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1. Introduction

In this paper, we study a class of the Cauchy problems for evolution inclusions of subdifferential type
in the framework of evolution triple of spaces. Recently, the problem has been studied in [21] without
the convex subdifferential term and under the sign condition for the nonconvex potential, and in [8],
where reformulated as a variational–hemivariational inequality, has been analyzed under a restrictive
smallness hypothesis on the constants involved in operators A and ∂J [see problem (1.1), (1.2) below].
Here, we replace this restriction by a weaker condition and further examine the continuous dependence
for such inclusions which was not studied before. In this way, the present paper is a continuation of [8].
Moreover, we provide a new application of our results to a semipermeability problem with nonmonotone
and possibly multivalued subdifferential boundary conditions.

The main feature of the evolution inclusion under consideration is that both multivalued terms are
generated by subdifferential operators which take their values in the dual space and not in a pivot space,
and moreover, such inclusions depend on operators involved in the subdifferential maps and assumed
to be history-dependent. We should note that Gasinski et al. [6] investigated an abstract first-order
evolution inclusion in a reflexive Banach space extending several earlier work on parabolic hemivariational
inequalities by Migórski [13], and Migórski and Ochal [15], and others.

The initial value problem for evolution inclusion under consideration reads as follows. Find w ∈
L2(0, T ;V ) with w′ ∈ L2(0, T ;V ∗) such that

w′(t) + A(t, w(t)) + (R1w)(t) + M∗∂J(t, (Sw)(t),Mw(t))
+N∗∂ϕ(t, (Rw)(t), Nw(t)) � f(t) a.e. t ∈ (0, T ), (1.1)

w(0) = w0. (1.2)
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In inclusion (1.1), the symbol ∂J stands for the generalized gradient of a locally Lipschitz function
J(t, z, ·) and ∂ϕ denotes the convex subdifferential of a convex and lower semicontinuous function ϕ(t, y, ·).
Furthermore, (1.1) involves three nonlinear operators R, R1 and S assumed to be history-dependent. It is
worth to observe that inclusion (1.1) finds an equivalent formulation as the following history-dependent
variational–hemivariational inequality, see [8, Problem 7]:

〈w′(t) + A(t, w(t)) + (R1w)(t) − f(t), v − w(t)〉V ∗×V

+J0(t, (Sw)(t), w(t); v − w(t)) + ϕ(t, (Rw)(t), v) − ϕ(t, (Rw)(t), w(t)) ≥ 0 (1.3)

for all v ∈ V , a.e. t ∈ (0, T ). Existence and uniqueness results for a particular form of inclusion (1.3),
under more restrictive hypotheses, have been recently proved in [22] where J ≡ 0, and in [23] where
J is independent of the history-dependent operator. We refer to [14,17,18,20,28,29,31,33] for various
related results on history-dependent inequality problems, and to a recent monograph [32] for a compre-
hensive research. Moreover, various classes of related differential variational inequalities and differential
hemivariational inequalities have been studied only recently in [10–12,24,35].

The novelties of the paper are following. First, we prove existence of the unique solution to prob-
lem (1.1), (1.2) under a weaker (relaxed) smallness condition than in [8, Theorem 9]. Since the smallness
condition is simpler here, it is applied to a wider class of evolution inclusions. Second, we deliver a contin-
uous dependence result for the map (f, w0) �→ w for problem (1.1), (1.2) in weak topologies. Note that a
convergence result in norm topologies for a problem in which ∂J does not depend on the history-dependent
operator was obtained in [32, Theorem 99]. Third, we provide a new application of the continuous depen-
dence result of Theorem 7 to a dynamic frictional contact model with history-dependent operators, and a
new well-posedness result for a semipermeability problem. Finally, note that the continuous dependence
result in weak topologies obtained in this paper can be used in analysis of various optimization and opti-
mal control problems for variational and variational–hemivariational inequalities with history-dependent
operators.

2. Essential tools

Let us recall some basic definitions from nonlinear analysis in Banach spaces. For more details in this
connection, we refer to, e.g., [2–4].

Let X be a Banach space. Throughout this paper, we denote by 〈·, ·〉X∗×X the duality pairing between
a Banach space X and its dual X∗, and by ‖ · ‖X the norm in X. When no confusion arises, we often
drop the subscripts. A function ϕ : X → R ∪ {+∞} is proper if its effective domain domϕ = {x ∈ X |
ϕ(x) < +∞} 
= ∅. It is lower semicontinuous (l.s.c.) if xn → x in X entails ϕ(x) ≤ lim inf ϕ(xn).

Let ϕ : X → R ∪ {+∞} be a convex function. An element x∗ ∈ X∗ is called a subgradient of ϕ at
u ∈ X if

〈x∗, v − u〉X∗×X ≤ ϕ(v) − ϕ(u) for all v ∈ X. (2.1)

The set of all x∗ ∈ X∗ which satisfy (2.1) is called the (convex) subdifferential of ϕ at u and is denoted by
∂ϕ(u). Next, we recall the notions of the generalized directional derivative and the generalized gradient
of Clarke for a locally Lipschitz function ψ : X → R. The generalized directional derivative of ψ at u ∈ X
in the direction v ∈ X is defined by

ψ0(u; v) = lim sup
y→u, t↓0

ψ(y + tv) − ψ(y)
t

.

The generalized gradient of ψ at u ∈ X is given by

∂ψ(u) = {u∗ ∈ X∗ | ψ0(u; v) ≥ 〈u∗, v〉X∗×X for all v ∈ X}.
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The locally Lipschitz function ψ is called regular (in the Clarke sense) at u ∈ X if for all v ∈ X the
one-sided directional derivative ψ′(u; v) exists and satisfies ψ0(u; v) = ψ′(u; v) for all v ∈ X. In what
follows the generalized gradient of Clarke for a locally Lipschitz function and the subdifferential of a
convex function will be denoted in the same way.

Recall that an operator A : X → X∗ is said to be demicontinuous if for all v ∈ X, the functional
u �→ 〈Au, v〉X∗×X is continuous, i.e., A is continuous as a map from X to X∗ endowed with the weak
topology. Let 0 < T < ∞ and A : (0, T ) × X → X∗. The Nemytskii (superposition) operator associated
with A is the operator A : L2(0, T ;X) → L2(0, T ;X∗) defined by

(Av)(t) = A(t, v(t)) for v ∈ L2(0, T ;X), a.e. t ∈ (0, T ).

A multivalued operator A : X → 2X∗
is called coercive if either its domain D(A) = {u ∈ X | Au 
= ∅} is

bounded or D(A) is unbounded and

lim
‖u‖X→∞, u∈D(A)

inf { 〈u∗, u〉X∗×X | u∗ ∈ Au }
‖u‖X

= +∞.

Given a set D in a normed space E, we define ‖D‖E = sup{‖x‖E | x ∈ D}. The space of linear and
bounded operators from a normed space E to a normed space F is denoted by L(E,F ). It is endowed
with the standard operator norm ‖ · ‖L(E,F ). For an operator L ∈ L(E,F ), we denote its adjoint by
L∗ ∈ L(F ∗, E∗).

Recall that the spaces (V,H, V ∗) form an evolution triple of spaces, if V is a reflexive and separable
Banach space, H is a separable Hilbert space, and the embedding V ⊂ H is dense and continuous. We
introduce the following Bochner spaces V = L2(0, T ;V ), V∗ = L2(0, T ;V ∗), and W = {w ∈ V | w′ ∈ V∗}.
It follows from standard results, see, e.g., [3, Section 8.4], that the space W endowed with the graph
norm ‖w‖W = ‖w‖V + ‖w′‖V∗ is a separable and reflexive Banach space, and each element in W, after
a modification on a set of null measure, can be identified with a unique continuous function on [0, T ]
with values in H. Further, the embedding W ⊂ C(0, T ;H) is continuous, where C(0, T ;H) stands for the
space of continuous functions on [0, T ] with values in H.

Finally, we state a fixed point result (see [9, Lemma 7] or [30, Proposition 3.1]) being a consequence
of the Banach contraction principle.

Lemma 1. Let X be a Banach space and 0 < T < ∞. Let F : L2(0, T ;X) → L2(0, T ;X) be an operator
such that

‖(Fv1)(t) − (Fv2)(t)‖2
X ≤ c

∫ t

0

‖v1(s) − v2(s)‖2
X ds

for all v1, v2 ∈ L2(0, T ;X), a.e. t ∈ (0, T ) with a constant c > 0. Then, there exists a unique v∗ ∈
L2(0, T ;X) such that Fv∗ = v∗.

3. History-dependent evolution inclusions

We start with the study of existence and uniqueness for abstract first-order evolution subdifferential
inclusion in a general form. Our study is a continuation of paper [8] where a class of general dynamic
history-dependent variational–hemivariational inequalities has been investigated. The aim is to provide
an improved version of result in [8, Theorem 6] which actually holds under a more general smallness
hypothesis.

We study the operator inclusions in the standard functional setting used for evolution problems which
exploits the notion of an evolution triple of spaces (V,H, V ∗). We use the notation V, V∗ and W, recalled
in the previous section.

Given A : (0, T )×V → V ∗, ψ : (0, T )×V → R, f : (0, T ) → V ∗ and w0 ∈ V , we consider the following
Cauchy problem for the evolution inclusion.
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Problem 2. Find w ∈ W such that{
w′(t) + A(t, w(t)) + ∂ψ(t, w(t)) � f(t) a.e. t ∈ (0, T ),
w(0) = w0.

