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Abstract. We consider an incomplete market with a non-tradable stochastic factor and
a continuous time investment problem with an optimality criterion based on monotone
mean-variance preferences. We formulate it as a stochastic differential game problem and
use Hamilton-Jacobi-Bellman-Isaacs equations to find an optimal investment strategy and
the value function. What is more, we show that our solution is also optimal for the classical
Markowitz problem and every optimal solution for the classical Markowitz problem is
optimal also for the monotone mean-variance preferences. These results are interesting
because the original Markowitz functional is not monotone, and it was observed that in
the case of a static one-period optimization problem the solutions for those two functionals
are different. In addition, we determine explicit Markowitz strategies in the square root
factor models.

1. Introduction.

Since Markowitz published his famous paper [26], the mean-variance criterion has became
a very popular topic in the investment literature. First, the problem has been solved for a
myopic investor in the static optimization framework. Then, it has been extended and has
been solved in the multi-period framework, when intertemporal trading is allowed. The
exact solution can be found in Li and Ng [22] (discrete time setting) and Zhou and Li [38]
(continuous time framework).

On the other hand, it is commonly accepted that a proper decision functional should
reflect the fact that the main motivation of a rational investor is to earn money and
thus, when choosing between two prospects (investment returns) X and Y , such that
X ≤ Y , the investor will always choose Y . This type of behavior is often formulated
in the form of a monotonicity condition. Namely, we say that the functional ρ satisfies
a monotonicity condition if the relation X ≤ Y implies ρ(X) ≤ ρ(Y ). Note that in
case of portfolio optimization problem, the use of a not monotone functional may lead to
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irrational decisions because there might be a better (greater) prospect which is excluded
by the functional. Therefore, such axiom is usually incorporated in the majority of modern
theories of a rational investor behavior (e.g. the expected utility theory - von Neumann
and Morgenstern [32], the dual theory of choice - Yaari [33], the max–min theory - Gilboa
and Schmeidler [15], dynamic variational preferences - Maccherroni et al. [25], coherent
and convex risk measures - Artzner et al. [1], Föllmer and Schied [13]). Nevertheless, it is
well known that the mean-variance functional is not monotone. For this reason Maccheroni
et al. [25] created a new class of preferences that coincide with mean-variance preferences
on their domain of monotonicity but differ where the mean-variance preferences fail to be
monotone:

(1.1) Vθ(X) := inf
Q∈Q

{

E
Q [X ] +

1

2θ
C(Q|P )

}

, X ∈ L2(P ),

where θ > 0 is a risk aversion coefficient, P is a given probability measure, L2(P ) is the
set of square-integrable random variables with respect to the measure P , Q is the class of
all probability measures, such that

C(Q|P ) :=











E
P

[

(

dQ

dP

)2
]

− 1, if Q ≪ P,

+∞, otherwise.

Moreover, they have shown that the functional associated with this class of preferences is
the best approximation of the mean-variance functional among those which are monotonic.
For more details about monotone mean-variance preferences and their other advantages
over mean-variance preferences, we refer to Maccheroni et al. [25].

It is also worth mentioning that ((1.1)) can be rewritten as

(1.2) Vθ(X) = −Λθ(X)− 1

2θ
,

where

Λθ(X) := sup
Q∈Q

E
Q

[

−X − 1

2θ

dQ

dP

]

, X ∈ L2(P ),

so additional motivation to investigate further properties of such type performance criterion
lies in the fact that the above functional satisfies the following axioms:

Convexity: If α ∈ (0, 1), then Λθ(αX + (1− α)Y ) ≤ αΛθ(X) + (1− α)Λθ(Y ).
Monotonicity: If X ≤ Y , then Λθ(Y ) ≤ Λθ(X).
Translation invariance: If β ∈ R, then Λθ(X + β) = Λθ(X)− β.

Namely, Λθ(X) is a convex risk measure (see Föllmer and Schied [13] or Frittelli and
Rosazza-Gianin [14]). Note that this type of measures is commonly accepted as a tool for
assigning the risk to financial positions, so the minimization of Λθ(X) can be interpreted
as searching for the risk minimizing portfolio. In this case the function C(Q|P ) is called a
penalty function.

The portfolio optimization problem based on the functional Vθ(X) has been solved by
Macheroni et al. [25] in the static setting. Since this functional has never been investigated
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in intertemporal setting, it is important to describe an optimal financial strategy which
the investor can follow in order to maximize Vθ(X) and investigate whether the same
differences between monotone and not monotone counterpart arise in the continuous time
optimization framework.

In this paper we assume that an investor has access to the market, where he can freely buy
and sell a risk-less bond and a risky asset whose price is a diffusion with dynamics affected
by a correlated non-tradable (but observable) stochastic factor. Nowadays, stochastic
factor models have become very popular in continuous time portfolio optimization theories.
Such models can incorporate many empirical findings about stochastic market returns, for
example stochastic nature of the volatility or factor dependence on the excess return. Many
researchers have tried to investigate what is the impact of the factor on the risky asset
for various optimization criterions, usually under the hyperbolic/constant absolute risk
aversion utility framework. The topic was explored, among others, by Kim and Omberg
[19], Campbell and Viceira [5], Fleming and Hernández [11], Liu [23], Taksar and Zeng [37]
and Zariphopoulou [34]. Besides, stochastic factor models are fundamental examples of
incomplete market models and it is important to check various properties of the Markowitz
portfolio in the case of these models because they may lead to various paradoxes. For
example, as documented in Bäuerle and Grether [3] and Cui et al. [6], they might be
responsible for generating so called free cash flow streams.

The problem of looking for a risk minimizing portfolio, with various modifications of
performance criterion ((1.1)), was considered by many authors. For example Mataramvura
and Øksendal [27] studied this issue in a jump diffusion setting with a general penalty
function of the form

C(Q|P ) = h

(

dQ

dP

)

.

The same kind of problem was examined by Elliott and Siu [7] in the context of an optimal
reinsurance problem and by Elliott and Siu [9, 8] in a regime switching market.

Risk based portfolio problems are also useful for derivative pricing in incomplete markets.
Namely, one possibility is to determine the value by considering the so called risk indiffer-
ence price. For more information about an indifference price in a jump diffusion market see
Øksendal and Sulem [29], while for the stochastic factor model it is worth to read Elliott
and Siu [10]. It merits mentioning that in many papers the utility function is used to take
into account the non-linear form of the investor’s satisfaction in functional ((1.1)). This
approach is called the robust utility portfolio optimization and was taken up in Hernández
and Schied [17] (stochastic factor model), Øksendal and Sulem [28] (jump-diffusion risk),
Bordigioni et al. [4] (more general semimartingale setting).

All of the aforementioned papers examine the problem without presenting any detailed
solution for a specific choice of C(Q|P ) or consider one specific example using the entropic
penalty function of the form

C(Q|P ) =
dQ

dP
ln

(

dQ

dP

)

.
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Due to the best of our knowledge the quadratic penalty

C(Q|P ) = E
P

[

(

dQ

dP

)2
]

− 1

has never been studied in detail in the dynamic optimization framework.
The problem of maximizing ((1.1)) is a max-min problem, hence it naturally forms

a stochastic differential game. In the literature there are two main approaches for de-
termining the solution to such games. First of them exploits maximum principle and
Backward Stochastic Differential Equations (BSDE), while the second one is based on
the dynamic programming principle and Hamilton-Jacobi-Bellman equations (Hamilton-
Jacobi-Bellman-Isaacs for differential games).

The latter is more suitable for our approach. In our case the associated HJBI equation
can be simplified to a linear form by applying certain transformations. To complete the
reasoning it is sufficient to use a suitable version of a verification theorem. By this method
we obtain a formula for the optimal strategy, which is characterized by the aforementioned
linear equation. Further, the solution is proved to be optimal in the classical Markowitz
framework, which is in opposition to the one-period setting. It seems that the continuous
time trading (even in an incomplete market setting) ensures enough flexibility to react
faster against changing conditions and allows the mean-variance investor to ”behaves like
a monotone investor”.

