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Key Points

•Multiple functional var-
iants in 2q12.1 region,
containing IL1RL1, are
strongly associated
with sST2 levels, a well-
characterized GVHD
biomarker.

•Donor variants in the
2q12.1 region associ-
ated with sST2 also
associate with death
from infection or
aGVHD.

Graft-versus-host disease (GVHD) and infections are the 2 main causes of death without

relapse after allogeneic hematopoietic cell transplantation (HCT). Elevated soluble serum

simulation-2 (sST2), the product of IL1RL1 in plasma/serum post-HCT, is a validated GVHD

biomarker. Hundreds of SNPs at 2q12.1 have been shown to be strongly associated with sST2

concentrations in healthy populations. We therefore hypothesized that the donor genetic

variants in IL1RL1 correlate with sST2 protein levels associated with patient survival

outcomes after HCT. We used DISCOVeRY-BMT (Determining the Influence of Susceptibility

Conveying Variants Related to 1-Year Mortality after Blood and Marrow Transplantation),

a genomic study of .3000 donor–recipient pairs, to inform our hypothesis. We first

measured pre-HCT plasma/serum sST2 levels in a subset of DISCOVeRY-BMT donors

(n 5 757) and tested the association of donor sST2 levels with donor single nucleotide

polymorphisms (SNPs) in the 2q12.1 region. Donor SNPs associated with sST2 levels were

then tested for association with recipient death caused by acute GVHD (aGVHD)–, infection-,

and transplant-related mortality in cohorts 1 and 2. Meta-analyses of cohorts 1 and 2 were

performed using fixed-effects inverse variance weighting, and P values were corrected for

multiple comparisons. Donor risk alleles in rs22441131 (Pmeta 5 .00026) and rs2310241

(Pmeta5 .00033) increased the cumulative incidence of aGVHD death up to fourfold andwere

associated with high sST2 levels. Donor risk alleles at rs4851601 (Pmeta 5 9.7 3 1027),

rs13019803 (Pmeta 5 8.9 3 1026), and rs13015714 (Pmeta 5 5.3 3 1024) increased cumulative

incidence of infection death to almost sevenfold and were associated with low sST2 levels.

These functional variants are biomarkers of infection or aGVHD death and could facilitate

donor selection, prophylaxis, and a conditioning regimen to reduce post-HCT mortality.

Introduction

Approximately 30 000 allogeneic hematopoietic cell transplantations (HCTs) were performed
worldwide in 2018. Graft-versus-host disease (GVHD) and infections are the 2 main causes of
nonrelapse morality after HCT. Elevated soluble serum stimulation-2 (sST2) levels in patients after
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transplantation is a validated biomarker of therapy-resistant
GVHD and death.1-8 The ST2 protein is encoded by the IL1RL1
gene, which is located on chromosome 2 (chr 2; 2q12) and
produces 2 isoforms: soluble or circulating (sST2) and membrane-
bound or cellular (ST2).9 The membrane-bound isoform (ST2)
induces immune response through its only ligand, interleukin-33
(IL-33), and promotes MyD88/NF-kB signaling, whereas the soluble
isoform (sST2) lacks transmembrane and cytoplasmic domains,
does not signal, and acts as a decoy receptor, sequestering free
IL-33 in serum.9,10 ST2 is a member of the IL-1 receptor family,
and the ST2/IL-33 pathway has been implicated in several
immune and inflammatory diseases, as well as cardiovascular
events.9,10

