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Yunru Bai1 · Leszek Gasiński1,2 · Nikolaos S. Papageorgiou3

Received: 27 April 2018 / Accepted: 26 November 2018 / Published online: 1 December 2018
© The Author(s) 2018

Abstract
We consider a nonlinear nonparametric elliptic Dirichlet problem driven by the
p-Laplacian and reaction containing a singular term and a (p − 1)-superlinear per-
turbation. Using variational tools together with suitable truncation and comparison
techniques we produce two positive, smooth, ordered solutions.
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1 Introduction

Let � ⊂ R
N be a bounded domain with a C2-boundary ∂� and let 1 < p < +∞. In

this paper we study the following nonlinear Dirichlet problem with a singular reaction
term:
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{−�pu(z) = u(z)−μ + f (z, u(z)) in �,

u|∂� = 0, u > 0.
(1.1)

In this problem �p stands for the p-Laplace differential operator defined by

�pu = div (|Du|p−2Du) ∀u ∈ W 1,p
0 (�),

for 1 < p < +∞. Also μ ∈ (0, 1) and f : � × R −→ R is a Carathéodory
perturbation of the singular term (that is, for all x ∈ R, z �−→ f (z, x) is measurable
and for almost all z ∈ �, x �−→ f (z, x) is continuous). We assume that f (z, ·) is
(p− 1)-superlinear near +∞ but need not satisfy the usual in such cases Ambrosetti-
Rabinowitz condition.

We are looking for positive solutions and we prove the existence of at least two
positive smooth solutions. Our approach is variational based on the critical point
theory, together with truncation and comparison techniques.

In the past multiplicity theorems for positive solutions of singular problems were
proved by Hirano et al. [20], Sun et al. [31] (semilinear problems driven by the Dirich-
let Laplacian) and Giacomoni et al. [18], Kyritsi–Papageorgiou [21], Papageorgiou
et al. [27], Papageorgiou–Smyrlis [28,29], Perera–Zhang [30], Zhao et al. [32]. In all
aforementionedworks, there is a parameter λ > 0 in the reaction term. The presence of
the parameter λ > 0 permits a better control of the right-hand side nonlinearity as the
parameter becomes small. In particular in [29] the authors also deal with superlinear
singular problems. However, the assumptions lead to a different geometry. More pre-
cisely, in [29] the perturbation function f (z, x)has afixed sign, that is, f (z, x) > 0.We
do not assume this here. In fact our conditions here force f (z, ·) to be sign-changing by
requiring an oscillatory behaviour near zero (see hypothesis H( f )(i)). Our work here
complements that of [27], where the authors deal with the resonant case, that is, in [27]
the perturbation f (z, ·) is (p−1)-linear. The present work and [27] cover a broad class
of parametric nonlinear singular Dirichlet problems. We mention also the parametric
work of Aizicovici et al. [2] on singular Neumann problems. For other parametric
problems see also Gasiński–Papageorgiou [7–16]. Nonparametric singular Dirichlet
problems were examined by Canino–Degiovanni [4], Gasiński–Papageorgiou [6] and
Mohammed [25]. In [4,25] we have existence but not multiplicity while in [6] we have
also multiplicity results (the methods of proofs in all these papers are different).

2 Preliminaries and Hypotheses

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Given ϕ ∈ C1(X) we say that ϕ satisfies the Cerami
condition, if the following property holds:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 is bounded and

(1 + ‖un‖)ϕ′(un) −→ 0 in X∗ as n → +∞,

admits a strongly convergent subsequence.”
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Positive solutions for nonlinear singular superlinear elliptic equations 763

Evidently this is a kind of compactness-type condition on the functional ϕ. Using
the Cerami condition one can prove a deformation theorem from which follows the
minimax theory of the critical values of ϕ. A basic result in that theory is the mountain
pass theorem which we will use in the sequel.

Theorem 2.1 If ϕ ∈ C1(X) satisfies the Cerami condition, u0, u1 ∈ X, 0 < r
< ‖u1 − u0‖,

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u − u0‖ = r} = mr

and

c = inf
γ∈�

max
0�t�1

ϕ(γ (t))

with � = {γ ∈ C([0, 1]; X) : γ (0) = u0, γ (1) = u1}, then c � mr and c is a
critical value of ϕ (that is, there exists u ∈ X such that ϕ(u) = c and ϕ′(u) = 0).