It should be noticed that our paper is not the first one where such a qualitative difference
between discrete and continuous time models is presented. Cui et al. [6] have shown that
a complete financial market is time-consistent in efficiency in the continuous time frame-
work. It is also worth mentioning that the time inconsistency (see for instance Basak and
Chabakauri [2]) and the lack of monotonicity are two major drawbacks of the Markowitz
optimization, commonly discussed in the literature. Moreover, Kallsen et al. [18] reported
that the expression for the hedging error in the variance optimal hedging problem is much
more involved in the discrete than in the continuous time setting.

The paper is organized as follows. In Section 2 we describe the set up of the problem. We
formulate the verification theorem and derive the HJBI equation. In Section 3 we transform
our equation to a linear form and prove some useful properties of its solution. In Section
4 we solve an auxiliary portfolio optimization problem and then in Section 5 we compare
the result with the solution to the classical mean-variance optimization problem. Finally,
in Section 6 we formulate our main theorem. In the last section we use methods from
previous chapters to determine explicit formulas for the mean-variance optimal portfolio
in specific stochastic volatility models and we compare it further with the Black-Scholes
model.

It is worth to note here that in this work in many places we write about PDEs and talk
about solutions. In this article by a solution to PDE we always mean a classical smooth
solution.
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2. General model description.

Let (Ω,F , P ) be a probability space with a filtration (Ft, 0 ≤ t ≤ T ) possibly enlarged
to satisfy the usual assumptions and generated by two independent Brownian motions
(W 1

t , 0 ≤ t ≤ T ), (W 2
t , 0 ≤ t ≤ T ) defined on (Ω,F , P ). Suppose that an investor has

access to the market, where he can freely buy and sell two securities: a bond (Bt, s ≤ t ≤ T )
and a share (St, s ≤ t ≤ T ). We assume that the dynamics of (St, s ≤ t ≤ T ) depend on
one non-tradable (but observable) external factor (Zt, s ≤ t ≤ T ). This factor can be used
to model stochastic volatility or other varying economic conditions. Processes mentioned
above are described by the system

(2.1)











dBt = rBtdt,

dSt = µ(Zt)Stdt+ σ(Zt)StdW
1
t ,

dZt = a(Zt)dt+ b(Zt)(ρdW
1
t + ρ̄dW 2

t ), Zs = z,

where the coefficients σ > 0, µ, a, b have all the required regularity conditions, in order
to ensure that a unique strong solution to ((2.1)) exists. The interest rate r > 0 is

constant, ρ ∈ [−1, 1] is a correlation coefficient and ρ̄ :=
√

1− ρ2. The coefficients are
time-independent only for notational convenience.

Performance functional. In this paper we use the monotone mean-variance preferences
of the form ((1.1)). Nevertheless, due to technical difficulties, our problem is solved first
for the auxiliary functional given by

(2.2) Λ̄θ(X) := sup
Q∈Q̄

E
Q

[

−X − 1

2θ

dQ

dP

]

, X ∈ L2(P ),

where:

• Q̄ is of the form2

(2.3) Q̄ :=

{

Q ∼ P :
dQ

dP
= E

(
∫

ηt,1dW
1
t + ηt,2dW

2
t

)

T

, (η1, η2) ∈ M
}

;

• E(·)t denotes the Doleans-Dade exponential;
• M is the set of all progressively measurable processes η = (η1, η2) taking values in
R

2, such that

E
P

[

(

dQη

dP

)2
]

< +∞ and E
P

[

dQη

dP

]

= 1;

• Qη denotes the probability measure determined by η ∈ M.

Note that the above set of assumptions allows us to change the probability measure by
using the Girsanov Theorem and guarantees that our modification of the Maccheroni type
objective function is well defined.

2For more information see Hernández and Schied [17].
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In order to simplify formula ((2.2)), we define the additional family of stochastic processes
(Y η

t , s ≤ t ≤ T ) which are given by the stochastic differential equations

dY η
t = ηt,1Y

η
t dW

1
t + ηt,2Y

η
t dW

2
t , Y η

s = y > 0, η ∈ M.

Then, it is easy to see that

Y η
T = y

dQη

dP
, η ∈ M

and

Λ̄θ(X) = sup
η∈M

E
η [−X − Y η

T ] , X ∈ L2(P ),

where E
η denotes the expectation with respect to the measure Qη and

y =
1

2θ
.

Formulation of the problem. We assume that at any time the investor can decide on
the absolute value invested in the risky asset, and the value invested in the bank account.
Let (X̄ π̄

t , s ≤ t ≤ T ) be the investor’s wealth process with the following dynamics

dX̄ π̄
t = (rX̄ π̄

t + π̄t(µ(Zt)− r))dt+ π̄tσ(Zt)dW
1
t , X̄ π̄

s = x̄ > 0,

where x̄ denotes a current wealth of the investor, whereas the control π̄t can be interpreted
as the absolute value invested in St. Note that π̄t as well as the portfolio wealth X̄ π̄

T are
allowed to be negative. In this work it is convenient to use forward values of π̄t and X̄ π̄

t .
Namely, let

πt := er(T−t)π̄t and Xπ
t := er(T−t)X̄ π̄

t .

We have

(2.4) dXπ
t = πt (µ(Zt)− r) dt+ πtσ(Zt)dW

1
t .

Definition 2.1. A control (or strategy) π = (πs, t ≤ s ≤ T ) is admissible on the time
interval [t, T ], written π ∈ Ax,y,z,t, if it satisfies the following assumptions:

(i) π is progressively measurable;
(ii) a unique solution to ((2.4)) exists and

E
η
x,y,z,t

[

sup
t≤s≤T

|Xπ
s |2

]

< +∞ for all η ∈ M.

The investor’s objective is to

(2.5) minimize sup
η∈M

Jπ,η(x, y, z, t)

over the class of admissible strategies Ax,y,z,t, where

Jπ,η(x, y, z, t) := E
η
x,y,z,t [−Xπ

T − Y η
T ] .

The problem ((2.5)) is assumed to be a zero-sum stochastic differential game problem
between the market and the investor with controls given by Qη and π respectively. We
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are looking for the value function V (x, y, z, t) and a saddle point i.e. a pair (π∗, η∗) ∈
Ax,y,z,t ×M, such that

Jπ∗,η(x, y, z, t) 6 Jπ∗,η∗(x, y, z, t) 6 Jπ,η∗(x, y, z, t), ∀π ∈ Ax,y,z,t, ∀η ∈ M
and

V (x, y, z, t) := Jπ∗,η∗(x, y, z, t).

Remark 2.2. If (π∗, η∗) ∈ Ax,y,z,t ×M is a saddle point of problem ((2.5)), then

inf
π∈Ax,y,z,t

sup
η∈M

Jπ,η(x, y, z, t) ≤ sup
η∈M

Jπ∗,η(x, y, z, t) ≤ Jπ∗,η∗(x, y, z, t)

≤ inf
π∈Ax,y,z,t

Jπ,η∗(x, y, z, t) ≤ sup
η∈M

inf
π∈Ax,y,z,t

Jπ,η(x, y, z, t).

In addition, we always have

sup
η∈M

inf
π∈Ax,y,z,t

Jπ,η(x, y, z, t) ≤ inf
π∈Ax,y,z,t

sup
η∈M

Jπ,η(x, y, z, t).

Summarizing

Jπ∗,η∗(x, y, z, t) = inf
π∈Ax,y,z,t

Jπ,η∗(x, y, z, t),

so the control π∗ is an optimal financial strategy.

For more information about differential games we refer to Fleming and Soner [12] and
references therein.

The verification theorem. The investment problem stated in the previous section can
be solved by applying the stochastic control theory. In this section we establish a link
between the Hamilton-Jacobi-Bellman-Isaacs equation and the saddle point of our initial
problem.

