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ON THE GEOMETRY OF THE COBLE-DOLGACHEV SEXTIC

NGUY�EN QUANG MINH - SLAWOMIR RAMS

In this paper, we study the intersection of the Coble-Dolgachev sextic
with special projective spaces. Let us recall that the Coble-Dolgachev sextic
C6 is the branch divisor of the double cover map from SUX (3) to P

8 = |3�|,
where SUX (3) is the moduli space of semi-stable vector bundles of rank 3 and
trivial determinant on a �xed curve X of genus 2, and � is the Riemann theta
divisor of Pic1(X). The adjunction of divisors is an involution of Pic1(X)
that lifts to a non-trivial involution τ of |3�|. The �xed locus Fix(τ ) is the
disjoint union of two projective spaces P

4
+ and P

3
− . So we study the geometry

of C6∩P
4
+ , which should be a degree 6 threefold in P

4
+ . It is in fact the union

of the Igusa-Segre quartic and a tangent double hyperplane. As a result, we
will also be able to determine the geometry of C6 ∩ P

3
− .

Introduction.

In the study of moduli spaces of vector bundles over algebraic (projective)
curves, it is striking to see that we have a good geometric grasp of only very few
examples. Although a lot has been done about explicit moduli spaces of vector
bundles of rank 2, less is known about moduli spaces for rank 3, even on curves
of genus 2.
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Let X be a curve of genus 2. Let � be the canonical Riemann theta divisor
of Pic1(X ). We denote by SUX (3) the moduli space of vector bundles on X of
rank 3 with trivial determinant. This projective variety of dimension 8 is the
double cover of P8 = |3�| branched along a hypersurface of degree 6 called
the Coble-Dolgachev sextic and which we will denote C6. The adjunction map

L �→ ωX ⊗ L−1

is an involution of Pic1(X ) that induces an involution τ on |3�|. Then its �xed
locus Fix(τ ) is the disjoint union of a P4 and a P3. We call these spaces

Fix(τ ) = P
4
+ � P

3
−.

The goal of this paper is to study the (not necessarily irreducible) scheme

VNR = C6 ∩ P
4
+.

The main theorems surprisingly (or not) introduce (the compacti�cation of) the
moduli space of principally polarized Abelian surfaces with level-2 structure,
the Igusa-Segre quartic, into the picture.

Theorem A. The scheme VNR is a degree 6 scheme in P
4
+ which is the union of

the Igusa-Segre quartic I4 and a double hyperplane V0 ∼= P3 .

It is somehow natural to see the Igusa-Segre quartic appear because it is the
quotient of the moduli space SUX (2) of vector bundles of rank 2 by the action
of Jac(X )2 (subgroup of 2-torsion points of Jac(X )), and the way it happens
depends on the choice of a symplectic isomorphism φ from Jac(X )2 to (F2)

4 .
Which is exactly the data of a level-2 structure. Then a corollary of Theorem A
follows easily from the well-known geometry of the Igusa-Segre quartic.

Theorem B. The hyperplane V0 is tangent to I4 at the point corresponding to
the trivial vector bundle O

⊕3
X from the SUX (3) perspective, but also to the point

(Jac(X ), φ) in the moduli space I4 = A2(2).

Thanks to Theorem A, we can translate the beautiful geometry of I4 in
terms of vector bundles through the analysis of the 2-torsion points of Jac(X ).
And that allows us to understand the other intersection.

Theorem C. The surface SNR = C6 ∩ P3− is a hexahedron, i.e. the union of 6
planes in P

3
−.
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This hexahedron realizes the (154, 203)-con�guration. It contains 15
lines, each meeting some of the others at 4 intersection points. There are 20
intersection points, through each of which pass 3 lines.

In the following, we will denote by X a smooth projective curve of genus
g = g(X ) ≥ 2 over the �eld of complex numbers C.

1. The moduli space of vector bundles: generalities.

Before focusing our study to the case of rank-3 vector bundles, we will
�rst expose a few useful facts about the case of general rank. Let E be a vector
bundle of rank r on X . We de�ne its determinant to be

det(E) =

r�
E .

It is a line bundle whose degree will be called the degree of the vector bundle E
and denoted deg(E). There is also a notion of slope of E , it is the number

µ(E) =
deg(E)

r
.

A vector bundle E is said to be semi-stable (respectively stable) if for any proper
subbundle F the following inequality holds

µ(F) ≤ µ(E) (resp. µ(F) < µ(E)) .