Here, ψ(t, ·) is a locally Lipschitz function and ∂ψ denotes its Clarke generalized gradient. We recall
that a function w ∈ W is a solution of Problem 2, if there exists w∗ ∈ V∗ such that w′(t) + A(t, w(t)) +
w∗(t) = f(t) a.e. t ∈ (0, T ), w∗(t) ∈ ∂ψ(t, w(t)) a.e. t ∈ (0, T ), and w(0) = w0.

In the study of Problem 2, we need the following hypotheses.
H(A): A : (0, T ) × V → V ∗ is such that

(i) A(·, v) is measurable on (0, T ) for all v ∈ V .
(ii) A(t, ·) is demicontinuous on V for a.e. t ∈ (0, T ).
(iii) ‖A(t, v)‖V ∗ ≤ a0(t) + a1‖v‖V for all v ∈ V , a.e. t ∈ (0, T ) with a0 ∈ L2(0, T ), a0 ≥ 0 and a1 ≥ 0.
(iv) A(t, ·) is strongly monotone for a.e. t ∈ (0, T ), i.e., for a constant mA > 0,

〈A(t, v1) − A(t, v2), v1 − v2〉V ∗×V ≥ mA‖v1 − v2‖2
V

for all v1, v2 ∈ V , a.e. t ∈ (0, T ).
H(ψ): ψ : (0, T ) × V → R is such that

(i) ψ(·, v) is measurable on (0, T ) for all v ∈ V .
(ii) ψ(t, ·) is locally Lipschitz on V for a.e. t ∈ (0, T ).
(iii) ‖∂ψ(t, v)‖V ∗ ≤ c0(t) + c1‖v‖V for all v ∈ V , a.e. t ∈ (0, T ) with c0 ∈ L2(0, T ), c0 ≥ 0, c1 ≥ 0.
(iv) ∂ψ(t, ·) is relaxed monotone for a.e. t ∈ (0, T ), i.e., for a constant mψ ≥ 0,

〈z1 − z2, v1 − v2〉V ∗×V ≥ −mψ‖v1 − v2‖2
V

for all zi ∈ ∂ψ(t, vi), zi ∈ V ∗, vi ∈ V , i = 1, 2, a.e. t ∈ (0, T ).
(H0): f ∈ V∗, w0 ∈ V .
(H1): mA > mψ.

We have the following existence and uniqueness result.

Theorem 3. Under hypotheses H(A), H(ψ), (H0) and (H1), Problem 2 has a unique solution.

Proof. The proof follows the lines of [8, Theorem 6]. For this reason, we provide only an argument for
the coercivity of the operator F : V → 2V∗

defined by Fv = Av + Bv for v ∈ V, where A : V → V∗ and
B : V → 2V∗

are the Nemytskii operators corresponding to the translations of A(t, ·) and ∂ψ(t, ·) by the
initial condition w0:

(Av)(t) = A(t, v(t) + w0),
Bv = { v∗ ∈ V∗ | v∗(t) ∈ ∂ψ(t, v(t) + w0) for a.e. t ∈ (0, T ) }

for v ∈ V and a.e. t ∈ (0, T ). By H(A)(iii), (iv) and H(ψ)(iii), (iv), we have

〈A(t, z) + ∂ψ(t, z), z〉V ∗×V = 〈A(t, z) − A(t, 0), z〉V ∗×V

+〈∂ψ(t, z) − ∂ψ(t, 0), z〉V ∗×V + 〈A(t, 0) + ∂ψ(t, 0), z〉V ∗×V

≥ (mA − mψ)‖z‖2
V − (a0(t) + c0(t))‖z‖V

for all z ∈ V , a.e. t ∈ (0, T ). Next, let v ∈ V. We obtain

〈Av + Bv, v〉V∗×V =
∫ T

0

〈(Av)(t) + (Bv)(t), v(t)〉V ∗×V dt

=
∫ T

0

〈A(t, v(t) + w0) + ∂ψ(t, v(t) + w0), v(t) + w0〉V ∗×V dt

−
∫ T

0

〈A(t, v(t) + w0) + ∂ψ(t, v(t) + w0), w0〉V ∗×V dt. (3.1)
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Using H(A)(iii) and H(ψ)(iii), we get

|〈A(t, v(t) + w0) + ∂ψ(t, v(t) + w0), w0〉V ∗×V |
≤ (‖A(t, v(t) + w0)‖V ∗ + ‖∂ψ(t, v(t) + w0)‖V ∗)‖w0‖V

≤ (a0(t) + c0(t) + (a1 + c1)‖w0‖V )‖w0‖V + (a1 + c1)‖w0‖V ‖v(t)‖V .

Integrating this inequality on (0, T ), by the Hölder inequality, we deduce

−
∫ T

0

〈A(t, v(t) + w0) + ∂ψ(t, v(t) + w0), w0〉V ∗×V dt ≥ −(a1 + c1)‖w0‖2
V

−
√

T (‖a0‖L2 + ‖c0‖L2)‖w0‖V −
√

T (a1 + c1)‖w0‖V ‖v‖V . (3.2)

Combining (3.1) and (3.2), we obtain

〈Av + Bv, v〉V∗×V ≥ (mA − mψ)‖v + w0‖2
V − (‖a0‖L2 + ‖c0‖L2)‖v + w0‖V

−
√

T (‖a0‖L2 + ‖c0‖L2)‖w0‖V − (a1 + c1)T‖w0‖2
V − (a1 + c1)‖w0‖V

√
T‖v‖V

for all v ∈ V. Finally, by the inequality (a + b)2 ≥ 1
2a2 − b2 for all a, b ∈ R, we conclude

〈Fv, v〉V∗×V ≥ 1
2
(mA − mψ)‖v‖2

V − (mA − mψ)‖w0‖2
V − (‖a0‖L2 + ‖c0‖L2)‖v‖V

−(‖a0‖L2 + ‖c0‖L2)(1 +
√

T )‖w0‖V − (a1 + c1)T‖w0‖2
V − (a1 + c1)‖w0‖V

√
T‖v‖V .

From the smallness hypothesis (H1), we infer that F is a coercive operator. The rest of the proof of this
theorem is analogous to [8, Theorem 6], and therefore, it is omitted here. �

Observe that existence and uniqueness result of Theorem 3 was proved earlier in [8] under the more
restrictive smallness assumption mA > max{mψ, 2

√
2 c1}.

Note that condition H(ψ)(iv) has an equivalent formulation in terms of the generalized directional
derivative of ψ(t, ·), that is, ∂ψ(t, ·) is relaxed monotone for a.e. t ∈ (0, T ) with constant mψ ≥ 0 if and
only if

ψ0(t, v1; v2 − v1) + ψ0(t, v2; v1 − v2) ≤ mψ ‖v1 − v2‖2
V

for all vi ∈ V , i = 1, 2, a.e. t ∈ (0, T ). For details and examples, see, e.g., [7, Remark 3.1], and [19,20,32].
We pass now to the evolution inclusion with history-dependent operators which is the main object of

our study in this paper.

Problem 4. Find w ∈ W such that⎧⎪⎨
⎪⎩

w′(t) + A(t, w(t)) + (R1w)(t) + M∗∂J(t, (Sw)(t),Mw(t))
+N∗∂ϕ(t, (Rw)(t), Nw(t)) � f(t) a.e. t ∈ (0, T ),

w(0) = w0.

In this problem, ∂J denotes the generalized gradient of a locally Lipschitz function J(t, z, ·) and
∂ϕ is the convex subdifferential of a convex and lower semicontinuous function ϕ(t, y, ·). Despite two
subdifferential terms generated by convex and (in general) nonconvex functions, the inclusion involves
three nonlinear operators R, R1 and S called history-dependent ones.

We introduce the following hypotheses on the data of Problem 4. Let X, Y , Z and U be Banach
spaces.
H(J): J : (0, T ) × Z × X → R is such that

(i) J(·, z, v) is measurable on (0, T ) for all z ∈ Z, v ∈ X.
(ii) J(t, ·, v) is continuous on Z for all v ∈ X, a.e. t ∈ (0, T ).
(iii) J(t, z, ·) is locally Lipschitz on X for all z ∈ Z, a.e. t ∈ (0, T ).
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(iv) ‖∂J(t, z, v)‖X∗ ≤ c0J(t)+c1J‖z‖Z +c2J‖v‖X for all z ∈ Z, v ∈ X, a.e. t ∈ (0, T ) with c0J ∈ L2(0, T ),
c0J , c1J , c2J ≥ 0.

(v) ∂J is relaxed monotone in the following sense

〈∂J(t, z1, v1) − ∂J(t, z2, v2), v1 − v2〉X∗×X

≥ −mJ‖v1 − v2‖2
X − m̄J ‖z1 − z2‖Z‖v1 − v2‖X

for all zi ∈ Z, vi ∈ X, i = 1, 2, a.e. t ∈ (0, T ) with mJ ≥ 0, m̄J ≥ 0.

H(ϕ): ϕ : (0, T ) × Y × U → R is such that

(i) ϕ(·, y, u) is measurable on (0, T ) for all y ∈ Y , u ∈ U .
(ii) ϕ(t, ·, u) is continuous on Y for all u ∈ U , a.e. t ∈ (0, T ).
(iii) ϕ(t, y, ·) is convex and l.s.c. on U for all y ∈ Y , a.e. t ∈ (0, T ).
(iv) ‖∂ϕ(t, y, u)‖U∗ ≤ c0ϕ(t)+c1ϕ‖y‖Y +c2ϕ‖u‖U for all y ∈ Y , u ∈ U , a.e. t ∈ (0, T ) with c0ϕ ∈ L2(0, T ),

c0ϕ, c1ϕ, c2ϕ ≥ 0.
(v) ϕ(t, y1, u2)−ϕ(t, y1, u1)+ϕ(t, y2, u1)−ϕ(t, y2, u2) ≤ βϕ ‖y1 −y2‖Y ‖u1 −u2‖U for all yi ∈ Y , ui ∈ U ,

i = 1, 2, a.e. t ∈ (0, T ) with βϕ ≥ 0.

