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Abstract
In this paper, an abstract evolutionary hemivariational inequality with a history-
dependent operator is studied. First, a result on its unique solvability and solution
regularity is proved by applying the Rothe method. Next, we introduce a numeri-
cal scheme to solve the inequality and derive error estimates. We apply the results
to a quasistatic frictional contact problem in which the material is modeled with a
viscoelastic constitutive law, the contact is given in the form of multivalued nor-
mal compliance, and friction is described with a subgradient of a locally Lipschitz
potential. Finally, for the contact problem, we provide the optimal error estimate.
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1 Introduction

In this paper, we are concerned with the existence and uniqueness of a solution to an
abstract evolutionary hemivariational inequality which involves a history-dependent
operator of the form

〈Au′(t) + Bu(t) + (Ru)(t) − f (t), v〉 + J 0(Mu(t); Mv) ≥ 0 (1)

for all v ∈ V , a.e. t ∈ (0, T ) with u(0) = u0. Here, A and B are operators from a
reflexive Banach space V to its dual V ∗, M is a linear, bounded operator, J 0 denotes
the generalized gradient of a locally Lipschitz function, f : (0, T ) → V ∗ and u0 ∈ V

are given, and R represents a history-dependent operator.
The motivation to study the inequality of the form (1) comes from contact prob-

lems in solid mechanics. It is known that when the external forces and tractions
evolve slowly in time in such a way that the acceleration in the system is rather small
and negligible, then the inertial terms can be neglected. In such a way, we obtain the
quasistatic approximation (equilibrium equation) for the equation of motion. Qua-
sistatic contact models have been studied in several monographs and many papers
dedicated to such phenomena (see [9, 14, 35, 36] and the references therein).

In the first part of the paper, we deal with an abstract time-dependent hemi-
variational inequality of the form (1). The main results are delivered on existence,
uniqueness, and regularity of a solution to the abstract hemivariational inequality (see
Theorem 11). We apply the Rothe method (see [17, 18]), combined with a surjectiv-
ity result for a multivalued and coercive operator. The hemivariational inequality (1)
without a history-dependent operator has been recently investigated in [24] by using
the vanishing acceleration method, where a local existence result was proved. In con-
trast to Theorem 17 of [24], here, we provide a result on the global unique solvability
to (1). Also, our proof is now based on the Rothe method and is simpler, since we have
eliminated the additional space Z required in [24]. Moreover, being motivated by
applications to contact mechanics in Section 6, the inequality (1) involves a history-
dependent operator. We recall that the notion of a history-dependent operator is quite
recent and it was introduced in [39]. Various problems with history-dependent oper-
ators have been studied for the evolution variational and hemivariational inequalities
in [1, 6, 10, 11, 20–22, 27–30, 34, 43, 44], and for the quasistatic problems in [19,
26, 37, 38, 40, 41, 45]. Furthermore, we study a fully discrete approximation for the
problem (1) which consists in finite difference discretization in time and finite ele-
ment approximation in the spatial variable. We prove in Theorem 13 the Céa-type
error estimate for the hemivariational inequality.

In the second part of the paper, we apply the abstract results to a quasistatic
frictional contact model for viscoelastic materials. The process is described by mul-
tivalued versions of the nonmonotone normal compliance and friction boundary
conditions. We provide the variational formulation of the contact problem for which
we deliver a result on its unique weak global solvability. In this way, we improve the
local existence result of [24, Theorem 17]. Finally, for the frictionless contact, we
establish a result on an optimal error estimate for the fully discrete approximation
scheme. Note that results on numerical analysis for hemivariational inequalities can
be found in [3, 12, 15, 16, 37] and the references therein.
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The outline of the paper is as follows. After recalling the basic notation in
Section 2, in Section 3, we formulate the abstract hemivariational inequality with a
history-dependent operator. In Section 4, we apply the Rothe method to deliver exis-
tence and uniquence result for this inequality. The error estimate of the Céa type for a
fully discrete approximation is provided in Section 5. Finally, in Section 6, we illus-
trate the applicability of our results to the quasistatic frictional contact problem for
viscoelastic material.

2 Preliminaries

In this section, we recall the basic notation and some results which are needed in
the sequel (see [5, 7, 8, 42]). We use the standard notation for the Lebesgue and
Sobolev spaces of functions defined on a finite time interval [0, T ] with values in a
Banach space. We denote by L(E, F ) the space of linear and bounded operators from
a Banach space E to a Banach space F endowed with the usual norm ‖ · ‖L(E,F ). For
a subset S of Banach space (E, ‖ · ‖E), we write ‖S‖E = sup{‖s‖E | s ∈ S}.

Let Y be a reflexive Banach space and 〈·, ·〉 denote the duality of Y and Y ∗. A
single-valued mapping A : Y → Y ∗ is called monotone if 〈Au − Av, u − v〉 ≥ 0
for all u, v ∈ Y . An operator A : Y → Y ∗ is pseudomonotone if for every sequence
{yn} ⊆ Y converging weakly to y ∈ Y such that lim sup〈Ayn, yn − y〉 ≤ 0, we have

〈Ay, y − z〉 ≤ lim inf〈Ayn, yn − z〉 for all z ∈ Y .

Note that the operator A : Y → Y ∗ is pseudomonotone if and only if the conditions
yn → y weakly in Y and lim sup〈Ayn, yn − y〉 ≤ 0 entail lim〈Ayn, yn − y〉 = 0 and
Ayn → Ay weakly in Y ∗. It is also easy to check that if A ∈ L(Y, Y ∗) is nonnegative,
then it is pseudomonotone.

We recall the notion of the pseudomonotonicity for a multivalued operator.

Definition 1 Let Y be a reflexive Banach space. An operator T : Y → 2Y ∗
is

pseudomonotone if

(a) for every v ∈ Y , the set T v ⊂ Y ∗ is nonempty, bounded, closed, and convex,
(b) T is upper semicontinuous from each finite dimensional subspace of Y to Y ∗

endowed with the weak topology,
(c) for any sequences {un} ⊂ Y and {u∗

n} ⊂ Y ∗ such that un → u weakly in Y ,
u∗

n ∈ T un for all n ≥ 1 and lim sup 〈u∗
n, un − u〉 ≤ 0, we have that for every

v ∈ Y , there exists u∗(v) ∈ T u such that

〈u∗(v), u − v〉 ≤ lim inf
n→∞ 〈u∗

n, un − v〉.

We recall the following fundamental surjectivity theorem (see [8, Theorem 1.3.70]
or [42]), which will be used to prove existence of a solution to a static hemivariational
inequality in Section 4.
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Theorem 2 Let Y be a reflexive Banach space and T : Y → 2Y ∗
be pseudomonotone

and coercive. Then, T is surjective, i.e., for every f ∈ Y ∗, there is u ∈ Y such that
T u � f .

We hereafter recall the definition of the Clarke subgradient.

Definition 3 Given a locally Lipschitz function J : E → R on a Banach space E, we
denote by J 0(u; v) the generalized (Clarke) directional derivative of J at the point
u ∈ E in the direction v ∈ E defined by

J 0(u; v) = lim sup
λ→0+, w→u

J (w + λv) − J (w)

λ
.

The generalized gradient of J : E → R at u ∈ E is defined by

∂J (u) = { ξ ∈ E∗ | J 0(u; v) ≥ 〈ξ, v〉 for all v ∈ E }.

The following result provides an example of a multivalued pseudomonotone ope-
rator which is a superposition of the Clarke subgradient with a compact operator. The
proof can be found in [3, Proposition 5.6].

Proposition 4 Let V and X be reflexive Banach spaces, M : V → X be a linear,
bounded, and compact operator. We denote by M∗ : X∗ → V ∗ the adjoint operator
of M . Let J : X → R be a locally Lipschitz function such that

‖∂J (v)‖X∗ ≤ c (1 + ‖v‖X) for all v ∈ X

with c > 0. Then, the multivalued operator F : V → 2V ∗
defined by F(v) =

M∗∂J (Mv) for v ∈ V is pseudomonotone.

We conclude this section with a discrete version of the Gronwall inequality whose
proof can be found in [14, Lemma 7.25].

Lemma 5 Let T > 0 be given. For a positive integer N , we define τ = T
N
. Assume

that {gn}Nn=1 and {en}Nn=1 are two sequences of nonnegative numbers satisfying

en ≤ c gn + c τ

n−1∑

j=1

ej for n = 1, . . . , N

for a positive constant c independent of N (or τ ). Then, there exists a positive
constant c, independent of N (or τ ) such that

en ≤ c
(
gn + τ

n−1∑

j=1

gj

)
for n = 1, . . . , N .