Let us recall, that

(2.6)











dXπ
s = πs(µ(Zs)− r)ds+ πsσ(Zs)dW

1
s ,

dY η
s = ηs,1Y

η
s dW

1
s + ηs,2Y

η
s dW

2
s ,

dZs = a(Zs)ds+ b(Zs)(ρdW
1
s + ρ̄dW 2

s ).

It is convenient to consider Qη-dynamics of system ((2.6)). After applying the Girsanov
transformation, we have

(2.7)











dXπ
s = πs(µ(Zs)− r + σ(Zs)ηs,1)ds+ πsσ(Zs)dW

η1
s ,

dY η
s = (η2s,1 + η2s,2)Y

η
s ds+ ηs,1Y

η
s dW

η1
s + ηs,2Y

η
s dW

η2
s ,

dZs = (a(Zs) + b(Zs)ρηs,1 + b(Zs)ρ̄ηs,2)dt+ b(Zs)(ρdW
η1
s + ρ̄dW η2

s ),

where (W η1
s , 0 ≤ s ≤ T ) and (W η2

s , 0 ≤ s ≤ T ) are Qη-Brownian motions defined as
{

dW η1
s = dW 1

s − ηs,1ds,

dW η2
s = dW 2

s − ηs,2ds.
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Let Lπ,η be a differential operator given by

Lπ,ηV (x, y, z, t) :=Vt + π(µ(z)− r + σ(z)η1)Vx + (η21 + η22)yVy

+ (a(z) + b(z)ρη1 + b(z)ρ̄η2)Vz +
1

2
π2σ2(z)Vxx

+
1

2
(η21 + η22)y

2Vyy +
1

2
b2(z)Vzz + πσ(z)η1yVxy

+ πσ(z)b(z)ρVxz + b(z)(ρη1 + ρ̄η2)yVyz.

We can now formulate the Verification Theorem. The proof of this theorem is very similar
to the proof of the analogous theorem from Mataramvura and Øksendal [27] (Theorem
3.2) or Zawisza [35, 36] (Theorem 3.1 and Theorem 6.1, respectively), so in this paper we
omit it.

Theorem 2.3 (Verification Theorem). Suppose there exists a function

V ∈ C2,2,2,1(R× (0,+∞)× R× [0, T )) ∩ C(R× [0,+∞)× R× [0, T ])

and a Markov control

(π∗, η∗) ∈ Ax,y,z,t ×M,

such that

Lπ∗(x,y,z,t),ηV (x, y, z, t) ≤ 0,(2.8)

Lπ,η∗(x,y,z,t)V (x, y, z, t) ≥ 0,(2.9)

Lπ∗(x,y,z,t),η∗(x,y,z,t)V (x, y, z, t) = 0,(2.10)

V (x, y, z, T ) = −x− y(2.11)

for all π ∈ R, η ∈ R
2 and (x, y, z, t) ∈ R× (0,+∞)× R× [0, T ),

and

(2.12) E
η
x,y,z,t

[

sup
t≤s≤T

|V (Xπ
s , Y

η
s , Zs, s)|

]

< +∞

for all π ∈ Ax,y,z,t, η ∈ M and (x, y, z, t) ∈ R× [0,+∞)× R× [0, T ].

Then

Jπ∗,η(x, y, z, t) ≤ V (x, y, z, t) ≤ Jπ,η∗(x, y, z, t), ∀π ∈ Ax,y,z,t, ∀η ∈ M

and

V (x, y, z, t) = Jπ∗,η∗(x, y, z, t).
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Solution to the minimax problem. To find a saddle point we start with analyzing the
Hamilton-Jacobi-Bellman-Isaacs equation

(2.13) min
π∈R

max
η∈R2

Lπ,ηV (x, y, z, t) = 0,

i.e.

Vt + a(z)Vz +
1

2
b2(z)Vzz

+min
π∈R

max
(η1,η2)∈R2

{

π(µ(z)− r + σ(z)η1)Vx + (η21 + η22)yVy

+ b(z)(ρη1 + ρ̄η2)Vz +
1

2
π2σ2(z)Vxx +

1

2
(η21 + η22)y

2Vyy

+ πσ(z)η1yVxy + πσ(z)b(z)ρVxz + b(z)(ρη1 + ρ̄η2)yVyz

}

= 0.

We expect V (x, y, z, t) to be of the form

(2.14) V (x, y, z, t) = −x+G(z, t)y, where G(z, T ) = −1.

Then we have

yGt + a(z)yGz +
1

2
b2(z)yGzz +min

π∈R
max

(η1,η2)∈R2

{

−π (µ(z)− r + σ(z)η1)

+
(

η21 + η22
)

yG+ 2b(z)(ρη1 + ρ̄η2)yGz

}

= 0.

The maximum over (η1, η2) is attained at (η∗1(π), η
∗
2), where

η∗1(π) =
σ(z)

2yG(z, t)
π − ρb(z)

Gz(z, t)

G(z, t)
,

η∗2 = −ρ̄b(z)
Gz(z, t)

G(z, t)
.

For (η∗1(π), η
∗
2) our equation is of the form

yGt + a(z)yGz +
1

2
b2(z)yGzz +min

π∈R

{

−π (µ(z)− r + σ(z)η∗1(π))(2.15)

+
(

(η∗1(π))
2 + (η∗2)

2
)

yG+ 2b(z) (ρη∗1(π) + ρ̄η∗2) yGz

}

= 0.

The minimum over π is attained at

(2.16) π∗ = −2yG(z, t)

[

µ(z)− r

σ2(z)
− ρb(z)

σ(z)

Gz(z, t)

G(z, t)

]

.

It is worth to notice here that

(2.17) η∗1(π
∗) = −µ(z)− r

σ(z)
,
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so the saddle point candidate

(2.18) (π∗, (η∗1(π
∗), η∗2))

looks as follows

π∗ = −2yG(z, t)

[

λ(z)

σ(z)
− ρb(z)

σ(z)

Gz(z, t)

G(z, t)

]

,

η∗1(π
∗) = −λ(z),

η∗2 = −ρ̄b(z)
Gz(z, t)

G(z, t)
,

where

λ(z) =
µ(z)− r

σ(z)
.

Now we substitute ((2.16)) into ((2.15)) and, after dividing by y, we get the final equation
of the form

(2.19) Gt + (a(z)− 2ρb(z)λ(z))Gz +
1

2
b2(z)Gzz − ρ̄2b2(z)

G2
z

G
+ λ2(z)G = 0,

with the boundary condition G(z, T ) = −1.

Remark 2.4. In Section 3 we rewrite equation ((2.19)) with the boundary condition
G(z, T ) = −1 in a linear form and we provide a set of assumptions which ensure the
existence of a classical solution (class C2,1).

Auxiliary results. The following lemmas will be helpful in Section 4 to prove the main
theorem and to establish the similarities between our paper and mean-variance optimiza-
tion methods. In these lemmas we assume that initial conditions (x, y, r, t) are fixed.

Lemma 2.5. Suppose that function V ∈ C2,2,2,1(R×(0,+∞)×R× [0, T )) given by ( (2.14))
is a classical solution to ( (2.13)). Moreover, let (π∗, (η∗1(π

∗), η∗2)) ∈ Ax,y,z,t ×M be deter-
mined by using ( (2.18)). Then conditions ( (2.8)) - ( (2.11)) of Theorem 2.3 are satisfied.

Proof. We already know that

max
η∈R

Lπ∗,ηV (x, y, z, t) = 0, Lπ∗,η∗V (x, y, z, t) = 0

and
V (x, y, z, T ) = −x− y,

which confirms ((2.8)), ((2.10)) and ((2.11)).
To prove ((2.9)) it is sufficient to use ((2.15)) and ((2.17)) and verify that

min
π∈R

Lπ,η∗(π∗)V (x, y, z, t) = 0.