In order to deal with moduli spaces, let us introduce an equivalence relation
due to C.S. Seshadri [14]. Every semi-stable vector bundle E admits a strictly
increasing Jordan-Hölder �ltration

0 = E0 ⊂ E1 ⊂ . . . ⊂ Ek−1 ⊂ Ek = E,

such that each successive quotient Ei/Ei−1 is stable, for i = 1, . . . , k. We call

gr(E) =

k�

i=1

Ei/Ei−1

the associated graded bundle of E . Finally, two semi-stable vector bundles E
and E � on X are said to be S-equivalent if gr(E) ∼= gr(E �):

E ∼S E �
def
⇐⇒ gr(E) ∼= gr(E �).
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In particular, two stable bundles E and E � are S-equivalent if and only if they
are isomorphic.

Now, if we �x a line bundle L on the curve X , we will denote by SUX (r, L)
the (coarse in general) moduli space of S-equivalence classes of semi-stable
vector bundles on X of rank r and �xed determinant L . We will also denote by
UX (r, d) the moduli of S-equivalence classes of semi-stable vector bundles on
X of rank r and degree d . The construction of the latter moduli space is due
to C. S. Seshadri [14], and he shows that it is an irreducible normal projective
variety of dimension

(1.1) dimUX (r, d) = r2(g − 1)+ 1,

where g is the genus of the smooth complete curve X . Moreover, UX (r, d) is a
�bration over Picd (X ), the space of line bundles (or divisors) of degree d on X :

det : UX (r, d)→ Picd(X ).

The �ber over a point L of Picd (X ) is exactly SUX (r, L). And we see that

(1.2) dimSUX (r, L) = (r
2 − 1)(g − 1).

It also follows that the spaces SUX (r, L) are also normal irreducible and have
universal properties similar to those of UX (r, d). For instance, for both kinds
of spaces, UX (r, d) and SUX (r, L), the singular points correspond exactly to
classes of decomposable bundles, i.e. strictly semi-stable bundles, except when
g = r = 2 and d is even. J.-M. Drezet and M. S. Narasimhan [3] also prove
that these spaces are locally factorial, i.e. Weil divisors are Cartier divisors, and
manage to describe the Picard groups. Let F be a �xed vector bundle on X of
degree (−d + r(g(X )−1))/(r, d) and rank r/(r, d) and L be a �xed line bundle
of degree d . We de�ne the sets

�F = {E ∈UX (r, d) : h
0(X, E ⊗ F) > 0},

�F,L = {E ∈ SUX (r, L) : h
0(X, E ⊗ F) > 0}.

According to A. Hirschowitz [5], we can �nd some convenient vector bundles
F so that there exists a stable bundle E ∈UX (r, d) making h

0(X, E ⊗ F) = 0.
In this case, �F ⊂ UX (r, d) and �F,L ⊂ SU X (r, L) are divisors.

Theorem 1.1. (J.-M. Drezet, M. S. Narasimhan [3]). Let F be a �xed conve-
nient vector bundle on X of degree (−d + r(g(X )− 1))/(r, d) and rank r/(r, d)
and L be a �xed line bundle of degree d .
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(i) The line bundles

(1.3)
�UX (r,d) = OUX (r,d)(�F ),

�SU X (r,L) = OSU X (r,L)(�F,L)

associated to the divisors �F ⊂ UX (r, d) and �F,L ⊂ SUX (r, L)) do not
depend on the choice of F .
(ii) The Picard group of SUX (r, L) is generated by �SU X (r,d) .
(iii) The canonical sheaf of SU X (r, L) is given by

(1.4) ωSU X (r,L) = �SU X (r,L)
−2(r,d).

This generator of the Picard group is often called the generalized theta
divisor, for it generalizes the traditional notion of theta divisor on Jacobians
of curves. If X is a smooth projective algebraic of genus g, then the variety
Picg−1(X ) has a canonical Riemann theta divisor Wg−1 or �Picg−1(X ) de�ned as

�Picg−1(X ) = Wg−1 = {L ∈ Pic
g−1(X ) : h0(X, L) > 0},

which is a translate of the theta divisor on Jac(X ). If no confusion arises, the
generalized theta divisor will be denoted by �gen , and the canonical Riemann
theta divisor of Picg−1(X ) just by �.

We will now focus our attention to moduli spaces with trivial determinant
SUX (r, OX ) = SUX (r). For any E ∈ SUX (r), we de�ne

DE = {L ∈ Pic
g−1(X ) : h0(X, E ⊗ L) > 0} ⊂ Picg−1(X ).

It is known that DE is either the whole space Pic
g−1(X ) or a divisor of the linear

system |r�|. The former case only happens for some special E ∈ SUX (r), so
we get a rational map �r :

(1.5) SUX (r)
�r

−−− > |r�|,
E �−→ DE .