The Sobolev space W 1,p
0 (�) and the Banach space C1

0(�) = {u ∈ C1(�) : u|∂�

= 0} will be the two main spaces of this work. By ‖ · ‖ we will denote the norm of
W 1,p

0 (�). On account of Poincaré’s inequality, we have

‖u‖ = ‖Du‖p ∀u ∈ W 1,p
0 (�).

The Banach space C1
0(�) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1
0(�) : u(z) � 0 for all z ∈ �}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n
|∂� < 0

}
.

Here ∂u
∂n denotes the normal derivative of u defined by

∂u

∂n
= (Du, n)RN ,

with n being the outward unit normal on ∂�.
Let A : W 1,p

0 (�) −→ W 1,p
0 (�)∗ = W−1,p′

(�) ( 1p + 1
p′ = 1) be the nonlinear map

defined by

〈A(u), h〉 =
∫

�

|Du|p−2(Du, Dh)RN dz ∀u, h ∈ W 1,p
0 (�).

In the next proposition, we recall the main properties of this map (see Motreanu et al.
[26, p. 40]).
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764 Y. Bai et al.

Proposition 2.2 The map A : W 1,p
0 (�) −→ W−1,p′

(�) is bounded (that is, maps
bounded sets to bounded sets), continuous, strictlymonotone (thusmaximalmonotone)
and of type (S)+, that is,

“if un
w−→ u in W 1,p

0 (�) and lim sup
n→+∞

〈A(un), un − u〉 � 0, then un −→ u in

W 1,p
0 (�).”

By p∗ we denote the critical Sobolev exponent corresponding to p, i.e.,

p∗ =
{

Np
N−p if p < n,

+∞ if N � p.

The hypotheses on the perturbation term f are the following:
H( f ): f : � × R −→ R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ � and

(i) there exist a ∈ L∞(�) and r ∈ (p, p∗) such that

| f (z, x)| � a(z)(1 + xr−1) for a.a. z ∈ �, all x � 0

and there exists w ∈ C1(�) such that

w(z) � ĉ > 0 for all z ∈ �, �pw ∈ L∞(�), �pw � 0 for a.a. z ∈ �

and for every compact set K ⊆ �, there exists cK > 0 such that

w(z)−μ + f (z, w(z)) � −cK < 0 for a.a. z ∈ K ;

(ii) if F(z, x) = ∫ x
0 f (z, s) ds and for every λ > 0 we define

ξλ(z, x) =
(

p

1 − μ
− 1

)
x1−μ + λ( f (z, x)x − pF(z, x)),

then

lim
x→+∞

F(z, x)

x p
= +∞ uniformly for a.a. z ∈ �,

and there exists βλ ∈ L1(�), βλ(z) � 0 for a.a. z ∈ � such that

ξλ(z, x) � ξλ(z, y) + βλ(z) for a.a. z ∈ �, all 0 � x � y;

(iii) there exists δ ∈ (0, ĉ] such that

f (z, x) � 0 for a.a. z ∈ �, all0 � x � δ;
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Positive solutions for nonlinear singular superlinear elliptic equations 765

(iv) for every � > 0, there exists ξ̂� > 0 such that for a.a. z ∈ � the function

x �−→ f (z, x) + ξ̂�x
p−1

is nondecreasing on [0, �].
Remark 2.3 Since we look for positive solutions and the above hypotheses concern
the positive semiaxes R+ = [0,+∞), without any loss of generality, we assume that

f (z, x) = 0 for a.a. z ∈ �, all x � 0. (2.1)

Hypothesis H( f )(i i) implies that for a.a. z ∈ �, f (z, ·) is (p − 1)-superlinear, that
is,

lim
x→+∞

f (z, x)

x p−1 = +∞ uniformly for a.a. z ∈ �.