�

Lemma 2.6. Suppose that function G is a classical solution to equation ( (2.19)) and
(π∗, (η∗1(π

∗), η∗2)) ∈ Ax,y,z,t ×M is given by ( (2.18)). Then

2Y η∗

s G(Zs, s) = Xπ∗

s − x+ 2yG(z, t), s ∈ [t, T ].
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Proof. It is sufficient to prove only that

dXπ∗

s = d
(

2Y η∗

s G(Zs, s)
)

.

First of all, note that for the saddle point given by ((2.18)) system of equations ((2.6)) is
of the form

dXπ∗

s =− 2Y η∗

s G(Zs, s)

[

λ2(Zs)− ρb(Zs)λ(Zs)
Gz(Zs, s)

G(Zs, s)

]

ds

− 2Y η∗

s G(Zs, s)

[

λ(Zs)− ρb(Zs)
Gz(Zs, s)

G(Zs, s)

]

dW 1
s

(2.20)

and

dY η∗

s = −λ(Zs)Y
η∗

s dW 1
s − ρ̄b(Zs)

Gz(Zs, s)

G(Zs, s)
Y η∗

s dW 2
s .

Using ((2.19)), we can verify that

dG(Zs, s) =

[

2ρb(Zs)λ(Zs)Gz(Zs, s) + ρ̄2b2(Zs)
G2

z(Zs, s)

G(Zs, s)
− λ2(Zs)G(Zs, s)

]

ds

+Gz(Zs, s)b(Zs)
(

ρdW 1
s + ρ̄dW 2

s

)

.

Moreover, we have

d
(

2Y η∗

s G(Zs, s)
)

= 2G(Zs, s)dY
η∗

s + 2Y η∗

s dG(Zs, s) + 2dG(Zs, s)dY
η∗

s ,

so, by substituting the appropriate dynamics into the above equation, we get the right
hand side of ((2.20)). �

Remark 2.7. Note that the process (Y η∗

s , t ≤ s ≤ T ) is not directly observable in the
financial market, but fortunately the above lemma ensures that for the fixed initial condi-
tions (x, y, z, t), rather than the Markov strategy

π∗
s = −2Y η∗

s G(Zs, s)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ],

we can use

π∗
s = −

(

Xπ∗

s − x+ 2yG(z, t)
)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ].

3. Classical smooth solution to the resulting equation.

To solve equation ((2.19)) with the boundary condition G(z, T ) = −1 we consider fol-
lowing cases separately:

Case I: ρ2 6= 1

2

In this case the following ansatz is made (see Zariphopoulou [34])

G(z, t) = −F α(z, t), where F (z, T ) = 1 and α ∈ R\{0},
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to obtain (by dividing by −αF α−1)

Ft + (a(z)− 2ρb(z)λ(z)) Fz +
1

2
b2(z)Fzz +

1

α
λ2(z)F

+

(

1

2
(α− 1)− αρ̄2

)

b2(z)
F 2
z

F
= 0.

Note that for

α =
1

2ρ2 − 1
,

we have

(3.1) Ft + (a(z)− 2ρb(z)λ(z))Fz +
1

2
b2(z)Fzz + (2ρ2 − 1)λ2(z)F = 0.

Case II: ρ2 =
1

2

In this case if we substitute

G(z, t) = −eF (z,t), where F (z, T ) = 0,

we get

(3.2) Ft +
(

a(z)−
√
2b(z)λ(z)

)

Fz +
1

2
b2(z)Fzz + λ2(z) = 0.

Now we give a set of assumptions to ensure the existence of a classical smooth solution
to equation ((2.19)) with the boundary condition G(z, T ) = −1 for any ρ ∈ [−1, 1].

Remark 3.1. From Theorem 1 of Heath and Schweizer [16] it follows that if a, b, b · λ,
λ2 are Lipschitz continuous, λ is continuous and bounded and b2 > ǫ > 0, then there exist
the unique classical solutions (class C2,1(R× [0, T ))∩C(R× [0, T ])) F1 and F2 to equations
((3.1)) and ((3.2)) respectively, that satisfy the Feynman-Kac representations:

F1(z, t) = E
P̃
z,t

[

exp

{

(2ρ2 − 1)

∫ T

t

λ2(Z̃s)ds

}]

,

F2(z, t) = E
P̃
z,t

[
∫ T

t

λ2(Z̃s)ds

]

,

where

dZ̃s =
[

a(Z̃s)− 2ρb(Z̃s)λ(Z̃s)
]

ds+ b(Z̃s)dW̃s, Z̃t = z

and (W̃s, t ≤ s ≤ T ) is a Brownian motion with respect to P̃ .
Note that, if λ is a bounded function, then F1 and F2 are bounded and G is bounded

and bounded away from 0 for any ρ ∈ [−1, 1].

Lemma 3.2. Suppose a, b, b ·λ, λ2 are Lipschitz continuous, λ is continuous and bounded,
b2 > ǫ > 0 and F ∈ C2,1(R× [0, T ))∩C(R× [0, T ]) is a bounded solution to equation ( (3.1))
or ( (3.2)). Then the first z-derivative of F is bounded.
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Proof. To get a bound for Fz it is sufficient to estimate the Lipschitz constant. First of all,
note that for z1, z2 ∈ (−∞, c] there exists Lc > 0 such that

(3.3) |ez1 − ez2| ≤ Lc|z1 − z2|.

Secondly, for solution to ((3.1)), using ((3.3)) and the fact that λ2 is Lipschitz continuous
and bounded, we obtain the existence of L > 0 such that

|F (z, t)− F (z̄, t)| ≤LEP̃

[
∫ T

t

∣

∣

∣
Z̃s(z, t)− Z̃s(z̄, t)

∣

∣

∣
ds

]

≤LTEP̃

[

sup
t≤s≤T

∣

∣

∣
Z̃s(z, t)− Z̃s(z̄, t)

∣

∣

∣

]

,

where from notational covenience we wrote E
P̃
[

f(Z̃s(z, t))
]

instead of EP̃
z,t

[

f(Z̃s)
]

. Now,

using Jensen’s inequality and Theorem 1.3.16 from Pham [30], we have

∃CT > 0: E
P̃

[

sup
t≤s≤T

∣

∣

∣
Z̃s(z, t)− Z̃s(z̄, t)

∣

∣

∣

]

≤ CT |z − z̄|,

which completes the proof in the first case. Naturally, we can get a similar estimate for
solution to ((3.2)). �

4. Solution to auxiliary optimization problem.

In this section we solve portfolio optimization problem ((2.5)).

Theorem 4.1. Suppose that a, b, b · λ, λ2 are Lipschitz continuous, λ is continuous and
bounded, b is bounded and b2 > ǫ > 0. Then for each initial conditions (x, y, z, t) there
exists a Markov saddle point

(π∗, (η∗1(π
∗), η∗2)) ∈ Ax,y,z,t ×M

for problem ( (2.5)), such that for all s ∈ [t, T ]

π∗
s = −

(

Xπ∗

s − x+ 2yG(z, t)
)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

,

η∗s,1(π
∗) = −λ(Zs),

η∗s,2 = −ρ̄b(Zs)
Gz(Zs, s)

G(Zs, s)
,

where G ∈ C2,1(R× [0, T )) ∩ C(R× [0, T ]) and is a bounded solution to

(4.1) Gt + (a(z)− 2ρb(z)λ(z))Gz +
1

2
b2(z)Gzz − ρ̄2b2(z)

G2
z

G
+ λ2(z)G = 0,

with the terminal condition G(z, T ) = −1.
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Proof. It follows from Remark 3.1 and Lemma 3.2 that there exists a classical bounded
solution to ((4.1)), which has bounded derivative Gz. If we set

V (x, y, z, t) := −x+G(z, t)y,

then it is sufficient to check whether function V and (π∗, (η∗1(π
∗), η∗2)) satisfy all conditions

of the Verification Theorem. Due to calculations ((2.13)) - ((2.19)) and Lemma 2.5, con-
ditions ((2.8)) - ((2.11)) are fulfilled. Now, we only have to prove that (π∗, (η∗1(π

∗), η∗2))
belongs to the set Ax,y,z,t ×M and condition ((2.12)) holds:

1. From Lemma 3.2 and Remark 3.1 we know that the function Gz/G is bounded, so
(η∗1(π

∗), η∗2) ∈ M.