H(M,N): M ∈ L(V,X), N ∈ L(V,U).
(H2): R : V → L2(0, T ;Y ), R1 : V → V∗, and S : V → L2(0, T ;Z) are such that

(i) ‖(Rv1)(t) − (Rv2)(t)‖Y ≤ cR

∫ t

0

‖v1(s) − v2(s)‖V ds for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with cR > 0.

(ii) ‖(R1v1)(t)−(R1v2)(t)‖V ∗ ≤ cR1

∫ t

0

‖v1(s)−v2(s)‖V ds for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with cR1 > 0.

(iii) ‖(Sv1)(t) − (Sv2)(t)‖Z ≤ cS

∫ t

0

‖v1(s) − v2(s)‖V ds for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with cS > 0.

(H3): mA > mJ‖M‖2.

Theorem 5. Under hypotheses H(A), H(J), H(ϕ), H(M,N), (H0), (H2) and (H3), Problem 4 has a
unique solution.

Proof. The proof is based on Theorem 3, uses some ideas from [8, Theorem 9] and consists of three steps.
Step 1 Let us fix ξ ∈ L2(0, T ;V ∗), η ∈ L2(0, T ;Y ) and ζ ∈ L2(0, T ;Z) and define a functional

ψξηζ : (0, T ) × V → R by

ψξηζ(t, v) = 〈ξ(t), v〉V ∗×V + J(t, ζ(t),Mv) + ϕ(t, η(t), Nv)

for all v ∈ V , a.e. t ∈ (0, T ).
We will verify that ψξηζ satisfies hypothesis H(ψ). First, it is clear by assumptions H(J)(i), (ii) and

H(ϕ)(i), (ii) that both J(·, ·, v) and ϕ(·, ·, u) are Carathéodory functions for all v ∈ V , u ∈ U . Making
compositions with measurable functions (0, T ) � t �→ ζ(t) ∈ Y and (0, T ) � t �→ η(t) ∈ Z, it is obvious
that the functional ψξηζ(·, v) is measurable on (0, T ) for all v ∈ V . This implies H(ψ)(i). Next, we observe
that H(ψ)(ii) is satisfied. Indeed, using [3, Proposition 5.2.10] and H(ϕ)(iii), we infer that ϕ(t, y, ·) is
locally Lipschitz on U for all y ∈ Y , a.e. t ∈ (0, T ). Hence, taking into account H(J)(iii) combined with
H(M,N), we obtain that the functional ψξηζ(t, ·) is locally Lipschitz on V for a.e. t ∈ (0, T ), i.e., H(ψ)(ii)
holds.

Subsequently, since J(t, z,M ·) and ϕ(t, y,N ·) are locally Lipschitz for all z ∈ Z and y ∈ Y , a.e.
t ∈ (0, T ), we apply the chain rule in [3, Proposition 5.6.23] to get

∂ψξηζ(t, v) ⊂ ξ(t) + M∗∂J(t, ζ(t),Mv) + N∗∂ϕ(t, η(t), Nv) (3.3)
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for all v ∈ V and a.e. t ∈ (0, T ). Exploiting (3.3), we easily have

‖∂ψξηζ(t, v)‖V ∗ ≤ ‖ξ(t)‖V ∗ + ‖M∗∂J(t, ζ(t),Mv)‖V ∗ + ‖N∗∂ϕ(t, η(t), Nv)‖V ∗

≤ ‖ξ(t)‖V ∗ + c0J (t) + c1J‖M‖‖ζ(t)‖Z + c2J‖M‖2‖v‖V

+c0ϕ(t) + c1ϕ‖N‖‖η(t)‖Y + c2ϕ‖N‖2‖v‖V

≤ c0(t) + c1‖v‖V

for all v ∈ V , a.e. t ∈ (0, T ), where c0 ∈ L2(0, T ), c0 ≥ 0 and

c1 = max{c2J‖M‖2, c2ϕ‖N‖2} ≥ 0.

Condition H(ψ)(iii) follows.
Finally, we will check the relaxed monotonicity condition H(ψ)(iv). We use H(J)(v) and the mono-

tonicity of ∂ϕ(t, y, ·) for all y ∈ Y , a.e. t ∈ (0, T ), see [3, Theorem 6.3.19], which entail

〈∂ψξηζ(t, v1) − ∂ψξηζ(t, v2), v1 − v2〉V ∗×V

= 〈∂J(t, ζ(t),Mv1) − ∂J(t, ζ(t),Mv2),Mv1 − Mv2〉X∗×X

+〈∂ϕ(t, η(t), Nv1) − ∂ϕ(t, η(t), Nv2), Nv1 − Nv2〉U∗×U

≥ −mJ ‖M(v1 − v2)‖2
X ≥ −mJ‖M‖2‖v1 − v2‖2

V

for all v1, v2 ∈ V , a.e. t ∈ (0, T ). We deduce that condition H(ψ)(iv) is satisfied with mψ = mJ‖M‖2.
This completes the proof of H(ψ).

Since mψ = mJ‖M‖2, hypothesis (H3) implies condition (H1). Therefore, by applying Theorem 3,
we obtain that there exists a unique element wξηζ ∈ W which solves the inclusion in Problem 2 with ψ
replaced by ψξηζ . Moreover, by (3.3), it is clear that wξηζ ∈ W is also a solution to the following problem:
find w ∈ W such that ⎧⎪⎨

⎪⎩
w′(t) + A(t, w(t)) + ξ(t) + M∗∂J(t, ζ(t),Mw(t))

+N∗∂ϕ(t, η(t), Nw(t)) � f(t) a.e. t ∈ (0, T ),
w(0) = w0.

(3.4)

Step 2 We claim that a solution to the problem (3.4) is unique. Let w1, w2 ∈ W be solutions to the
problem (3.4). For simplicity, we skip the subscripts ξ, η and ζ in this part of the proof. Take w2(t) as
the test function in the inclusion in (3.4) satisfied by w1, take w1(t) as the test function in the inclusions
(3.4) for w2, and add the two resulting expressions. We have

〈w′
1(t) − w′

2(t), w1(t) − w2(t)〉V ∗×V + 〈A(t, w1(t)) − A(t, w2(t)), w1(t) − w2(t)〉V ∗×V

+〈∂J(t, ζ(t),Mw1(t)) − ∂J(t, ζ(t),Mw2(t)),Mw1(t) − Mw2(t)〉X∗×X

+〈∂ϕ(t, η(t), Nw1(t)) − ∂ϕ(t, η(t), Nw2(t)), Nw1(t) − Nw2(t)〉U∗×U = 0

for a.e. t ∈ (0, T ). Next, we integrate the above inequality on (0, t), for all t ∈ [0, T ] and then use the
integration by parts, H(A)(iv), H(J)(v), the monotonicity of the convex subdifferential and condition
w1(0) − w2(0) = 0 to deduce

1
2
‖w1(t) − w2(t)‖2

H + mA

∫ t

0

‖w1(s) − w2(s)‖2
V ds − mJ

∫ t

0

‖w1(s) − w2(s)‖2
V ds ≤ 0

for all t ∈ [0, T ]. By the smallness condition (H3), we conclude w1 = w2. The solution to problem (3.4)
is unique.

Step 3 Consider operator Λ: L2(0, T ;V ∗ × Y × Z) → L2(0, T ;V ∗ × Y × Z) by

Λ(ξ, η, ζ) = (R1wξηζ , Rwξηζ , Swξηζ) for all (ξ, η, ζ) ∈ L2(0, T ;V ∗ × Y × Z),
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where wξηζ ∈ W denotes the unique solution to the problem (3.4) corresponding to (ξ, η, ζ). By an
argument similar to the one used in [8, Theorem 9 and Lemma 3], we deduce that there exists a unique
fixed point (ξ∗, η∗, ζ∗) of Λ, i.e.,

(ξ∗, η∗, ζ∗) ∈ L2(0, T ;V ∗ × Y × Z) and Λ(ξ∗, η∗, ζ∗) = (ξ∗, η∗, ζ∗).

Let wξ∗η∗ζ∗ ∈ W be the unique solution to the problem (3.4) corresponding to (ξ∗, η∗, ζ∗). By definition
of operator Λ, we have

ξ∗ = R1(wξ∗η∗ζ∗), η∗ = R(wξ∗η∗ζ∗) and ζ∗ = S(wξ∗η∗ζ∗).

Finally, we use these equalities in (3.4), and conclude wξ∗η∗ζ∗ is the unique solution of Problem 4. This
completes the proof of the theorem. �

4. A continuous dependence result

In this section, we provide a new continuous dependence result for Problem 4. We study the continuity
in the weak topologies of the map which to the right-hand side and initial condition in Problem 4 assigns
its unique solution.

We will prove first the following a priori estimate on a solution.

Proposition 6. Under hypotheses of Theorem 5, if w ∈ W is a solution to Problem 4, then there exists a
constant C > 0 such that

‖w‖C(0,T ;H) + ‖w‖W ≤ C
(
1 + ‖w0‖V + ‖f‖V∗ + ‖R0‖L2(0,T ;Y )

+‖R10‖L2(0,T ;V ∗) + ‖S0‖L2(0,T ;Z)

)
.