Numerical Algorithms (2019) 82:423–450 427

3 History-dependent hemivariational inequalities

In this section, we introduce a class of history-dependent hemivariational inequali-
ties. This class will be studied in Section 4 where the existence and uniqueness result
for this class of inequalities will be provided. A fully discrete approximation for the
inequalities in this class will be discussed in Section 5.

We use the following standard notation (see [7, 8, 29, 42] for details). Let V ⊂
H ⊂ V ∗ be an evolution triple of spaces. Recall that this means that V is a reflexive
and separable Banach space, H is a separable Hilbert space, and the embedding V ⊂
H is dense and continuous. Let i be the embedding operator between V and H which
is assumed to be compact. It is known that the adjoint operator i∗ : H → V ∗ is also
linear, continuous and compact. The duality pairing between V ∗ and V and a norm
in V are denoted by 〈·, ·〉 and ‖ · ‖, respectively. For the Hilbert space H , we denote
its scalar product and a norm by (·, ·) and ‖ · ‖H , respectively.

Given 0 < T < +∞, let V = L2(0, T ; V ) and H = L2(0, T ; H). It follows from
the reflexivity of V that both V and its dual space V∗ = L2(0, T ; V ∗) are reflexive
Banach spaces as well. Identifying H = L2(0, T ; H) with its dual, we have the
continuous embeddings V ⊂ H ⊂ V∗.

The notation 〈·, ·〉V∗×V stands for the duality pairing between V and V∗. Moreover,
by C(0, T ; V ), we denote the space of continuous functions on [0, T ] with values
in V .

Let X be a separable and reflexive Banach space. Given operators A, B : V →
V ∗, M : V → X, the function J : X → R, f ∈ V∗ and u0 ∈ V , we consider
the following evolutionary hemivariational inequality involving a history-dependent
operator.

Problem 6 Find an element u ∈ V such that u′ ∈ V and

⎧
⎪⎪⎨

⎪⎪⎩

〈
Au′(t) + Bu(t) + (Ru)(t) − f (t), v

〉 + J 0(Mu(t); Mv) ≥ 0

for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0.

Here, R : C(0, T ; V ) → C(0, T ; V ∗) is an operator defined by

(Ru)(t) = E

(∫ t

0
q(t, s)u(s) ds + α

)
for t ∈ [0, T ], (2)

where E : V → V ∗, α ∈ V and q : [0, T ] × [0, T ] → L(V , V ).
We impose the following assumptions on the data of Problem 6.

H(A): The operator A : V → V ∗ is linear, bounded, coercive, and symmetric, i.e.,

(i) A ∈ L(V , V ∗).
(ii) 〈Av, v〉 ≥ mA‖v‖2 for all v ∈ V with mA > 0.

(iii) 〈Av, w〉 = 〈Aw, v〉 for all v, w ∈ V .
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H(B): The operator B : V → V ∗ is linear, bounded, and coercive, i.e.,

(i) B ∈ L(V , V ∗).
(ii) 〈Bv, v〉 ≥ mB‖v‖2 for all v ∈ V with mB > 0.

H(E): E ∈ L(V , V ∗).
H(q): The function q ∈ C([0, T ] × [0, T ],L(V , V )) is Lipschitz continuous with

respect to the first variable, i.e., there exists Lq > 0 such that

‖q(t1, s) − q(t2, s)‖ ≤ Lq |t1 − t2| for all t1, t2, s ∈ [0, T ].
H(J ): The functional J : X → R is such that

(i) J is locally Lipschitz.
(ii) There exists cJ > 0 such that ‖∂J (u)‖X∗ ≤ cJ (1 + ‖u‖X) for all

u ∈ X.
(iii) There exists mJ ≥ 0 such that

〈ξ − η, u − v〉X∗×X ≥ −mJ ‖u − v‖2
X,

for all u, v ∈ X and ξ ∈ ∂J (u), η ∈ ∂J (v).
H(f ): f ∈ V∗.
H(M): The operator M : V → X is linear, continuous, and compact.

(H0): mB > mJ ‖M‖2.

Remark 7 Hypothesis H(J )(iii) is called the relaxed monotonicity condition for a
locally Lipschitz function J . It was used in the literature (cf. [23, Section 3.3]) to
ensure the uniqueness of the solution to hemivariational inequalities. This hypothesis
has the equivalent formulation as follows

J 0(u; v − u) + J 0(v; u − v) ≤ mJ ‖u − v‖2
X,

for all u, v ∈ X. In addition, examples of nonconvex functions which satisfy the
relaxed monotonicity condition can be found in [23, 37]. Particularly, it can be proved
that for a convex function, condition H(J )(iii) holds with mJ = 0.

We recall (cf. [39]) that an operator S : C(0, T ; V ) → C(0, T ; V ∗) is called a
history-dependent operator if there exists L > 0 such that

‖(Su1)(t) − (Su2)(t)‖V ∗ ≤ L

∫ t

0
‖u1(s) − u2(s)‖V ds (3)

for all u1, u2 ∈ C(0, T ; V ) and all t ∈ [0, T ]. We remark that under hypotheses
H(E), H(q) and α ∈ V , the operator R defined in (2) satisfies condition (3) with
L = cEcq , where cE = ‖E‖ and cq = max(t,s)∈[0,T ]×[0,T ] ‖q(t, s)‖.

4 Rothemethod

In this section, we present a result on existence and uniqueness of solution for Prob-
lem 6. The technique of proof relies on the Rothe method (known also as a method
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of lines, see [17, 18]). It consists in a time discretization in which we define an
approximate sequence of functions by using the implicit (backward) Euler formula.
Next, in each time step, we will solve a stationary hemivariational inequality. Finally,
we construct the piecewise constant and piecewise affine interpolants and prove a
convergence result.

In the rest of the section, we denote by C > 0 a constant whose value may change
from line to line.

Let N ∈ N be fixed and denote f k
τ = 1

τ

∫ tk
tk−1

f (s) ds for k = 1, . . . , N , where

tk = kτ and τ = T
N

. Now, we discuss the following discretized problem called the
Rothe problem.

Problem 8 Find {uk
τ }Nk=0 ⊂ V such that u0

τ = u0 and

〈Auk
τ + τBuk

τ + τxk
τ , v〉 + τ 〈∂J (Muk

τ ), Mv〉X∗×X � 〈τf k
τ + Auk−1

τ , v〉, (4)

for all v ∈ V and for k = 1, 2, . . . , N , where xk
τ ∈ V ∗ is defined by

xk
τ = E

(
α +

k∑

j=1

∫ tj

tj−1

q(tk, s)u
j
τ ds

)
.

First, we shall prove the existence and uniqueness of a solution to Problem 8.

Lemma 9 Assume that u0 ∈ V , H(A), H(B), H(E), H(q), H(J ), H(M), and (H0)

hold. Then, there exists τ0 > 0 such that, for all τ ∈ (0, τ0), Problem 8 has a unique
solution.

Proof Let u0
τ , u1

τ , . . . , u
k−1
τ be given. We will prove that there exists a unique element

uk
τ ∈ V which satisfies inclusion (4). To end this, we apply Theorem 2 to show that

the operator L : V → 2V ∗
defined by

Lv = Av + τBv + τE

(∫ tk

tk−1

q(tk, s)v ds

)
+ τM∗∂J (Mv)

for all v ∈ V is surjective.
First, we show that there exists τ0 > 0 such that, for all τ ∈ (0, τ0), L is a

pseudomonotone operator. Indeed, by hypotheses H(A)(i)–(ii), H(B)(i)–(ii), H(E),
and H(q), we can easily get that the operator

v �→ Av + τBv + τE

( ∫ tk

tk−1

q(tk, s)v ds

)
(5)

is bounded, continuous, and monotone for τ ∈ (0, τ0), where τ0 = mB

cEcq
with cE =

‖E‖ and cq = max(t,s)∈[0,T ]×[0,T ] ‖q(t, s)‖. From [23, Theorem 3.69], we conclude
that the operator defined by (5) is pseudomonotone. On the other hand, taking into
account assumptions H(J )(i)–(ii) and H(M) and Proposition 4, it is clear that the
operator v �→ M∗∂J (Mv) is pseudomonotone as well. Therefore, by using [23,
Proposition 3.59(ii)], we infer that L is a pseudomonotone operator too.
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Subsequently, we prove that the operator L is coercive. From hypothesis H(J ),
we derive the estimate (see [12])

〈∂J (u), u〉X∗×X ≥ −mJ ‖u‖2
X − cJ ‖u‖X

for all u ∈ X. This inequality together with H(A)(ii), H(B)(ii), H(E), and H(q)

implies
〈
Au + τBu + τE

( ∫ tk

tk−1

q(tk, s)u ds

)
+ τM∗∂J (Mu), u

〉

≥ mA‖u‖2 + τmB‖u‖2 − τ 2cEcq‖u‖2 − τmJ ‖M‖2‖u‖2 − τcJ ‖M‖‖u‖
≥ (

mA + τ(mB − mJ ‖M‖2 − τcEcq)
)‖u‖2 − τcJ ‖M‖‖u‖

for all u ∈ V . From the smallness condition (H0), we choose τ0 = mB−mJ ‖M‖2

cEcq
> 0.