Westress that for the superlinearity of f (z, ·)wedonot use theAmbrosetti–Rabinowitz
condition which says that there exist r > p and M > 0 such that

0 < r F(z, x) � f (z, x)x for a.a. z ∈ �, all x � M, ess inf
�

F(·, M) > 0.

This condition implies that f (z, ·) has at least xr−1-growth near +∞, that is

c0x
r−1 � f (z, x) for a.a. z ∈ �, all x � M,

for some c0 > 0. This excludes from consideration (p− 1)-superlinear nonlinearities
with “slower” growth near +∞ (see Example 2.4). Here we replace the Ambrosetti–
Rabinowitz condition with a quasimonotonicity condition on ξ(z, ·) (see hypothesis
H( f )(i i)), which incorporates in our framework more superlinear nonlinearities.
Hypothesis H( f )(i i) is a slight generalization of a condition used by Li–Yang [23].
It is satisfied, if there is M > 0 such that for a.a. z ∈ �, the function x �−→ f (z,x)

x p−1

is nondecreasing on [M,+∞) and this in turn is equivalent to saying that for a.a.
z ∈ �, ξ(z, ·) is nondecreasing on [M,+∞). For details see Li–Yang [23]. Hypothe-
ses H( f )(i) and (i i i) imply that for a.a. z ∈ �, f (z, ·) exhibits a kind of oscillatory
behaviour near zero. In hypothesis H( f )(i), the condition�pw(z) � 0 for a.a. z ∈ �,
implies that

0 �
∫

�

|Dw|p−2(Dw, Dh)RN dz for all h ∈ W 1,p
0 (�), h(z) � 0 for a.a. z ∈ �.

Evidently the condition withw(·) in hypothesis H( f )(i) is satisfied ifw(z) ≡ c+ > 0
for all z ∈ � and ess inf

�
f (·, c+) < − 1

cμ
+
. So, hypotheses H( f )(i) and (i i) dictate an

oscillatory behaviour for f (z, ·) near zero.
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766 Y. Bai et al.

Example 2.4 The following function satisfies hypotheses H( f ). For the sake of sim-
plicity we drop the z-dependence:

f (x) =
{
x p−1 − cxr−1 if 0 � x � 1,
x p−1 ln x + (1 − c)xq−1 if 1 < x,

with 1 < q < p < r < +∞ and c > 2 [see (2.1)]. Note that f although (p − 1)-
superlinear, it fails to satisfy the Ambrosetti–Rabinowitz condition.

Finally let us fix our notation. If x ∈ R, we set x± = max{± x, 0}. Then given
u ∈ W 1,p

0 (�) we define u±(·) = u(·)± and we have

u± ∈ W 1,p
0 (�), u = u+ − u−, |u| = u+ + u−.

Set Ĉ+ = {u ∈ C1(�) : u|� � 0, ∂u
∂n � 0 on ∂� ∩ u−1(0)}. We also mention that

when we want to emphasize the domain D on which the cones C+ and intC+ are
considered, we write C+(D) and intC+(D).

Moreover, by | · |N we denote the Lebesgue measure on R
N and if ϕ ∈ C1(X),

then

Kϕ = {u ∈ X : ϕ′(u) = 0}

(the “critical set” of ϕ).

3 Positive Solutions

In this section we prove the existence of two positive smooth solution for problem
(1.1).

Proposition 3.1 If hypotheses H( f )(i) and (i i i) hold, then there exists u ∈ intC+
such that

{−�pu(z) � u(z)−μ + f (z, u(z)) for a.a. z ∈ �

u � w

Proof We consider the following auxiliary singular Dirichlet problem

{−�pu(z) = u(z)−μ in �,

u|∂� = 0, u > 0.

From Proposition 5 of Papageorgiou–Smyrlis [29], we know that this problem has a
unique positive solution ũ ∈ intC+.