Proof. Let us denote by w ∈ W a solution to Problem 4. This means that there are ξ ∈ L2(0, T ;X∗) and
η ∈ L2(0, T ;U∗) such that

w′(t) + A(t, w(t)) + (R1w)(t) + M∗ξ(t) + N∗η(t) = f(t) a.e. t ∈ (0, T ), (4.1)
ξ(t) ∈ ∂J(t, (Sw)(t),Mw(t)) a.e. t ∈ (0, T ), (4.2)
η(t) ∈ ∂ϕ(t, (Rw)(t), Nw(t)) a.e. t ∈ (0, T ), (4.3)
w(0) = w0. (4.4)

We take the duality with w(t) in (4.1) to get

〈w′(t) + A(t, w(t)) + (R1w)(t), w(t)〉V ∗×V + 〈ξ(t),Mw(t)〉X∗×X

+〈η(t), Nw(t)〉Y ∗×Y = 〈f(t), w(t)〉V ∗×V . (4.5)

In the estimates below, we use several times the Hölder inequality, Young’s inequality ab ≤ ε2

2 a2 + 1
2ε2 b2

with ε > 0, and elementary inequality (a+b)2 ≤ 2 (a2+b2) for all a, b ∈ R. Let t ∈ [0, T ]. From hypothesis
(H2), we have

‖(Rw)(t)‖2
Y ≤ 2 c2

R t

∫ t

0

‖w(s)‖2
V ds + 2 ‖(R0)(t)‖2

Y , (4.6)

‖(R1w)(t)‖2
V ∗ ≤ 2 c2

R1
t

∫ t

0

‖w(s)‖2
V ds + 2 ‖(R10)(t)‖2

V ∗ , (4.7)

‖(Sw)(t)‖2
Z ≤ 2 c2

S t

∫ t

0

‖w(s)‖2
V ds + 2 ‖(S0)(t)‖2

Z . (4.8)
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By assumption H(ϕ)(iv) and (4.6), we obtain

|〈∂ϕ(t, (Rw)(t), 0), Nw(t)〉Y ∗×Y | ≤ (
c0ϕ(t) + c1ϕ‖(Rw)(t)‖Y

)‖N‖‖w(t)‖V

≤ ε2

2
‖N‖2‖w(t)‖2

V +
1
ε2

(
c2
0ϕ(t) + c2

1ϕ‖(Rw)(t)‖2
Y

)

≤ ε2

2
‖N‖2‖w(t)‖2

V +
c2
0ϕ(t)
ε2

+
2c2

1ϕc2
RT

ε2

∫ t

0

‖w(s)‖2
V ds +

2c2
1ϕ

ε2
‖(R0)(t)‖2

Y .

The latter combined with (4.3) and the monotonicity of the convex subdifferential implies

〈η(t), Nw(t)〉Y ∗×Y = 〈∂ϕ(t, (Rw)(t), Nw(t)), Nw(t)〉Y ∗×Y

≥ 〈∂ϕ(t, (Rw)(t), 0), Nw(t)〉Y ∗×Y

≥ −ε2

2
‖N‖2‖w(t)‖2

V − c2
0ϕ(t)
ε2

− 2c2
1ϕc2

RT

ε2

∫ t

0

‖w(s)‖2
V ds − 2c2

1ϕ

ε2
‖(R0)(t)‖2

Y . (4.9)

Similarly, by hypotheses H(J)(iv) and (v), (4.2), and (4.8), we get

〈ξ(t),Mw(t)〉X∗×X = 〈∂J(t, (Sw)(t),Mw(t)),Mw(t)〉X∗×X

≥ 〈∂J(t, (Sw)(t), 0),Mw(t)〉Y ∗×Y − mJ‖M‖2‖w(t)‖2
V

≥ −mJ‖M‖2‖w(t)‖2
V − ε2

2
‖M‖2‖w(t)‖2

V − c2
0J(t)
ε2

−2c2
1Jc2

ST

ε2

∫ t

0

‖w(s)‖2
V ds − 2c2

1J

ε2
‖(S0)(t)‖2

Z . (4.10)

Next, exploiting (4.7), we have∫ t

0

〈(R1w)(s)), w(s)〉V ∗×V ds ≤ ε2

2

∫ t

0

‖w(s)‖2
V ds

+
c2
R1

t

ε2

∫ t

0

(∫ s

0

‖w(τ)‖2
V dτ

)
ds +

1
ε2

∫ t

0

‖(R10)(s)‖2
V ∗ ds. (4.11)

On the other hand, a simple calculation gives∫ t

0

〈f(s)), w(s)〉V ∗×V ds ≤ ε2

2

∫ t

0

‖w(s)‖2
V ds +

1
2ε2

∫ t

0

‖f(s)‖2
V ∗ ds, (4.12)

∫ t

0

a0(s)‖w(s)‖V ds ≤ ε2

2
‖w‖2

L2(0,t;V ) +
1

2ε2
‖a0‖2

L2(0,T ). (4.13)

Subsequently, we integrate (4.5) on (0, t) for all t ∈ [0, T ], use integration by parts formula in [4, Propo-
sition 8.4.14], H(A)(iii) and (iv), and inequalities (4.9)–(4.13), to deduce

1
2
‖w(t)‖2

H +
(
mA − mJ‖M‖2 − 3ε2

2
− ε2

2
(‖N‖2 + ‖M‖2)

) ∫ t

0

‖w(s)‖2
V ds

≤ 1
2
‖w0‖2

H +
1

2ε2
‖a0‖2

L2(0,T ) +
1
ε2

(‖c0ϕ‖2
L2(0,T ) + ‖c0J‖2

L2(0,T ))

+
1
ε2

(2c2
1ϕc2

RT + 2c2
1Jc2

ST + c2
R1

T )
∫ t

0

(∫ s

0

‖w(τ)‖2
V dτ

)
ds +

1
2ε2

∫ t

0

‖f(s)‖2
V ∗ ds

+
2c2

1ϕ

ε2

∫ t

0

‖(R0)(s)‖2
Y ds +

1
ε2

∫ t

0

‖(R10)(s)‖2
V ∗ ds +

2c2
1J

ε2

∫ t

0

‖(S0)(s)‖2
Z ds.

Now, by (H3), we choose ε > 0 such that

mA − mJ‖M‖2 − 3ε2

2
− ε2

2
(‖N‖2 + ‖M‖2

)
> 0.
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Hence, for some positive constants di, i = 1, . . . , 5, we have

d1

∫ t

0

‖w(s)‖2
V ds ≤ 1

2
‖w0‖2

H + d2‖f‖2
L2(0,t;V ∗) + d3

∫ t

0

( ∫ s

0

‖w(τ)‖2
V dτ

)
ds

+ d4

∫ t

0

(
‖(R0)(s)‖2

Y + ‖(R10)(s)‖2
V ∗ + ‖(S0)(s)‖2

Z

)
ds + d5

for all t ∈ [0, T ]. Applying the Gronwall lemma, see, e.g., [19, Lemma 2.7], we deduce the desired estimate
on the term ‖w‖V . By (4.1), we obtain the bound on ‖w′‖V∗ , and finally also on the norm of the
solution w in C(0, T ;H). This proves the estimate in the statement of the proposition and completes the
proof. �

To provide a result on the continuous dependence, we need stronger versions of hypotheses introduced
in the previous section. In particular, operator A will be assumed to be time independent and the weakly–
weakly continuous which obviously implies the demicontinuity in H(A)(ii). All hypotheses introduced
below are clearly satisfied in applications in Sects. 5 and 6.
H(A)1: A : V → V ∗ is such that

(i) A is weakly–weakly continuous.
(ii) ‖Av‖V ∗ ≤ a0 + a1‖v‖V for all v ∈ V with a0, a1 ≥ 0.
(iii) A is strongly monotone with constant mA > 0, i.e.,

〈Av1 − Av2, v1 − v2〉V ∗×V ≥ mA‖v1 − v2‖2
V

for all v1, v2 ∈ V .
H(J)1: J : (0, T ) × Z × X → R is such that H(J)(i)–(v) hold and

(vi) J0(t, ·, ·;w) : Z × X → R is upper semicontinuous on Z × X for all w ∈ X.
H(M,N)1: M and N satisfy H(M,N), and their Nemytskii operators

M : W ⊂ V → L2(0, T ;X) and N : W ⊂ V → L2(0, T ;U)

are compact.
(H4): R, R1 and S satisfy (H2), and

(i) R : W ⊂ V → L2(0, T ;Y ) and S : W ⊂ V → L2(0, T ;Z) are compact.
(ii) R1 : V → V∗ is weakly–weakly continuous.
(iii) (R0, R10, S0) remains in a bounded subset of L2(0, T ;Y × V ∗ × Z).

Theorem 7. Under hypotheses H(A)1, H(J)1, H(ϕ), H(M,N)1, (H0), (H3), and (H4), if {fn} ⊂ V∗,
fn → f weakly in V∗, {wn

0 } ⊂ V , wn
0 → w0 weakly in V , and {wn} ⊂ W, w ∈ W are the unique solutions

to Problem 4 corresponding to {(fn, wn
0 )} and (f, w0), respectively, then wn → w weakly in W, as n → ∞.