Hence, we deduce that the operator L is coercive for all τ ∈ (0, τ0). Therefore, by
the use of Theorem 2, we obtain that L is surjective, i.e., Problem 8 has at least one
solution uk

τ ∈ V .
For uniqueness part, we assume that uk

τ and ũk
τ are two solutions in V of

Problem 8, that is,

〈Auk
τ + τBuk

τ + τxk
τ + τM∗∂J (Muk

τ ), v〉 ≥ 〈τf k
τ + Auk−1

τ , v〉 for all v ∈ V

and

〈Aũk
τ + τBũk

τ + τ x̃k
τ + τM∗∂J (Mũk

τ ), v〉 ≥ 〈τf k
τ + Auk−1

τ , v〉 for all v ∈ V,

where the elements xk
τ and x̃k

τ are defined by

xk
τ = E

(
α +

k−1∑

j=1

∫ tj

tj−1

q(tk, s)u
j
τ ds +

∫ tk

tk−1

q(tk, s)u
k
τ ds

)

and

x̃k
τ = E

(
α +

k−1∑

j=1

∫ tj

tj−1

q(tk, s)u
j
τ ds +

∫ tk

tk−1

q(tk, s)̃u
k
τ ds

)
,

respectively. We take v = ũk
τ − uk

τ in the first inequality and v = uk
τ − ũk

τ in the
second one. We add the resulting inequalities to get

〈Auk
τ − Aũk

τ , u
k
τ − ũk

τ 〉 + τ 〈Buk
τ − Bũk

τ , u
k
τ − ũk

τ 〉 + τ 〈xk
τ − x̃k

τ , uk
τ − ũk

τ 〉
+ τ 〈∂J (Muk

τ ) − ∂J (Mũk
τ ), Muk

τ − Mũk
τ 〉X∗×X ≤ 0.

Hence,
(
mA + τ(mB − mJ ‖M‖2 − τcEcq)

)‖uk
τ − ũk

τ‖2 ≤ 0.

The smallness condition (H0) guarantees that uk
τ = ũk

τ , which completes the proof
of this lemma.

Next, we establish the estimates for the solution of Problem 8.
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Lemma 10 Under assumptions of Lemma 9, there exists τ0 > 0 and C > 0 inde-
pendent of τ , such that for all τ ∈ (0, τ0), the solution {uk

τ }Nk=0 ⊂ V of Problem 8
satisfies

max
k=1,2,...,N

‖uk
τ‖ ≤ C, (6)

N∑

k=1

‖uk
τ − uk−1

τ ‖2 ≤ C, (7)

max
k=1,2,...,N

‖ξk
τ ‖X∗ ≤ C, (8)

τ

N∑

k=

∥∥∥∥
uk

τ − uk−1
τ

τ

∥∥∥∥
2

≤ C, (9)

where ξk
τ ∈ ∂J (Muk

τ ).

Proof We choose v = uk
τ in (4), then use the hypotheses H(A) and H(B) and the

equality

2〈Auk
τ − Auk−1

τ , uk
τ 〉 = 〈Auk

τ , u
k
τ 〉 − 〈Auk−1

τ , uk−1
τ 〉 + 〈A(uk

τ − uk−1
τ ), uk

τ − uk−1
τ 〉

to get

1

2
〈Auk

τ , u
k
τ 〉 − 1

2
〈Auk−1

τ , uk−1
τ 〉 + 1

2
〈A(uk

τ − uk−1
τ ), uk

τ − uk−1
τ 〉 + τmB‖uk

τ‖2

−τmJ ‖M‖2‖uk
τ‖2 − cJ ‖M‖‖uk

τ‖ ≤ τ‖xk
τ ‖V ∗‖uk

τ‖ + τ‖f k
τ ‖V ∗‖uk

τ‖. (10)

Next, the assumptions H(E) and H(q) imply

τ‖xk
τ ‖V ∗‖uk

τ‖ ≤ τ 2cEcq

k∑

j=1

‖uj
τ‖‖uk

τ‖ + τcE‖α‖‖uk
τ‖. (11)

Combining (10) and (11), and using the Cauchy inequality with ε > 0, we have

1

2
〈Auk

τ , u
k
τ 〉 − 1

2
〈Auk−1

τ , uk−1
τ 〉 + τ

(
mB − mJ ‖M‖2 − ε − τcEcq

)‖uk
τ‖2

+mA

2
‖uk

τ − uk−1
τ ‖2 ≤ Cτ

(
τ

k−1∑

j=1

‖uj
τ‖2 + ‖f k

τ ‖V ∗ + 1

)
.

We now choose ε = mB−mJ ‖M‖2

2 and τ0 = ε
cEcq

. Then, for all τ ∈ (0, τ0), it follows

1

2
〈Auk

τ , u
k
τ 〉 − 1

2
〈Auk−1

τ , uk−1
τ 〉 + mA

2
‖uk

τ − uk−1
τ ‖2

≤ Cτ

(
τ

k−1∑

j=1

‖uj
τ‖2 + ‖f k

τ ‖V ∗ + 1

)
.
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Summing the above inequalities for k = 1, . . . , n, where 1 ≤ n ≤ N , and then
applying H(A), we get

mA

2
‖uk

τ‖2 + mA

2

n∑

k=1

‖uk
τ − uk−1

τ ‖2 ≤ C

(
τ

n−1∑

k=1

‖uk
τ‖2 + 1

)
.

Now, we use the discrete version of the Gronwall inequality in Lemma 5, to verify
estimates (6) and (7). The estimate (8) follows directly from (6) and H(J )(ii).

Denote vk
τ = uk

τ −uk−1
τ

τ
for k = 1, . . . , N . We take v = −vk

τ in (4) to get

mA‖vk
τ‖2 − ‖B‖‖uk

τ‖‖vk
τ‖ − ‖ξk

τ ‖X∗‖M‖‖vk
τ‖ − ‖xk

τ ‖V ∗‖vk
τ‖

≤
〈
Auk

τ − Auk−1
τ

τ
, vk

τ

〉
+ 〈xk

τ , vk
τ 〉 + 〈Buk

τ , v
k
τ 〉 + 〈ξk

τ , Mvk
τ 〉X∗×X

≤ 〈f k
τ , vk

τ 〉 ≤ ‖f k
τ ‖V ∗‖vk

τ‖,
hence,

mA‖vk
τ‖2 ≤ (‖B‖‖uk

τ‖ + ‖ξk
τ ‖X∗‖M‖ + ‖xk

τ ‖V ∗ + ‖f k
τ ‖V ∗

)‖vk
τ‖

The latter together with (6), (8), H(E), H(q), and the Cauchy inequality with ε > 0
implies

(mA − ε) ‖vk
τ‖2 ≤ C(1 + ‖f k

τ ‖V ∗).

We choose now ε = mA

2 to get

τ

N∑

k=1

‖vk
τ‖2 ≤ C(1 + τ

N∑

k=1

‖f k
τ ‖V ∗) ≤ C.

So, we obtain the estimate (9), which completes the proof of this lemma.

Subsequently, for a given τ > 0, we define the piecewise affine function uτ and
the piecewise constant interpolant functions uτ , ξτ , fτ , and wτ as follows

uτ (t) = uk
τ + t − tk

τ
(uk

τ − uk−1
τ ) for t ∈ (tk−1, tk],

uτ (t) =
{

uk
τ , t ∈ (tk−1, tk],

u0
τ , t = 0,

ξτ (t) = ξk
τ , t ∈ (tk−1, tk],

fτ (t) =
{

f k
τ , t ∈ (tk−1, tk],

f (0), t = 0,

wτ (t) =
{

α + ∑k
j=1

∫ tj
tj−1

q(tk, s)u
j
τ ds, t ∈ (tk−1, tk],

α, t = 0.
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Now, we rewrite Problem 8 in the following equivalent form

〈Au′
τ (t) + Buτ (t) + E(wτ (t)), v〉 + 〈ξτ (t), Mv〉X∗×X = 〈fτ (t), v〉 (12)

for all v ∈ V and a.e. t ∈ (0, T ), where ξτ (t) ∈ ∂J (Muτ (t)) for a.e. t ∈ (0, T ).
The main results of this section are delivered in the following theorem.

