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COMPUTATIONAL METHODS TO IDENTIFY AND TARGET DRUGGABLE BINDING 

SITES AT PROTEIN-PROTEIN INTERACTIONS IN THE HUMAN PROTEOME 

Protein-protein interactions are fundamental in cell signaling and cancer progression. An 

increasing prevalent idea in cancer therapy is the development of small molecules to disrupt 

protein-protein interactions. Small molecules impart their action by binding to pockets on the 

protein surface of their physiological target. At protein-protein interactions, these pockets are often 

too large and tight to be disrupted by conventional design techniques. Residues that contribute a 

disproportionate amount of energy at these interfaces are known as hot spots. The successful 

disruption of protein-protein interactions with small molecules is attributed to the ability of small 

molecules to mimic and engage these hot spots. 

Here, the role of hot spots is explored in existing inhibitors and compared with the native 

protein ligand to explore how hot spot residues can be leveraged in protein-protein interactions. 

Few studies have explored the use of interface residues for the identification of hit compounds from 

structure-based virtual screening. The tight uPAR•uPA interaction offers a platform to test methods 

that leverage hot spots on both the protein receptor and ligand. A method is described that enriches 

for small molecules that both engage hot spots on the protein receptor uPAR and mimic hot spots 

on its protein ligand uPA. In addition, differences in chemical diversity in mimicking ligand hot 

spots is explored. 

In addition to uPAR•uPA, there are additional opportunities at unperturbed protein-protein 

interactions implicated in cancer. Projects such as TCGA, which systematically catalog the 

hallmarks of cancer across multiple platforms, provide opportunities to identify novel protein-

protein interactions that are paramount to cancer progression. To that end, a census of cancer-

specific binding sites in the human proteome are identified to provide opportunities for drug 

discovery at the system level. Finally, tumor genomic, protein-protein interaction, and protein 

structural data is integrated to create chemogenomic libraries for phenotypic screening to uncover 

novel GBM targets and generate starting points for the development of GBM therapeutic agents. 
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Chapter 1 

INTRODUCTION 

 

1.1 BACKGROUND 

1.1.1 Cancer Genomics. Hallmarks of cancer are driven by perturbations in protein-

protein interactions and signaling pathways [1]. Large-scale sequencing studies of human tumors 

such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC) provide opportunities to uncover the genetic basis of the processes that drive cancer. 

Whole-genome gene expression profiling studies have been instrumental not only in classifying 

tumors and uncovering genetic alterations in cancer cells (mutations, copy number, and 

rearrangements), but as a rich source of potential targets in a variety of cancers [2-13]. These studies 

have been instrumental in identifying tumor subtypes and uncovering driver mutations of these 

diseases. 

While TCGA has been successful in identified critical cancer driver alterations at the gene 

level, the contribution of genes to the dysregulation of oncogenic signaling pathways remain 

unclear. The characterization of the molecular landscapes of cancers have identified a subset of 

genes and their protein products that promote tumorigenesis and progression through driver 

mutations [14, 15]. These mutations result in tumor heterogeneity, whereby patients with similar 

cancers can exhibit different responses to traditional treatment options. Somatic mutations 

contribute to tumorigenesis by destabilizing protein structure and altering protein function [16]. 

Many of these altered proteins do not have prototypical enzyme active sites traditional seen in 

traditional single-target drug discovery efforts, and can only be targeted through their protein-

protein interactions [17]. 

 1.1.2 Protein-Protein Interactions. Protein-protein interactions (PPIs) control nearly 

every aspect of normal cellular function, including enzyme catalysis, DNA regulation, biological 

signaling, and immune response. These interactions also contribute to activating or suppressing 

signaling networks involved in pathological processes such as cancer [17, 18]. In cells, it is 

estimated that signaling pathways occur in a network of more than 200,000 protein-protein 

interactions [19-21]. Protein-protein interactions were previously considered undruggable, largely 

due to the size of the protein interfaces (~1000-2000 Å2) compared to traditional enzyme active 

sites (~300-500 Å2) [22, 23]. The protein interfaces are also generally flat and devoid of grooves 

and cavities present at traditional enzyme binding sites [24]. Unlike enzyme binding sites, there are 

no native small-molecule ligands or substrates that bind to the binding pocket and can act as a 
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natural starting point. These three factors represent significant challenges in current drug discovery 

efforts of protein-protein interactions despite their therapeutic importance. 

However, not all protein-protein interactions share these limitations. Rather, protein-

protein interactions range from transient to tight [25-27]. They have been classified as primary, 

secondary, or tertiary depending on the architecture at the interface of the complex [22]. Primary 

interfaces are generally simple, involving a short linear peptide bound to the surface of another 

protein. Secondary interactions consist of an α-helix or β-turn that is often ensconced into a well-

defined cavity of the receptor. Tertiary interactions are more complex, sometimes involving 

multiple secondary structures such as α-helices and β-strands. The size of the contact surface 

increases from primary to tertiary, reaching more than 1,500 Å2 in some cases for tertiary 

interactions [28]. 

 The interaction energy (∆G) of protein-protein interactions is not evenly distributed across 

the entire interaction interface [29]. Hot spots are residues that contribute substantially to the 

protein-protein interaction. They can be located either on the protein ligand or on the receptor. Hot 

spots are generally identified by alanine scanning studies, where individual amino acids are mutated 

to alanine and the resulting impact on the binding affinity is measured using biochemical or 

biophysical methods [30]. Computational methods such as molecular dynamics simulations have 

also been successfully used [31, 32]. Through these studies, critical hot spot residues have been 

discovered on previously considered undruggable proteins [33, 34]. The amino acid composition 

of interfaces favor certain amino acids, such as hydrophobic aromatic residues like tyrosine or 

tryptophan [28, 35]. Charged residues such as arginine, lysine, and glutamic acid are also frequently 

found at interfaces and often engage residues through salt-bridge and π-cation interactions [36, 37]. 

As a result, these residues are often identified as hot spots. Hot spots are often assembled in tightly 

packed clusters on the interface and are often referred to as hot regions [38]. It has been suggested 

that the distribution of these regions play a role in how proteins can have multiple binding partners. 

 In this work, the current challenges in targeting protein-protein interactions at both a target-

specific level and across the human interactome is explored. A series of studies describes my effort 

to first understand the structural basis of protein-protein interactions by comparing the engagement 

of existing inhibitors of protein-protein interactions with the native protein ligand at five protein-

protein interactions that are critical to cancer cell signaling. We find that more potent inhibitors of 

these protein-protein interactions are better able to engage critical residues, or hot spots, located on 

the protein receptor as well as mimic hot spots present on the protein ligand. We then propose a 

method to represent the engagement of compounds from chemical libraries to a protein receptor as 

a bitwise fingerprint to rank-order compounds from computational screening. Cancer exhibits many 
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phenotypes, such as uncontrolled cell growth, invasion, and metastasis. We propose that to inhibit 

many of the phenotypes associated with tumorigenesis and tumor progression will require 

compounds that can target the underlying protein-protein interaction network associated with these 

phenotypes at more than one point. In the final part of this work, a structure-based approach is used 

to identify compounds that target genes that have been implicated in cancer progression. We first 

identify druggable binding sites across the cancer proteome. Then, we propose a method to enrich 

chemical libraries for phenotypic screening to identify compounds that can potentially target 

druggable binding sites on proteins implicated in cancer. 