Proof. The existence and uniqueness of solution is a consequence of Theorem 5. We prove the continuous
dependence result. Let {fn} ⊂ V∗, fn → f weakly in V∗, {wn

0 } ⊂ V , wn
0 → w0 weakly in V , and

{wn} ⊂ W be the unique solution to Problem 4 corresponding to {(fn, wn
0 )}, n ∈ N. Then,

w′
n(t) + Awn(t) + (R1wn)(t) + M∗ξn(t) + N∗ηn(t) = fn(t) a.e. t ∈ (0, T ), (4.14)

ξn(t) ∈ ∂J(t, (Swn)(t),Mwn(t)) a.e. t ∈ (0, T ), (4.15)
ηn(t) ∈ ∂ϕ(t, (Rwn)(t), Nwn(t)) a.e. t ∈ (0, T ), (4.16)
wn(0) = wn

0 . (4.17)

By Proposition 6 combined with (H4)(iii) and weak convergences of {fn} and {wn
0 }, the sequence {wn}

is uniformly bounded in W. By the reflexivity of W, we can find a subsequence, denoted in the same way,
such that wn → w weakly in W with w ∈ W, as n → ∞. We will prove that w is the unique solution in
W to Problem 4 corresponding to (f, w0).
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Using an argument similar to [34, Lemma 13], from hypothesis H(A)1, we known that

Awn → Aw weakly in V∗, as n → ∞. (4.18)

By assumption (H4)(ii), it follows

R1wn → R1w weakly in V∗, as n → ∞. (4.19)

Further, we use H(M,N)1 to get Mwn → Mw in L2(0, T ;X) and Nwn → Nw in L2(0, T ;U), which,
for a next subsequence, entails

Mwn(t) → Mw(t) in X, and Nwn(t) → Nw(t) in U, for a.e. t ∈ (0, T ). (4.20)

On the other hand, by (H4)(i), we have Rwn → Rw in L2(0, T ;Y ) and Swn → Sw in L2(0, T ;Z). Hence,
again for a subsequence, it holds

(Rwn)(t) → (Rw)(t) in Y, and (Swn)(t) → (Sw)(t) in Z, for a.e. t ∈ (0, T ). (4.21)

Next, we prove the following claims. �

Claim 1. If J : (0, T ) × Z × X → R satisfies H(J)(iii), (iv) and H(J)1(vi), then the multivalued map

Z × X � (z, x) �→ ∂J(t, z, x) ⊂ X∗

is upper semicontinuous from Z × X into X∗ endowed with the weak topology with nonempty, closed
and convex values, for a.e. t ∈ (0, T ). Indeed, let us fix t ∈ (0, T ) \ N1, m(N1) = 0. Having in mind [3,
Proposition 4.1.4], it is sufficient to show that for any weakly closed subset D of X∗, the weak inverse
image (∂J)−(D) of D under ∂J(t, ·, ·) is closed in the norm topology, where (∂J)−(D) is defined by

(∂J)−(D) =
{

(z, x) ∈ Z × X | ∂J(t, z, x) ∩ D 
= ∅}
.

Let {(zn, xn)} ⊂ (∂J)−(D) be such that (zn, xn) → (z, x) in Z ×X, as n → ∞. Then, there is {ζn} ⊂ X∗

such that ζn ∈ ∂J(t, zn, xn) ∩ D for each n ∈ N. Hypothesis H(J)(iv) implies that the sequence {ζn} is
bounded in X∗. Hence, from the reflexivity of X∗, without any loss of generality, we may assume that
ζn → ζ weakly in X∗. Since D is weakly closed, we have ζ ∈ D, and by condition ζn ∈ ∂J(t, zn, xn), we
get

〈ζn, w〉X∗×X ≤ J0(t, zn, xn;w) for all w ∈ X.

Taking into account hypothesis H(J)1(vi) and passing to the limit, we have

〈ζ, w〉X∗×X = lim sup
n→∞

〈ζn, w〉X∗×X ≤ lim sup
n→∞

J0(t, zn, xn;w) ≤ J0(t, z, x;w)

for all w ∈ X. Thus, ζ ∈ ∂J(t, z, x), and finally, we get ζ ∈ ∂J(t, z, x)∩D, i.e., (z, x) ∈ (∂J)−(D). Hence,
(∂J)−(D) is closed in Z × X. The fact that the map ∂J has nonempty, closed and convex values follows
from, e.g., [19, Theorem 3.23(iv)]. This completes the proof of the claim.

Claim 2. If ϕ : (0, T ) × Y × U → R satisfies H(ϕ)(ii)–(iv), then the multivalued map

Y × U � (y, u) �→ ∂ϕ(t, y, u) ⊂ U∗

is upper semicontinuous from Y ×U into U∗ endowed with the weak topology with nonempty, closed and
convex values for a.e. t ∈ (0, T ). This fact be proved similarly as Claim 1. The map ∂ϕ has nonempty,
closed and convex values since ϕ has finite values and we use [4, Proposition 6.3.10]. Let t ∈ (0, T ) \ N1

with m(N1) = 0, E ⊂ U∗ be weakly closed, and let

(∂ϕ)−(E) =
{

(y, u) ∈ Y × U | ∂ϕ(t, y, u) ∩ E 
= ∅}
.

Let {(yn, un)} ⊂ (∂ϕ)−(E) and (yn, un) → (y, u) in Y × U , as n → ∞. We can find {ρn} ⊂ U∗ such that
ρn ∈ ∂ϕ(t, yn, un)∩E for each n ∈ N. It is clear from H(ϕ)(iv) that the sequence {ρn} is bounded in U∗,
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which by the reflexivity of U∗ entails, at least for a subsequence, ρn → ρ weakly in U∗. Obviously, ρ ∈ E
and

〈ρn, w〉U∗×U ≤ ϕ(t, yn, w) − ϕ(t, yn, un) for all w ∈ U.

Next, it follows from [3, Proposition 5.2.10] that ϕ(t, y, ·) is locally Lipschitz. Hence, using H(ϕ)(ii)–(iv),
by [19, Lemma 3.43], we infer that ϕ(t, ·, ·) is continuous on Y ×U . This allows to pass to the limit below

〈ρ,w − u〉U∗×U = lim sup
n→∞

〈ρn, w − un〉U∗×U

≤ lim
n→∞ (ϕ(t, yn, w) − ϕ(y, yn, un)) = ϕ(t, y, w) − ϕ(t, y, u)

for all w ∈ U . This means that ρ ∈ ∂ϕ(t, y, u)∩E and finally (y, u) ∈ (∂ϕ)−(E). Hence, the set (∂ϕ)−(E)
is closed in Y × U , which by [3, Proposition 4.1.4] implies the desired upper semicontinuity of ∂ϕ(t, ·, ·).

We now pass to the limits in (4.15) and (4.16). In both cases, we apply a convergence theorem of
Aubin-Cellina [1], in a version provided in [16, Proposition 2] or in [27, Lemma 2.6]. Exploiting hypotheses
H(J)(iv) and H(ϕ)(iv), it follows that sequences {ξn} and {ηn} are uniformly bounded in L2(0, T ;X∗)
and L2(0, T ;U∗), respectively. Hence, again by passing to a subsequence if necessary, we may assume
that

ξn → ξ weakly in L2(0, T ;X∗) and ηn → η weakly in L2(0, T ;U∗) (4.22)

with (ξ, η) ∈ L2(0, T ;X∗ × U∗).
From convergences (4.20), (4.21), (4.22) and properties of ∂J of Claim 1, we apply the aforementioned

convergence theorem to deduce

ξ(t) ∈ ∂J(t, (Sw)(t),Mw(t)) a.e. t ∈ (0, T ). (4.23)

In a similar way, by (4.20), (4.21), (4.22) and Claim 2, we are able to apply the same convergence theorem
to get

η(t) ∈ ∂ϕ(t, (Rw)(t), Nw(t)) a.e. t ∈ (0, T ). (4.24)

On the other hand, it is immediate to see that

M∗ξn → M∗ξ and N ∗ηn → N ∗η weakly in V∗. (4.25)

Since the map

W � w �→ w(0) ∈ H

is linear and continuous, from convergence wn → w weakly in W, we have wn(0) → w(0) weakly in H.
Passing to the weak limit in H in (4.17), we obtain w(0) = w0. Applying convergences w′

n → w′, (4.18),
(4.19), (4.25), and fn → f weakly in V∗, we take the limit in w′

n + Awn + R1wn + M∗ξn + N ∗ηn = fn

in V∗. Hence,

w′ + Aw + R1w + M∗ξ + N ∗η = f in V∗.

The latter combined with (4.23), (4.24) and w(0) = w0 imply that that w ∈ W is a solution to Problem 4
corresponding to (f, w0). Since the solution is unique, we conclude that the whole sequence {wn} converges
weakly in W to w. This completes the proof of the theorem. �

5. Application to a frictional contact problem

In this section, we provide new continuous dependence results to a dynamic viscoelastic contact problem
with friction which in its weak form leads to a history-dependent evolution inclusion analyzed in Sect. 4.
Note that existence and uniqueness result for this problem has been obtained in [8] under a more restrictive
smallness condition while the continuous dependence in weak topologies for this problem has not been
studied before.
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We shortly recall the necessary notation and refer to [8,19,30] for a detailed explanation and a dis-
cussion on mechanical interpretation. Let Ω ⊂ R

d, d = 2, 3, be a regular domain occupied in its reference
configuration by a viscoelastic body. Its boundary Γ consists of three disjoint measurable parts ΓD, ΓN

and ΓC , such that m(ΓD) > 0. The body is clamped on ΓD (the displacement field vanishes there), the
surface tractions act on ΓN , and ΓC is a contact surface. All indices i, j, k, l run between 1 and d and,
unless stated otherwise, the summation convention over repeated indices is applied. We use u = (ui),
σ = (σij) and ε(u) = (εij(u)) to denote the displacement vector, the stress tensor and linearized strain
tensor, respectively. The latter is defined by

εij(u) =
1
2

(ui,j + uj,i)

where ui,j = ∂ui/∂xj . For a vector field, we use the notation vν and vτ for the normal and tangential
components of v on ∂Ω given by vν = v · ν and vτ = v − vνν, where ν stands for the outward unit
normal on the boundary. The normal and tangential components of the stress field σ on the boundary
are defined by σν = (σν) · ν and στ = σν − σνν, respectively. The symbol Sd stands for the space of
symmetric matrices of order d, and the canonical inner products on R

d and S
d are given by u · v = uivi

for all u = (ui), v = (vi) ∈ R
d, and σ · τ = σijτij for all σ = (σij), τ = (τij) ∈ S

d, respectively.
We are interested in the evolution process of the mechanical state of the body, in the finite time

interval. The classical formulation of the contact problem is stated as follows.