In 5 independent genome-wide association studies (GWASs)
totaling tens of thousands of healthy individuals, multiple single
nucleotide polymorphisms (SNPs) within a 1-megabase (Mb)
region around IL1RL1 (chr 2; 102.5-103.5 Mb) associated
with sST2 protein levels at the genome-wide significance level
P , 5 3 1028.11-16 There are additional genomic features that
make this an appealing region to search for biomarkers of
aGVHD and infection death. Specifically, variants in this 1-Mb
span correlate significantly with gene expression levels of
IL1RL1 and other IL1 family members in healthy blood, lung,
skin, and esophageal tissues.13,17-19 Analyses of the human
primary blood cell type Promoter Capture Hi-C (PCHi-C) data
attempt to link gene regulatory elements to their target genes
and show that this region contains over 1000 promoter-
interaction regions (PIRs).20-22 PIRs in lymphoblastoid cell lines
are significantly enriched for autoimmune GWAS SNPs 23,24. In
line with this finding, the 1-Mb region surrounding IL1RL1
contains.70 unique genome-wide significant SNPs associated
with multiple infection or immune-related phenotypes, asthma,
Crohn’s disease, ulcerative colitis (UC), celiac disease, ankylosing
spondylitis,15,25-27 inflammatory bowel disease (IBD), percentages
of neutrophils, and percentage and counts of eosinophils and
lymphocytes.28 Together, these data provide a strong rationale
for testing the association of SNPs in this region with recipient
survival after HCT.

We sought to determine whether variants in the IL1RL1 region
are associated with sST2 levels in DISCOVeRY-BMT (Determin-
ing the Influence of Susceptibility Conveying Variants Related
to 1-Year Mortality after Blood and Marrow Transplantation)
recipients and donors and in turn whether these sST2-associated
variants increase the risk of death from aGVHD, from infection,
and from transplantation-related events. Evidence of a genetic
association suggests that these may be functional survival
biomarkers and could be used to improve donor selection and
to better understand the biological complexity of death due to
aGVHD or infection.

Patients and methods

Study population

The study population consisted of the 2 cohorts comprising
DISCOVeRY-BMT, an existing well-powered genome-wide associ-
ation study (GWAS) totaling 3047 HCT recipients who were
of European genomic ancestry and had acute lymphoblas-
tic leukemia (ALL), acute myelogenous leukemia (AML), or myelodys-
plastic syndrome (MDS), and their HLA-matched unrelated

donors, treated from 2000 through 2011 and reported to the
Center for International Blood and Marrow Transplant Research
(CIBMTR).29-32 All patients included in DISCOVeRY-BMT pro-
vided informed consent for inclusion in the CIBMTR registry and
biorepository. Paired donor and recipient biospecimens and
corresponding clinical data were obtained from the CIBMTR
biorepository and database. The National Marrow Donor Pro-
gram (NMDP), Roswell Park Comprehensive Cancer Institute,
The Ohio State University, and Indiana University School of
Medicine Institutional Review Boards approved the study
protocol. In this study, we focused on patients with AML or
MDS and their donors (n 5 2253 pairs) in DISCOVeRY-BMT.
We defined aGVHD death and infection death as primary
nonoverlapping causes of death in the absence of disease
relapse, with secondary causes defined as contributing, because
these were either not as severe as the primary cause or were
more distal from the time of death.29

Genotyping and imputation

Genotyping and quality control have been described in detail.29-32 In
brief, samples were randomized to plates33 and genotyped by
using the Illumina Human OmniExpress BeadChip (University
of Southern California Genomics Facility). After sample quality
control, 2111 (cohort 1) and 777 (cohort 2) donor–recipient pairs
of European genomic ancestry were available for analyses.
Following SNP QC, ;635 000 SNPs were imputed to the hg19
build 37 Haplotype Reference Consortium (http://www.haplo-
type-reference-consortium.org/home). To make the population
more homogenous, we included only myeloid samples (AML and
MDS) from DISCOVeRY-BMT. Variants were analyzed if the minor
allele frequency (MAF) was .0.05 and the info score was .0.8,
yielding 2271 SNPs on chr 2 (102.5-103.5 Mb) in 1584 (cohort 1)
and 669 (cohort 2) donor–recipient pairs.

Pre-HCT sST2 plasma and serum

concentration measurements

A subset of DISCOVeRY-BMT AML andMDS samples with available
plasma or serum were selected for pre-HCT sST2 measurement. In
total, we measured sST2 levels in 1514 samples: 757 pretransplan-
tation patients and their matched donors. Samples were collected
before initiation of the preparative regimen for transplantation. This
collection may have occurred before or on the day of admission.
Enzyme-linked immunosorbent assays (ELISAs) for ST2 were
performed in batches on cryopreserved plasma and serum.2,6-8

Approximately three-quarters of all samples measured were from
plasma (treated with anticoagulant citrate dextrose) and the remaining
one-fourth were from serum.