With ĉ > 0 and δ > 0 as postulated by hypotheses H( f )(i) and (i i i) respectively,
we choose

t ∈
(
0,min

{
1, ĉ

‖ũ‖∞ , δ
‖ũ‖∞

})
.
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Positive solutions for nonlinear singular superlinear elliptic equations 767

We set u = t ũ ∈ intC+. We have

−�pu(z) = t p−1(−�pũ(z)) = t p−1ũ(z)−μ

� u(z)−μ � u(z)−μ + f (z, u(z)) for a.a. z ∈ �

(recall that t � 1 and see hypothesis H( f )(i i i) and Papageorgiou–Smyrlis [29]).
Moreover, we have u � w. ��

Using u ∈ intC+, from Proposition 3.1 and w ∈ C1(�) from hypothesis H( f )(i),
we introduce the following truncation of f (z, ·):

ĝ(z, x) =
⎧⎨
⎩
u(z)−μ + f (z, u(z)) if x < u(z),
x−μ + f (z, x) if u(z) � x � w(z),
w(z)−μ + f (z, w(z)) if w(z) < x .

(3.1)

Given y, v ∈ W 1,p(�), y � v, we define

[y, v] = {u ∈ W 1,p
0 (�) : y(z) � u(z) � v(z) for a.a. z ∈ �}.

Also by intC1
0 (�)[y, v] we denote the interior in the C1

0(�)-norm topology of [y, v] ∩
C1
0(�).

Proposition 3.2 If hypotheses H( f )(i) and (i i i) hold, then problem (1.1) admits a
solution u0 ∈ [u, w] ∩ C1

0(�).

Proof Let

Ĝ(z, x) =
∫ x

0
ĝ(z, s) ds

and consider the functional ϕ̂ : W 1,p
0 (�) −→ R defined by

ϕ̂(u) = 1

p
‖Du‖p

p −
∫

�

Ĝ(z, u) dz ∀u ∈ W 1,p
0 (�).

Proposition 3 of Papageorgiou–Smyrlis [29] implies that ϕ̂ ∈ C1(W 1,p
0 (�)) and we

have

〈ϕ̂′(u), h〉 = 〈A(u), h〉 −
∫

�

ĝ(z, u)h dz ∀h ∈ W 1,p
0 (�).

From (3.1) it is clear that ϕ̂ is coercive. Also, the Sobolev embedding theorem implies
that ϕ̂ is sequentially weakly lower semicontinuous. So, by the Weierstrass–Tonelli
theorem, we can find u0 ∈ W 1,p

0 (�) such that

ϕ̂(u0) = inf
u∈W 1,p

0 (�)

ϕ̂(u),
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768 Y. Bai et al.

so ϕ̂′(u0) = 0, hence

〈A(u0), h〉 =
∫

�

ĝ(z, u0)h dz ∀h ∈ W 1,p
0 (�). (3.2)

In (3.2) first we choose h = (u − u0)+ ∈ W 1,p
0 (�). We have

〈A(u0), (u − u0)
+〉 =

∫
�

ĝ(z, u0)(u − u0)
+ dz

=
∫

�

(u−μ + f (z, u))(u − u0)
+ dz � 〈A(u), (u − u0)

+〉

[see (3.1)] and Proposition 3.1), so

〈A(u) − A(u0), (u − u0)
+〉 � 0,

hence u � u0.
Next in (3.2) we choose h = (u0 − w)+ ∈ W 1,p

0 (�) (see hypothesis H( f )(i)).
Then we have

〈A(u0), (u0 − w)+〉 =
∫

�

ĝ(z, u0)(u0 − w)+ dz

=
∫

�

(w−μ + f (z, w))(u0 − w)+ dz � 〈A(w), (u0 − w)+〉

[see (3.1)] and hypothesis H( f )(i)), so

〈A(u0) − A(w), (u0 − w)+〉 � 0,

hence u0 � w. So, we have proved that

u0 ∈ [u, w]. (3.3)

From (3.1), (3.2) and (3.3), we have

〈A(u0), h〉 =
∫

�

(u−μ
0 + f (z, u0))h dz ∀h ∈ W 1,p

0 (�). (3.4)

Let d(z) = d(z, ∂�) for z ∈ � (the distance from the boundary ∂�). Then Lemma
14.16 of Gilbarg-Trudinger [19, p. 355] implies that there exists δ0 > 0 such that

d ∈ int Ĉ+(�δ0),

where �δ0 = {z ∈ � : d(z) = d(z, ∂�) < δ0}. Let D = � \ �δ0 and consider the
ordered Banach space C(D) with positive (order) cone C(D)+. Since u0(z) � c̃ > 0
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Positive solutions for nonlinear singular superlinear elliptic equations 769

for all z ∈ D, it follows that

d ∈ intC(D)+.