Problem 8. Find a displacement field u : Ω × (0, T ) → R
d and a stress field σ : Ω × (0, T ) → S

d such that
for all t ∈ (0, T ),

σ(t) = A ε(u′(t)) + Bε(u(t)) +
∫ t

0

C (t − s)ε(u′(s)) ds in Ω, (5.1)

ρu′′(t) = Div σ(t) + f0(t) in Ω, (5.2)

u(t) = 0 on ΓD, (5.3)

σ(t)ν = f2(t) on ΓN , (5.4)

−σν(t) ∈ k(uν(t))∂jν(u′
ν(t)) on ΓC , (5.5)

‖στ (t)‖ ≤ Fb

( ∫ t

0

‖uτ (s)‖ds
)
,

−στ = Fb

( ∫ t

0

‖uτ (s)‖ds
) u′

τ (t)
‖u′

τ (t)‖ if u′
τ (t) 
= 0 on ΓC , (5.6)

and

u(0) = u0, u′(0) = w0 in Ω. (5.7)

Now, we recall the weak formulation of Problem 8. To this end, we need the classical Hilbert spaces

V =
{
v ∈ H1(Ω;Rd) | v = 0 on ΓD

}
, H = L2(Ω;Rd), H = L2(Ω;Sd)

with their standard inner products and norms. The symbol ‖γ‖ represents the norm of the trace operator
γ : V → L2(Γ;Rd). For v ∈ H1(Ω;Rd), we use the same symbol v for the trace of v on Γ and we use the
notation vν and vτ for its normal and tangential traces.

For the weak formulation of the problem and further discussion, we need the following hypotheses.
H(A ): A : Ω × S

d → S
d is such that

(i) A (x, ε) = a(x)ε for all ε ∈ S
d, a.e. x ∈ Ω.

(ii) a(x) = {aijkl(x)} with aijkl = ajikl = alkij ∈ L∞(Ω), i, j, k, l = 1, . . . , d.
(iii) aijkl(x)εijεkl ≥ α‖ε‖2 for all ε = (εij) ∈ S

d, a.e. x ∈ Ω with α > 0.



114 Page 14 of 22 S. Migórski and Y. Bai ZAMP

H(B): B : Ω × S
d → S

d is such that

(i) B(x, ε) = b(x)ε for all ε ∈ S
d, a.e. x ∈ Ω.

(ii) b(x) = {bijkl(x)} with bijkl = bjikl = blkij ∈ L∞(Ω), i, j, k, l = 1, . . . , d.
(iii) bijkl(x)εijεkl ≥ 0 for all ε = (εij) ∈ S

d, a.e. x ∈ Ω.

H(C ): C : Q × S
d → S

d is such that

(i) C (x, t, ε) = c(x, t)ε for all ε ∈ S
d, a.e. (x, t) ∈ Q.

(ii) c(x, t) = {cijkl(x, t)} with cijkl = cjikl = clkij ∈ L∞(Q), i, j, k, l = 1, . . . , d.

For the potential function jν , we assume
H(jν): jν : ΓC × R → R is such that

(i) jν(·, r) is measurable on ΓC for all r ∈ R and there is ē ∈ L2(ΓC) such that jν(·, ē(·)) ∈ L1(ΓC).
(ii) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC .
(iii) |∂jν(x, r)| ≤ c̄0 for all r ∈ R, a.e. x ∈ ΓC with c̄0 ≥ 0.
(iv) (∂jν(x, r1) − ∂jν(x, r2))(r1 − r2) ≥ −β̄ |r1 − r2|2 for all r1, r2 ∈ R, a.e. x ∈ ΓC with β̄ ≥ 0.
(v) jν(x, ·) or −jν(x, ·) is regular for a.e. x ∈ ΓC .

For the damper coefficient k and the friction bound Fb, we assume
H(k): k : ΓC × R → R+ is such that

(i) k(·, r) is measurable on ΓC for all r ∈ R.
(ii) there are k1, k2 such that 0 < k1 ≤ k(x, r) ≤ k2 for all r ∈ R, a.e. x ∈ ΓC .
(iii) there is Lk > 0 such that |k(x, r1) − k(x, r2)| ≤ Lk|r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ ΓC .

H(Fb): Fb : ΓC × R → R+ is such that

(i) Fb(·, r) is measurable on ΓC for all r ∈ R.
(ii) there is LFb

> 0 such that |Fb(x, r1) − Fb(x, r2)| ≤ LFb
|r1 − r2| for all r1, r2 ∈ R, a.e. x ∈ ΓC .

(iii) Fb(·, 0) ∈ L2(ΓC).

H(f0) : the densities of body forces, surface tractions and the initial data satisfy

f0 ∈ L2(0, T ;L2(Ω;Rd)), f2 ∈ L2(0, T ;L2(ΓN ;Rd)), u0, w0 ∈ V. (5.8)

Finally, we define f : (0, T ) → V ∗ by

〈f(t),v〉V ∗×V = 〈f0(t),v〉H + 〈f2(t), γv〉L2(ΓN ;Rd) (5.9)

for all v ∈ V and a.e. t ∈ (0, T ). Under the above notation, we obtain the following weak formulation of
Problem 8 in terms of the displacement.

Problem 9. Find u : (0, T ) → V such that for all v ∈ V , a.e. t ∈ (0, T ),∫
Ω

u′′(t) · (v − u′(t)) dx + (A ε(u′(t)), ε(v − u′(t)))H

+(Bε(u(t)), ε(v − u′(t)))H +
( ∫ t

0

C (t − s)ε(u′(s)) ds, ε(v − u′(t))
)

H

+
∫

ΓC

Fb

(∫ t

0

‖uτ (s)‖ds
) (‖vτ‖ − ‖u′

τ (t)‖) dΓ

+
∫

ΓC

k(uν(t)) j0
ν(u′

ν(t); vν − u′
ν(t)) dΓ ≥ 〈f(t),v − u′(t)〉V ∗×V ,

and

u(0) = u0, u′(0) = w0.
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Let w = u′. Then

u(t) =
∫ t

0

w(s) ds + u0, (5.10)

and subsequently, uν(t) =
∫ t

0
wν(s) ds + u0ν and uτ (t) =

∫ t

0
wτ (s) ds + u0τ for t ∈ (0, T ). Using these

relations, Problem 9 in terms of velocity can be equivalently formulated as follows.

Problem 10. Find
w : (0, T ) → V such that for all v ∈ V , a.e. t ∈ (0, T ),∫

Ω

w′(t) · (v − w(t)) dx + (A ε(w(t)), ε(v − w(t)))H

+
(
Bε

( ∫ t

0

w(s) ds + u0

)
, ε(v − w(t))

)
H

+
( ∫ t

0

C (t − s)ε(w(s)) ds, ε(v − w(t))
)

H

+
∫

ΓC

Fb

( ∫ t

0

∥∥∥∥
∫ s

0

wτ (r) dr + u0τ

∥∥∥∥ ds
) (‖vτ‖ − ‖wτ (t)‖) dΓ

+
∫

ΓC

k
( ∫ t

0

wν(s) ds + u0ν

)
j0
ν(wν(t); vν − wν(t)) dΓ ≥ 〈f(t),v − w(t)〉V ∗×V ,

and

w(0) = w0.

Next, let X = Y = Z = L2(ΓC), U = L2(ΓC ;Rd), and introduce operators A : V → V ∗, R : V →
L2(0, T ;Y ), R1 : V → V∗, S : V → L2(0, T ;Z), M : V → X, and N : V → U as follows:

〈Aw,v〉V ∗×V = (A ε(w), ε(v))H for all w,v ∈ V, (5.11)

(Rw)(t) =
∫ t

0

∥∥∥
∫ s

0

wτ (r) dr + u0τ

∥∥∥ ds for all w ∈ V, t ∈ (0, T ), (5.12)

〈(R1w)(t),v〉V ∗×V =
(
B

(∫ t

0

ε(w(s)) ds + u0

)
, ε(v)

)
H

(5.13)

+
(∫ t

0

C (t − s)ε(w(s)) ds, ε(v)
)

H
for all w ∈ V, v ∈ V, t ∈ (0, T ),

(Sw)(t) =
∫ t

0

wν(s) ds + u0ν for all w ∈ V, t ∈ (0, T ), (5.14)

Mv = vν , Nv = vτ for all v ∈ V. (5.15)

Further, consider the boundary potentials J : (0, T )×Z ×X → R and ϕ : (0, T )×Y ×U → R defined by

J(t, z, v) =
∫

ΓC

k(z) jν(v) dΓ for all z ∈ Z, v ∈ X, t ∈ (0, T ), (5.16)

ϕ(t, y,v) =
∫

ΓC

Fb(y) ‖v‖dΓ for all y ∈ Y, v ∈ U, t ∈ (0, T ). (5.17)

With the notation above, we formulate the following history-dependent evolution inclusion associated
with Problem 10.

