced MYC
signature (87 genes) were used to calculate pathway expression scores for each
patient, using a z-score scaled, mean gene expression. Based on the tertiles of these
scores, patients were divided into three groups with T1 being the lowest and T3 the
highest. Kaplan–Meier curves and Cox proportional hazard regression were used to
evaluate the metastatic prognosis. To test associations between signatures and BMI,
we extracted BMI data from 494 patients pooled from three cohorts (TJU, n= 139;
JHMI-I only, n= 144; JHMI-II83 only, n= 95; JHMI-I/II, n= 116). Correlation
analysis using Pearson’s correlation was used to measure the association between
MYC signatures score and BMI. JHMI-II was excluded from the survival analysis
because only patients that developed biochemical recurrence were selected for this
study, hence it was statistically inappropriate to pool the JHMI-II cohort with the
others lacking this inclusion criteria as it would inflate the event rate. We also
conducted univariate and multivariate analyses to associate the SFI-induced MYC
signature with clinical outcome after adjusting for other clinicopathologic variables
including pre-operative prostate-specific antigen (PSA) levels, seminal vesicle
invasion, surgical margins, extracapsular extension, lymph node invasion, gleason
grade or the Cell Cycle Progression score in the pooled cohort from which we
utilised genome-wide expression profiles of 631 patients (deidentified and
aggregated from routine clinical use of the Decipher prostate cancer classifier test;
Decipher Biosciences Laboratory, San Diego, CA) with metastatic outcome follow-
up from the Decipher GRID.

Adequacy of statistical analyses. All the statistical tests were justified as
appropriate. Assumption criteria were met, analysis of variance was performed.
When variance was not equal, Welch’s t-test (unequal variance t-test) was applied.
Data are reported including estimation of variation within each group. Two-sided
tests were used. Measurements were taken from distinct samples.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available from the corresponding authors upon request. Raw data underlying
reported averages in graphs and uncropped versions of blots are provided in the source
data file or supplementary tables. Raw metabolomics data generated by Metabolon were
deposited on MetaboLights and are available through the study identifier MTBLS135.
Raw, scaled metabolomics data, and statistics were also provided as supplementary tables.
The sequencing data reported in this paper (ChIP-seq and RNA-seq) were deposited on
NCBI Gene Expression Omnibus (GEO) and are accessible through GEO Series
accession number GSE90912. Human gene expression data is available through
GSE62872 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi].
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