Statistical analyses

SNP associations with pre-HCT sST2 levels. SNPs
were tested for association with plasma/serum sST2 concen-
trations by using linear regression models adjusted for age, sex,
and sample type (plasma or serum) in a subset of DISCOVeRY-
BMT donor-recipient pairs (n 5 757). sST2 values were log10
transformed for normalization. Donor and recipient SNPs were
tested for association with donor and pretransplant recipi-
ent sST2 serum/plasma concentrations, respectively. Dosage
SNP data (ranging from 0 to 2 alleles), accounting for the
probability of each genotype, were used in all regression
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models run in R statistical software.34 Linkage disequilib-
rium (LD) between the SNPs and SNP annotation was visual-
ized with the R package LDheatmap and SNIPA online tool,
respectively.34,35

Competing risk analyses of aGVHD death and infection
death. Before genetic analyses, bidirectional stepwise com-
peting risk models were constructed for both outcomes and run in
the R package crrstep.34,36,37 Akaike information criteria (AIC)
were used to select the best-fit clinical model in cohort 1. These
variables were used for competing risk SNP analyses in both
cohorts 1 and 2. The following variables were tested: recipient
age ,40, donor age, recipient sex, donor sex, anti-thymocyte
globulin/alemtuzumab (Campath) prophylaxis, body mass index
category, ABO blood group, conditioning intensity, graft source,
total body irradiation AML (yes/no), disease stage, and CMV
status. SNP meta-analyses were performed by fitting fixed-effects
models with inverse variance weighting, using the R package
Metafor. Random-effects models were used to provide meta-
analyses estimates if heterogeneity was detected between
cohorts, defined as Cochran’s Q value . 50 or P , .05.38

Bonferroni correction for the effective number of independent
genetic tests, after adjusting for the correlation between tested
SNPs, was used to determine significance.39 A SNP association
was deemed statically significant if the direction of hazard was the
same in both cohorts and had a meta P (Pmeta) , 5.3 3 1024.
These significant SNPs were then also tested for association with
overall survival (OS), using the Cox proportional hazards model,
and transplant-related mortality (TRM), using the competing risk
model, while adjusting for other clinical variables. To measure the
collective contribution of significant variants to risk of death due
to infection, a multiallele variable was generated, defined as the
sum of the number of risk alleles across significantly associ-
ated SNPs selected in the models described above. This variable
was then used in the final competing risk model with clinical
covariates.

Annotation of significantly associated variants

We annotated significant SNPs in the IL1RL1 region (chr 2;
102.5-103.5 Mb) using publicly available data to better under-
stand the potential function of the variants identified. eQTLGen,
a consortium analyses of the relationship of SNPs to gene
expression in 30 912 whole blood samples, was used to deter-
mine if aGVHD or infection death–associated SNPs showed
an allele-specific association with nearby gene expression

Table 1. Characteristics of patients enrolled in the study

Category/characteristics

Cohort 1

(N 5 1584),

n (%)

Cohort 2

(N 5 669),

n (%)

Cohort with sST2

level measurements

(N 5 756), n (%)

Recipient age, y

$40 1132 (71) 481 (72) 532 (70)

,40 452 (29) 188 (28) 224 (30)

Donor age, ya

$30 963 (61) 347 (52) 392 (52)

,30 621 (39) 322 (48) 364 (48)

Recipient sex

Female 723 (46) 303 (45) 340 (45)

Male 861 (54) 366 (55) 416 (55)

Donor sex

Female 498 (31) 181 (27) 198 (26)

Male 1086 (69) 488 (73) 558 (74)

Blood mismatch

No type mismatch 674 (43) 293 (44) 332 (44)

Donor–recipient mismatch 910 (57) 376 (56) 424 (56)

Anti-thymocyte globulin/

alemtuzumab prophylaxis*

No 1074 (68) 396 (59) 477 (63)

Yes 407 (26) 273 (41) 277 (37)

Missing 103 (7) 0 (0) 2 (0.3)

Obese BMI

No 1084 (68) 446 (67) 500 (66)

Yes 500 (32) 223 (33) 256 (34)