Problem 11. Find w ∈ W such that⎧⎪⎨
⎪⎩

w′(t) + Aw(t) + (R1w)(t) + M∗∂J(t, (Sw)(t),Mw(t))
+N∗∂ϕ(t, (Rw)(t), Nw(t)) � f(t) a.e. t ∈ (0, T ),

w(0) = w0.
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The following result concerns the well-posedness of Problem 11.

Theorem 12. Assume hypotheses H(A ), H(B), H(C ), H(jν), H(k), H(Fb), and H(f0). If

α > β̄ k2‖γ‖2, (5.18)

then Problem 11 has a unique solution w ∈ W. Moreover, the map V∗ × V � (f ,w0) �→ w ∈ W is
continuous in weak topologies.

Proof. We will apply Theorem 7 with a suitable choice of spaces, operators and functionals introduced
above. First, it is clear that under H(A ) the operator A defined by (5.11) satisfies A ∈ L(V, V ∗), and
H(A)1 with a0 = 0, a1 = ‖A‖L(V,V ∗) and mA = α.

Now, we verify properties in H(J)1 for the functional J given by (5.16). Conditions H(J)(i)–(iii)
follow from H(jν)(i)–(iii), H(k)(i), (ii) and [19, Theorem 3.47(i)–(iii)]. From [19, Proposition 3.37(ii),
Theorem 3.47(v), (vi)], we have

∂J(t, z, v) ⊂
∫

ΓC

k(z)∂jν(v) dΓ for all z ∈ Z, v ∈ X, a.e. t ∈ (0, T ).

Hence, we obtain that H(J)(iv) holds with c0J (t) = k2c̄0

√|ΓC |, and c1J = c2J = 0. Moreover, by a
similar argument as in [8, Theorem 13], we get

J0(t, z1, v1; v2 − v1) + J0(t, z2, v2; v1 − v2)
≤ mJ‖v1 − v2‖2

X + m̄J‖z1 − z2‖Z‖v1 − v2‖X

for all z1, z2 ∈ Z, v1, v2 ∈ X, a.e. t ∈ (0, T ), where mJ = β̄k2 and m̄J = c̄0Lk. Hence, H(J)(v) follows.
Next, we verify H(J)1(vi). Let {zn} ⊂ Z, {vn} ⊂ X, zn → z in Z and vn → v in X. By passing to a

subsequence, we may suppose that zn(x) → z(x) and vn(x) → v(x) for a.e. x ∈ ΓC . Then, we use proper-
ties of the generalized directional derivative and generalized gradient stated in [19, Proposition 3.23(ii),
(iii), Theorem 3.47(iv)]. By H(jν) and H(k), for all w ∈ X and a.e. t ∈ (0, T ), we obtain

J0(t, zn, vn;w) ≤
∫

ΓC

k(zn(x))j0
ν(vn(x);w(x)) dΓ

≤ Lk c̄0

∫
ΓC

|zn(x) − z(x)||w(x)|dΓ +
∫

ΓC

k(z(x))j0
ν(vn(x);w(x)) dΓ

which entails

lim sup J0(t, zn, vn;w) ≤ lim sup
∫

ΓC

k(z(x))j0
ν(vn(x);w(x)) dΓ

≤
∫

ΓC

k(z(x))j0
ν(v(x);w(x)) dΓ = J0(t, z, v;w).

The last inequality follows from hypothesis H(jν)(v) and [19, Theorem 3.47(vii)]. Hence, we deduce that
J0(t, ·, ·;w) : Z × X → R is upper semicontinuous for all w ∈ X, a.e. t ∈ (0, T ). Condition H(J)1(vi) is
verified.

Subsequently, by a modification of the reasoning used in [8, Theorem 13], we easily verify that ϕ

satisfies conditions H(ϕ)(ii)–(iv) with c0ϕ(t) =
√

2‖Fb(0)‖Y , c1ϕ =
√

2LFb
and c2ϕ = 0. Further, a direct

calculation implies that H(ϕ)(v) holds with βϕ = LFb
. We conclude that condition H(ϕ) is satisfied.

By definition (5.15), it is clear that operators M and N satisfy H(M,N) and they are compact. From
[21, Theorem 2.18], we infer that the Nemytskii operators corresponding to M , and N are compact too.
Therefore, condition H(M,N)1 holds.

Next, by hypothesis H(f0) and definition (5.8), we know that the regularity condition (H0) holds.
Hypothesis (H3) is a consequence of the smallness condition (5.18).

We now verify condition (H4). It follows from [33] that operators R, R1 and S given by (5.12)-
(5.14), under hypotheses H(B) and H(C ), are history-dependent with constants cR = T‖γ‖, cR1 =
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‖B‖+‖C ‖L∞(Q;Sd) and cS = ‖γ‖. Hence, (H2) follows. Next, to prove compactness of operators R and S.
We present the proof for R, while a proof for S is omitted being analogous. Let vn → v weakly in W. From
[21, Theorem 2.18], we know that γvn → γv in L2(0, T ;L2(ΓC ;Rd)), where γ : V → L2(0, T ;L2(ΓC ;Rd))
is the Nemytskii operator corresponding to the trace γ (for simplicity denoted in the same way). By
Hölder’s inequality and a direct calculation, we have

‖(Rvn)(t) − (Rv)(t)‖Y ≤ T

∫ t

0

‖vn(s) − v(s)‖L2(ΓC ;Rd) ds

≤ T
√

T‖vn − v‖L2(0,T ;L2(ΓC ;Rd))

for a.e. t ∈ (0, T ). Hence, it follows (Rvn)(t) → (Rv)(t) in Y , for a.e. t ∈ (0, T ). By the Lebesgue domi-
nated convergence theorem, we get Rvn → Rv in L2(0, T ;Y ). Thus, operator R : W ⊂ V → L2(0, T ;Y )
is compact. It is also clear that (R0, S0) belongs to a bounded subset of L2(0, T ;Y × Z).

To prove the continuity of R1 in weak topologies, we denote

〈(R11w)(t),v〉V ∗×V =
(
B

(∫ t

0

ε(w(s)) ds + u0

)
, ε(v)

)
H

,

〈(R12w)(t),v〉V ∗×V =
(∫ t

0

C (t − s)ε(w(s)) ds, ε(v)
)

H

for all w ∈ V, v ∈ V , t ∈ (0, T ). Let {vn} ⊂ V be such that vn → v weakly in V. Then, for all ψ ∈ V ∗,
all t ∈ [0, T ], we have

〈∫ t

0

vn(s) ds, ψ

〉
V ∗×V

=
∫ t

0

〈vn(s), ψ〉V ∗×V ds = 〈vn, ψ〉V∗×V

→ 〈v, ψ〉V∗×V =
∫ t

0

〈v(s), ψ〉V ∗×V ds =
〈∫ t

0

v(s) ds, ψ

〉
V ∗×V

,

that is,
∫ t

0

vn(s) ds + u0 →
∫ t

0

v(s) ds + u0 weakly in V, for all t ∈ [0, T ]. (5.19)

Since B is linear and continuous, we deduce R11vn → R11v weakly in V∗. Also since R12 is linear and
continuous, it is also weakly–weakly continuous, and therefore, R12vn → R12v weakly in V∗. We conclude
that R1 is weakly–weakly continuous, history-dependent, and clearly, R10 is bounded in L2(0, T ;V ∗). In
this way, condition (H4) is verified. The conclusion of the theorem follows now from Theorem 7, which
completes the proof. �

Observe that Problems 10 and 11 are equivalent. This follows form the facts that every solution to
Problem 11 is a solution to Problem 10, and that both problems have unique solutions. Thus, w ∈ W
solves inequality in Problem 10 if and only if it is solves inclusion in Problem 11. We apply Theorem 12
to deduce the following well-posedness result for variational–hemivariational inequality in Problem 9. It
shows the continuous dependence of the solution to the contact problem with respect to the densities of
applied forces and the initial data.

Corollary 13. Assume hypotheses H(A ), H(B), H(C ), H(jν), H(k), H(Fb), H(f0), and (5.18). Then,
Problem 9 has a unique solution with regularity u ∈ V and u′ ∈ W. Moreover, if {(fn

0 ,fn
N ,un

0 ,wn
0 )} ⊂

L2(0, T ;L2(Ω;Rd) × L2(ΓN ;Rd)) × V × V , and

(fn
0 ,fn

N ) → (f0,fN ) weakly in L2(0, T ;L2(Ω;Rd) × L2(ΓN ;Rd)), (5.20)
(un

0 ,wn
0 ) → (u0,w0) weakly in V × V, (5.21)
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then

un(t) → u(t) weakly in V, for all t ∈ [0, T ],
u′

n → u′ weakly in W, (5.22)

where {un} and u are unique solutions to Problem 9 corresponding to (fn
0 ,fn

N ,un
0 ,wn

0 ) and (f0,fN ,u0,
w0), respectively.

Proof. Assume (5.20) and (5.21). Let fn, f ∈ V∗ be elements defined by (5.9) corresponding to (fn
0 ,fn

N )
and (f0,fN ), respectively. Since the map (f0,fn) �→ f is linear and continuous, we have fn → f weakly
in V∗. Combining this with hypothesis wn

0 → w0 weakly in V , by Theorem 12, we infer wn → w weakly
in W, where un(t) =

∫ t

0
wn(s) ds + un

0 and u(t) =
∫ t

0
w(s) ds + u0 for all t ∈ [0, T ], see (5.10).

Clearly, we have u′
n → u′ weakly in W, and analogously as in the proof of (5.19), we obtain∫ t

0
wn(s) ds → ∫ t

0
w(s) ds weakly in V , for all t ∈ [0, T ]. The latter together with hypothesis (5.21)

implies (5.22). This completes the proof. �

6. Application to a semipermeability problem

In this section, we illustrate the applicability of results in Sect. 4 in analysis of a semipermeability problem.
Our aim is to provide the weak formulation of the problem which will be a variational–hemivariational
inequality without history-dependent operators and to establish its well-posedness.