2. Since G is bounded and Y η∗

s is a solution to the stochastic linear equation with bounded
coefficients, using Hölder’s inequality, we have

E
η
x,y,z,t

[

sup
t≤s≤T

∣

∣G(Zs, s)Y
η∗

s

∣

∣

]

≤

√

√

√

√EP

[

(

dQη

dP

)2
]

·
√

EP
x,y,z,t

[

sup
t≤s≤T

∣

∣G(Zs, s)Y
η∗
s

∣

∣

2
]

< +∞,

for all η ∈ M.

3. To prove the same with Xπ∗

s we use the fact that from Lemma 2.6 and Remark 2.7
for the fixed initial conditions (x, y, z, t) the strategy π∗

s might be rewritten as

π∗
s = −

(

Xπ∗

s − x+ 2yG(z, t)
)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ] .

Now, let us define

ζ(Zs, s) := −
[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ] .

Note that ζ ·(µ−r) and ζ ·σ are bounded functions because λ and b are bounded. Therefore,
with the assistance of equation ((2.20)), we get that the process

Ks := Xπ∗

s − x+ 2yG(z, t), s ∈ [t, T ] ,

is a solution to the following equation

dKs = ζ(Zs, s)(µ(Zs)− r)Ksds+ ζ(Zs, s)σ(Zs)KsdW
1
s .

This is a linear stochastic equation with bounded coefficients, which implies that

E
η
x,y,z,t

[

sup
t≤s≤T

|Xπ∗

s |
]

≤
√

E
η
x,y,z,t

[

sup
t≤s≤T

|Xπ∗

s |2
]

≤ 4

√

√

√

√EP

[

(

dQη

dP

)2
]

· 4

√

EP
x,y,z,t

[

sup
t≤s≤T

|Xπ∗

s |4
]

< +∞, ∀η ∈ M.

It means ((2.12)) is satisfied and confirms the admissibility of π∗
s . �
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5. Mean-variance optimization problem.

Since motivation of our objective function comes from the mean-variance optimization, it
is worth to compare our results with the solution to the latter. To solve the mean-variance
optimization problem we consider the following functional

Uθ(X) := E [X ]− θ

2
E
[

(X − E [X ])2
]

, X ∈ L2(P ),

where θ > 0 is a risk aversion coefficient and E denotes the expectation with respect to
the measure P .

The investor’s objective is to

(5.1) maximize Iπ(x, z, t)

over the class of admissible3 strategies Ax,z,t, where

Iπ(x, z, t) := Ex,z,t [X
π
T ]−

θ

2
Ex,z,t

[

(Xπ
T − Ex,z,t [X

π
T ])

2] .

We use again the stochastic control methods to obtain a solution. Namely, we can first
use the standard Lagrange multipliers technique (see also Zhou and Li [38] for another
method resulting in the same quadratic control problem). Note that

sup
π∈Ax,z,t

Iπ(x, z, t) = sup
π∈Ax,z,t

{

Ex,z,t [X
π
T ]−

θ

2
Ex,z,t

[

(Xπ
T − Ex,z,tX

π
T )

2]
}

= sup
A∈R

sup
π∈Āx,z,t

{

A− θ

2
Ex,z,t

[

(Xπ
T −A)2

]

}

= sup
A∈R

{

A− θ

2
inf

π∈Āx,z,t

Ex,z,t

[

(Xπ
T − A)2

]

}

,(5.2)

where

Āx,z,t = {π ∈ Ax,z,t : Ex,z,t [X
π
T ] = A} , A ∈ R.

In that way we replace the unconstrained mean-variance optimization problem with the
constrained maximization of the quadratic objective. Using Lagrange method it is sufficient
to minimize the functional

Iπ(γ)(x, z, t) := Ex,z,t

[

(

X
π(γ)
T −A

)2
]

− 2γEx,z,t

[

X
π(γ)
T

]

= Ex,z,t

[

(

X
π(γ)
T − (A+ γ)

)2
]

− 2Aγ − γ2,(5.3)

over the class of admissible controls π ∈ Āx,z,t, determine the solution π∗(γ) and find γ∗,
such that

Ex,z,t

[

X
π∗(γ∗)
T

]

= A.

3For more information see Definition 2.1.
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We can use here results from Zawisza [36] where minimization of the robust quadratic
functional

Xπ
T → sup

Q∈Q
E
Q
x,z,t [X

π
T −D]2 , D ∈ R,

was considered (see also Laurent and Pham [21]). Namely, if we assume that Q = {P},
from Theorem 4.1 in Zawisza [36], we have that the optimal strategy for functional ((5.3))
is given by

π∗
s(γ) = −

(

Xπ∗(γ)
s − (A+ γ)

)

[

λ(Zs)

σ(Zs)
+

ρb(Zs)

σ(Zs)

Hz(Zs, s)

H(Zs, s)

]

, s ∈ [t, T ],

where H satisfies

Ht + (a(z)− 2ρb(z)λ(z))Hz +
1

2
b2(z)Hzz − ρ2b2(z)

H2
z

H
− λ2(z)H = 0,

with the terminal condition H(z, T ) = 1. It means that G = − 1

H
is a solution to

Gt + (a(z)− 2ρb(z)λ(z))Gz +
1

2
b2(z)Gzz − ρ̄2b2(z)

G2
z

G
+ λ2(z)G = 0,

where G(z, T ) = −1. In addition, we have

(5.4) π∗
s(γ) = −

(

Xπ∗(γ)
s − (A+ γ)

)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ],

which shows that the quadratic optimization is consistent with the monotone optimization
with suitable chosen A and γ (e.g. Remark 2.7).

Now we find γ∗, such that

Ex,z,t

[

X
π∗(γ∗)
T

]

= A.

Let us define

(5.5) Ps := Xπ∗(γ∗)
s − (A + γ∗), s ∈ [t, T ]

and recall that in the proof of Theorem 4.1 we set

ζ(Zs, s) = −
[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

.

Since ζ · (µ − r) and ζ · σ are bounded functions, Ps is a solution to the stochastic linear
equation with bounded coefficients

dPs = ζ(Zs, s)(µ(Zs)− r)Psds+ ζ(Zs, s)σ(Zs)PsdW
1
s .

It means that

Ps = (x− (A+ γ∗))Rs,

where

Rs := exp

{
∫ s

t

[

ζ(Zu, u)(µ(Zu)− r)− 1

2
ζ2(Zu, u)σ

2(Zu)

]

du+

∫ s

t

ζ(Zu, u)σ(Zu) dW
1
u

}

.
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Using ((5.5)), we have

X
π∗(γ∗)
T = (x−A)RT + A+ γ∗(1− RT ),

and then it is easy to see that

(5.6) γ∗(A) = (A− x)
Ex,z,t [RT ]

1− Ex,z,t [RT ]
, if Ex,z,t [RT ] 6= 1.

Finally, note that

A− θ

2
Ex,z,t

[

(

X
π∗(γ∗)
T − A

)2
]

= A− θ

2
Ex,z,t

[

(

(x−A)RT + γ∗(A)(1− RT )
)2
]

,

so the maximum over A is attained at

(5.7) A∗ = x+
1

θ
· 1

Ex,z,t [ϕ2
T ]
,

where

ϕT :=
RT − Ex,z,t [RT ]

1− Ex,z,t [RT ]
.