Recall that u ∈ intC+ (see Proposition 3.1). So, on account of Proposition 2.1 of
Marano–Papageorgiou [24], we can find 0 < c1 < c2 such that

c1d � u � c2d. (3.5)

For all h ∈ W 1,p
0 (�) we have

∣∣∣∣
∫

�

u−μ
0 h dz

∣∣∣∣ � 1

cμ
1

∫
�

d1−μ |h|
d
dz � c3

∫
�

|h|
d

dz � c4‖h‖

for some c3, c4 > 0 (since � ⊆ R
N is bounded, μ ∈ (0, 1) and using Hardy’s

inequality; see Brézis [3, p. 313]).
Therefore from (3.4) and since u−μ

0 ∈ L1(�) (see Lazer-McKenna [22, Lemma]),
it follows that

{−�pu0(z) = u0(z)−μ + f (z, u0(z)) in �,

u0|∂� = 0.

Invoking Theorem B.1 of Giacomoni-Schindler-Takáč [18], we have that u0 ∈ intC+.
Therefore finally we can say that u0 ∈ [u, w] ∩ C1

0(�). ��
If we strengthen the conditions on the perturbation term f (z, x) we can improve

the condition of Proposition 3.2.

Proposition 3.3 If hypotheses H( f )(i), (i i i) and (iv) hold, then

u0 ∈ intC1
0 (�)[u, w].

Proof From Proposition 3.2 we already know that

u0 ∈ [u, w] ∩ C1
0(�).

Let � = ‖w‖∞ and let ξ̂� > 0 be as postulated by hypothesis H( f )(iv). We have

−�pu0(z) − u0(z)
−μ + ξ̂�u0(z)

p−1 = f (z, u0(z)) + ξ̂�u0(z)
p−1

� f (z, u(z)) + ξ̂�u(z)p−1 > ξ̂�u(z)p−1

� −�pu(z) − u(z)−μ + ξ̂�u(z)p−1 for a.a. z ∈ � (3.6)

[see (3.3)], hypotheses H( f )(iv), (i i i) and Proposition 3.1). Then (3.6) and Proposi-
tion 4 of Papageorgiou–Smyrlis [29], imply that

u0 − u ∈ intC+.
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770 Y. Bai et al.

Let D0 = {z ∈ � : u0(z) = w(z)}. The hypothesis on the function w (see hypothesis
H( f )(i)), implies that D0 ⊆ � is compact. So, we can find an open set U ⊆ � with
C2-boundary ∂U such that

D0 ⊆ U ⊆ U ⊆ �.

We have

−�pw(z) − w(z)−μ + ξ̂�w(z)p−1 � cU + f (z.w(z)) + ξ̂�w(z)p−1

� f (z, w(z)) + ξ̂�w(z)p−1 � f (z, u0(z)) + ξ̂�u0(z)
p−1

= −�pu0(z) − u0(z)
−μ + ξ̂�u0(z)

p−1 for a.a. z ∈ U

[see (3.3) and hypotheses H( f )(i) and (iv)]. Then Proposition 5 of Papageorgiou–
Smyrlis [29] (the “singular” strong comparison principle) implies that

w − u0 ∈ intC+(U ).

Since D0 ⊆ U , it follows that D0 = ∅ and so we have

u0(z) < w(z) ∀z ∈ �.

Therefore, we conclude that u0 ∈ intC1
0 (�)[u, w]. ��

Next we produce a second positive solution for problem (1.1).

Proposition 3.4 If hypotheses H( f ) hold, then problem (1.1) admits a second positive
solution û ∈ intC+.

Proof We introduce the following truncation of the reaction term in problem (1.1):

e(z, x) =
{
u(z)−μ + f (z, u(z)) if x � u(z)
x−μ + f (z, x) if u(z) < x .