Theorem 11 Under assumptions of Lemma 9, Problem 6 has a unique solution u ∈
H 1(0, T ; V ).

Proof The bound (6) ensures that {uτ } is bounded in V due to the following
inequality

‖uτ‖2
V = τ

N∑

n=1

‖un
τ‖2 ≤ C.

It follows from the reflexivity of V that there exists a function u ∈ V such that,
passing to a subsequence again indexed by τ , we have

uτ → u weakly in V, as τ → 0. (13)

Also, from (6), we have that the sequence {uτ } is bounded in V , and therefore, there
exists u1 ∈ V such that

uτ → u1 weakly in V, as τ → 0. (14)

Hence, we get uτ − uτ → u − u1 weakly in V , as τ → 0. By the Hölder inequality
and the boundedness of {u′

τ } (see (9))

‖u′
τ‖2

V = τ

N∑

k=1

‖vk
τ‖2 ≤ C,

we have

‖uτ − uτ‖2
V =

N∑

k=1

∫ tk

tk−1

(tk − s)2‖vk
τ‖2 ds

=
N∑

k=1

∫ tk

tk−1

(tk − s)2‖u′
τ (s)‖2 ds ≤ τ 2

3
‖u′

τ‖2
V . (15)

From estimate (15), we deduce that u = u1. On the other hand, by the boundedness
of {u′

τ } (see (9)), we also obtain (cf. [42, Proposition 23.19, p. 419])

u′
τ → u′ weakly in V, as τ → 0. (16)

In addition, using the boundedness of {ξτ } (see (8)) and the reflexivity of the space
X ∗, we conclude

ξτ → ξ weakly in X ∗, as τ → 0 with ξ ∈ X ∗. (17)
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By virtue of the hypothesis H(q) and boundedness of {uτ } (see (6)), one has the
following estimate for t ∈ (tk−1, tk]

∥∥∥∥
∫ t

0
q(t, s)uτ (s) ds −

∫ tk

0
q(tk, s)uτ (s) ds

∥∥∥∥ ≤
∫ tk

t

‖q(tk, s)uτ (s)‖ ds

+
∫ t

0

∥∥(q(t, s) − q(tk, s))uτ (s)
∥∥ ds ≤ C0τ (18)

for some C0 > 0, which is independent of τ . Moreover, [4, Lemma 3.3] implies that

fτ → f strongly in V∗, as τ → 0. (19)

Next, we shall show that u is a solution of Problem 6. To this end, we define the
Nemytskii operators A, B : V → V∗ by (Av)(t) = A(v(t)) and (Bv)(t) = B(v(t))

for all v ∈ V and a.e. t ∈ (0, T ). From hypotheses H(A) and H(B), it is clear that A
and B are both linear and bounded, so they are also weakly continuous. Thus, from
(16) and (13), we obtain Au′

τ → Au′ and B uτ → Bu both weakly in V∗, as τ → 0,
i.e.,

lim
τ→0

〈Au′
τ , v〉V∗×V = 〈Au′, v〉V∗×V and lim

τ→0
〈B uτ , v〉V∗×V = 〈Bu, v〉V∗×V (20)

for all v ∈ V . Now, we consider the Nemitskii operators E , E2 : V → V∗ by

(Ev)(t) = E

(∫ t

0
q(t, s)v(s) ds

)
and (E2v)(t) = Ev(t)

for all v ∈ V and a.e. t ∈ (0, T ). It is obvious that E is weakly continuous being
bounded and linear. From the convergence (13), one has

lim
τ→0

〈Euτ , v〉V∗×V = 〈Eu, v〉V∗×V

for all v ∈ V . Next, from H(E), H(q) and (18), we have

E2(wτ − α) − E(uτ ) → 0 strongly in V∗, as τ → 0

which implies

lim
τ→0

〈E2(wτ ), v〉V∗×V

= lim
τ→0

(〈E2(wτ − α) − E(uτ ), v〉V∗×V + 〈E(uτ ), v〉V∗×V + 〈E2(α), v〉V∗×V
)

= 〈Eu, v〉V∗×V + 〈E2(α), v〉V∗×V (21)

for all v ∈ V .
Since the embedding H 1(0, T ; V ) ⊂ C(0, T ; V ) is continuous, from the conver-

gences (14) and (16), by [24, Lemma 4(a)], we have

uτ (t) → u(t) weakly in V, as τ → 0, (22)

for all t ∈ [0, T ]. Using the convergence uτ − uτ → 0 strongly in V , as τ → 0,
by the converse Lebesgue dominated convergence theorem ([23, Theorem 2.39]), we
may assume that uτ (t)−uτ (t) → 0 strongly in V for a.e. t ∈ (0, T ), as τ → 0. This
together with (22) implies

uτ (t) → u(t) weakly in V, for a.e. t ∈ (0, T ).



Numerical Algorithms (2019) 82:423–450 435

From the compactness of the operator M , we deduce Muτ (t) → Mu(t) strongly in
X for a.e. t ∈ (0, T ). Since ξτ (t) ∈ ∂J (Muτ (t)) for a.e. t ∈ (0, T ), we use also the
convergence (17), and by [2, Theorem 1, Section 1.4], we have

ξ(t) ∈ ∂J (Mu(t)) for a.e. t ∈ (0, T ). (23)

Now, we introduce the Nemitskii operator M : V → X defined by (Mv)(t) =
M(v(t)) for all v ∈ V and a.e. t ∈ (0, T ), so, from (17), we have

lim
τ→0

〈ξτ ,Mv〉X ∗×X = 〈ξ,Mv〉X ∗×X (24)

for all v ∈ V .
From (19)–(21), (23), and (24), we infer that

〈Au′ + Bu + Eu + E2α, v〉V∗×V + 〈ξ,Mv〉X ∗×X = 〈f, v〉V∗×V (25)

for all v ∈ V with ξ(t) ∈ ∂J (Mu(t)) for a.e. t ∈ (0, T ). Furthermore, we shall show
that u ∈ V with u′ ∈ V is also a solution of Problem 6. Arguing by contradiction, we
suppose that u is not a solution to Problem 6. This means there exists a measurable
set I ⊂ [0, T ] with meas(I) > 0 and v∗ ∈ V such that

〈Au′(t) + Bu(t) + (Ru)(t), v∗〉 + J 0(Mu(t); Mv∗) < 〈f (t), v∗〉 for a.e. t ∈ I .
(26)

We now denote a function ṽ ∈ V by

ṽ(t) =
{

v∗ if t ∈ I

0 otherwise.

Inserting v = ṽ into (25) and taking account of (26), it follows from [23, Theorem
3.47] that

∫

I

〈f (t), v∗〉 dt ≤
∫

I

〈Au′(t) + Bu(t) + (Ru)(t) − f (t), v∗〉 + J 0(Mu(t); Mv∗) dt

<

∫

I

〈f (t), v∗〉 dt .

This results a contradiction, so, u ∈ V with u′ ∈ V is also a solution of Problem 6.
Finally, we will verify that the solution of Problem 6 is unique. Let u1 and u2 be

two solutions of Problem 6. Then,
〈
Au′

1(t) + Bu1(t) + (Ru1)(t) − f (t), v
〉 + J 0(Mu1(t); Mv) ≥ 0

and 〈
Au′

2(t) + Bu2(t) + (Ru2)(t) − f (t), v
〉 + J 0(Mu2(t); Mv) ≥ 0

for all v ∈ V and a.e. t ∈ (0, T ). Taking v = u2(t) − u1(t) in the first inequality and
v = u1(t) − u2(t) in the second one, we add the resulting inequalities to get
〈
Au′

1(t) − Au′
2(t), u1(t) − u2(t)

〉 + 〈Bu1(t) − Bu2(t), u1(t) − u2(t)〉
≤ J 0(Mu1(t); Mv) + J 0(Mu1(t); Mu) + 〈(Ru1)(t) − (Ru2)(t), u2(t) − u1(t)〉
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for a.e. t ∈ (0, T ). We use the assumptions H(A), H(B), H(E), H(q), and H(J )(iii)
to obtain

1

2

d

dt

〈
A(u1(t) − u2(t)), u1(t) − u2(t)

〉 + (mB − mJ ‖M‖2)‖u1(t) − u2(t)‖2

≤ cEcq

∫ t

0
‖u1(s) − u2(s)‖‖u1(t) − u2(t)‖ ds.