The semipermeability boundary conditions describe behavior of various types of membranes, natural
and artificial ones and arise in models of heat conduction, electrostatics, hydraulics and in the description
of flow of Bingham’s fluids, where the solution represents temperature, electric potential and pressure.
These boundary conditions were first examined by Duvaut and Lions [5] in the convex setting, where
semipermeability relations were assumed to be monotone and they led to variational inequalities. More
generally, nonmonotone semipermeability conditions can be modeled by the Clarke generalized gradient,
see, e.g., [6,15,25,26] and the references therein.

Let Ω be a bounded domain in R
d with Lipschitz continuous boundary Γ. The latter is decomposed

into three mutually disjoint and relatively open subsets Γa, Γb and Γc of Γ such that Γ = Γ̄a ∪ Γ̄b ∪ Γ̄c

and m(Γc) > 0. We denote Q = Ω × (0, T ), Σa = Γa × (0, T ), Σb = Γb × (0, T ) and Σc = Γc × (0, T ) with
0 < T < ∞. Consider the following initial-boundary value problem.

Problem 14. Find u = u(x, t) such that
∂u

∂t
+ Au + ∂j1(u) + ∂g1(u) � f1 in Q

∂u

∂νA
+ ∂j2(u) � fa on Σa

∂u

∂νA
+ ∂g2(u) � fb on Σb

u = 0 on Σc

u(0) = u0 in Ω.

where A represents a linear operator A : V → V ∗, ∂u
∂νA

denotes the conormal derivative with respect to
operator A, and ν stands for the unit outward normal on the boundary. Problem 14 has been studied in
[6] under more restrictive hypotheses and a different weak formulation.

To provide the weak formulation of Problem (14), we introduce assumptions on the data of the
problem. Let V = {v ∈ H1(Ω) | v = 0 on Γc}, H = L2(Ω), V = L2(0, T ;V ), W = {u ∈ V | u′ ∈ V∗ }. We
denote by i : V → H the embedding operator and by γ : V → L2(Γ) the trace operator. For v ∈ H1(Ω),
we always write v instead of iv and γv.

We need the following hypotheses on the data.



ZAMP Well-posedness of history-dependent evolution Page 19 of 22 114

H(A)2: A : V → V ∗ is such that A = −∑d
i,j=1 Di

(
aij(x)Dj

)
, and

(i) aij ∈ L∞(Ω) for i, j = 1, . . . , d.
(ii)

∑d
i,j=1 aij(x)ξiξj ≥ α‖ξ‖2 for all ξ ∈ R

d, a.e. x ∈ Ω with α > 0.

H(j1): j1 : Q × R → R is such that

(i) j1(·, ·, r) is measurable on Q for all r ∈ R and there exists e1 ∈ L2(Ω) such that j1(·, ·, e1(·)) ∈ L1(Q).
(ii) j1(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ Q.
(iii) |∂j1(x, t, r)| ≤ c0j(t) + c1j |r| for all r ∈ R, a.e. (x, t) ∈ Q with c0j ∈ L2

+(0, T ), c1j ≥ 0.
(iv) (∂j1(x, t, r1) − ∂j1(x, t, r2))(r1 − r2) ≥ −β1j |r1 − r2|2 all r1, r2 ∈ R, a.e. (x, t) ∈ Q with β1j ≥ 0.

H(j2): j2 : Σa × R → R is such that

(i) j2(·, ·, r) is measurable on Σa for all r ∈ R and there exists e2 ∈ L2(Γa) such that j2(·, ·, e2(·)) ∈
L1(Σa).

(ii) j2(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ Σa.
(iii) |∂j2(x, t, r)| ≤ c2j(t) + c3j |r| for all r ∈ R, a.e. (x, t) ∈ Σa with c2j ∈ L2

+(0, T ), c3j ≥ 0.
(iv) (∂j2(x, t, r1) − ∂j2(x, t, r2))(r1 − r2) ≥ −β2j |r1 − r2|2 all r1, r2 ∈ R, a.e. (x, t) ∈ Σa with β2j ≥ 0.

H(g1): g1 : Q × R → R is such that

(i) g1(·, ·, r) is measurable on Q for all r ∈ R.
(ii) g1(x, t, ·) is convex and l.s.c. for a.e. (x, t) ∈ Q.
(iii) |∂g1(x, t, r)| ≤ c0g(t) + c1g|r| for all r ∈ R, a.e. (x, t) ∈ Q with c0g ∈ L2

+(0, T ), c1g ≥ 0.

H(g2): g2 : Σb × R → R is such that

(i) g2(·, ·, r) is measurable on Σb for all r ∈ R.
(ii) g2(x, t, ·) is convex and l.s.c. for a.e. (x, t) ∈ Σb.
(iii) |∂g2(x, t, r)| ≤ c2g(t) + c3g|r| for all r ∈ R, a.e. (x, t) ∈ Σb with c2g ∈ L2

+(0, T ), c3g ≥ 0.

H(f): f1 ∈ L2(Q), fa ∈ L2(Σa), fb ∈ L2(Σb), u0 ∈ V.

(H5): α > β1j‖i‖2 + β2j‖γ‖2.

By a standard procedure, we obtain the following weak formulation of Problem (14).

Problem 15. Find u ∈ W such that for all v ∈ V , a.e. t ∈ (0, T ), we have

〈u′(t) + Au(t) − f(t), v − u(t)〉V ∗×V

+
∫

Ω

j0
1(x, t, u(t); v − u(t)) dx +

∫
Γa

j0
2(x, t, u(t); v − u(t)) dΓ

+
∫

Ω

(g1(x, t, v) − g1(x, t, u(t))) dx +
∫

Γb

(g2(x, t, v) − g2(x, t, u(t))) dΓ ≥ 0,

u(0) = u0.

Here, f : (0, T ) → V ∗ is given by

〈f(t), v〉V ∗×V =
∫

Ω

f1(t)v dx +
∫

Γa

fa(t)v dΓ +
∫

Γb

fb(t)v dΓ

for v ∈ V , a.e. t ∈ (0, T ).

Theorem 16. Assume hypotheses H(A)2, H(j1), H(j2), H(g1), H(g2), H(f), and (H5). Then, Problem 15
has a unique solution u ∈ W and the map

L2(Q) × L2(Σa) × L2(Σb) × V � (f1, fa, fb, u0) �→ u ∈ W
is continuous, where all spaces are endowed with their weak topologies.
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Proof. We sketch the main points of the proof. We introduce functionals J1 : (0, T )×H → R, J2 : (0, T )×
L2(Γa) → R, ϕ1 : (0, T ) × H → R, and ϕ2 : (0, T ) × L2(Γb) → R defined by

J1(t, v) =
∫

Ω

j1(x, t, v(x)) dx for v ∈ H,

J2(t, v) =
∫

Γa

j2(x, t, v(x)) dx for v ∈ L2(Γa),

ϕ1(t, v) =
∫

Ω

g1(x, t, v(x)) dx for v ∈ H,

ϕ2(t, v) =
∫

Γb

g2(x, t, v(x)) dx for v ∈ L2(Γb),

and operators M1 = N1 = i ∈ L(V,H), M2 = N2 = γ ∈ L(V,L2(Γ)). With this notation, we consider the
following evolution inclusion. �

Problem 17. Find u ∈ W such that⎧⎪⎨
⎪⎩

u′(t) + Au(t) + M∗
1 ∂J1(t,M1u(t)) + M∗

2 ∂J2(t,M2u(t))
+N∗

1 ∂ϕ1(t,N1u(t)) + N∗
2 ∂ϕ2(t,N2u(t)) � f(t) a.e. t ∈ (0, T ),

u(0) = u0.

It is clear by definitions of the convex and Clarke subdifferentials, and properties of the generalized
directional derivative, see [19, Theorem 3.47], that any solution to Problem 17 is also a solution to
Problem 15. We will show below that the solution to Problem 11 is unique, and moreover, by a direct
calculation we verify that under our hypotheses the solution to Problem 15 is also unique. Hence, we
conclude that Problems 15 and 17 are equivalent.

Problem 11 is now treated by exploiting the methods used in Theorems 5 and 7 . Since the operator
A ∈ L(V, V ∗) is coercive, it satisfies condition H(A)1. Note that J1 satisfies condition H(J), where the
variable z is omitted, X = H, mJ = β1j , and m̄J = 0. Taking into account that J0

1 (t, ·;w) : X → R is
upper semicontinuous for all w ∈ H, a.e. t ∈ (0, T ), see [19, Proposition 3.23(ii)], we deduce that H(J)1
holds too. Analogously, we check that J2 satisfies H(J)1 with mJ = β2j , and m̄J = 0.

Furthermore, we easily verify that both ϕ1 and ϕ2 satisfy condition H(ϕ). In particular, H(ϕ)(v) holds
automatically. The Nemytskii operators corresponding to M1 and M2 are compact, see [6, Examples 5.2
and 5.3]. Hence, H(M,N)1 is satisfied. Conditions (H2) and (H4) hold trivially. Condition (H5) implies
the smallness assumption of type (H3). We are in a position to apply Theorems 5 and 7 to Problem 17 to
obtain its unique solvability and a continuous dependence result. Since Problems 15 and 17 are equivalent
with their unique solution, this completes the proof. �
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[6] Gasinski, L., Migórski, S., Ochal, A.: Existence results for evolutionary inclusions and variational–hemivariational

inequalities. Appl. Anal. 94, 1670–1694 (2014)
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