 

1.2 CHALLENGES ADDRESSED 

While protein-protein interactions are implicated in the pathogenesis of diseases such as 

cancer, one challenge is the identification of potential druggable binding sites on these proteins. 

Despite the therapeutic potential of protein-protein interactions, current efforts in drug discovery 

are largely focused on targeting kinases, nuclear receptors, ion channels, and rhodopsin-like G 

protein-coupled receptors (GPCRs) [39]. The lack of favorable physicochemical properties makes 

protein-protein interactions unsuitable for drug discovery. However, recent advances in the design 

of protein-protein interaction inhibitors that target tight and stable interactions critical to cancer 

signaling have provided opportunities to identify critical intermolecular interactions between the 

native protein-ligand complex to enrich chemical libraries for potential inhibitors of these protein-

protein interactions. In this work, we followed a structure-based approach to develop scoring 

approaches to identify compounds that can potentially inhibit protein-protein interactions. Often, 

one of the first steps in target-based drug discovery is the use of structure-based virtual screening 

to computational enrich or rank-order a chemical library to a well-defined binding pocket on a 

target of interest. However, traditional scoring functions were developed for targeting binding sites 

on enzymes, and not suitable for protein-protein interactions. Here, we develop a scoring function 

that uses the native interaction as a guide to rank-order chemical libraries. 

In addition to targeting individual protein-protein interactions implicated in cancer, we 

developed an approach to enrich chemical libraries for phenotypic screening. Rather than 

identifying compounds that target single proteins, phenotypic screening identifies compounds that 

modulate a specific tumor phenotype, for example, cell viability or cell invasion. Traditionally, this 

is done in a high-throughput manner, in which millions of compounds are screened. Often, 

compounds identified from this approach are non-specific to either the targets of interest and are 

toxic to both cancer and normal cells. In the second part of this work, we address this challenge by 

following a structure-based approach for cancer-specific drug discovery by (i) identifying relevant 
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cancer-specific targets with druggable binding sites, and (ii) developing methods to identify small 

compounds for cancer therapeutics. 

 

1.3 MAJOR CONTRIBUTIONS 

Here, four major projects are presented to address these challenges in identifying potential 

inhibitors of protein-protein interactions: (i) understanding the structural basis of protein-protein 

interactions, (ii) leveraging hot spots for the inhibition of individual protein-protein interactions, 

and (iii) identifying and targeting protein-protein interaction networks. 

 First, topics related to targeting individual protein-protein interactions are explored. In 

Chapter 2, the role of hot spots is explored by surveying existing protein-protein interaction 

inhibitors as summarized in Fig. 1.1. Computational methods are used to identify critical residues, 

also known as hot spots, at protein-protein interaction interfaces using alanine scanning and per-

residue energy decomposition. Then, we explore engagement of compounds with receptor hot spots 

and investigated overlap between compounds and ligand hot spots. 

Next, we leveraged this for structural-based virtual screening. Structural-based virtual 

screening is often the first step in target-based drug discovery. The goal of structural-based virtual 

screening is to enrich chemical libraries for potential compound candidates by docking large 

chemical libraries to a well-defined binding site on a target of interest. Molecular docking is used 

to predict the binding poses of each compound to the target, and scoring functions are used to 

evaluate these poses and rank-order compounds. However, traditional scoring functions are 

designed for well-defined binding sites on enzymes, nuclear receptors, G-protein coupled receptors, 

and other targets that have been well-studied in cancer and other diseases and are not suitable for 

protein-protein interactions. Therefore, we developed a method to exploit the interaction of small 

molecules with both receptor and ligand hot spots to identify potential leads of protein-protein 

interaction inhibitors at individual protein-protein interactions in Chapter 3. This scoring method 

was applied to the urokinase protein-protein interaction to rank-order commercial compounds, 

eventually leading to the discovery of a fragment-like compound that was optimized to inhibit the 

interaction with low single-digit micromolar binding affinity (Fig. 1.2). 

In Chapter 4, the role of chemical diversity is explored in mimicking ligand hot spots by 

comparing three chemical libraries with different physicochemical properties and developmental 

ideologies (Fig. 1.3). Three different tight interactions for which hot-spot residues have been 

identified were selected for analysis in order to provide insight into how different areas of chemical 

space can be used for the discovery of potential inhibitors. 
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Cancer is a disease that affects the protein-protein interaction landscape. Disruptions in this 

landscape results in multiple phenotypes indicative of cancer, for example, uncontrolled cell growth 

and resistance of cell death. Often, these phenotypes are a result of disturbance of both previously 

discovered and still undiscovered interactions critical to tumorigenesis. There are additional 

opportunities at undiscovered protein-protein interactions implicated in cancer. Systematic cancer 

projects such as TCGA have identified novel targets critical to tumorigenesis and tumor 

progression. In Chapter 5, a set of cancer-specific druggable binding pockets in the human 

proteome are identified with respect to their putative function, role in cancer signaling pathways, 

and somatic mutations by integrating multiomic TCGA genomic data and structural data as 

summarized in Fig. 1.4. Finally, in Chapter 6, a method to enrich chemogenomic libraries for 

phenotypic screening using GBM-specific targets is described. In this approach, a large-scale 

protein-compound interaction matrix is generated from large-scale virtual screening of chemical 

libraries to targets implicated in GBM (Fig. 1.5). Then, compounds are rank ordered based on their 

ability to maximally target druggable binding sites on proteins implicated in the disease. The 

discovery of a compound that inhibits GBM phenotypes without affecting normal cell viability 

suggests that our approach to create tumor-specific chemogenomic libraries may hold promise for 

developing more efficacious treatments for incurable diseases like GBM. 
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Figure 1.1. Workflow for the investigation of the structural basis for protein-protein interactions.  
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Figure 1.2. Workflow to rank-order compounds using protein receptor and ligand hot spots. 
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Figure 1.3. Exploring the role of chemical libraries for protein-protein interaction inhibitors. 
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Figure 1.4. Workflow used to identify cancer-specific druggable proteins.  
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Figure 1.5. Screening the GBM-specific network using structure-based virtual screening.  
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Chapter 2 

A COMPUTATIONAL INVESTIGATION OF SMALL-MOLECULE ENGAGEMENT 

OF HOT SPOTS AT PROTEIN–PROTEIN INTERACTION INTERFACES 

 

2.1 INTRODUCTION 

Small molecules disrupt tight protein-protein interactions by engaging or mimicking hot 

spots located at the protein-protein interface [28, 33, 38, 40, 41]. Hot spots are amino acids that 

contribute substantially to the protein-protein interaction. They can be located either on the protein 

ligand or on the receptor. Hot spots are generally identified by alanine scanning studies, where 

individual amino acids are mutated to alanine and the resulting impact on the binding affinity is 

measured using biochemical or biophysical methods [30]. Computational methods such as 

molecular dynamics simulations have also been successfully used [31, 32]. 