Substituting ϕT into ((5.7)) and A∗ into ((5.6)), we get

A∗ = x+
1

θ
· (1− Ex,z,t [RT ])

2

Varx,z,t [RT ]
and γ∗(A∗) =

1

θ
· (1− Ex,z,t [RT ])Ex,z,t [RT ]

Varx,z,t [RT ]
,

where

Varx,z,t [RT ] := Ex,z,t

[

(RT − Ex,z,t [RT ])
2] .

Taking into account ((5.4)), we conclude that the mean-variance optimal strategy is given
by

π∗
s = −

(

Xπ∗

s − x− 1

θ
· 1− Ex,z,t [RT ]

Varx,z,t [RT ]

)[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ],

whereas the monotone optimal strategy for initial conditions (x, y, z, t) looks as follows

π∗
s = −

(

Xπ∗

s − x+ 2yG(z, t)
)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ].

In the next lemma we prove that both strategies are exactly the same if

θ =
1

2y
.

Lemma 5.1. Under conditions of Theorem 4.1 for each initial conditions (x, y, z, t) we
have

1− Ex,z,t [RT ]

Varx,z,t [RT ]
= −G(z, t).
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Proof. We start with proving that

(5.8) Ex,z,t [RT ] = Ex,z,t

[

R2
T

]

= H(z, t).

First, let us recall that H is a classical solution to

(5.9) Ht + (a(z)− 2ρb(z)λ(z))Hz +
1

2
b2(z)Hzz − ρ2b2(z)

H2
z

H
− λ2(z)H = 0,

and

RT = exp

{
∫ T

t

[

ζ(Zs, s)(µ(Zs)− r)− 1

2
ζ2(Zs, s)σ

2(Zs)

]

ds+

∫ T

t

ζ(Zs, s)σ(Zs) dW
1
s

}

,

where

ζ(Zs, s) = −
[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

= −
[

λ(Zs)

σ(Zs)
+

ρb(Zs)

σ(Zs)

Hz(Zs, s)

H(Zs, s)

]

and
dZs = a(Zs)ds+ b(Zs)(ρdW

1
s + ρ̄dW 2

s ), Zt = z.

Equation ((5.9)) can be rewritten into

Ht + (a(z) + ρb(z)ζ(z, t)σ(z))Hz +
1

2
b2(z)Hzz + ζ(z, t) (µ(z)− r)H = 0,

so the solution has the Feynman-Kac representation (e.g. Theorem 1 of Heath and Schweizer
[16]) of the following form

H(z, t) = E
P̃
x,z,t

[

exp

{
∫ T

t

ζ(Zs, s)(µ(Zs)− r) ds

}]

,

where
dZs = (a(Zs) + ρb(Zs)ζ(Zs, s)σ(Zs)) ds+ b(Zs)dW̃s, Zt = z,

(W̃s, t ≤ s ≤ T ) is a Brownian motion with respect to P̃ ,

dW̃s = ρdW̃ 1
s + ρ̄dW 2

s ,

dW̃ 1
s = dW 1

s − ζ(Zs, s)σ(Zs)ds,

and
dP̃

dP
= exp

{
∫ T

t

−1

2
ζ2(Zs, s)σ

2(Zs) ds+

∫ T

t

ζ(Zs, s)σ(Zs) dW
1
s

}

.

This allows to conclude that
H(z, t) = Ex,z,t [RT ] .

Now, note that

R2
T =exp

{
∫ T

t

[

(

ρb(Zs)
Hz(Zs, s)

H(Zs, s)

)2

− λ2(Zs)

]

ds

−
∫ T

t

2ζ2(Zs, s)σ
2(Zs) ds+

∫ T

t

2ζ(Zs, s)σ(Zs) dW
1
s

}

,
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and equation ((5.9)) can be rewritten as

Ht + (a(z) + 2ρb(z)ζ(z, t)σ(z))Hz +
1

2
b2(z)Hzz +

(

ρ2b2(z)
H2

z

H2
− λ2(z)

)

H = 0.

Again the Feynman-Kac representation guarantees the following equality

H(z, t) = Ex,z,t

[

R2
T

]

.

Finally, let us recall that

G(z, t) = − 1

H(z, t)
,

so using ((5.8)), we have

1− Ex,z,t [RT ]

Varx,z,t [RT ]
=

1

Ex,z,t [RT ]
· 1− Ex,z,t [RT ]

1− Ex,z,t [RT ]
=

1

H(z, t)
= −G(z, t).

�

6. General result.

In this section we solve the portfolio optimization problem with performance functional
given by ((1.1)).

Theorem 6.1. Under conditions of Theorem 4.1 for each initial conditions (x, y, z, t) the
stochastic process

(6.1) π∗
s = −

(

Xπ∗

s − x+ 2yG(z, t)
)

[

λ(Zs)

σ(Zs)
− ρb(Zs)

σ(Zs)

Gz(Zs, s)

G(Zs, s)

]

, s ∈ [t, T ],

is an optimal financial strategy in the portfolio optimization problem with preference cri-
terion given by ( (1.1)). Moreover, any optimal solution for the classical mean-variance
optimization problem is optimal for functional ( (1.1)).

Proof. Let us define

(6.2) V̄θ(X
π
T ) := inf

Q∈Q̄

{

E
Q [Xπ

T ] +
1

2θ
C(Q|P )

}

.

Then it is easy to check that

(6.3) V̄θ(X
π
T ) = −Λ̄θ(X

π
T )−

1

2θ
.

Secondly, using Theorem 2.1 from Maccheroni et al. [25], we obtain

(6.4) Uθ(X
π
T ) ≤ Vθ(X

π
T ) ≤ V̄θ(X

π
T ), ∀π ∈ Ax,y,z,t,

so obviously we have

(6.5) sup
π∈Ax,y,z,t

Uθ(X
π
T ) ≤ sup

π∈Ax,y,z,t

Vθ(X
π
T ) ≤ sup

π∈Ax,y,z,t

V̄θ(X
π
T ).

Theorem (4.1) and ((6.3)) guarantee that for each initial conditions (x, y, z, t) there exists
an optimal financial strategy of the form ((6.1)) in the portfolio optimization problem with
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the performance functional given by ((6.2)) and from Section 5 we know that it coincides
with a solution to classical mean-variance optimization problem. Moreover, it turns out
that for π∗

s given by ((6.1)) we have

Uθ(X
π∗

T ) = V̄θ(X
π∗

T ),

so taking into account ((6.4)) and ((6.5)), we get

sup
π∈Ax,y,z,t

Vθ(X
π
T ) = Vθ(X

π∗

T ).

To prove the last part of the assertion, let’s take any optimal strategy π̂ for the classical
mean-variance optimization problem. Taking into account ((6.4)), we have

Uθ(X
π∗

T ) = Uθ(X
π̂
T ) ≤ V̄θ(X

π̂
T ) ≤ V̄θ(X

π∗

T ) = Uθ(X
π∗

T ).

Therefore,

V̄θ(X
π̂
T ) = V̄θ(X

π∗

T ).

�

7. Explicit solution to the square root factor process.

In the previous sections we developed the theory well enough to get more insight in the
Markowitz optimal portfolio in the stochastic factor models. In this part, we consider some
particular factor market models which admit an explicit solution to the mean-variance
problem. The fundamental example of such a family of models are Heston stochastic
volatility models. This kind of models usually do not satisfy the boundedness condition
which was assumed in the previous sections and therefore the verification result needs
a separate justification. Solutions obtained in this section can be compared further to
the standard Black-Scholes model. We should also mention here that solutions to models
considered in this section were obtained earlier by Shen and Zeng [31], even in slightly more
general jump-diffusion framework. However, they used BSDE methods and their formula
is not as explicit as ours.

The model, which we consider in this section, has the following form

(7.1)

{

dSt = [r + λZtσ(Zt)]Stdt+ σ(Zt)
√

ZtStdW
1
t ,

dZt = κ(ξ − Zt)dt+ b
√

Zt(ρdW
1
t + ρ̄dW 2

t ), 2κξ > b2, κ > 0.