The map �r is de�ned by the linear system |�
gen |. This follows from a theorem

of A. Beauville, M. S. Narasimhan and S. Ramanan [2] which states that there
is a canonical isomorphism

(1.6) H 0(SUX (r), �gen)∗ ∼= H 0(Picg−1(X ), r�).
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2. The Heisenberg group and the Schrödinger representation.

Let us �x p a prime number and consider the group (Fp)
2g = (Fp)

g×(Fp)
g .

We let h( , ) : (Fp)
2g × (Fp)

2g → Fp be the standard symplectic form on F
2g

de�ned by the matrix �
0g Ig
−Ig 0g

�

.

Another way to express the standard symplectic form is

((Fp)
g × (F̌p)

g)× ((Fp)
g × (F̌p)

g) −→ F
p,

(u, α)× (v, β) �−→ β(u) − α(v),

where (F̌p)
g = Hom((Fp)

g, Fp) denotes the group of linear forms on the (Fp)-
vector space (Fp)

g . Let Hg(p) or H(p) be the central extension of the group
(Fg)

2p with center isomorphic to the group µp of p-th root of unity:

1→ µp →H(p)→ (Fp)
2g → 0.

This group is called the Heisenberg group. It is set-theoretically equal to
(Fp)

g × (F̌p)
g × µp and the group law is de�ned by:

(u, α, x ) · (v, β, y) = (u + v, α + β, e2π i(β(u)−α(v))/px y).

We then de�ne the linear Schrödinger representation of H(p) in C
pg =�

v∈(Fp )g
C fv by extending linearly the action on the basis elements fv :

(u, α, x ) · fv = xe2π iα(v)/p fu+v.

If we look at the induced projective Schrödinger representation of H(p) in
P(Cpg ), it is clear that the center µp acts trivially on the projective space. In

other words, we have a projective representation of (Fp)
2g in P

pg−1 , which lifts
to the linear Schrödinger representation.

Let X be a curve of genus g. (Jac(X ), �Jac(X )) is a principally polarized
abelian variety and Jac(X )p its subgroup of p-torsion points. Jac(X )p acts on
Jac(X ) by translation:

t� : x �→ x + �,

and also at the level of divisors:

t∗� (D) = D − �.

By the theorem of the square, we see that the linear system |p�Jac(X )| is invariant
under translations by p-torsion points. Similarly, if we identify Picg−1(X ) with
Jac(X ), Jac(X )p acts on |p�|. This action leaves the map

�p : SUX (p)→ |p�|

equivariant. We tie this with the Schrödinger representation thanks to the
following well known theorem (see for instance [6]):
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Theorem 2.1. Let us �x a symplectic isomorphism φ : Jac(X )p → (Fp)
2g ,

where the symplectic structure on Jac(X )p is the Weil pairing de�ned by the
cup-product on H 1(X, Fp) ∼= Jac(X )p . There exists a unique isomorphism

� : |p�Jac(X )| ∼= P
pg−1

which is φ-equivariant with respect to the action of Jac(X )p on |p�Jac(X )| by
translations and the action of (Fp)

2g on Ppg−1 by means of the Schrödinger
representation.

The choice of φ is called a level- p structure. Of course, we can restate
the theorem for |p�|, where � = �Picg−1(X ) , when we identify Pic

g−1(X ) with
Jac(X ).

3. The Coble-Dolgachev sextic.

From now on, X will denote a smooth projective curve of genus g = 2,
therefore hyperelliptic. Let us restrict ourselves to the cases r = 2 and r = 3,
i.e. vector bundles of rank 2 and rank 3. We keep the notation � for the
canonical Riemann theta divisor of Pic1(X ) and �gen for the generalized theta
divisor of either UX (r, d) or SUX (r, L). In our particular case, the maps �r of
(1.5) are well understood.

Theorem 3.1.

(i) The map �2 : SUX (2)→ |2�| ∼= P3 is an isomorphism.

(ii) The map �3 : SUX (3)→ |3�| ∼= P8 is a �nite map of degree 2.

Proof. A proof of (i) can be found in [8]. For (ii), a �rst unpublished proof
was given by D. Butler and I. Dolgachev using the Verlinde formula, but Y.
Laszlo produced another beautiful proof in [7] by making a Hilbert polynomial
computation.

It is easy to see that for all L ∈ Jac(X ), we have SUX (r) ∼= SUX (r, L).