There is intense interest in the development of small organic molecules to disrupt protein-

protein interactions [42]. Small molecules provide useful tools to dissect individual interactions of 

the cellular protein-protein interaction network. In addition, small molecules that disrupt protein-

protein interactions associated with a disease can be further developed into therapeutic agents. 

Early strategies for developing protein-protein interaction inhibitors consisted of designing 

compounds with substituents that mimicked side chains of the protein ligand [43]. This has worked 

particularly well for the development of peptidomimetic inhibitors of protein-protein interaction 

[44] such as the MDM2•p53 interaction [45]. Another approach consists of searching for fragment-

like compounds that bind to cavities at the protein-protein interface [46]. This method has led to 

nanomolar and sub-micromolar inhibitors of Bcl-xL•Bak [47], IL-2•IL-2Rα [48], and more 

recently KEAP1•NRF2 [49]. 

Structure-based computational screening of commercially available chemical libraries has 

also been applied towards the discovery of small-molecule protein-protein interaction inhibitors. 

Virtual screening led to the discovery of fragment-like compounds that disrupted the interaction 

between IFN-α and its binding partner IFNAR [50]. Another strategy combining docking and 

pharmacophore definitions led to inhibitors of the LEDGF•p75 interaction [51]. It has been 

suggested that small molecules disrupt tight protein-protein interactions by engaging or mimicking 

hot spots located at the protein-protein interface [28, 33, 38, 40, 41, 43]. Despite the widely 

accepted view that disruption of hot-spot interactions is critical for the successful inhibition of 

protein-protein interactions, there is no systematic approach to take advantage of hot spots for the 

rational design of small-molecule antagonists. 
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Strategies that have designed compounds to mimic hot spots on the protein ligand generally 

ignore hot spots located on the protein receptor. Similarly, compounds that are designed using 

fragment-based methods are conceived to bind to pockets on the receptor protein without regard to 

hot spots located on the protein ligand. Understanding how compounds engage and mimic hot spots 

could help guide the design of chemical libraries and to guide structure-based computational 

screening of these chemical libraries for the discovery of small-molecule protein-protein interaction 

inhibitors. 

Here, we subject protein-compound and protein-protein structures to explicit-solvent 

molecular dynamics simulations and free energy calculations. We select five protein-protein 

interactions that have been successfully inhibited with small molecules and for which there exists 

quality binding affinity data and co-crystal structures: Bcl-xL•Bak, MDM2•p53, XIAP•Smac, IL-

2•IL-2Rα, and BRD4•H4. For each protein-protein and protein-compound complex, MM-GBSA 

free energy calculations were carried out to determine the binding free energy for comparison to 

experimental binding affinities and IC50s. In addition, for each protein-protein complex, we 

determine the free energy change due to mutation of interface residues to alanine (computational 

alanine scan). We explore the interaction of each compound and protein ligand to the predicted hot 

spots on the receptor using per-residue decomposition energy calculations. Furthermore, we use 

pharmacophore modeling to investigate how effectively compounds mimic hot spots located on the 

protein ligand. Finally, molecular dynamics simulations are analyzed to compare the effect of 

compounds on the dynamics of the receptor to those of the protein ligand. 

 

2.2 RESULTS 

 2.2.1 Protein-Protein and Protein-Compound Complexes. Five protein-protein 

interactions that have been successfully inhibited previously with small molecules were selected 

for this work (Table 2.1). Two of these interactions are classified as primary, corresponding to a 

short linear peptide binding to a receptor protein: The Bir3 domain of X-linked inhibitor of 

apoptosis protein with a short peptide of Smac/DIABLO (XIAP•Smac; Kd = 420 ± 20 nM), and the 

first of two bromodomains on BRD4 with a di-acetylated peptide from a histone 4 tail (BRD4•H4; 

Kd = 4.8 ± 0.4 µM). Another two interactions are classified as secondary: MDM2, an inhibitor of 

p53 transcriptional activation, with the tumor suppressor p53 (MDM2•p53; Kd = 295 nM), and a 

pro-survival protein Bcl-xL with a pro-apoptotic peptide of Bak (Bcl-xL•Bak; Kd = 340 ± 30 nM). 

These consist of 13- and 16-residue α-helices bound to well-defined pockets on MDM2 and Bcl-

xL, respectively. The last interaction is classified as tertiary: The cytokine interleukin-2 with its α-

subunit (IL-2•IL-2Rα; Kd = 13 nM). 
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A total of 36 small-molecule inhibitors that were co-crystallized with their respective 

targets were considered (Table 2.1). The compounds have a wide range of chemical structures and 

physicochemical properties. The binding affinity of the compounds ranged from sub-nanomolar to 

sub-millimolar. The Bcl-xL compounds were generally the largest and exhibited the highest 

affinities and inhibition potency, with the majority showing nanomolar Kd and IC50. The weakest 

affinity compound, 5, was a lead compound that ultimately led to a sub-nanomolar inhibitor of Bcl-

xL [52]. The inhibitors of the MDM2•p53 interaction had binding affinities to MDM2 that ranged 

from 0.4 to 916 nM, with similar IC50 values ranging from 1.1 to 1710 nM. Except for two of the 

seven XIAP antagonists, Kds and IC50s of these compounds were in the sub-micromolar range. 

Compounds 18 and 22 showed micromolar Kd. The IC50 for the four IL-2R antagonists ranged from 

60 nM to 6000 nM. Finally, the BRD4 antagonists exhibited binding affinities that ranged from 36 

nM to 2400 nM. The IC50 values ranged from 16 to 100 nM. 

Ligand efficiency is defined as a compound’s free energy of binding divided by the number 

of non-hydrogen atoms [53]. Generally, ligand efficiency for drug-like compounds should be 

greater than 0.30 [54]. Among the compounds that we have considered, only BRD4•H4 inhibitors 

exhibited ligand efficiencies that are greater than 0.3 (0.32 ± 0.01), while inhibitors of MDM2•p53 

are below 0.3 with a ligand efficiency of 0.27 ± 0.02. Inhibitors of XIAP•Smac have ligand 

efficiencies of 0.24 ± 0.02, despite having similar number of heavy atoms as inhibitors of 

MDM2•p53 (XIAP•Smac: 35 ± 1, MDM2•p53: 36 ± 2, Mann-Whitney rank-sum test, p = 0.88). 

There are at least two halogen atoms in each of the MDM2•p53 antagonists compared to none in 

XIAP•Smac antagonists, resulting in approximately 80 Da increase in molecular weight despite the 

almost equal number of heavy atoms. Finally, Bcl-xL•Bak and IL-2•IL-2Rα have ligand 

efficiencies of 0.22 ± 0.03 and 0.21 ± 0.01, respectively. Overall, except for BRD4, most small-

molecule protein-protein interaction inhibitors have poor ligand efficiencies. 