(3.7)

Clearly this is a Carathéodory function. We set E(z, x) = ∫ x
0 e(z, s) ds and consider

the functional ϕ∗ : W 1,p
0 (�) −→ R defined by

ϕ∗(u) = 1

p
‖Du‖p

p −
∫

�

E(z, u) dz ∀u ∈ W 1,p
0 (�).

We know that ϕ∗ ∈ C1(W 1,p
0 (�)) (see Papageorgiou–Smyrlis [29, Proposition 3]).

Claim: ϕ∗ satisfies the Cerami condition.
Let {un}n�1 ⊆ W 1,p

0 (�) be a sequence such that

|ϕ∗(un)| � M1 ∀n ∈ N, for some M1 > 0, (3.8)

(1 + ‖un‖)ϕ′∗(un) −→ 0 in W−1,p′
(�) as n → +∞. (3.9)
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Positive solutions for nonlinear singular superlinear elliptic equations 771

From (3.9) we have

∣∣∣∣〈A(un), h〉 −
∫

�

e(z, un)h dz

∣∣∣∣ � εn‖h‖
1 + ‖un‖ ∀h ∈ W 1,p

0 (�), (3.10)

with εn → 0+. In (3.10) we choose h = −u−
n ∈ W 1,p

0 (�). Then

‖Du−
n ‖p

p −
∫

�

(u−μ + f (z, u))(−u−
n ) dz � εn ∀n ∈ N

[see (3.7)], so

‖Du−
n ‖p

p � c5(1 + ‖u−
n ‖) ∀n ∈ N,

for some c5 > 0, thus

the sequence {u−
n }n�1 ⊆ W 1,p

0 (�) is bounded. (3.11)

We use (3.11) in (3.8) and we have

∣∣‖Du+
n ‖p

p −
∫

�

pE(z, u+
n ) dz

∣∣ � M2 ∀n ∈ N, (3.12)

for some M2 > 0. Also, if in (3.10) we choose h = u+
n ∈ W 1,p

0 (�), then

− ‖Du+
n ‖p

p +
∫

�

e(z, u+
n )u+

n dz � εn ∀n ∈ N. (3.13)

We add (3.12) and (3.13) and obtain

∫
�

(e(z, u+
n )u+

n − pE(z, u+
n )) dz � M3 ∀n ∈ N,

for some M3 > 0, so

∫
�

( f (z, u+
n )u+

n − pF(z, u+
n ) dz � M4 ∀n ∈ N,

for some M4 > 0 [see (3.7)], thus

∫
�

ξ(z, u+
n ) dz � M4 ∀n ∈ N. (3.14)

Suppose that the sequence {u+
n }n�1 ⊆ W 1,p

0 (�) is not bounded. By passing to a
subsequence if necessary, we may assume that

‖u+
n ‖ −→ +∞.
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Let yn = u+
n

‖u+
n ‖ for n ∈ N. Then ‖yn‖ = 1, yn � 0 for all n ∈ N. So, passing to a next

subsequence if necessary, we may assume that

yn
w−→ y in W 1,p

0 (�) and yn −→ y in L p(�), (3.15)

with y � 0.
First assume that y �= 0. Let �+ = {z ∈ � : y(z) > 0}. We have |�+|N > 0 [see

(3.15)] and

u+
n (z) −→ +∞ for a.a. z ∈ �+.

Hypothesis H( f )(i i) implies that

F(z, u+
n (z))

‖u+
n ‖p

= F(z, u+
n (z))

u+
n (z)p

yn(z)
p −→ +∞ for a.a. z ∈ �+. (3.16)

From (3.16) and Fatou’s lemma we have

∫
�+

F(z, u+
n )

‖u+
n ‖p

dz −→ +∞ as n → +∞. (3.17)

On the other hand hypothesis H( f )(i i) implies that we can find M5 > 0 such that

F(z, x) � 0 for a.a. z ∈ �, all x � M5.