Overweight BMI

No 1079 (68) 444 (66) 508 (67)

Yes 505 (32) 225 (34) 248 (33)

Graft typea

Bone marrow 505 (32) 161 (24) 260 (34)

Peripheral blood 1079 (68) 508 (76) 496 (66)

Conditioning intensity

Myeloablative 1079 (68) 453 (68) 549 (73)

Reduced intensity 505 (32) 216 (32) 207 (27)

Total body irradiation

No 1021 (64) 472 (71) 489 (65)

Yes 563 (36) 197 (29) 267 (35)

Disease status at diagnosis

Early 1107 (70) 428 (64) 486 (64)

Advanced 477 (30) 241 (36) 270 (36)

Recipient CMV status

Negative 716 (45) 306 (46) 361 (48)

Positive 868 (55) 363 (54) 395 (52)

Donor CMV status

Negative 1080 (68) 472 (71) 513 (68)

Positive 504 (32) 197 (29) 243 (32)

Diagnosed with AMLa

No 337 (21) 192 (29) 208 (28)

Yes 1247 (79) 477 (71) 548 (72)

Table 1. (continued)

Category/characteristics

Cohort 1

(N 5 1584),

n (%)

Cohort 2

(N 5 669),

n (%)

Cohort with sST2

level measurements

(N 5 756), n (%)

Diagnosed with MDS

No 1247 (79) 477 (71) 548 (72)

Yes 337 (21) 192 (29) 208 (28)

Primary cause of death

aGVHD 95 (0.06) 56 (0.08) 49 (0.06)

Infection 86 (0.05) 25 (0.04) 36 (0.05)

*Significant difference between cohorts 1 and 2 (P , .001).
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(cis-expression quantitative trait loci [eQTL]). A catalog of
human blood cell trait variation28 and the genomic atlas of the
human plasma proteome13 were used to determine if significant
SNPs showed an allele-specific association with plasma pro-
tein levels in .3000 healthy individuals. Significant variants were
also examined for relationship to gene expression in .70 addi-
tional tissues using the Genotype-Tissue Expression Project (GTEx;
https://gtexportal.org/home/). To determine if our significant
SNPs were associated with other traits or diseases, we queried
the PhenoScanner database, a comprehensive variant–phenotype
database of large GWASs, which includes results from the
UK Biobank, NHGRI-EBI GWAS catalog, NIH GRASP, and
publicly available summary statistics from .100 published
genome association studies.19 Results were filtered at P ,
5 3 1028, and the R statistical software package PhenoScanner

(https://github.com/phenoscanner/phenoscanner) was used to
download all data for our significant variants. Chromatin state
data based on a 25-state Imputation Based Chromatin State
Model across 24 blood, T-cell, hematopoietic stem cell (HSC), and
B-cell lines were downloaded from the Roadmap Epigenomics
project40 Web site (https://egg2.wustl.edu/roadmap/data/byFileType/
chromhmmSegmentations/ChmmModels/imputed12marks/jointModel/
final/). Figures including chromatin state information and results
from previous GWASs were constructed using the R Bio-
conductor package gviz.41 Last, publicly available PCHi-C data
on a lymphoblastoid cell line (LCL), GM12878, were used to
identify PIRs within our 1-Mb region.22,42 In brief, PCHi-C, uses
Hi-C libraries with biotinylated RNA baits complementary to the
ends of all promoter-containing restriction fragments to enrich
for promoter sequences. The promoters and the genome pieces