We avoid here the dynamics for the bank account Bt because we work with T -forward
values in our framework. Apart from the unboundedness of the coefficients, the second
difference here is that the factor process Zt takes only positive values. Therefore, when
considering the HJB equation, we have to limit ourselves to the space R× R

+ × [0, T ]. In
spite of this fact, we can easily follow the path in Section 5 to find the optimal portfolio
candidate

π∗
s = −

(

Xπ∗

s − x− 1

θ

1

H(z, t)

)[

λ

σ(Zs)
− ρb

σ(Zs)

Hz(Zs, s)

H(Zs, s)

]

, s ∈ [t, T ],



PORTFOLIO CHOICE UNDER MONOTONE PREFERENCES - STOCHASTIC FACTOR CASE 21

where H(z, t) is a solution to the resulting equation of the form

(7.2) Ht + [κ(ξ − z)− 2ρbλz]Hz +
1

2
b2zHzz − ρ2b2z

H2
z

H
− λ2zH = 0, z ≥ 0,

with the terminal condition H(z, T ) = 1.
Following Zeng and Taksar [37], we assume that

H(z, t) = eA(t)z+B(t).

Substituting the above ansatz into equation ((7.2)), we get

A′(t) +

(

1

2
b2 − ρ2b2

)

A2(t) + (−κ− 2ρbλ)A(t)− λ2 = 0,

B′(t) + κξA(t) = 0.

In order to solve these equations we consider the quadratic equation of the form

(7.3)

(

1

2
b2 − ρ2b2

)

x2 + (−κ− 2ρbλ) x− λ2 = 0,

with the following discriminant

∆ = κ2 + 4κρλb+ 2λ2b2.

To avoid singularities and exceptions, we always assume that ∆ > 0 and ρ2 6= 1
2
. In

the other cases we have to consider further specification with respect to the time horizon
T > 0. The complete analysis is presented in Proposition 3.1, Zeng and Taksar [37].
The mentioned paper is dedicated to the HARA utility objective with the risk aversion
coefficient α. Surprisingly, if we take Zeng and Taksar’s resulting equation, substitute
α = 2 and apply their results, then we get tools perfectly suited to our case.

Under our conditions equation ((7.3)) has the following two solutions

y1 =
κ + 2ρbλ+

√
∆

b2 − 2ρ2b2
and y2 =

κ+ 2ρbλ−
√
∆

b2 − 2ρ2b2
,

so

(7.4) A(t) =
ep(y1−y2)(T−t) − 1

ep(y1−y2)(T−t) − y2
y1

y2, where p =
1

2
b2 − ρ2b2

and

B(t) = κξ

∫ T

t

A(s)ds.

For further applications we need to have the following lemma.

Lemma 7.1. Function A(t) given by ( (7.4)) is less than or equal to 0 for all t ∈ [0, T ].

Proof. Note that A(t) can be rewritten as follows

A(t) =
ep(y1−y2)(T−t) − 1

y1ep(y1−y2)(T−t) − y2
y1y2.
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Moreover, we always have ep(y1−y2)(T−t) = e
√
∆(T−t) > 1 and from Vieta’s formulas, we get

y1y2 = −λ2

p
.

Case I: y1y2 = 0 implies A(t) = 0.

Case II: y1y2 < 0 (p > 0)

In this case y1 > 0 > y2 and the sign of A(t) is inherited from y1y2.

Case III: y1y2 > 0 (p < 0)

In this case 2ρ2 > 1 and at the same time κ + 2ρbλ −
√
∆ > 0, which implies that

y1 < y2 < 0 and y2
y1

< 1. Formula ((7.4)) completes the reasoning. �

To formally prove that the strategy π∗ is optimal, we should extend the class of optimal
strategies.

Definition 7.2. A control (or strategy) π = (πs, t ≤ s ≤ T ) is admissible on the time
interval [t, T ], written π ∈ Āx,z,t, if it satisfies the following assumptions:

(i) π is progressively measurable;
(ii) there exists a unique solution to the following equation

dXπ
s = πsλZsσ(Zs)ds+ πsσ(Zs)

√

ZsdW
1
s , s ∈ [t, T ];

(iii) there exists a localizing sequence of stopping times (τn, n ∈ N), such that

H(ZT∧τn, T ∧ τn)
[

Xπ
T∧τn

]2

is uniformly integrable and

Ex,z,t

[
∫ T∧τn

t

[

(Xπ
s )

4 + 1
]

[σ(Zs) + 1]Zsds

]

< +∞,

where
H(z, t) = eA(t)z+B(t).

Note that if

Ex,z,t

[

sup
t≤s≤T

[Xπ
s ]

2

]

< +∞,

then the above conditions are satisfied, because τn can be set as the first exit time from a
sequence of open and bounded subsets exhausting the set R× R

+.

Theorem 7.3. In model ( (7.1)), under conditions ∆ > 0, 1
2
b2 − ρ2b2 6= 0 and for each

fixed initial conditions (x, z, t), the stochastic process

π∗
s = −

(

Xπ∗

s − x− 1

θ
e−A(t)z−B(t)

)[

λ

σ(Zs)
− ρbA(s)

σ(Zs)

]

, s ∈ [t, T ],

is an optimal financial strategy for the classical mean-variance functional (5.1).
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Proof. Keeping in mind the proof of Theorem 4.1 in Zawisza [36] and calculations done in
Section 5, it is sufficient to prove that for all D ∈ R the strategy

πD(x, z, s) = −(x−D)

[

λ

σ(z)
− ρbA(s)

σ(z)

]

,

is optimal for the problem
Ex,z,t(X

π
T −D)2 → min

π∈Āx,z,t

.

To verify that, we can follow the standard proof of the verification theorem. Namely,
first let’s take any admissible strategy π and apply the Itô formula to the function

V (x, z, t) = (x−D)2H(z, t)

and the process Xπ
s to obtain

Ex,z,tV (Xπ
T∧τn , ZT∧τn, T ∧ τn) ≤ Ex,z,t(X

π
T∧τn −D)2,

where (τn, n ∈ N) is the localizing sequence of stopping times from Definition 7.2. Then, we
can pass to the limit under the expected value by taking the advantage from the uniform
integrability condition for the family

H(ZT∧τn, T ∧ τn)
[

Xπ
T∧τn

]2

and the fact that A(t) ≤ 0 (see Lemma 7.1), z ≥ 0 and consequently H(z, t) ≤ 1.
Now, we take into consideration the strategy π∗

D. Applying the Itô formula, we obtain

Ex,z,tV (X
π∗

D

T∧τn , ZT∧τn, T ∧ τn) = V (x, z, t),

where
τn := inf {s ≥ t : Zs /∈ On}

and {On}n∈N is an increasing family of open and bounded sets exhausting R
+.

Note that

X
π∗

D
s = (x−D)Rs +D and V (X

π∗

D

T∧τn, ZT∧τn , T ∧ τn) = (x−D)2R2
T∧τnH(ZT∧τn, T ∧ τn),

where

Rs = exp

{
∫ s

t

λσ(Zu)ζ(u)Zu −
1

2
ζ2(u)σ2(Zu)Zu du+

∫ s

t

ζ(u)σ(Zu)
√

Zu dW 1
u

}

,

R2
s = exp

{
∫ s

t

[

λσ(Zu)ζ(u) + ζ2(u)σ2(Zu)
]

Zudu−2

∫ s

t

ζ2(u)σ2(Zu)Zu du+

∫ s

t

2ζ(u)σ(Zu)
√

Zu dW
1
u

}

and

ζ(u) = −
[

λ

σ(Zu)
− ρbA(u)

σ(Zu)

]

.