The double cover of P8 is the subject of study of this paper. If we apply
(1.1), (1.2), (1.3) and (1.4) to the case of rank 2 and 3 and genus 2, we see that

dimUX (2, 0) = 5 ,(3.1)

dimSUX (3) = 8 ,(3.2)

ωSUX (3) = OSUX (3)(−6�
gen) ,(3.3)
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Let B be the branch divisor of �3, of degree b in P8. So there is a divisor D of
degree b/2 in P8 so that B ∼lin 2D. The Hurwitz formula applied to the double
cover gives:

ωSUX (3) = �∗
3(ωP8 ⊗OP8 (D)),

= �∗
3(OP8 (−9+

b

2
)),

−6�gen = (−9+
b

2
)�gen by (1.6) and (3.3).

So b = 6. This leads to the next de�nition, following Laszlo�s denotation.

De�nition 3.2. The branch divisor of �3 : SUX (3)→ P8 is called the Coble-
Dolgachev sextic, which we will denote by C6.

The name of the sextic came to be by analogy with the Coble quartic (see
[9], [13]), and the fact that it was conjectured by I. Dolgachev that it is the dual
of the Coble cubic, a result later proved by A. Ortega [11] (see also [10]).

Remark 3.3. Since P
8 is smooth, we know what the singular loci of SUX (3)

and C6 the branch locus of the double cover are equal. We will denote this
variety

(3.4) � = Sing(SUX (3)) = Sing(C6).

We will now describe the involution of the double cover map �3. Recall
that X is a curve of genus 2, so it is hyperelliptic. We call h its hyperelliptic
involution. Let τ be the adjunction involution on Pic1(X ) given by

(3.5)
Pic1(X )

τ
−→ Pic1(X ),

L �−→ ωX ⊗ L−1.

It induces, by pulling back, an involution on |3�|, which we still denote by τ .
Let also τ � be the involution of SUX (3) given by

(3.6) SUX (3)
τ �

−→ SUX (3),
E �−→ E∗,

where E∗ denotes the dual vector bundle of E . Then the double cover involution
σ is (see for instance [11])

σ = τ � ◦ h∗ = h∗ ◦ τ � : E �→ h∗E∗,

that is the rami�cation locus of SUX (3) corresponds exactly to

C6
∼= {E ∈ SUX (3) : σ (E) = h∗E∗ ∼S E}

We end this section with a useful consequence of the theorem of Riemann-Roch:

(3.7) τ ◦�3 = �3 ◦ τ �.

This implies in particular,
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lemma 3.4. Let Fix(τ ) and Fix(τ �) be the �xed loci of τ and τ � respectively. If
we identify the branch locus and the rami�cation locus C6 of the double cover
�3 of P

8, then

(3.8) Fix(τ ) ∩ C6
∼= Fix(τ �) ∩ C6.

4. Involution-�xed spaces and intersection.

Now that we have introduced the notations and the algebraic varieties of
study, we get to the heart of the problem. Recall - (3.5) - that the involution
τ : |3�| → |3�| is induced by the involution of Pic1(X ) de�ned by L �→

ωX ⊗ L−1 . The involution τ is actually an involution on the vector space
H 0(Pic1(X ), O(3�)), therefore its �xed locus Fix(τ ) is the disjoint union of
the projectivization of the invariant and anti-invariant spaces:

Fix(τ ) = Fix(τ )+ � Fix(τ )−,

= P
4
+ � P

3
−.

We want to study the geometry of the intersection

VNR = C6 ∩ P
4
+.

First we have to show that VNR is not P
4
+, i.e. P4+ �⊂ C6. This fact is known as

discussed in the proof of Proposition 2.8.1 of [11] and in [10].
Recall that at the level of vector bundles, i.e. in SUX (3), we also have an

involution τ � (3.6), which, in virtue of (3.7), allows us to de�ne

Fix(τ �)+ = �
−1
3 (Fix(τ )+) = �

−1
3 (P

4
+),

Fix(τ �)− = �−1
3 (Fix(τ )−) = �−1

3 (P
3
−).

Then we deduce from (3.8) that

VNR = C6 ∩ P
4
+ = C6 ∩ Fix(τ

�)+.

Our approach is now to construct vector bundles on X which belong to VNR .
Recall that we denoted by h the hyperelliptic involution of X .

Lemma 4.1. Let F ∈ SUX (2) be a vector bundle on X of rank 2 with trivial
determinant. Then

h∗F∗ = F and F∗ = F.
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Proof. Since the action of the hyperelliptic involution h is trivial on |2�|, it
follows that h∗F = F . Also F = det(F)⊗ F∗ = F∗ , since we assumed that F
had trivial determinant. And that proves the lemma. �

Let

V0 = {OX } ⊕ SUX (2) = {OX ⊕ F : F ∈ SUX (2)} ∼= P
3,

where the isomorphism with P
3 comes from Theorem (1.3) (i).