N: 3451 Donor-Recipient Pairs

M: ~ 13 million germline variants

AML, MDS or ALL cases and 10/10
HLA matched unrelated donors of

European and non-European Ancestry

DISCOVeRY-BMT Project

ST2 region, chr2: 102.5-103.5Mb
MAF>.05, INFO>.8

European ancestry only
AML or MDS diagnosis

with matched donor

N: 3451 Donor-Recipient Pairs

M: ~ 13 million germline variants

AML, MDS or ALL cases and 10/10
HLA matched unrelated donors of

European and non-European Ancestry

DISCOVeRY-BMT Project

ST2 region, chr2: 102.5-103.5Mb
MAF>.05, INFO>.8

European ancestry only
AML or MDS diagnosis

with matched donor

Clinical + single SNP
competing risk models of

infection death

Clinical + single SNP
competing risk models of

GvHD death

118 SNPs 13 SNPs

11 SNPs8 SNPs

2 SNPs7 SNPs

Multi-allele model for
infection death

SNP association tests with
sST2 plasma or serum

concentrations 

757 donor-recipient pairs

M: 2271 SNPs

3 SNPs

Cohort 1:
1584 donor-

recipient pairs

Cohort 2:
669 donor-

recipient pairs

M: 1265 SNPs

M: 2271 SNPs

Cohort 1:
1584 donor-

recipient pairs

Cohort 2:
669 donor-

recipient pairs

Correlated SNPs removed
LD threshold r2 0.55

SNP Model Selection

1265 donor SNPs
associated at
P.05 with
SNP- sST2
concentration

SNPs replicate in Cohort 2

Multiple test correction

FINAL DATASET USED FOR ASSOCIATION TESTS

Figure 1. Study schema showing analytic work-

flow. The flow diagram shows the selection process

for both the samples (N) and SNPs (M) for analyses

of aGVHD and infection death in the DISCOVeRY-

BMT study.
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with which promoter fragments interact are captured and
sequenced. These paired pieces are then tested for statistical
significance to identify PIRs.20,24 PIRs are important, as

variation in these regions can be connected to potential gene
targets and may thus affect gene function.23 To determine if
significant variants were in PIRs, SNP positions for associated
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variants were superimposed on a map of significant bait–target
pairs in the GM12878 cell line.22,42

Results

Patient and donor characteristics

Patient and donor characteristics are shown in Table 1. AML and
MDS proportions and donor age and graft source differed between
cohorts (P , .001). The study design is shown in Figure 1.

SNP–sST2 plasma and serum concentration

associations

We tested the associations of donor SNPs selected from the 1-Mb
region around IL1RL1 with donor sST2 concentrations. In total,
1265 donor SNPs were associated at P , .05 with donor sST2
serum/plasma concentrations, represented by 93 independent
variants (r2 5 0.60 and MAF 5 0.05; Figures 1 and 2). Recipient
SNP association with sST2 serum/plasma concentrations showed
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664 SNPs at P , .05, represented by 11 independent variants
(supplemental Table 1). All donor and recipient SNPs that were
associated with sST2 levels at P, .05 replicated in same direction
of effect as seen in the genomic atlas of human plasma proteome.13

Effect sizes of recipient SNP associations with sST2 levels were
smaller with larger standard errors than donor SNP–sST2
associations. These 1265 donor SNPs were then tested for
association with recipient death due to aGVHD and infection by
using competing risk models (Figure 1). Although the recipient
SNP–sST2 associations were less compelling, for comprehen-
siveness, these 1265 SNPs were also tested for association in
the recipient population.

SNP associations with death due to aGVHD

There were 95 aGVHD primary-cause deaths in cohort 1 and 56
in cohort 2 (Table 1).29 Multivariate aGVHD competing risk
models constructed using AIC included AML diagnosis, recipient
obesity (.30 mg/kg2), peripheral blood cell source, and donor
age. No other variables were selected for inclusion in the model
(supplemental Table 2).

Meta-analysis of competing risk results from cohorts 1 and 2 for
all 1265 donor sST2-associated SNPs with aGVHD death are
shown in supplemental Table 3. Correction for 93 independent
variants yielded a significant P , 5.4 3 1024; all variants with P
less than this value were considered significant. We identified 11
aGVHD death-associated SNPs (Figure 3A). Stepwise compet-
ing risk analyses identified rs2310241 and rs2241131 (Table 2).
The risk alleles at rs2310241-A and rs2241131-C correlated
with higher levels of sST2 (P 5 1.3 31024 and P 5 5.031025,
respectively) and increased risk of aGVHD death (HR 5 1.5;
Pmeta 5 3.3 3 1024, and HR 5 1.7; Pmeta 5 2.631024,
respectively), for each additional donor risk allele (supplemental
Table 3). There was no evidence of heterogeneity of effect between
cohorts. To assess the robustness of the association, we excluded
patients with infection as a secondary cause of death (;38% of
all aGVHD primary deaths); the results remained consistent after
excluding these patients (Figure 3A). The SNPs correlated modestly
(r2 5 0.52), and the AIC including both variants was approximately
equivalent to those of the single SNP models; thus, no additional
information was gained from including both SNPs in a multiallele
model. Cumulative incidence curves for rs2310241 and rs2241131
are shown in Figure 4. None of the significant aGVHD SNPs were
associated with the competing risk model of TRM or the Cox
proportional hazards models of OS.