The lipophilic efficiency of a compound measures the difference between its activity and 

lipophilicity [55]. Compounds with high lipophilicity tend to have increased target promiscuity and 

decreased solubility [55]. Thus, interactions involving compounds with high lipophilic efficiency 

are primarily directed and specific to a protein receptor [56]. Generally, lipophilic efficiency of 

lead-like compounds is greater than 5 [55]. Mean lipophilic efficiency across all inhibitors is 3.3 ± 

0.3, ranging from 1.9 ± 0.5 in MDM2•p53 to 5.7 ± 0.5 in XIAP•Smac. Among all the antagonists 

we have considered, only small-molecule XIAP•Smac antagonists and 26, which inhibits IL-2•IL-

2Rα, have lipophilic efficiencies above 5. 
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Table 2.1. Characteristics of protein-protein interaction complexes. 

PDB Compound Ligand LEa LLEb Kd/Ki (nM) IC50 (nM) Ref 

Bcl-xL•Bak 

1BXL  -   340 ± 30 [57] 

1YSI 1 N3B 0.27 1.6 36 ± 1.6 
 

[58] 

2YXJ 2 N3C 0.23 4.4 0.37 2.5 ± 0.6 [59] 

3QKD 3 HI0 0.20 3.1 4.2 3 [60] 

3SP7 4 03B 0.19 2.1 <1 6 ± 1 [52] 

3SPF 5 B50 0.14 0.6 138000 ± 76000 453000 ± 25000 [61] 

4QVX 6 3CQ 0.32 6.2 <0.01 
 

[62] 

 

MDM2•p53 

1YCR  -   295  [63] 

1RV1 7 IMZ 0.23 0.0 
 

140 [64] 

1T4E 8 DIZ 0.28 2.5 80 220 [65, 

66] 

3JZK 9 YIN 0.26 0.5 
 

1230 ± 820 [67] 

3LBK 10 K23 0.25 0.1 916 1710 ± 1103 [68] 

3TU1 11 07G 0.27 3.1 250 
 

[69] 

3W69 12 LTZ 0.21 3.0 
 

58 [70] 

4DIJ 13 BLF 0.26 1.7 
 

30 [71] 

4ERE 14 0R2 0.33 3.2 
 

4.2 ± 0.9 [72] 

4ERF 15 0R3 0.38 4.3 0.4 1.1 ± 0.5 [72] 

4HG7 16 NUT 0.24 0.7 
 

71 ± 11 [73] 

 

XIAP•Smac 

1G73  -   420 ± 20  [74] 

2JK7 17 BI6 0.27 4.9 67 ± 18 
 

[75] 

2OPY 18 CO9 0.19 6.1 30000 ± 12000 
 

[76] 

3CLX 19 X22 0.25 5.9 250 270 ± 20 [77] 

3CM2 20 X23 0.23 6.6 870 970 ± 120 [77] 

3EYL 21 SMK 0.25 6.8 220 250 ± 40 [77, 

78] 

3HL5 22 9JZ 0.16 3.4 34000 
 

[79] 

5C83 23 4YN 0.30 5.5 
 

160 [80] 

 

IL-2•IL-2Rα 

1Z92  -   13  [81] 

1M48 24 FRG 0.23 3.9 8200 3000 [81, 

82] 

1PW6 25 FRB 0.20 3.4 
 

6000 [83] 

1PY2 26 FRH 0.22 5.9 
 

60 [83] 

1QVN 27 FRI 0.19 2.8 
 

250 [84] 

 

BRD4•H4 

 

3UVW  -   4800 ± 400  [85] 

2YEL 28 WSH 0.31 2.3 52.5 15.5 ± 1.9 [86] 
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3MXF 29 JQ1 0.32 2.5 49 77 [87, 

88] 

3P5O 30 EAM 0.33 3.9 55.2 36.1 [88] 

3U5J 31 08H 0.35 2.0 2460 ± 110 
 

[89] 

3U5L 32 08K 0.37 2.1 640 ± 30 
 

[89] 

3ZYU 33 1GH 0.31 3.3 
 

100 [90] 

4F3I 34 0S6 0.36 3.6 36.1 ± 7.8 30 ± 4 [91] 

4MR4 35 1K0 0.30 2.9 1142 ± 46 
 

[92] 

5D3L 36 57F 0.28 3.6 880 
 

[93] 
a Ligand Efficiency, T = 298.15 K 

b Lipophilic Efficiency 
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Table 2.2 Calculated free energies (± standard error) of protein-protein and protein-ligand 

complexes. 

PDB Cpd ∆EVDW ∆EELE ∆EGB ∆ESURF ∆EGBTOT ∆GMM-GBSA 

Bcl-xL•Bak 

1BXL 
 

-93.5 ± 0.4 -266.1 ± 2.2 295.1 ± 2.0 -13.6 ± 0.0 -78.1 ± 0.4 -36.7 ± 0.5 

1YSI 1 -49.4 ± 0.1 -6.2 ± 0.1 28.1 ± 0.1 -6.3 ± 0.0 -33.8 ± 0.1 -16.7 ± 0.3 

2YXJ 2 -72.9 ± 0.1 -433.4 ± 0.9 458.9 ± 0.9 -9.0 ± 0.0 -56.3 ± 0.1 -28.7 ± 0.3 

3QKD 3 -71.2 ± 0.1 -384.9 ± 0.7 406.1 ± 0.7 -8.7 ± 0.0 -58.6 ± 0.1 -33.2 ± 0.2 

3SP7 4 -83.3 ± 0.2 -223.2 ± 0.7 238.8 ± 0.6 -11.1 ± 0.0 -78.8 ± 0.2 -44.9 ± 0.3 

3SPF 5 -39.8 ± 0.2 -5.1 ± 0.3 20.3 ± 0.2 -4.9 ± 0.0 -29.5 ± 0.2 -11.3 ± 0.3 

4QVX 6 -84.2 ± 0.1 -181.0 ± 0.5 199.6 ± 0.5 -9.8 ± 0.0 -75.4 ± 0.1 -49.0 ± 0.2 

 