Proposition 4.2. Let S2 be the second symmetric power map. Then,

V0 ∈ VNR and S
2
SUX (2)∈ VNR.

Proof. Let us �x F ∈ SUX (2). We �rst notice that the vector bundle S
2F is of

rank 3 and has trivial determinant. Lemma (3) shows that OX ⊕ F and S2F are
in both C6 and Fix(τ

�), so they belong to the intersection. We want then to prove
that they actually belong to Fix(τ �)+. It follows directly from Proposition 5.2.
of [12] that S2SUX (2) is a subset of Fix(τ

�)+, and so does V0, by the fact that
O
⊕3
X ∈ V0 ∩ S2SUX (2) and a connectedness and irreducibility argument. �

As a direct consequence of the Proposition, VNR is reducible. Moreover,
Jac(X )2 acts on SUX (2) by

Jac(X )2 × SUX (2) −→ SUX (2),
(�, F) | − − − − > F ⊗ � .

This natural action becomes trivial on S2SUX (2) ⊂ SUX (3), so the map

S2 : SUX (2) −→ SUX (3) ,
F | − −− − > S2F ,

factors through

(4.1) S2 : SUX (2)/Jac(X )2 → VNR ⊂ SUX (3) .

It turns out (see [12]) that this map (4.1) is an embedding.
Let us �x a level-2 structure on Jac(X ), identi�ed with Pic1(X ), that is a

symplectic isomorphism

φ : Jac(X )2 → (F2)
4.
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By Theorem 2.1, there is a unique isomorphism

� : |2�| ∼= P
3,

that is φ-equivariant. Again, � is the canonical Riemann theta divisor of
Pic1(X ). We also know that the map of Theorem (1.1) (i)

�2 : SUX (2)→ |2�|

is a φ-equivariant isomorphism. So the isomorphism

(4.2) � ◦�2 : SUX (2) ∼= P
3

is compatible with the level-2 structure φ . Through the isomorphism (4.2), we
identify

SUX (2)/Jac(X )2 ∼= P
3/(F2)

4.

It is known (see [1] Vol. IV, p. 210) that this variety is isomorphic to a quartic
hypersurface in P

4, which H. Baker calls the Segre quartic, the dual variety
to the Segre cubic. But it is also commonly known as the Igusa quartic from
its modular interpretation as (the Satake compacti�cation of) the moduli space
A2(2) of Abelian surfaces with level-2 structure [4]. We will hence call it the
Igusa-Segre quartic I4. But the map (4.1) embeds P

3/(F2)
4 into VNR ⊂ P

4
+, so

it has to be the Igusa-Segre quartic (in P4+.)

Theorem A. The scheme VNR is a degree 6 scheme in P
4
+ which is the union of

the Igusa-Segre quartic

I4 = S2(SUX (2)) = S2(SUX (2)/Jac(X )2)

and a double hyperplane V0 ∼= P
3.

Proof. We have already seen that as a consequence of Proposition 4.2 the
hyperplane V0 (4.1) lies in VNR . But, as stated in Section 1, the singular locus�

of C6 and SUX (3) (3.4) consists of decomposable vector bundles. So V0 ⊂ � ,
therefore the intersection multiplicity of P4+ along V0 is at least 2. Moreover,
we have just shown that I4 ⊂ VNR . By degree considerations, VNR has to be

VNR = I4 ∪ V0,

V0 coming with multiplicity 2. �
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5. Vector bundles and the geometry of I4.

In this section, we will try to recover the geometry of I4. More precisely,
we will identify the 15 lines and 15 nodes �tting in the symmetric (153)-
con�guration in terms of vector bundles.

We know that, scheme-theoretically,

� ∩ P
4
+ ⊂ Sing(C6 ∩ P

4
+) = Sing(VNR).

Since I4 is a reduced component of VNR and V0 comes with multiplicity 2, we
see that the support of Sing(VNR) is

support(Sing(VNR)) = Sing(I4) ∪ V0.

Before we can actually investigate the intersection � ∩ P
4
+ , we �rst intersect �

with the whole �xed locus Fix(τ ), which, by Lemma 3.4, is the same thing as
intersecting with Fix(τ �) in SUX (3).

Proposition 5.1. Let us consider C6 and its singular locus � from the rami�-
cation locus standpoint, i.e. in SUX (3). Then

� ∩ Fix(τ �) =
�

�∈Jac(X )2

V�,

where V0 still denotes {OX } ⊕ SUX (2) and for all � ∈ Jac(X )2 − {0},

V� = {L� ⊕ F : F ∈ SUX (2, L�) and t�(F) = F},

where L� is the line bundle of Pic0(X ) corresponding to � ∈ Jac(X ), t� is the
translation automorphism of Pic1(X ) acting naturally on SUX (2, L�) by tensor
product.