No recipient SNPs were associated with aGVHD death. rs3917290,
the most significant recipient SNP associated with aGVHD death
in cohorts 1 (P 5 .015) and 2 (P 5 .17), were not associated with
sST2 at P , .05.

sST2–SNP associations with death caused

by infection

There were 86 and 25 deaths in which infection was the primary
cause in cohorts 1 and 2, respectively (Table 1).29 In 92% of
cases, infection deaths were confirmed by a culture or biopsy
of the organism, and almost one-third of the patients had autopsy
records available for review, confirming infection as the cause
of death.29 Causes of infection death and affected organs are
shown in supplemental Figure 1A-B. Multivariate clinical models
of infection death, constructed using AIC, included recipient age, T
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advanced disease at HCT, donor1/recipient2 CMV status, and
peripheral blood cell source (supplemental Table 2). Results of
competing risk models of infection death, including clinical variables,
and each of the 1265 donor SNPs are shown in supplemental
Table 4. Upon multiple-test correction, 7 independent SNPs were
found to be associated with infection death (Table 2). There was no
evidence of heterogeneity of effect between cohorts, and thus
random-effects models were not used.

The final model included recipient age, advanced disease at HCT,
donor1/recipient2 CMV status, peripheral blood cell rs4851601
(Pmeta 5 9.7 3 1027), rs13019803 (Pmeta 5 8.9 3 1026), and
rs13015714 (Pmeta 5 5.3 3 1024), with risk alleles at each SNP
increasing risk of infection death approximately twofold. Figure 3B
shows the associated donor alleles at each SNP associated
with lower donor sST2 levels at rs4851601 (P 5 .01),
rs13019803 (P 5 1.6 3 1025), and rs13015714 (1.2 3
10220). To assess the robustness of the association of the
infection risk variants, we excluded patients with aGVHD III-IV
(29% of all deaths from primary infection), and the results
remained consistent after the patients were excluded (Figure 3B).

The multiallele model with rs4851601, rs13019803, and rs13015714
showed an increased risk of infection death of ;2- and 2.25-fold in
cohorts 1 (P 5 1.8 3 1028) and 2 (P 5 .002), respectively (Table 2;
Figure 5). The risk allele T in rs13019803 translated to an increased
risk of TRM (HRmeta 5 1.51; 95%meta CI [CImeta] 1.21-1.88; Pmeta 5
2.1 3 1024), but not OS (HRmeta 5 1.16; 95% CImeta [0.94-1.45];
Pmeta 5 .17). The other infection risk variants were not associated with
TRM or OS.

No recipient SNPs were associated with death due to infection after
correction for multiple testing. rs1922296, the most significant
recipient SNP associated with infection death in cohorts 1 (P5 .05)
and 2 (P 5 .48), was not associated with sST2 at P , .05 (data not
shown).

Annotation of significantly associated variants

Annotation of donor SNPs associated with death due to
aGVHD. Data from the genomic atlas of human plasma pro-
teome,13 corroborate the associations we identified between
higher IL1RL1 protein plasma levels and aGVHD death-risk
alleles at rs2310241 and rs2241131. Although we did not
measure IL1R2 protein levels in DISCOVeRY-BMT, the genomic
atlas of the human plasma proteome13 showed that these risk
alleles also correlate with increased IL1R2 plasma protein levels
(P , 5 3 1026).13 Multiple databases showed that the risk allele
at rs2310241 correlates with higher IL18R1 expression in whole
blood (P 5 1 3 10254), and both risk alleles at rs2310241 and
rs2241131 significantly associate (P, 53 1028) with increased
IL18RAP expression in whole blood.18,43-46 Data extracted from
the PhenoScanner database showed that the associated SNPs
were adjacent to multiple GWAS SNPs (Figure 6A-B). In HSCs,
B- and T-cells from the Epigenome Road Map dataset (supple-
mental Table 7), rs2310241 is located in or directly adjacent
to (,900 base pairs) active enhancer regions, and rs2241131
resides in an upstream promoter region (Figure 6C-D). Further-
more, publicly available PCHi-C data from the LCL show that
rs2310141 also interacts with enhancers near IL18RAP and
IL1R2. In the same LCL, both rs2310241 and rs2241131 reside
in PCHi-C target regions that interact with the promotors
upstream of the transcription start site in IL1RL2 and MAP4K4
(supplemental Figure 2A-B; supplemental Table 5).