MDM2•p53 

1YCR  -73.5 ± 0.2 -377.5 ± 1.2 400.5 ± 1.1 -10.1 ± 0.0 -60.6 ± 0.2 -25.1 ± 0.3 

1RV1 7 -44.4 ± 0.1 -8.1 ± 0.1 20.9 ± 0.1 -5.1 ± 0.0 -36.7 ± 0.1 -17.8 ± 0.2 

1T4E 8 -43.8 ± 0.1 -136.9 ± 0.9 151.8 ± 0.9 -5.1 ± 0.0 -34.1 ± 0.1 -15.9 ± 0.2 

3JZK 9 -40.3 ± 0.1 -11.1 ± 0.1 22.9 ± 0.1 -4.5 ± 0.0 -32.9 ± 0.1 -14.3 ± 0.2 

3LBK 10 -36.6 ± 0.1 -115.0 ± 0.4 129.4 ± 0.4 -4.5 ± 0.0 -26.7 ± 0.1 -9.7 ± 0.2 

3TU1 11 -42.4 ± 0.1 -107.7 ± 0.4 123.6 ± 0.4 -5.4 ± 0.0 -32.0 ± 0.1 -12.9 ± 0.2 

3W69 12 -48.4 ± 0.1 59.2 ± 0.2 -44.6 ± 0.2 -5.8 ± 0.0 -39.7 ± 0.1 -20.0 ± 0.3 

4DIJ 13 -44.7 ± 0.1 -7.6 ± 0.1 21.9 ± 0.1 -5.3 ± 0.0 -35.6 ± 0.1 -16.1 ± 0.2 

4ERE 14 -40.3 ± 0.1 -112.3 ± 1.1 125.8 ± 1.0 -5.0 ± 0.0 -31.8 ± 0.1 -12.0 ± 0.2 

4ERF 15 -38.7 ± 0.1 -145.5 ± 0.7 156.1 ± 0.6 -5.2 ± 0.0 -33.3 ± 0.1 -13.7 ± 0.2 

4HG7 16 -45.4 ± 0.1 -8.0 ± 0.1 22.6 ± 0.1 -5.4 ± 0.0 -36.3 ± 0.1 -16.6 ± 0.3 

 

XIAP•Smac 

1G73  -49.6 ± 0.4 -265.8 ± 2.4 280.6 ± 2.3 -7.2 ± 0.0 -42.0 ± 0.3 -9.7 ± 0.4 

2JK7 17 -41.1 ± 0.1 -133.0 ± 0.5 131.4 ± 0.4 -5.0 ± 0.0 -47.8 ± 0.1 -30.1 ± 0.2 

2OPY 18 -32.7 ± 0.1 -162.3 ± 1.1 171.2 ± 1.0 -4.3 ± 0.0 -28.1 ± 0.2 -8.3 ± 0.2 

3CLX 19 -39.6 ± 0.1 -178.7 ± 0.5 178.1 ± 0.4 -5.2 ± 0.0 -45.4 ± 0.1 -23.8 ± 0.2 

3CM2 20 -37.0 ± 0.1 -271.4 ± 0.8 266.2 ± 0.7 -5.0 ± 0.0 -47.2 ± 0.1 -26.7 ± 0.2 

3EYL 21 -40.1 ± 0.1 -247.5 ± 0.7 240.3 ± 0.6 -5.5 ± 0.0 -52.6 ± 0.2 -31.0 ± 0.2 

3HL5 22 -32.8 ± 0.1 -146.2 ± 0.4 142.2 ± 0.3 -4.1 ± 0.0 -40.9 ± 0.1 -19.5 ± 0.2 

5C83 23 -43.4 ± 0.1 -152.2 ± 0.5 154.7 ± 0.5 -4.9 ± 0.0 -45.8 ± 0.1 -23.7 ± 0.3 

 

IL-2•IL-2Rα 

1Z92  -73.3 ± 0.8 -674.0 ± 7.1 683.9 ± 7.2 -12.9 ± 0.1 -76.4 ± 0.9 -28.9 ± 0.9 

1M48 24 -43.4 ± 0.1 -129.7 ± 0.4 129.5 ± 0.3 -5.9 ± 0.0 -49.4 ± 0.1 -28.5 ± 0.2 

1PW6 25 -39.1 ± 0.2 -118.9 ± 0.4 120.6 ± 0.3 -5.3 ± 0.0 -42.8 ± 0.2 -21.5 ± 0.3 

1PY2 26 -51.4 ± 0.1 -228.9 ± 0.8 234.0 ± 0.8 -6.8 ± 0.0 -53.1 ± 0.1 -26.1 ± 0.3 

1QVN 27 -52.4 ± 0.2 -133.7 ± 0.4 140.3 ± 0.4 -6.8 ± 0.0 -52.5 ± 0.1 -24.7 ± 0.3 

 

BRD4•H4 

3UVW  -70.8 ± 0.2 -159.8 ± 0.9 177.7 ± 0.8 -10.6 ± 0.0 -63.5 ± 0.2 -31.3 ± 0.4 

2YEL 28 -40.7 ± 0.1 -8.0 ± 0.1 20.0 ± 0.1 -5.0 ± 0.0 -33.6 ± 0.1 -16.1 ± 0.2 

3MXF 29 -41.4 ± 0.1 -2.3 ± 0.1 13.8 ± 0.1 -4.9 ± 0.0 -34.8 ± 0.1 -17.7 ± 0.2 
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3P5O 30 -41.5 ± 0.1 -9.9 ± 0.1 23.0 ± 0.1 -5.0 ± 0.0 -33.4 ± 0.1 -16.5 ± 0.2 

3U5J 31 -34.9 ± 0.1 -9.8 ± 0.1 18.5 ± 0.1 -4.1 ± 0.0 -30.4 ± 0.1 -15.4 ± 0.2 

3U5L 32 -36.0 ± 0.1 -11.7 ± 0.1 20.3 ± 0.1 -4.3 ± 0.0 -31.6 ± 0.1 -14.9 ± 0.2 

3ZYU 33 -40.7 ± 0.1 -9.3 ± 0.1 22.4 ± 0.1 -4.9 ± 0.0 -32.4 ± 0.1 -15.5 ± 0.2 

4F3I 34 -40.5 ± 0.1 -4.0 ± 0.1 15.0 ± 0.1 -4.9 ± 0.0 -34.3 ± 0.1 -17.6 ± 0.2 

4MR4 35 -31.9 ± 0.1 -19.8 ± 0.2 28.6 ± 0.2 -4.4 ± 0.0 -27.6 ± 0.1 -11.7 ± 0.2 

5D3L 36 -36.3 ± 0.1 -29.1 ± 0.3 39.8 ± 0.2 -4.9 ± 0.0 -30.5 ± 0.1 -13.4 ± 0.2 
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 2.2.2 Molecular Dynamics Simulations and Free Energy Calculations. Molecular 

dynamics simulations and MM-GBSA calculations were carried out for the five protein-protein and 

36 protein-compound complexes. The MM-GBSA free energies for individual complexes are 

reported in Table 2.2. The van der Waals potential energy (∆EVDW) and the free energy due to 

burial of solvent-accessible surface area (∆ESURF) were more favorable for the protein-protein 

complexes than the protein-compound complexes. The van der Waals potential energy ranged from 

-93.5 ± 0.4 kcal·mol-1 for Bcl-xL•Bak to -49.6 ± 0.4 kcal·mol-1 for XIAP•Smac, while ∆ESURF 

ranged from -13.6 for Bcl-xL•Bak to -7.2 kcal·mol-1 for XIAP•Smac. ∆ESURF is directly 

proportional to the change in solvent-accessible surface area upon binding [94]. The buried surface 

area on the receptor in the protein-protein complexes are approximately 940, 900, 715, 660, and 

250 Å2 for Bcl-xL, IL-2, BRD4, MDM2, and XIAP, respectively. Therefore, it was not a surprise 

to find that ΔESURF was substantially less favorable for the protein-compound complexes than those 

of the native protein-protein complex considering the much larger surfaces of the latter. However, 

∆ESURF for protein-protein and protein-compound complexes were similar for XIAP•Smac and 

some of the Bcl-xL•Bak antagonists (compounds 4 and 6). This is explained by the fact that the 

XIAP•Smac interface is relatively small, such that the protein-protein and protein-compound 

interfaces are similar in size. For the Bcl-xL•Bak interaction inhibitors, compounds 4 and 6 had the 

most favorable ∆EVDW (-83.3 ± 0.2 and -84.2 ± 0.1 kcal·mol-1, respectively) and ∆ESURF (-11.1 and 

-9.8 kcal·mol-1, respectively). 