We integrate this inequality on [0, t], where t ∈ [0, T ], and use H(A)(ii) and (H0) to
deduce

mA

2
‖u1(t) − u2(t)‖2 ≤ 1

2

〈
A(u1(t) − u2(t)), u1(t) − u2(t)

〉

≤ cE cq

∫ t

0
‖u1(s) − u2(s)‖

∫ s

0
‖u1(η) − u2(η)‖ dη ds

≤ cE cq

(∫ t

0
‖u1(s) − u2(s)‖ ds

)2

for all t ∈ [0, T ]. Hence,

‖u1(t) − u2(t)‖ ≤
(

2cE cq

mA

) 1
2
∫ t

0
‖u1(s) − u2(s)‖ ds

for all t ∈ [0, T ]. Finally, we use the Gronwall inequality (see, e.g., [36, Lemma
2.31]) to obtain u1 = u2. This completes the proof of the theorem.

5 A fully discrete approximation scheme

In this section, we study a fully discrete approximation scheme for the history-
dependent hemivariational inequality stated in Problem 6. In this method, the time
variable is discretized by finite difference and the spatial variable is approximated by
finite elements.

Assume that V h is a finite dimensional subspace of V and uh
0 ∈ V h is an approxi-

mation of the initial point u0 ∈ V . For N ∈ N, N > 0 given, we denote the time step
length by k = T

N
and tn = kn for n = 0, . . . , N . For a continuous function g defined

on the interval [0, T ], in the sequel, we will write gn = g(tn) for n = 0, . . . , N . In
addition, for a sequence {un}Nn=0, we use the notation

δun = un − un−1

k
, n = 1, . . . , N .

For the history-dependent operator

(Rv)(t) =
∫ t

0
q(t, s)v(s) ds for v ∈ C(0, T ; V ), t ∈ [0, T ],

we introduce a modified trapezoidal approximation for R defined by

Rk
nv = E

( n∑

j=1

∫ tj

tj−1

q(tn, s)vj ds + α

)
(27)
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for v = {vj }Nj=1. In addition, if w ∈ C(0, T ; V ), then the expression Rk
nw is

understood as follows

Rk
nw = E

( n∑

j=1

∫ tj

tj−1

q(tn, s)w(tj ) ds + α

)
.

Subsequently, we consider the following fully discrete approximation problem for
Problem 6.

Problem 12 Find uhk = {uhk
n } ⊂ V h such that uhk

0 = uh
0 and

〈Aδuhk
n + Buhk

n + Rk
nu

hk, vh − uhk
n 〉 + J 0(Muhk

n ; Mvh − Muhk
n )

≥ 〈fn, v
h − uhk

n 〉 for all vh ∈ V h (28)

for all n = 1, 2, . . . , N .

We will provide an error analysis of the fully discrete approximation (28). Our
goal is to prove the Céa-type inequality for Problem 12.

First, exploiting the definition of δuhk
n , the inequality (28) can be reformulated as

follows

〈Auhk
n + kBuhk

n + kRk
nu

hk, vh − uhk
n 〉 + kJ 0(Muhk

n ; Mvh − Muhk
n )

≥ 〈kfn + Auhk
n−1, v

h − uhk
n 〉 for all vh ∈ V h. (29)

This inequality represents a stationary hemivariational inequality. When k is small
enough, from Lemma 9, we know that under the hypotheses H(A), H(B), H(E),
H(q), H(J ), H(M), and (H0), it has a unique solution uhk

n ∈ V h. Moreover,
Theorem 11 reveals that Problem 6 has a unique solution u ∈ H 1(0, T ; V ).

Since A ∈ L(V , V ∗) is coercive, in what follows, for a convenience, we introduce
the norm ‖ · ‖A by ‖v‖2

A = 〈Av, v〉 for all v ∈ V , which is equivalent to the norm
‖ · ‖V . In the sequel, we denote by C > 0 a constant which may differ from line to
line, but it is independent of h and k.

For an error analysis, we have from (1) at t = tn that

〈Au′
n + Bun + Rnu, v − un〉 + J 0(Mun; Mv − Mun) ≥ 〈fn, v − un〉 (30)

for all v ∈ V , where Rnu = (Ru)(tn). Denote the errors

δn = δun − u′
n and en = un − uhk

n

for n = 1, 2, . . . , N . Taking v = uhk
n in (30), one has

〈Aδun + Bun + Rnu, uhk
n − un〉 + J 0(Mun; Muhk

n − Mun)

≥ 〈fn, u
hk
n − un〉 + 〈Aδn, u

hk
n − un〉. (31)
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We add (31) and (28) to get

〈Aδun + Bun + Rnu, uhk
n − un〉 + 〈Aδuhk

n + Buhk
n + Rk

nu
hk, vh − uhk

n 〉
+J 0(Mun; Muhk

n − Mun) + J 0(Muhk
n ; Mvh − Muhk

n )

≥ 〈fn, v
h − un〉 + 〈Aδn, u

hk
n − un〉

for all vh ∈ V h. Hence,

〈Aδ(un − uhk
n ) + B(un − uhk

n ), uhk
n − un〉 + 〈Rnu − Rk

nu
hk, uhk

n − un〉
+〈Aδuhk

n + Buhk
n + Rk

nu
hk, vh − un〉 + J 0(Mun; Muhk

n − Mun)

+J 0(Muhk
n ; Mvh − Muhk

n ) ≥ 〈fn, v
h − un〉 + 〈Aδn, u

hk
n − un〉

for all vh ∈ V h. We use the fact that the function v �→ J 0(Mu; Mv) is subadditive
(see, e.g., [23, Proposition 3.23(i)]), to obtain

J 0(Muhk
n ; Mvh − Muhk

n ) ≤ J 0(Muhk
n ; Mvh − Mun) + J 0(Muhk

n ; Mun − Muhk
n ).

So, we have

〈Aδ(un − uhk
n ) + B(un − uhk

n ), uhk
n − un〉 + 〈Rnu − Rk

nu
hk, uhk

n − un〉
+〈Aδuhk

n + Buhk
n + Rk

nu
hk, vh − un〉 + J 0(Mun; Muhk

n − Mun)

+J 0(Muhk
n ; Mvh − Mun) + J 0(Muhk

n ; Mun − Muhk
n )

≥ 〈fn, v
h − un〉 + 〈Aδn, u

hk
n − un〉

for all vh ∈ V h. Combining this inequality with the identity

〈A(u − v), u〉 = 1

2

(〈Au, u〉 − 〈Av, v〉 + 〈A(u − v), u − v〉)

and using the hypotheses H(B) and H(J )(iii) (see Remark 7), it follows that

1

2k

(‖en‖2
A − ‖en−1‖2

A

) + mB‖en‖2 − mJ ‖M‖2‖en‖2 − ‖Rnu − Rk
nu

hk‖V ∗‖en‖

≤ 〈Aδuhk
n + Buhk

n + Rk
nu

hk − fn, v
h − un〉 + J 0(Muhk

n ; Mvh − Mun)

−〈Aδn, u
hk
n − un〉 (32)

for all vh ∈ V h. Furthermore, we introduce a residual-type quantity by

Sn(v) = 〈Au′
n + Bun + Rnu − fn, v − un〉 + J 0(Mun; Mv − Mun) for v ∈ V .

Using the fact that u ∈ H 1(0, T ; V ) (see Theorem 11), we have

‖Rnu − Rk
nu‖V ∗ ≤ cE

n∑

i=1

∫ ti

ti−1

∥∥q(tn, s)(u(s) − ui)
∥∥ ds

≤ C1k

n∑

i=1

∫ ti

ti−1

‖u′(s)‖ ds = C1k

∫ T

0
‖u′(s)‖ ds ≤ C1

√
T ‖u′‖V k
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with some C1 > 0, and

‖Rk
nu − Rk

nu
hk‖V ∗ ≤ cE cq

n∑

i=1

∫ ti

ti−1

‖ui − uhk
i ‖ ds ≤ kcEcq

n∑

i=1

‖ui − uhk
i ‖.