It follows that ∫
�\�+

F(z, u+
n )

‖u+
n ‖p

dz � −c6 ∀n ∈ N, (3.18)

for some c6 > 0. From (3.17) and (3.18) we infer that

∫
�

F(z, u+
n )

‖u+
n ‖p

dz −→ +∞ as n → +∞. (3.19)

On the other hand, from (3.12) we have

∫
�

pE(z, u+
n )

‖u+
n ‖p

dz � c7(1 + ‖Dy+
n ‖p

p) ∀n ∈ N,

for some c7 > 0, so ∫
�

pF(z, u+
n )

‖u+
n ‖p

dz � c8 ∀n ∈ N, (3.20)

for some c8 > 0. Comparing (3.19) and (3.20), we have a contradiction. This proves
the Claim when y �= 0.
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Next assume that y = 0. For k > 0, let vn = (kp)
1
p yn for n ∈ N. Then from (3.15)

we have
vn

w−→ 0 in W 1,p
0 (�) and vn −→ 0 in L p(�). (3.21)

We can find n0 ∈ N such that

0 < (kp)
1
p

1

‖u+
n ‖ � 1 ∀n � n0. (3.22)

Let tn ∈ [0, 1] be such that

ϕ∗(tnu+
n ) = max

0�t�1
ϕ∗(tu+

n ) ∀n ∈ N. (3.23)

From (3.21) and Krasonoselskii’s theorem (see Gasiński–Papageorgiou [5, Theorem
3.4.4, p.407]), we have

∫
�

E(z, vn) dz −→ 0 as n → +∞. (3.24)

From (3.22) and (3.23), we have

ϕ∗(tnu+
n ) � ϕ∗(vn) = 1

p
‖Dvn‖p

p −
∫

�

E(z, vn) dz

� k −
∫

�

E(z, vn) dz � k

2
∀n � n1 � n0

[see (3.24)]. But k > 0 is arbitrary. So, we infer that

ϕ∗(tnu+
n ) −→ +∞ as n → +∞. (3.25)

We know that
ϕ∗(0) = 0 and ϕ∗(u+

n ) � M6 ∀n ∈ N, (3.26)

for some M6 > 0 [see (3.8) and (3.11)]. From (3.25), (3.26) and (3.23) it follows that

tn ∈ (0, 1) ∀n � n2.

Then we have

0 = d

dt
ϕ∗(tu+

n )|t=tn = 〈ϕ′∗(tnu+
n ), u+

n 〉

(by the chain rule), so

‖D(tnu
+
n )‖p

p =
∫

�

e(z, tnu
+
n )(tnu

+
n ) dz ∀n � n2. (3.27)
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We have
∫

�

e(z, tnu
+
n )(tnu

+
n ) dz

=
∫

{0�tnu
+
n �u}

(u−μ + f (z, u))(tnu
+
n ) dz

+
∫

{u�tnu
+
n }

((tnun)
−μ + f (z, tnu

+
n ))(tnu

+
n ) dz

�
∫

{0�tnu
+
n �u}

u−μ(tnu
+
n ) dz +

∫
{u�tnu

+
n }

(tnu
+
n )1−μ dz

+
∫

{0�tnu
+
n �u}

f (z, u)(tnu
+
n ) dz +

∫
{u�tnu

+
n }

ξ(z, u+
n ) dz

+
∫

{u�tnu
+
n }

pF(z, tnu
+
n ) dz + ‖β‖1 (3.28)

[see (3.7) and hypothesis H( f )(i i)].
We use (3.28) in (3.27) and recall that u(z)−μ + f (z, u(z)) � 0 for a.a. z ∈ � (see

hypothesis H( f )(i i i)). We have

‖D(tnu
+
n )‖p

p − p
∫

{0�tnu
+
n �u}

(u−μ + f (z, u))(tnu
+
n ) dz

− p

1 − μ

∫
{u�tnu

+
n }

(tnu
+
n )1−μ dz −

∫
{u�tnu

+
n }

pF(z, tnu
+
n ) dz

�
∫

�

ξ(z, u+
n ) dz + ‖β‖1

(see hypothesis H( f )(i i)), so

pϕ∗(tnu+
n ) �

∫
�

ξ(z, u+
n ) dz + c9 � c10 ∀n ∈ N. (3.29)

for some c9, c10 > ‖β‖1. Comparing (3.25) and (3.29), we have a contradiction.
So, we have proved that

the sequence {u+
n }n�1 ⊆ W 1,p

0 (�) is bounded. (3.30)

From (3.11) and (3.30) we infer that

the sequence {un}n�1 ⊆ W 1,p
0 (�) is bounded.