The electrostatic contributions to the free energy of binding are represented by the 

Coulomb potential energy (∆EELE) and the Generalized-Born (GB) solvation energy (∆EGB). The 

Coulomb energy is generally most favorable for the native protein ligands when compared to 

compounds. The only exception was for Bcl-xL•Bak where two compounds, 2 and 3, exhibited 

substantially more favorable ∆EELE. Compounds 4 and 6 also had highly favorable ∆EELE. This is 

likely due to the formation of a salt bridge between carboxylic groups on 4 and 6 with Arg-132 and 

Arg-139 on Bcl-xL, respectively. The favorable ∆EELE values lead to highly unfavorable ∆EGB, 

since the desolvation of charged and polar groups is highly unfavorable. The Coulomb energies for 

the BRD4•H4 compounds were the most unfavorable. This may be attributed to the fact that none 

of these compounds have charged groups. 

The ∆EGBTOT term is the sum of polar and non-polar interactions. When entropy is added 

to ∆EGBTOT, the result is the ∆GMM-GBSA free energy of binding. As expected, ∆GMM-GBSA is 

substantially less favorable than ∆EGBTOT since the entropy for binding always results in a penalty 

to the free energy of binding. In most of the complexes, the entropy change due to binding of the 

native protein to the receptor was about 30 kcal·mol-1. For compounds, the entropy penalty was 
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more substantial for the Bcl-xL antagonists, which in some cases were nearly as large as that of the 

native ligand (e.g. 4). This is because the Bcl-xL compounds are generally larger than the other 

compounds, but also possess linear architecture that makes them more flexible with more rotatable 

bonds. The larger number of rotatable bonds will result in more unfavorable entropy change 

following binding. 

The computational (∆GMM-GBSA) and experimental free energies (∆GExp) of both protein-

protein and protein-compound complexes are also shown in Fig. 2.1. The correlation coefficients 

when considering both protein-protein and protein-compound complexes are r = 0.55, ρ = 0.43, τ 

= 0.31. When we only consider protein-compound complexes, the correlation coefficients are 

higher (r = 0.64, ρ = 0.52, τ = 0.38). Among the individual components of the computational free 

energy, the total enthalpy (∆EGBTOT) components of the computational free energy correlates with 

the experimental free energy for all complexes. The antagonists of the Bcl-xL•Bak and BRD4•H4 

interactions show the strongest correlations, with Pearson’s r of 0.86 and 0.74, respectively. When 

entropy is considered (∆GMM-GBSA), the correlation of Bcl-xL•Bak and MDM2•p53 remain 

relatively similar, while the correlation of XIAP•Smac and BRD4•H4 are lower by approximately 

0.2. The predicted and experimental binding affinities did not correlate for the IL-2•IL-2Rα 

complex. 
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Figure 2.1. Comparison of free energies in protein-protein and protein-compound complexes. Free 

energies of protein-protein and protein-compound complexes. Protein-protein complexes are 

shown as diamonds while protein-compound complexes are shown in circles. 
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Figure 2.2. Per-residue decomposition versus computational alanine scanning of protein-protein 

complexes. 
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2.2.3 Computational Alanine Scanning and Free Energy Decomposition. To explore 

how effectively the native protein ligand engage receptor hot spots, we performed computational 

alanine scanning of interface residues on the receptor of each of the five protein-protein complexes 

using MM-GBSA. We mutated each receptor residue that is located at the interaction interface to 

alanine and calculated the resulting change in the MM-GBSA free energy between the wild-type 

and mutant complexes (∆∆GMM-GBSA
AlaScan ). In addition to alanine scanning, we carried out per-residue 

decomposition energy analysis for the native ligand and small-molecule inhibitors. This consists of 

determining the interaction energy of protein ligands and small-molecule inhibitors to each of the 

residues on the receptor. The decomposition energy includes all the components of the MM-GBSA 

free energy except for entropy.  

We compare decomposition energies (∆EGBTOT
Decomp

) to alanine scanning free energy changes 

(∆∆GMM-GBSA
AlaScan ) for each residue at the interaction interface (Fig. 2.2). We observe good correlation 

between the computational alanine scanning and total residue decomposition energies across the 

five protein-protein complexes. The mean correlation coefficient across the five complexes for r, 

ρ, and τ are -0.80 ± 0.04, -0.53 ± 0.06, and -0.38 ± 0.05, respectively. A negative correlation is 

expected since residues that have favorable decomposition energies (negative energies) with the 

protein ligand are expected to lead to a higher binding affinity penalty (positive energy) when 

mutated to alanine. Inspection of Fig. 2.2 reveals that there are several exceptions. Several residues 

lead to unfavorable ∆∆GMM-GBSA
AlaScan , yet their interaction with the protein ligand (∆EGBTOT

Decomp
) is highly 

favorable. 

2.2.4 Bcl-xL•Bak. The Bcl-2 protein family consists of apoptosis regulators, which are 

divided into three subfamilies: pro-survival (e.g. Bcl-xL, Bcl-w, and Mcl-1), Bax-like pro-apoptotic 

(e.g. Bax and Bak), and BH3 only (e.g. Bad and Bim) [95]. Inhibition of pro-survival activity occurs 

through binding of a BH3 domain to a hydrophobic cleft formed by the BH1, BH2, and BH3 

domains of a pro-survival protein [96, 97]. One example is the complex between the pro-survival 

protein Bcl-xL and the pro-apoptotic protein Bak, which is characterized by a 16-residue α-helix 

peptide in a hydrophobic cleft formed by the BH1, BH2, and BH3 regions of Bcl-xL (Fig. 2.3A). 

This 16-residue peptide, with a binding affinity of 0.34 µM, represents the minimal region required 

to bind to Bcl-xL [57].  