From these inequalities, we obtain

‖Rnu−Rk
nu

hk‖V ∗ ≤ ‖Rnu−Rk
nu‖V ∗ +‖Rk

nu−Rk
nu

hk‖V ∗ ≤ C2k

(
1+

n∑

j=1

‖ej‖
)

,

(33)
where C2 = max{cEcq, C1

√
T ‖u′‖V }. Therefore, from (32), we have

1

2k

(‖en‖2
A − ‖en−1‖2

A

) − C2k

(
1 +

n∑

j=1

‖ej‖
)

‖en‖ + (mB − mJ ‖M‖2)‖en‖2

≤ 1

k
〈Aen − Aen−1, un − vh

n〉 + 〈Ben, un − vh
n〉 + 〈Rnu − Rk

nu
hk, un − vh

n〉

+〈ξn − ξhk
n , M(un − vh

n)〉X∗×X + Sn(v
h
n) + 〈Aδn, v

h
n − un〉 + 〈Aδn, en〉, (34)

where ξn ∈ ∂J (Mun) and ξhk
n ∈ ∂J (Mukh

n ).
Note that the hypothesis H(J )(ii) and u ∈ H 1(0, T ; V ) imply that the sequence

{‖ξn‖X∗} is uniformly bounded. It follows from Lemma 10 that {‖ξhk
n ‖X∗} is

uniformly bounded as well. Hence, we have

〈ξn − ξhk
n , M(un − vh

n)〉X∗×X ≤ C‖M(un − vh
n)‖X. (35)

Applying (33) again, we obtain

〈Rnu − Rk
nu

hk
n , un − vh

n〉 ≤ C2k

(
1 +

n∑

j=1

‖ej‖
)

‖un − vh
n‖. (36)

Combining (34)–(36) and applying the Cauchy inequality with ε > 0, we have

‖en‖2
A − ‖en−1‖2

A + 2k(mB − mJ ‖M‖2)‖en‖2 ≤ 2〈Aen − Aen−1, un − vh
n〉

+ C k‖un − vh
n‖2 + εk‖en‖2 + Ck2

n−1∑

j=1

‖ej‖2 + Ck3 + C2k
2‖en‖2

+ C k‖M(un − vh
n)‖X + 2k|Sn(v

h
n)| + Ck‖Aδn‖2

V ∗ . (37)

Now, we take ε = mB − mJ ‖M‖2 and k0 = mB−mJ ‖M‖2

C2
, which implies

2
(
mB − mJ ‖M‖2) − ε − kC2 > 0,

for all k < k0. Subsequently, from (37), we have

‖en‖2
A − ‖en−1‖2

A ≤ 2〈Aen − Aen−1, un − vh
n〉 + Ck‖un − vh

n‖2 + Ck3

+Ck2
n−1∑

j=1

‖ej‖2 + Ck‖M(un − vh
n)‖X + 2k|Sn(v

h
n)| + Ck‖Aδn‖2

V ∗ . (38)
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Now, we replace n by l in the above inequality, and then sum it from 1 to n, where
1 ≤ n ≤ N to get

‖en‖2
A ≤ ‖e0‖2

A + 2〈Aen, un − vh
n〉 + 2

n−1∑

l=1

〈Ael, (ul − vh
l ) − (ul+1 − vh

l+1)〉

+Ck

n∑

l=1

(
‖ul − vh

l ‖2 + ‖M(ul − vh
l )‖X + |Sl(v

h
l )| + ‖Aδl‖2

V ∗

)

−2〈Ae0, u1 − vh
1 〉 + Ck2 + Ck

n−1∑

l=1

‖el‖2.

This together with the following estimates

2〈Aen, un − vh
n〉 ≤ 1

2
‖en‖2

A + C‖un − vh
n‖2,

−2〈Ae0, u1 − vh
1 〉 ≤ ‖e0‖2

A + C‖u1 − vh
1 ‖2

and

2
n−1∑

l=1

〈Ael, (ul − vh
l ) − (ul+1 − vh

l+1)〉 ≤ 2k‖A‖
n−1∑

l=1

‖el‖‖δ(ul+1 − vh
l+1)‖

≤ Ck

( n−1∑

l=1

‖el‖2 +
n∑

l=2

‖δ(ul − vh
l )‖2

)

implies that

1

2
‖en‖2

A ≤ 2‖e0‖2
A + C‖u1 − vh

1 ‖2 + C‖un − vh
n‖2 + Ck

n−1∑

l=1

‖el‖2 + Ck2

+ Ck

n∑

l=1

(
‖δ(ul − vh

l )‖2 +‖ul − vh
l ‖2 +‖M(ul − vh

l )‖X + |Sl(v
h
l )| + ‖Aδl‖2

V ∗

)
.

It follows from the discrete Gronwall inequality, H(A), and Lemma 5, that

max
0≤n≤N

‖en‖2 ≤ C

[
k

N∑

l=1

(
‖δ(ul − vh

l )‖2 + ‖M(ul − vh
l )‖X + |Sl(v

h
l )| + ‖δl‖2

)

+‖e0‖2 + k2 + max
0≤n≤N

‖un − vh
n‖2

]

for all vh
n ∈ V h.

We now summarize the results of the section in the form of a theorem.
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Theorem 13 Suppose that assumptions of Lemma 9 are satisfied. Let uhk ∈ V h and
u ∈ H 1(0, T ; V ) be the solutions of Problems 12 and 6, respectively. Then, we have
the estimate

max
0≤n≤N

‖un − uhk
n ‖2 ≤ C

[
k

N∑

l=1

(
‖δ(ul − vh

l )‖2 + ‖M(ul − vh
l )‖X + |Sl(v

h
l )| + ‖δl‖2

)

+‖e0‖2 + k2 + max
0≤n≤N

‖un − vh
n‖2

]
(39)

for all vh
n ∈ V h.

The inequality (39) is called the Céa-type inequality of the fully discrete approxi-
mation problem (Problem 12).

6 A quasistatic viscoelastic contact problem

In this section, we study the quasistatic contact problem between a viscoelastic body
and a foundation. The volume forces and surface tractions are supposed to change
slowly in time and therefore the acceleration in the system is negligible. Neglecting
the inertial terms in the equation of motion leads to the quasistatic approximation
for the process. We show that the variational formulation of the quasistatic contact
problem is a time-dependent hemivariational inequality in Problem 6. For the latter,
we apply the abstract result stated in Theorem 11 and prove a result on existence and
uniqueness of weak solution. Further, we use the fully discrete approximation method
discussed in Section 5 to study the numerical analysis of this contact problem and
establish the result concerning optimal error estimate for the fully discrete scheme.

6.1 Mathematical model and its variational formulation

The physical setting of the contact problem is as follows. A deformable viscoelastic
body occupies an open bounded subset 
 of Rd , d = 2, 3 in applications. The volume
forces of density f 0 act in 
 and surface tractions of density f N are applied on �2.
They both can depend on time. We are interested in the quasistatic process of the
mechanical state of the body on the time interval [0, T ] with 0 < T < +∞. The
boundary � = ∂
 of 
 is assumed to be Lipschitz continuous and it consists of three
measurable parts �1, �2, and �3 which are mutually disjoint, and m(�1) > 0. The
unit outward normal vector ν exists a.e. on �. We suppose that the body is clamped
on part �1, and the body may come in contact with an obstacle over the potential
contact surface �3. We also put Q = 
× (0, T ), � = �× (0, T ), �1 = �1 × (0, T ),
�2 = �2 × (0, T ), and �3 = �3 × (0, T ). We often do not indicate explicitly the
dependence of functions on the spatial variable x ∈ 
.

Let Sd denote the space of d×d symmetric matrices. The canonical inner products
and norms on R

d and S
d are given by

u · v = ui vi, ‖v‖ = (v · v)1/2 for all u, v ∈ R
d ,
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σ : τ = σij τij , ‖τ‖ = (τ : τ )1/2 for all σ , τ ∈ S
d .

In what follows, we always adopt the summation convention over repeated indices.
Moreover, for a vector ξ ∈ R

d , the normal and tangential components of ξ on the
boundary are denoted by ξν = ξ · ν and ξ τ = ξ − ξνν, respectively. The normal and
tangential components of the matrix σ ∈ S

d are defined on boundary by σν = (σν)·ν
and σ τ = σν − σνν, respectively.

We denote by u : Q → R
d the displacement vector, by σ : Q → S

d the
stress tensor, and by ε(u) = (εij (u)) the linearized (small) strain tensor, where
i, j = 1, . . . , d . Recall that the components of the linearized strain tensor are given
by ε(u) = 1/2(ui,j + uj,i), where ui,j = ∂ui/∂xj .

The classical formulation of the contact problem reads as follows.