So, passing to a subsequence if necessary, we may assume that

un
w−→ u in W 1,p

0 (�) and un −→ u in L p(�). (3.31)
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In (3.10) we choose h = un − u ∈ W 1,p
0 (�). We have

〈A(un), un − u〉 −
∫

�

e(z, un)(un − u) dz � ε′
n ∀n ∈ N, (3.32)

with ε′
n → 0+. Note that

∫
�

e(z, un)(un − u) dz

=
∫

{un�u}
(u−μ + f (z, u))(un − n) dz

+
∫

{u<un}
(u−μ

n + f (z, un))(un − u) dz ∀n ∈ N (3.33)

[see (3.7)]. Recall that u ∈ intC+. Hence we can find c11 > 0 such that

û1 � c11u
p′

(see Proposition 2.1 of Marano–Papageorgiou [24]), so

û
1
p′ � c

1
p′
11u,

thus

c12u
−μ � û

− μ

p′
1 ,

for some c12 > 0. From Lazer–McKenna [22, Lemma], we know that û
− μ

p′
1 ∈ L p′

(�),
so c12u−μ ∈ L p′

(�). Therefore, we have

∫
{un�u}

(u−μ + f (z, u))(un − u) dz −→ 0 as n → +∞ (3.34)

[see (3.31)]. Similarly, we have

∫
{u<un}

(u−μ
n + f (z, un))(un − u) dz −→ 0 as n → +∞. (3.35)

We return to (3.32), pass to the limit as n → +∞ and use (3.33), (3.34), (3.35). We
obtain

lim
n→+∞〈A(un), un − u〉 = 0,

so un → u inW 1,p
0 (�) (see Proposition 2.2) and thusϕ∗ satisfies theCerami condition.

This proves the Claim.
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From (3.1) and (3.7) we see that

ϕ̂|[u,w] = ϕ∗|[u,w] (3.36)

(here ϕ̂ is as in the proof of Proposition 3.2). From the proof of Proposition 3.2, we
know that

u0 ∈ intC+ is a minimizer of ϕ̂, (3.37)

while from Proposition 3.3, we know that

u0 ∈ intC1
0 (�)[u, w]. (3.38)

Then (3.36), (3.37) and (3.38) imply that

u0 is a local C
1
0(�)-minimizer of ϕ∗,

thus
u0 is a local W

1,p
0 (�)-minimizer of ϕ∗ (3.39)

(see Theorem 1.1 of Giacomoni–Saoudi [17]). Using (3.7) we can easily see that

Kϕ∗ ⊆ {u ∈ C1
0(�) : u(z) � u(z) for all z ∈ �}. (3.40)

Therefore we may assume that Kϕ∗ is finite or otherwise we already have an infinity
of positive smooth solutions of (1.1) [see (3.7)] all bigger than u0 and so we are done.
The finiteness of Kϕ∗ and (3.39) imply that we can find � ∈ (0, 1) small such that

ϕ∗(u0) < inf{ϕ∗(u) : ‖u − u0‖ = �} = m∗ (3.41)

(see Aizicovici et al. [1, proof of Proposition 29]). Hypothesis H( f )(i i) implies that
if u ∈ intC+, then

ϕ∗(tu) −→ −∞ as t → +∞. (3.42)

Then (3.41), (3.42) and the Claim permit the use of the mountain pass theorem (see
Theorem 2.1). So, we can find û ∈ W 1,p

0 (�) such that

û ∈ Kϕ∗ and m∗ � ϕ∗(̂u). (3.43)

From (3.40), (3.41), (3.43) and (3.7) we conclude that û ∈ intC+, û �= u0, û is a
positive solution of (1.1) and û � u0. ��

We can state the following multiplicity theorem for problem (1.1).

Theorem 3.5 If hypotheses H( f ) hold, then problem (1.1) has two positive smooth
solutions

u0, û ∈ intC+, û − u0 ∈ C+ \ {0}.
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