Experimental alanine scanning of the Bak peptide identified Val-74, Arg-76, Leu-78, Ile-

81, Asp-83, and Ile-85 on Bak, and Arg-139 on Bcl-xL as critical for the interaction, while Ile-80 

and Asp-84 on Bak and Arg-100 on Bcl-xL were not as important [57]. No experimental alanine 

scanning was done on the receptor. Thus, we carried out a computational alanine scan using MM-
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GBSA to identify residues on Bcl-xL that are critical for binding to Bak (Fig. 2.3B). We found that 

the computational mutation of nine residues to alanine resulted in more than 1.5 kcal·mol-1 increase 

in the MM-GBSA free energy. These predicted hot spots include Phe-97, Arg-100, Tyr-101, Phe-

105, Leu-108, Glu-129, Leu-130, Arg-139, Phe-146, and Tyr-195. Arg-139 was predicted to be 

critical for binding consistent with experimental data [57]. 

We carried out decomposition energy calculations to determine the interaction energy 

between Bak and individual residues on Bcl-xL (Fig. 2.3C). There was strong engagement of hot 

spots by Bak as evidenced by ∆EGBTOT
Decomp

 magnitudes that were overall greater than 2 kcal·mol-1. The 

only exceptions are Phe-146 and Tyr-195, which interact with Bak with decomposition energies of 

-0.83 ± 0.01 and -1.69 ± 0.04 kcal·mol-1, respectively. We also found that Bak engaged some 

residues that are not considered hot spots. For example, Val-126 binds to Bak with a decomposition 

energy of -2.06 ± 0.02 kcal·mol-1 despite mutation of Val-126 that resulted in a mere 0.42 kcal·mol-

1 change in MM-GBSA energy. Interestingly, this hydrophobic residue is among residues on Bcl-

xL that form contacts with BH3-containing antagonist peptides [97]. Work by Oberstein and co-

workers detailed the differences in van der Waals contacts of two BH3 peptides, Beclin-1 and Bim, 

at Tyr-101 and Leu-108 of Bcl-xL [98]. They suggest that these differences were critical for the 

binding specificity of BH3 peptides to Bcl-xL [98]. Previous mutagenesis studies of Val-126 

against other BH3 peptides revealed the importance of the residue in heterodimerization of Bcl-xL 

[99, 100]. 

Decomposition energies for small molecules (1 to 6) were carried out to gain insight into 

their engagement of individual hot spots on Bcl-xL (Fig. 2.4A). We compared decomposition 

energies of small molecules with those of the native Bak peptide to uncover how effectively 

compounds mimic the native ligand. Surprisingly, in most cases, compounds do not engage Bcl-

xL hot spots as effectively as Bak, despite the substantial medicinal chemistry efforts that were 

invested in developing these compounds. For example, none of the compounds show ∆EGBTOT
Decomp

 

values that are equal or greater than those of Bak for hot spot residues Arg-100, Tyr-101, and Glu-

129. The remaining hot spots, Phe-97, Phe-105, Leu-130, Arg-139, and Tyr-195 engage four, one, 

five, two, and three of the six compounds with similar interaction energies to the native protein 

Bak, respectively. We found three hot spots bind strongly to all three of the nanomolar inhibitors, 

namely Phe-97, Leu-130, and Tyr-195. The sub-nanomolar inhibitor 6 shows a unique pattern of 

hot-spot binding. The compound binds to Phe-105, Leu-108 and Arg-139 much more strongly than 

the other compounds (-3.06 ± 0.01, -3.51 ± 0.02, and -8.15 ± 0.04 kcal·mol-1, respectively). In each 

of these cases, compound 6 binds to these hot spots much more strongly than that of the native 

ligand Bak.  
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Figure 2.3. Bcl-xL•Bak Protein-Protein Complex. (A) The protein complex of Bcl-xL and Bak 

peptide. Bcl-xL is shown in surface and colored by hydrophobicity, with more hydrophobic 

residues in brown and more hydrophilic residues in green. The Bak peptide is shown in cyan and 

represented in cartoon with side chains in stick. (B) Surface representation of Bcl-xL, where 

residues at the interface on Bcl-xL are colored based on the change in free energy after mutating 

the residue to alanine. (C) Surface representation of Bcl-xL colored by per-residue decomposition 

energy with Bak.  
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Figure 2.4. Bcl-xL•Bak comparison with inhibitors. (A) Residues on Bcl-xL at the interface of the 

protein-protein interaction. On the left, residues are color-coded based on experimental 

mutagenesis studies. Known hot spots residues are highlighted in green and residues that are not 
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hot spots are highlighted in orange. The first two columns show alanine scanning and per-residue 

decomposition at the specific residue in the protein-protein complex, respectively. The third to last 

column show the per-residue decomposition of at the specific residue for each co-crystallized 

inhibitor. Alanine scanning and per-residue decomposition energies are color-coded per the scales 

in Fig. 2.3B and Fig. 2.3C, respectively. Experimental ∆G are shown in the first row for each 

complex. Numbers are shown in kcal·mol-1. (B) Surface representation of Bcl-xL colored by per-

residue decomposition energy with compound 2.  



27 

Individual compounds showed differences in their binding to hot spots when compared to 

the native peptide Bak. Compound 5, which has poor micromolar affinity, binds weaker to hot spots 

compared to Bak, particularly at Phe-97, Arg-100, Phe-195, and Asn-136 to Arg-139. Compound 

1, on the other hand, interacts more tightly with Arg-100 than the other compounds, but shows little 

interaction with hot spots Leu-108, Val-126, Glu-129, Leu-130, and Phe-146. The co-crystallized 

structure of 2 is shown in Fig. 2.4B. Compound 2 (ABT-737) binds to Bcl-xL, Bcl-2, and Bcl-w 

with sub-nanomolar affinities, but shows micromolar affinities to Mcl1 [58]. Critical interactions 

between Bcl-xL and 2 include the π-π and π-cation interactions between Tyr-195 and nitrobenzene 

of 2, as well as hydrogen bonding between Gly-138 and Asn-136 to the sulfone and nearby 

secondary amine moieties of 2, respectively. Tyr-101 also forms a π-π interaction with another 

benzene ring in the core structure of the compound. The decomposition energy between Tyr-101 

and 5 is similar to that of the native peptide and is an additional 1 kcal·mol-1 better than the other 

compounds. Finally, Phe-97 and Val-141 form hydrophobic contacts with the thiophenol of 2. The 

interaction with Phe-97 in 1 and 5 is much weaker than in the other compounds, despite π-π 

interactions with the residue in both compounds. Compounds 3 and 4 share similar core structures 

and binding modes with 2. A modification an amide carbonyl in the core of 2 to generate a 

quinazoline in 3 results in an additional hydrogen bond between the quinazoline and the side chain 

of Tyr-101. Compound 4 forms a salt bridge with Arg-139. Among all six antagonists of Bcl-xL, 

only 4 and the sub-nanomolar compound 6 interact with the key Arg-139 residue. The most potent 

compound, 6, forms a π-π interaction with Phe-105 and hydrogen bonds with Leu-108 and Asn-

136. These additional interactions allow the compound to engage more hot spots on Bcl-xL and 

mimic more of the interactions seen in the native Bak peptide. 