Proof. Let E ∈ �∩ Fix(τ �). We will study two cases. First, suppose E is S-
equivalent to L ⊕ F , for a line bundle L ∈ Pic0(X ) and a stable vector bundle
F ∈ SUX (2, L

−1), and
L ⊕ F ∼= L−1 ⊕ F∗.

Since we are assuming here that F is stable, then F∗ is also stable and
Hom(L, F∗) = 0. So

L ∼= L−1andF ∼= F∗.

Consequently, L = L� ∈ Jac(X )2 is a 2-torsion point. But

F = F∗ ⊗ det(F) = F∗ ⊗ L�,

and, since F ∼= F∗ , it follows that F ∼= F⊗L� . Notice that this last condition is
vacuous when � = 0. So E ∈

�
�∈Jac(X )2

V� . Next, suppose that E is completely

decomposable, i.e. it is S-equivalent to L1 ⊕ L2 ⊕ L3, with Li ∈ Pic0(X )
and L1 ⊗ L2 ⊗ L3 = OX . Then E ∼= E∗ if and only if {L1, L2, L3} =
{L−11 , L−12 , L−13 }, thus if and only if {L1, L2, L3} = {L, L−1, Ox}. Therefore
E ∈ V0. Finally, the reverse inclusion is easy to check. �
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Remark 5.2. It is easy to see that

(5.3) V0 ∩ V� = {L� ⊕ L� ⊕OX } for � �= 0,

(5.4) V� ∩ Vη = {L� ⊕ Lη ⊕ L�+η} for � �= η and �, η �= 0.

Remark 5.3. In view of (5.1), (5.2) and the fact that V0 ⊂ VNR , it follows that
only the V� , � �= 0, contribute to the singular locus of I4.

Let us now recall that there are maps

UX (2, 0)
ν
−→ �

↓π

Jac(X )

given by

(5.5) ν : F �→ F ⊕ det(F)−1,

(5.6) π = det : F �→ det(F).

The map ν is clearly surjective and it is also injective on the open set of stable
bundles, so ν is a birational map. It is well known that π is a projective bundle,
the quotient of the trivial projective bundle Jac(X )× SUX (2) under the (proper
and discontinuous) diagonal action of Jac(X )2 . The �ber of π over L ∈ Jac(X )
is just the projective space SUX (2, L). Since Jac(X ) is smooth,UX (2, 0) is also
smooth. Then, the �ber over a singular point of � , i.e. a point corresponding
to a vector bundle of the form L1 ⊕ L2 ⊕ L3, such that L1 ⊗ L2 ⊗ L3 ∼= OX ,
consists of three points:

ν−1(L1 ⊕ L2 ⊕ L3) = {L1 ⊕ L2, L1 ⊕ L2, L2 ⊕ L3},

neither two of which lie in the same P3 �ber of the map det : UX (2, 0)→ J .
So we just proved the follwing:

Lemma 5.4. UX (2, 0) is smooth and ν : UX (2, 0) → � is a resolution of
singularities of � . And for L ∈ Pic0(X ), the restriction

νL = ν|SUX (2,L) : SUX (2, L)→ �

is an embedding.
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Let us recall that we had �xed a level-2 structure on Jac(X ) in Section 4,
(4.4):

φ : Jac(X )2 → (F2)
4.

Again, from Theorem 2.1 and the way we identify SUX (2, L) with P
3 for any

L ∈ Pic0(X ), the tensor product action of Jac(X )2 on SUX (2, L) is just the
action of (F2)

4 on P
3 of the Shrödinger representation. It is then easy to see that

for � ∈ Jac(X )2 − {0}, V� is the disjoint union of 2 lines in SUX (2, L�) ∼= P3:

V� = ν� (Fix(t�)) ∼= Fix(t�) ∼= P
1 � P

1.

Looking back at P4+, any line in P4+ should intersect V0 ∼= P3 if it is not
contained in the hyperplane. But we know fromRemark 5.2 that V0∩V� consists
of only one point (set-theoretically), and since the lines of V� are disjoint and
not contained in V0, it follows that only one of them intersects V0.

Lemma 5.5. Let � ∈ Jac(X )2−{0}. V� consists of two lines, one is in P4+, more
precisely in the singular locus of I4 , and the other is in P

3
−. The 15 lines in P

4
+

are exactly the 15 lines forming the singular locus of I4 .