Problem P Find a displacement field u : Q → R
d and a stress field σ : Q → S

d

such that

Div σ (t) + f 0(t) = 0 in Q, (40)

σ (t) = A ε(u′(t)) + Bε(u(t)) +
∫ t

0
C (t − s)ε(u(s)) ds in Q, (41)

u(t) = 0 on �1, (42)

σ (t)ν = f N(t) on �2, (43)

−σν(t) ∈ ∂jν(uν(t)) on �3, (44)

−σ τ (t) ∈ ∂jτ (uτ (t)) on �3, (45)

u(0) = u0 in 
. (46)

The relation (40) represents the equilibrium equation in which “Div” denotes the
divergence operator for tensor-valued functions defined by Divσ = (σij,j ). Equa-
tion (41) is the viscoelastic constitutive law with long memory, where A and B are
linear viscosity and elasticity operators, and C denotes the relaxation operator. Next,
conditions (42) and (43) represent the displacement and the traction boundary condi-
tions. The multivalued relations (44) and (45) are the contact and friction conditions,
respectively, in which ∂jν and ∂jτ denote the Clarke generalized gradients of pre-
scribed locally Lipschitz functions jν and jτ . Finally, condition (46) represents the
initial condition where u0 denotes the initial displacement. For concrete examples of
boundary conditions (44) and (45), we refer to [9, 14, 23, 31–33].

Subsequently, we introduce the spaces needed for the variational formulation. Let
V be a closed subspace of H 1(
;Rd) defined by

V = { v ∈ H 1(
;Rd) | v = 0 on �1 } (47)

and H = L2(
;Rd). Then (V , H, V ∗) forms an evolution triple of spaces. More-
over, the trace operator is denoted by γ : V → L2(�;Rd). Given an element v ∈ V ,
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we use the same notation v for the trace of v on the boundary. The space V is
equipped with the inner product and the corresponding norm given by

〈u, v〉V = 〈ε(u), ε(v)〉H, ‖v‖ = ‖ε(v)‖H for u, v ∈ V,

where H = L2(
; Sd). Since m(�1) > 0, from the Korn inequality ‖v‖H 1(
;Rd ) ≤
c‖ε(v)‖H for v ∈ V with c > 0, it follows that ‖ · ‖H 1(
;Rd ) and ‖ · ‖ are equivalent
norms on V . In addition, we denote by Q∞ the space of fourth-order tensor fields
given by

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(
), 1 ≤ i, j, k, l ≤ d }.
We assume that the viscosity and elasticity tensors have the usual properties of

ellipticity and symmetry.
H(A ) : A : 
×S

d → S
d is a viscosity tensor, A = (aijkl) ∈ Q∞ such that there

exists m1 > 0 satisfying A τ · τ ≥ m1‖τ‖2
Sd for all τ ∈ S

d , a.e. in 
.

H(B) : B : 
 × S
d → S

d is an elasticity tensor, B = (bijkl) ∈ Q∞ such that
there exists m2 > 0 satisfying Bτ · τ ≥ m2‖τ‖2

Sd for all τ ∈ S
d , a.e. in 
.

H(C ) : C : [0, T ] → Q∞ is Lipschitz continuous with constant LC > 0.

The body forces, surface tractions, and initial displacement satisfy

H(f ) : f 0 ∈ L2(0, T ; L2(
;Rd)), f N ∈ L2(0, T ; L2(�2;Rd)), u0 ∈ V .
The superpotentials satisfy

H(jν) : jν : �3 × R → R is a function such that

(i) jν(·, r) is measurable for all r ∈ R, jν(·, 0) ∈ L1(�3),

(ii) jν(x, ·) is locally Lipschitz for a.e. x ∈ �3,

(iii) |∂jν(x, r)| ≤ cν(1 + |r|) for a.e. x ∈ �3, all r ∈ R with cν > 0,

(iv) (η1 − η2)(r1 − r2) ≥ −mν |r1 − r2|2 for all ηi ∈ ∂jν(x, ri), ri ∈ R, i = 1, 2
for a.e. x ∈ �3 with mν > 0.

H(jτ ) : jτ : �3 × R
d → R is a function such that

(i) jτ (·, ξ) is measurable for all ξ ∈ R
d , jτ (·, 0) ∈ L1(�3),

(ii) jτ (x, ·) is locally Lipschitz for a.e. x ∈ �3,

(iii) ‖∂jτ (x, ξ)‖Rd ≤ cτ (1 + ‖ξ‖Rd ) for a.e. x ∈ �3, all ξ ∈ R
d with cτ > 0,

(iv) (η1−η2)·(ξ1−ξ2) ≥ −mτ‖ξ1−ξ2‖2 for all ηi ∈ ∂jτ (x, ξ i ), ξ i ∈ R
d , i = 1, 2

for a.e. x ∈ �3 with mτ > 0.
In the hypotheses H(jν) and H(jτ ), the subdifferential is taken with respect to the

last variables of jν and jτ , respectively.
Next, we define the operators A, B ∈ L(V , V ∗) by

〈Au, v〉V ∗×V = 〈A ε(u), ε(v)〉H, 〈Bu, v〉V ∗×V = 〈Bε(u), ε(v)〉H (48)

for u, v ∈ V , and the operator R : V → V∗ by

〈(Rw)(t), v〉V ∗×V =
〈∫ t

0
C (t − s)ε(w(s)) ds, ε(v)

〉

H
(49)

for all w ∈ V , v ∈ V , a.e. t ∈ (0, T ).
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To obtain the weak formulation of the problem (40)–(46), we assume the suffi-
cient smoothness of the functions involved, use the equilibrium equation (40) and the
Green formula. We obtain

〈σ (t), ε(v))H = 〈f 0(t), v〉H +
∫

�

σ (t)ν · v d�

for v ∈ V . Taking into account the boundary condition (42) and (43), we have

〈σ (t), ε(v)〉H −
∫

�3

σ (t)ν · v d� = 〈f (t), v〉, (50)

where f ∈ V∗ is given by 〈f (t), v〉 = 〈f 0(t), v〉H + 〈f N(t), v〉L2(�2;Rd ) for v ∈ V .
On the other hand, by the ortogonality relation (cf. (6.33) in [23]), we get

∫

�3

σ (t)ν · v d� =
∫

�3

(σν(t)vν + σ τ (t) · vτ ) d�. (51)

The contact and friction boundary conditions (44) and (45) can be equivalently
formulated as follows

−σν(t)r ≤ j0
ν (uν; r) for all r ∈ R, −σ τ (t) ·ξ ≤ j0

τ (uτ ; ξ) for all ξ ∈ R
d . (52)

Using (41), (48), (51), and (52), from (50), we obtain the following hemivaria-
tional inequality which is a weak formulation of the problem (40)–(46): find
u : (0, T ) → V such that u, u′ ∈ V and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈Au′(t) + Bu(t) + (Ru)(t), v〉 +
∫

�3

(
j0
ν (uν; vν) + j0

τ (uτ ; vτ )
)

d�

≥ 〈f (t), v〉 for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0.

(53)

6.2 Existence and uniqueness for contact problem

Let X = L2(�3;Rd) and consider the functional J : X → R defined by

J (v) =
∫

�3

(jν(x, vν(x)) + jτ (x, vτ (x))) d� for all v ∈ X. (54)

Following [25, Theorem 5.1] and [23, Corollary 4.15], we recall the following
properties of the functional J .

Lemma 14 Under the hypotheses H(jν) and H(jτ ), if, in addition,
{
either jν(x, ·) or − jν(x, ·) is regular and
either jτ (x, ·) or − jτ (x, ·) is regular, (55)

then the functional J defined by (54) satisfies
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(i) J is Lipschitz continuous on bounded subsets of X,
(ii) ‖∂J (v)‖X∗ ≤ c1 (1 + ‖v‖X) for all v ∈ X with c1 = max{cτ , cν},

(iii) for all v, w ∈ X, ξ ∈ ∂J (v) and η ∈ ∂J (w), we have

〈ξ − η, v − w〉X∗×X ≥ −m3‖v − w‖2
X (56)

with m3 = mν + mτ ,
(iv) for all v, w ∈ X, we have

J 0(v; w) =
∫

�3

(
j0
ν (vν; wν) + j0

τ (vτ ; wτ )
)

d� (57)

where J 0(v; w) denotes the directional derivative of J at a point v ∈ X in the
direction w ∈ X.

Under our notation, we associate with the hemivariational inequality (53) the
following inclusion: find u ∈ V such that u′ ∈ V and

⎧
⎪⎪⎨

⎪⎪⎩

〈Au′(t) + Bu(t) + (Ru)(t) − f (t), v〉 + J 0(γu(t); γ v) ≥ 0

for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0.

(58)

Note that if the hypotheses H(jν) and H(jτ ) hold, then every solution to (58) is
a solution to (53). The converse holds provided jν and jτ satisfy the regularity con-
dition (55). These facts follow from the definition of the Clarke generalized gradient
and Lemma 14.