Now, it is sufficient to apply the proof of Proposition A1 form Zeng and Taksar [37] (with
α = 2) to prove that the family R2

T∧τnH(ZT∧τn , T ∧ τn) is uniformly integrable. Then, we
are able to pass to the limit (n → +∞), to get

Ex,z,t(X
π∗

D

T −D)2 = Ex,z,tV (X
π∗

D

T , ZT , T ) = V (x, z, t).



24 JAKUB TRYBU LA AND DARIUSZ ZAWISZA

�

Theorem 7.4. Under conditions of Theorem 7.3, every Markowitz optimal strategy (in
the class Āx,z,t) is also optimal for monotone functional ( (1.1)).

Proof. We can deduce from (6.5) that it is sufficient for us to verify that

π∗
s = −

(

Xπ∗

s − x− 1

θ
e−A(t)z−B(t)

)[

λ

σ(Zs)
− ρbA(s)

σ(Zs)

]

, s ∈ [t, T ],

is optimal for functional ((6.2)), when the infimum is taken under only one measure Qη∗ .
Therefore, we will prove that π∗

s is the minimum for the functional

Jπ(x, y, z, t) := E
η∗

x,y,z,t

[

−Xπ
T − Y η∗

T

]

,

where η∗ is determined by

η∗1 = −λ(z),

η∗2 = −ρ̄b(z)
Gz(z, t)

G(z, t)
and G(z, t) = − 1

H(z, t)
.

By applying the Itô formula (like in the proof of Lemma 2.6), we can prove

2Y η∗

s G(Zs, s) = Xπ∗

s − x+ 2yG(z, t), s ∈ [t, T ].

Uniform integrability condition for H(ZT∧τn, T ∧ τn)[X
π∗

T∧τn ]
2 ensures that Y η∗

s is a square
integrable continuous martingale and consequently an uniformly integrable martingale.

Now, let us define V (x, y, z, t) = −x+G(z, t)y. We can easily verify, by direct differen-
tiation, that the suitable HJB equation is satisfied.

We prove first the following inequality

(7.5) V (x, y, z, t) ≤ Jπ(x, y, z, t), π ∈ Āx,z,t.

We can take an admissible strategy π and apply the Itô rule, in order to get

V (x, y, z, t) ≤ E
η∗

x,y,z,tV (Xπ
T∧τn, ZT∧τn , T ∧ τn) = E

η∗

x,y,z,t

[

−Xπ
T∧τn +G(ZT∧τn, T ∧ τn)Y

η∗

T∧τn

]

= Ex,y,z,t

[

−1

y
Y η∗

T∧τnX
π
T∧τn +

1

y
G(ZT∧τn , T ∧ τn)[Y

η∗

T∧τn ]
2

]

,

where (τn, n ∈ N) is a localizing sequence of stopping times from Definition 7.2. The last

equality is implied by the relation y dQη∗

dP
= Y η∗

T and the martingality of the process Y η∗

t .
The maximization of the quadratic function u1a + u2a

2 with respect to a yields

u1a + u2a
2 ≤ − u2

1

4u2

, u1, a ∈ R and u2 < 0.

Substituting u1 = − 1
y
Xπ

T∧τn, u2 =
1
y
G(ZT∧τn , T ∧ τn) and a = Y η∗

T∧τn, we get

−1

y
Y η∗

T∧τnX
π
T∧τn +

1

y
G(ZT∧τn , T ∧ τn)[Y

η∗

T∧τn ]
2 ≤ 1

4y
H(ZT∧τn, T ∧ τn)[X

π
T∧τn ]

2.
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The strategy π is admissible, so the family

1

4y
H(ZT∧τn, T ∧ τn)[X

π
T∧τn ]

2,

is uniformly integrable. To assert formula (7.5) it is sufficient to apply the Fatou Lemma
to the following reverse inequality

−V (x, y, z, t) ≥ Ex,y,z,t

[

1

y
Y η∗

T∧τnX
π
T∧τn − 1

y
G(ZT∧τn , T ∧ τn)[Y

η∗

T∧τn ]
2

]

.

The Fatou Lemma is possible because the integrand on the right hand side is bounded
below by the uniformly integrable sequence.

To finish the proof, we should only verify that

V (x, y, z, t) = Jπ∗

(x, y, z, t) = E
η∗

x,y,z,t

[

−Xπ∗

T + Y η∗

T

]

.

Here, we just need to employ the Itô formula

V (x, y, z, t) = E
η∗

x,y,z,tV (Xπ∗

T∧τn , ZT∧τn, T ∧ τn) = E
η∗

x,y,z,t

[

−Xπ∗

T∧τn +G(ZT∧τn , T ∧ τn)Y
η∗

T∧τn

]

= Ex,y,z,t

[

−1

y
Y η∗

T∧τnX
π∗

T∧τn +
1

y
G(ZT∧τn , T ∧ τn)[Y

η∗

T∧τn ]
2

]

,

where (τn, n ∈ N) is a suitable localizing sequence of stopping times. Now, we use the
following duality

Y η∗

s =
1

2

1

G(Zs, s)
Xπ∗

s +
1

2

1

G(Zs, s)
[−x+2yG(z, t)] = −1

2
H(Zs, s)X

π∗

s −1

2
H(Zs, s)[−x+2yG(z, t)]

and pass to the limit (n → +∞), using the uniform integrability condition for three families

H(ZT∧τn, T ∧ τn)[X
π∗

T∧τn ]
2, H2(ZT∧τn, T ∧ τn)[X

π∗

T∧τn]
2 and H(ZT∧τn, T ∧ τn)X

π∗

T∧τn .

The first one has already been commented in the proof of Theorem 7.3, the rest are its
implications. Namely, the second one is implied by the condition H(z, t) ≤ 1 and the last
one can be proved by the application of the Cauchy-Schwartz inequality. �

Now, we would like to consider the solution with the emphasis on the following two
special cases:

Case I: The volatility coefficient σ(z) = σ̄ is constant. Then

π∗
s = −

(

Xπ∗

s − x− 1

θ
e−A(t)z−B(t)

)[

λ

σ̄
− ρbA(s)

σ̄

]

, s ∈ [t, T ].

Case II: The stochastic factor affects only the excess return but not the volatility i.e.
σ(z) = σ̄√

z
. Then

π∗
s = −

(

Xπ∗

s − x− 1

θ
e−A(t)z−B(t)

)[

λ

σ̄
− ρbA(s)

σ̄

]

√

Zs, s ∈ [t, T ].
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It is also worth to compare the above cases to the standard Black-Scholes market

dSt = [r + λσ̄]Stdt+ σ̄StdW
1
t ,

where

π∗
s = −

(

Xπ∗

s − x− 1

θ
eλ

2(T−t)

)

λ

σ̄
, s ∈ [t, T ].

In all three cases the absolute value invested in St is determined in the following way

π∗
s = (Xπ∗

s −D(x, z, t))P (Zs, s),

so is proportional to the excess of the current wealth Xπ∗

s over some target level determined
by D(x, z, t). The term P (z, s) can be interpreted as the proportion value. We can see that
the presence of the stochastic factor modulates the target level D(x, z, t), but important
are only the coefficients of the factor dynamics and the value of the stochastic factor at the
beginning of the investing period. The proportion P (z, s) depends on the coefficients of the
factor dynamics and when considering the model presented in Case II, on the current level
of the stochastic factor as well. The direction and magnitude of the factor impact depends
on many different configurations of the factor current value and model coefficients.

8. Conclusion.

We examined the continuous time portfolio optimization problem the stochastic factor
model assuming that the preference criterion is the monotone mean-variance functional
introduced by Maccheroni et al. [25]. We have solved the problem under general con-
ditions and have proved that the the optimal mean-variance strategy is optimal also for
the monotone criterion. This shows that continuous time mean-variance investor behaves
like a monotone investor, even in economically important incomplete market models. It
would be also interesting to check this property in other class of models, for example in
jump-diffusion models.
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