Proof. We know that the 15 lines in P
4
+ are actually in � ∩ P

4
+ by Proposition

5.1. Then by (5.1), (5.2) and Remark 5.3, these 15 lines are in Sing(I4), but the
singular locus of the Igusa-Segre quartic consists of exactly 15 lines already. �

Lemma 5.6. There are in total 35 �nodes�, i.e. the 15 pairs of lines V� intersect
in 35 points: 15 of the nodes lie in P

4
+ and 20 in P

3
− . And through each of the

nodes pass exactly 3 lines.

Proof. From Remark 5.2, a choice of two non-zero 2-torsion points, say � and
η, determines a node L�⊕ Lη⊕ L�+η , but there are 3 ways to get the same node.

So there are

�
15
2

�

/3 = 35 nodes. Since all these nodes lie in the singular

locus � ∩ Fix(τ �), we know from the con�guration of the singular locus of the
Igusa-Segre quartic that 15 nodes lie in P4+ and 20 in P3−. Finally, since

{L� ⊕ Lη ⊕ L�+η} = V� ∩ Vη ∩ V�+η,

it is easy to see that each node is the intersection of three lines. �

The simple combinatorial fact that 15 points lie in P4+ and 20 in P3−

motivates the following theorem.
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Theorem 5.7. Let w( , ) be the Weil pairing on Jac(X )2 , which correspond
to the standard symplectic pairing on (F2)

4 through our choice of a level-2
structure (4.4).

The node V� ∩ Vη is in

�
P4+ if w(�, η) = 0∈ F2,

P
3
− if w(�, η) = 1∈ F2.

Proof. Given �, η∈ Jac(X )2 − {0}, let

E�,η = L� ⊕ Lη ⊕ L�+η ∈ SUX (3).

Then �3(E�,η) is the divisor from the linear system |3�| supported on

DE�,η
= {L ∈ Pic1(X ) : h0(X, L⊗L� )+h

0(X, L⊗Lη)+h
0(X, L⊗L�+η) > 0}.

To determine whether E�,η (more rigorously �3(E�,η)) is in P4+ or P3− , we will
investigate what theta characteristics lie in DE�,η

.

Suppose w(�, η) = 0∈ F2. The Riemann-Mumford relation states that for
any theta characteristic ϑ of Pic1(X ),

h0(X, ϑ)+ h0(X, L� ⊗ ϑ)+ h0(X, Lη ⊗ ϑ)+

+ h0(X, L�+η ⊗ ϑ) ≡ w(�, η) . (mod2)

It follows that any odd theta characteristic ϑ (i.e. h0(X, ϑ) odd) lies in DE�,η
.

By Lemma 2.2 of [12], we conclude that �3(E�,η) = O(DE�,η
) is in P4+.

Conversely, if w(�, η) = 1∈ F2, then we see that any even theta character-
istic lies in DE�,η

, so �3(E�,η) is in P
3
−. �

The Igusa-Segre quartic has another interesting property. The tangent
spaces intersect the quartic along Kummer surfaces. In SUX (2) ∼= P

3, there
is a natural Kummer surface K:

K = {L ⊕ L−1 : L ∈ Jac(X )} ∼= Jac(X )/�−1�.

Theorem B. The hyperplane V0 is tangent to I4 at the point corresponding to
the trivial vector bundle O

⊕3
X from the SUX (3) perspective, but also to the point

(Jac(X ), φ) in the moduli space I4 = A2(2).
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Proof. The action (4.2) of Jac(X )2 on SUX (2) restricts to K so that

K/Jac(X )2 =K.

So the second symmetric power map S2 (4.3) embeds the Kummer surface K

in I4 as the set
K
� = {OX ⊕ L ⊕ L−1 : L ∈ Jac(X )}.

We notice that K� is also in V0. So

K
� ⊆ I4 ∩ V0.

Clearly, 15 of the 16 nodes ofK� are the points p� corresponding to OX ⊕ L� ⊕

L� , for � ∈ Jac(X )2 . For � �= 0, we see (Remark 5.2) that the node p� is

p� = V� ∩ V0,

i.e. the intersection of V0 with the line of V� in P4+ . It is known that the last

node p0 = O
⊕3
X is given by the point of tangency [4], so V0 is tangent to I4 at

p0. Finally, if A is the Abelian surface corresponding to p0 in the moduli space
I4, then

K
� = I4 ∩ Tp0I4 = A/�−1�.

Since K
� ∼= Jac(X )/�−1�, we see that A = Jac(X ). And to make everything

correspond with the Heisenberg group action, there was an underlying choice of
a level-2 structure, which was φ (4.4). So p0 = (Jac(X ), φ). �

6. The hexahedron of P
3
−

.