Annotation of donor SNPs associated with death due to
infection. Publicly available data in the genomic atlas of the human
plasma proteome13 corroborate the associations the we identified
between lower IL1RL1 protein plasma levels and infection death risk
alleles at rs13015714 (P 5 2.1 3 102115), rs4851601 (P 5 2.1 3
1027), and rs13019803 (P 5 1.4 3 10228). Although we did not
measure other proteins, the genomic atlas provided strong evidence
that the T allele at rs13015714 is associated with decreased levels
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of IL-18 receptor-1 protein, encoded by IL18R1 (b 5 20.90 6
0.026; P 5 1.3 3 102264). In addition, eQTLgen28 data showed
that increased gene expression of IL-18 receptor–associated
protein (IL18RAP; P 5 3.3 3 102310) correlates with the
rs13015714 T allele,13 and GTex data indicated that the T variant
correlates with decreased expression of IL1RL1 in lung (b 5
20.38 6 0.031; P 5 4.0 3 102118).17 Data extracted from the
PhenoScanner database19 showed that the infection death risk
variants reside in a region with dozens of GWAS hits (Figure 6A)
for multiple blood traits and inflammatory and autoimmune
diseases (supplemental Table 6). The Epigenome Road Map
showed rs13015714 is in the 39 end of IL1RL1 and located in
an upstream promoter across blood, HSC, T-cell and B-cell lines
(Figure 5C; supplemental Table 7).18 Phi-C data from the LCL
showed that all 3 infection-associated donor SNPs (rs13015714,
rs4851601, and rs13019803), reside in target regions for enhancers
near IL18RAP (supplemental Figure 3A-C; supplemental Table 5).42

Discussion

Before HCT, identification of patients at risk of death associated with
aGVHD or infection could alter approaches to GVHD and infection
prophylaxis or donor selection. To date, individual SNP associations
with aGVHD and infection death have not been successfully

replicated or validated, which is attributable to small sample sizes
and the fact that a large majority of variants tested for association
have been shown to have no biochemical function.31 A recent study
using SNPs in cytokine genes constructed high- and low-risk groups
for acute GVHD incidence; however, predictive genetic models were
not significant for nonrelapse mortality.47 By leveraging the large
sample size and relatively homogenous independent cohorts of
DISCOVeRY-BMT, we are uniquely placed to address this
question and have adequate statistical power to test donor SNPs
in this region for association with aGVHD or infection death.

We replicated the published sST2–SNP associations in DISCOVeRY-
BMT HCT donors, and, in patients with AML or MDS, there was
a correlation between sST2 levels and SNPs in the IL1RL1 region,
although the signal was mutated. As expected, we demonstrated
that alleles that correlated with high sST2 levels in donors
correlated with death caused by aGVHD. In addition, both the
aGVHD death risk loci, but not infection death loci, correlated
with IL1R2 plasma protein levels.13,19 Higher IL1R2 protein levels
have been shown to be robustly and significantly associated with
GVHD mortality after transplantation into recipients, indepen-
dent of sST2 associations, as shown in supplemental Table 8 in
Vander Lugt et al.1 This biomarker remains underexplored in patients
and donors.
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IL1RL1 donor alleles associated with low sST2 levels were
significantly associated with recipient risk of death from infection.
For the donor T allele in rs1308491, linked with both low donor
sST2 and significant hazard of recipient infection death, this
association was strong enough to translate to an increased hazard
of TRM. Our novel finding in DISCOVeRY-BMT that low sST2
levels correlate with a poor health outcome (death due to infection)
is not without precedent; the T allele in rs13019803 has been
shown in a large heart health study to correlate with higher
mortality.11 Alleles of the SNPs that show an increased risk
of infection death have consistently been shown to reduce the
risk of inflammatory diseases, such as asthma, atopic dermatitis,
celiac disease, Crohn’s disease, and IBD. For example, the T
allele at rs13015714 is in perfect linkage disequilibrium (LD;
r2 5 1) with the C allele of rs2001461, shown to be inversely
associated with genome-wide significant risk of atopic dermati-
tis, celiac disease, Crohn’s disease, and IBD.25,48-53 In addition,
variants in LD (r2 5 1) with rs13015714 are shown to be enriched in