The existence, uniqueness, and regularity result for the hemivariational inequality
(53) is given in the following result.

Theorem 15 If the hypotheses H(A ), H(B), H(C ), H(f ), H(jν), and H(jτ ) and
regularity condition (55) hold and the inequality m2 > (mν + mτ )‖γ ‖2 is satisfied,
then problem (53) has a unique solution u ∈ H 1(0, T ; V ).

Proof It follows from H(A ) and H(B) that the operators A and B defined by (48)
satisfy H(A) with mA = m1 and H(B) with mB = m2, respectively. It is obvious
from the definition of R (see (49)) and hypothesis H(C ) that H(E) and H(q) are
satisfied with E = I and q = C . Moreover, we put M = γ ∈ L(V , X), γ is the
trace operator. It is a consequence of Lemma 14 that the functional J given by (54)
satisfies H(J ) with cJ = c1 and mJ = m3 (see Lemma 14). Also H(M) follows
easily by the properties of the trace operator. The conclusion is a consequence of
Theorem 11, which completes the proof of this theorem.

We say that a couple of functions (u, σ ) which satisfies (41) and (53) is called
a weak solution to Problem P . We conclude that, under the assumptions of Theo-
rem 15, Problem P has a unique weak solution. Moreover, the weak solution has the
following regularity u ∈ H 1(0, T ; V ), σ ∈ L2(0, T ; L2(
, Sd)), and Div σ ∈ V∗.
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6.3 Numerical analysis of contact problem

In this section, we will apply the results from Section 5 to establish an optimal
order error estimate for the fully discrete solution of the contact problem in Prob-
lem P . Here, we consider the frictionless boundary condition on �3, i.e., the frictional
boundary (45) will be reduced to

σ τ (t) = 0 on �3. (59)

In addition, without loss of generality, we may assume that u0 = 0. We use the same
the spaces as introduced in Section 6.1. Then, consider the trace operator γ : V →
L2(�3;Rd). It follows from the Sobolev trace theorem that

‖γ v‖L2(�3;Rd ) ≤ c0‖v‖V for all v ∈ V (60)

for some constant c0 > 0, which depends only on 
, �1, and �3. Let X = L2(�3)

and define the operators γν : L2(�3;Rd) → X, γνv = vν for v ∈ L2(�3;Rd), and
M = γν ◦ γ : V → X. We also consider the functional J : X → R defined by

J (v) =
∫

�3

jν(x, vν(x)) d � for all v ∈ X.

If either jν(x, ·) or −jν(x, ·) is regular and H(jν) holds, then by Lemma 14, (48) and
(49), the contact problem (40)–(46) with jτ = 0 has following equivalent variational
formulation.

Problem 16 Find u ∈ V such that u′ ∈ V and⎧
⎪⎪⎨

⎪⎪⎩

〈Au′(t) + Bu(t) + (Ru)(t) − f (t), v − u(t)〉
+ J 0(γu(t); γ v − γu(t)) ≥ 0 for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = 0.

(61)

From Theorem 15, we deduce that under the hypotheses H(A ), H(B), H(C ),
and H(f ), H(jν). If either jν(x, ·) or −jν(x, ·) is regular and the inequality m2 >

(mν + mτ )‖γ ‖2 hold, then Problem 16 has a unique solution u ∈ H 1(0, T ; V ).
Next, we pass to the numerical approximation of Problem 16. Likewise, in

Section 5, for an integer N > 0, let k = T
N

be the time step length. For simplicity, we
suppose that 
 is a polygonal/polyhedral domain and express the three parts of the
boundary, �k , k = 1, 2, 3, as a union of closed flat components with disjoint interiors

�j = ∪ij
i=1�j,i , 1 ≤ j ≤ 3.

Subsequently, we consider a regular family of meshes {T h} that partition 
 into
triangles/tetrahedrons compatible with the splitting of the boundary ∂
 into �j,i ,
1 ≤ i ≤ ij , 1 ≤ j ≤ 3. This means that if the intersection of one side/face of
an element with one set �j,i has a positive measure with respect to �j,i , then the
side/face lies entirely in �j,i . Corresponding to the family {T h}, we define the linear
element space

V h = {
vh ∈ C(
;Rd) | vh|U ∈ P1(U)d, U ∈ T h, vh = 0 on �1

}
,
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where P1(U)d denotes a set of all linear functions whose domain of definition is U

(cf. [16, p. 70]).
Now, we are in a position to formulate the following fully discrete approximation

problem for Problem 16.

Problem 17 Find uhk = {uhk
n } ⊂ V h such that uhk

0 = 0 and
{ 〈Aδuhk

n + Buhk
n + Rk

nu
hk, vh − uhk

n 〉 + J 0(Muhk
n ; Mvh − Muhk

n )

≥ 〈f n, v
h − uhk

n 〉 for all vh ∈ V h
(62)

for all n = 1, 2, . . . , N .

In the sequel, we assume that the solution of Problem 16 has the following
additional regularity

{
u ∈ H 1(0, T ; H 2(
)), u′′ ∈ L2(0, T ; V ),

uν |�3,i
∈ C(0, T ; H 2(�3,i )), σν |�3,i

∈ C(0, T ; L2(�3,i ))
(63)

for 1 ≤ i ≤ i3. Then, the function (t, x) → u(t, x) is continuous. This means that
the pointwise values of u are well-defined. So, take vh

n = �hun ∈ V h to be the finite
element interpolant of un(x) = u(tn, x), where �hun denotes the piecewise constant
Lagrange interpolation of un (cf. [16, p. 122]). We use the Céa-type inequality (13)
to get

max
1≤n≤N

‖un − uhk
n ‖2

V ≤ C

[
k2 + max

1≤n≤N
‖un − �hun‖2

V + k

N∑

n=1

(
‖δ(un − �hun)‖2

V

+‖un,ν − �hun,ν‖X + |Sl(�
hun)| + ‖δn‖2

V

)]
, (64)

where

δn = δun − u′
n,

Sn(v) = 〈Au′
n + Bun + Rnu − f n, v − un〉 + J 0(Mun; Mv − Mun).

It follows from [13, Lemma 11.5] that

‖δn‖V ≤ ‖u′′‖L1(tn−1,tn;V ).

This together with Hölder inequality implies that

‖δn‖2
V ≤ k‖u′′‖2

L2(tn−1,tn;V )

and

k

N∑

n=1

‖δn‖2
V ≤ k2‖u′′‖2

L2(0,T ;V )
. (65)

Next, we use the fact

δ(un − �hun) = 1

k

∫ tn

tn−1

(
u′(s) − �hu′(s)

)
ds
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to obtain

‖δ(un − �hun)‖2
V ≤ 1

k

∫ tn

tn−1

∥∥u′(s) − �hu′(s)
∥∥2

V
ds.

Hence, we have

k

N∑

n=1

‖δ(un − �hun)‖2
V ≤

∫ T

0

∥∥u′(s) − �hu′(s)
∥∥2

V
ds

and

k

N∑

n=1

‖δ(un − �hun)‖2
V ≤ Ch2‖u′‖2

L2(0,T ;V )
. (66)

Recall that �hun,ν is the finite element interpolant of un,ν on each component �3,i .
Combining (66) with the hypothesis (63), we get

k

N∑

n=1

‖un,ν − �hun,ν‖X ≤ Ch2
i3∑

i=1

‖uν‖L∞(0,T ;H 2(�3,i ))
. (67)

On the other hand, we estimate the residual quantity |Sn(v)|. To this end, we use
the fact (see (50), (51), and (59)) that

〈Au′
n + Bun + Rnu − f n, v〉 =

∫

�3

σν(t)vν d� for all v ∈ V

to get

Sn(v) =
∫

�3

(
σn,ν + ξn

)(
�hun,ν − un,ν

)
d�

for some ξn ∈ ∂J (Mun). This implies

|Sn(�
hun)| ≤ C‖�hun,ν − un,ν‖X,

and, therefore, we have

k

N∑

n=1

|Sn(�
hun)| ≤ Ch2

i3∑

i=1

‖uν‖L∞(0,T ;H 2(�3,i ))
.

This estimate together with (65)–(67) implies the following optimal estimate for the
fully discrete scheme (62).

Theorem 18 Assume that u and uhk are solutions to Problems 16 and 17, respec-
tively, and the regularity condition (63) holds. Then, we have

max
1≤n≤N

‖un − uhk
n ‖V ≤ C(k + h),

where C > 0 is independent of k and h.

In the optimal error estimate of Theorem 18, the method is of first order in spatial
mesh size and in the time step.
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