From Lemma 5.5, we know that there are 15 lines in the intersection

SNR = C6 ∩ P
3
−
∼= C6 ∩ Fix(τ

�)−,

and more precisely in its singular locus, according to Proposition 5.1. This will
allow us to examine and understand the reducible sextic surface SNR . We also
know by Lemma 5.6 that these 15 lines should intersect in 20 points, or nodes.

Proposition 6.1. The 15 lines of SNR realize the (154, 203)-con�guration: 15
lines meet in 20 points. There are 4 intersection points on each line, and there
are 3 lines through each intersection point.
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Proof. We already know that there are 15 lines, 20 intersection points, and 3
lines through each intersection point. We are left to show that on each line lie
4 intersection points. First, we notice that on each pair of lines V� , there are 7
intersection points. Indeed, the choice of � ∈ Jac(X )2 − {0} leaves us with 14
other non-zero 2-torsion points, which obviously go in pairs:

V� ∩ Vη = V� ∩ V�+η = {L� ⊕ Lη ⊕ L�+η}.

Which proves that there are 7 intersection points on the pair of lines V� : 3 on
the line in P4+, therefore 4 on the line in P3− . �

Similarly the 15 lines of SNR are part of its singular locus Sing(SNR). So
when we intersect SNR with a general hyperplane of P3−, we obtain a sextic
plane curve C with at least 15 singular points. Since the arithmetic genus of a
sextic is 10, we see that the C cannot be irreducible.

Proposition 6.2. The plane sextic curve C is a hexagon, i.e. it is the union of 6
lines.

Proof. Say C = C1 ∪ . . . ∪ Ck , where Ci is an irreducible plane curve of
degree di . An irreducible curve of genus g has at most g singular points (this
is not a sharp bound but it will be enough for us.) So the maximal number of
nodes Nmax of C is the maximal number of nodes of the irreducible components
plus the number of intersection points of the components. Let us compute the
number of nodes of each partition of sum 6.

• (d1, d2) = (5, 1) : Nmax ≤

�
4
2

�

+ 5 = 11.

• (d1, d2) = (4, 2): Nmax ≤ 3+ 4× 2 = 11.
• (d1, d2) = (3, 3): Nmax ≤ 1+ 1+ 3× 3 = 11.
• (d1, d2, d3) = (4, 1, 1): Nmax ≤ 3+ 2× 4+ 1 = 12.
• (d1, d2, d3) = (3, 2, 1): Nmax ≤ 1+ 6+ 3+ 2 = 12.
• (d1, d2, d3) = (2, 2, 2): Nmax ≤ 3× 4 = 12.

• (d1, d2, d3, d4) = (3, 1, 1, 1): Nmax ≤ 1+ 3× 3+

�
3
2

�

= 13.

• (d1, d2, d3, d4) = (2, 2, 1, 1): Nmax ≤ 2× 2+ 4× 2+ 1 = 13.

• (d1, d2, d3, d4, d5) = (2, 1, 1, 1, 1): Nmax ≤ 2× 4+

�
4
2

�

= 14.

• (d1, d2, d3, d4, d5, d6) = (1, 1, 1, 1, 1, 1): Nmax ≤

�
5
2

�

= 15.

So we see that the only possible curve is a union of 6 lines, which indeed has 15
nodes. �
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Theorem C. The surface SNR = C6 ∩ P3− is a hexahedron, i.e. the union of 6
planes in P3−.

Proof. To produce the curve C = SNR ∩ P2 of Proposition 6.2, we chose a
general plane. Therefore the sextic surface SNR is completely reducible and is a
hexahedron. And it is easy to check that the hexahedron realizes the (154, 203)-
con�guration. �

Remark 6.3. It is worth noting that P4+ and P
3
− are not in general position at all.

A good way to see it is by looking at the expected dimension of the intersection
with the singular locus � . Recall that codimP8 (�) = 3. But � ∩ P

4
+ is of

codimension 1 in P4. And � ∩ P3− is of codimension 2 in P3− .

Since the intersection with P4+ allowed us to naturally recover the original
genus-2 curve X via the Kummer surface or the Jacobian variety, it is logical
to ask whether the hexahedron, i.e. the intersection with P3−, determines X as
well. The answer, which we state here and which is proved in [10], is positive.

Theorem 6.4. The 6 planes of Theorem C correspond to the 6 Weierstraß points
of the given curve X . That is, the six planes correspond to 6 points in the dual
projective space P̌

3
− of P

3
− , then on the unique rational curve passing through

the 6 points, these 6 points are projectively equivalent to the 6Weierstrass points
of our given curve X .
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