the transcription factor T-bet, which specifies Th1 lineage and
represses alternative T-cell fates.54 Together, ChIP-seq and IL18RAP
gene expression data indicate that the T allele at rs13015714 has
increased T-bet binding and IL18RAP expression.54 Our risk variant
thus alters the binding of a lineage-specific transcription factor and
gene expression of one of the genes (IL18RAP) that forms the IL-18
receptor; IL-18 synergizes with IL-12 to induce interferon-g.54

Immune response can act as a double-edged sword, where attenu-
ated response can lead to infection and too strong a response can
cause deleterious inflammation.55 Because many cellular mechanisms
and pathways overlap between infection defense and inflammation,
it may be plausible to think that variants that render healthy donors
more susceptible to inflammation (ie, the T allele at rs13015714)
would actually protect immunosuppressed patients from infection. In
other words, donors with these genetic variants would have a higher
probability of having a more “reactive” immune system, which would
help patients to fight infections better, once the donor cells are
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grafted. This would also be consistent with the fact that, for example,
the T allele of rs13015714 is significantly associated with increased
lymphocyte count (P 5 1.7 3 10214), as shown in a 2016 paper
in Cell that captured allelic associations with blood cell traits.28

Therefore, lower levels of an inflammatory marker like sST2 in donors
could suggest that donor cells will be less likely to protect against
infection in the patient. In addition, it is possible that the low sST2
and increased risk of an infection–death relationship may actually
reflect what is occurring with membrane ST2 more than soluble ST2.

Indeed, in murine GVHD models, we have recently shown that
sST2 is secreted by intestinal proinflammatory T cells during gut
inflammation; conversely, protective ST2-expressing regulatory
T cells are decreased.56 High membrane ST2, equivalent to low
sST2, may be anti-inflammatory, thereby limiting responses against
pathogens. Mice are housed in conditions that prevent infection, but
a murine model of low-sST2 infection-associated death is needed.
This 1-Mb region plays an important role in the tuning of the immune
response,13 and these variants are likely to partially dictate the fine
balance between infection and inflammation.

The strengths of our study include a large, relatively homoge-
nous sample size; well-characterized survival outcomes; and the
availability of both donor and recipient genotypes. In addition,
the nonrisk alleles in 4 of the 5 aGVHD and infection death–
associated variants are common (.5%) across multiple races
and ethnicities, meaning that there is the potential for validating
the DISCOVeRY-BMT findings in other populations. Despite the
large sample size, the number of patients who died of infection
was not large enough to allow us to investigate death due to
specific infections, and patient death from aGVHD did not
comprise a large portion of our patient population, thus reducing
our power to detect smaller effect sizes. An additional limitation
is the lack of longitudinal analyses; specifically, we did not
measure the relationship of the donor genotype with recipient
sST2 levels after transplantation.

Evidence from independent experiments showed that genetic
variants in the IL1RL1 region predicted IL1RL1 and IL1R2 protein
levels, correlated with expression of multiple genes, and affected
binding of important transcription factors. Data from our HCT
donors corroborated the SNP association with sST2 levels and
showed that these SNPs in the IL1RL1 region correlated with
increased risk of death from aGVHD or infection. Given further cell
line experiments and replication in more diverse cohorts, these
donor SNPs could be used in improved donor selection to help
reduce the risk of such deaths in patients with AML or MDS who
undergo HLA-matched unrelated HCT.
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