2.2.5 MDM2•p53. MDM2 is an inhibitor of transcriptional activity of the tumor suppressor 

p53 [101]. This interaction is characterized by a 15-residue α-helix of p53 binding into a 

hydrophobic cleft of MDM2 (Fig. 2.5A). The region on p53 from Thr-18 to Leu-26 represents the 

minimal region required to bind to MDM2 [102]. On p53, the three side chains of Phe-19, Trp-23, 

and Leu-26 are buried in the hydrophobic pocket of MDM2 and are critical for binding [103]. There 

are no published alanine scanning studies for MDM2 in vitro, therefore, the contributions of 

residues at the MDM2•p53 interface to binding of the p53 peptide are unknown. This prompted us 

to conduct a computational alanine scan to identify hot spots at the interface (Fig. 2.5B). We find 

that Met-50, Leu-54, Ile-61, Val-93, and Tyr-100 on MDM2 are hot spots, resulting to more than 

1.5 kcal·mol-1 change in ∆∆GMM-GBSA
AlaScan . Similarly, the decomposition energies show that Thr-26, 

Met-50, Leu-51, Leu-54, Ile-61, Val-93, Arg-97, Tyr-100, and Tyr-104 contribute more than 2 

kcal·mol-1 to the interaction (Fig. 2.5C).  
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Figure 2.5. MDM2•p53. (A) The protein complex of MDM2 and p53 peptide. MDM2 is shown in 

surface and colored by hydrophobicity, with more hydrophobic residues in brown and more 

hydrophilic residues in green. The p53 peptide is shown in cyan and represented in cartoon with 

side chains in stick. (B) Surface representation of MDM2, where residues at the interface on MDM2 

are colored based on the change in free energy after mutating the residue to alanine. (C) Surface 

representation of MDM2 colored by per-residue decomposition energy with p53.  
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Figure 2.6. MDM2•p53 comparison with inhibitors. (A) Residues on MDM2 at the interface of the 

protein-protein interaction. On the left, residues are color-coded based on experimental 

mutagenesis studies. Known hot spots residues are highlighted in green. The first two columns 

show alanine scanning and per-residue decomposition at the specific residue in the protein-protein 

complex, respectively. The third to last column show the per-residue decomposition of at the 

specific residue for each co-crystallized inhibitor. Alanine scanning and per-residue decomposition 

energies are color-coded per the scales in Fig. 2.5B and Fig. 2.5C, respectively. Experimental ∆G 

are shown in the first row for each complex. Numbers are shown in kcal·mol-1. (B) Surface 

representation of MDM2 colored by per-residue decomposition energy with compound 15. 
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Decomposition energies for small molecules (7 to 16) were carried out to gain insight into 

their binding to hot spots on MDM2 (Fig. 2.6A). Three hot spots that were found to be strongly 

engaged by p53 bind strongly to most compounds, namely Leu-54, Ile-61, and Val-93. It is worth 

noting, however, that Ile-61 interacts with compounds worse than the native p53 protein. Two of 

the hot spots that are strongly engaged by p53 did not bind to compounds 7-16. For example, p53 

binds to Met-50 and Tyr-100 with decomposition energies of -2.68 ± 0.03 and -4.85 ± 0.05 

kcal·mol-1, respectively. Yet, the magnitude of the interaction energies of the compounds to these 

hot spots is nearly consistently below 1 kcal·mol-1. It is interesting to note that p53 strongly binds 

to Tyr-100 with a decomposition energy of -4.85 ± 0.05 kcal·mol-1. Some compounds, like the most 

potent inhibitor, namely 15, revealed unique interactions not present in others. The compound binds 

very strongly to Lys-94 and His-96 with decomposition energies absolute values greater than 3 

kcal·mol-1. Like the p53 peptide, compounds 7-16 show strong interactions to Leu-54 and Val-93, 

and weaker binding to Leu-57, Gly-58, Ile-61, Met-62, His-96, and Ile-99. The majority fail to 

mimic the interaction energies of p53 at Tyr-67, Gln-72, His-73, Arg-97, Tyr-100, and Tyr-104. 

Compound 15 (AM-8553), shown in Fig. 2.6B, binds to MDM2 with an affinity of 0.4 nM 

[72]. One of the chlorobenzenes of 15 occupies p53’s Leu-26 pocket and forms a π-π interaction 

with the imidazole of His-96. The carboxylic acid of 15 forms a salt bridge with Lys-94 and a 

hydrogen bond with His-96. The interactions between the compound and Lys-94 and His-96 on 

MDM2 is reflected in the favorable -3 kcal·mol-1 interaction decomposition energies. These two 

interactions are absent in the other (weaker) compounds. The other chlorobenzene group mimics 

the six-membered ring of the indole of p53’s Trp-23. The hydroxyl group points away from the 

positively charged Glu-69, thereby allowing the nearby ethyl group to occupy p53’s Phe-19 pocket 

and engage MDM2’s Gly-58, Ile-61, and Met-62. Replacement of the hydroxyl group of 15 with a 

sulfone resulted in a 10-fold improvement in Kd [104]. By mimicking both Trp-23 and Leu-26 on 

p53, compounds engage favorably with Leu-54 and Ile-99. Similarly, mimicking both Phe-19 and 

Trp-23 on p53 engages Ile-61 and Val-93 on the receptor. In sum, it appears that the MDM2 

antagonists have been designed to mimic hot spots of p53. 

2.2.6 XIAP•Smac. The E3 ubiquitin-protein ligase XIAP is a member of the Inhibitor of 

Apoptosis Proteins (IAP) family, which suppresses apoptotic cell death pathways through the 

inhibition of caspases [105, 106]. Smac/DIABLO binding at the protein-protein interface on the 

BIR3 domain of XIAP interferes with XIAP inhibition of CASP9 [74, 107]. A short AVPI-peptide 

at the N-terminal of Smac forms the interface at the dimer structure between the protein and the 

BIR3 domain of XIAP (Fig. 2.7A). Mutation of any of the first four residues of the Smac peptide 

resulted in greater than 100-fold decrease in binding affinity of the BIR3 of XIAP [74, 108]. On 
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XIAP, mutations at Asp-296, Leu-307, Trp-310, Glu-314, and Trp-323 greatly decreased the 

binding affinity of Smac, while mutations at Asp-315, Glu-318, His-343, and Gln-319 had little to 

no effect [74]. Although mutation of His-343 had little effect on Smac binding, in vitro inhibition 

of caspase-9 was completely abrogated [74]. 

On XIAP, mutations to alanine at Arg-258, Leu-307, Trp-310, Glu-314, Trp-323, and Tyr-

324 resulted in more than 1.5 kcal·mol-1 change in free energy and are considered hot spots (Fig. 

2.7B). We also carried out decomposition analysis to explore whether Smac binds strongly to hot 

spots. We found that Arg-258, Leu-307, Thr-308, Glu-314, and Trp-323 contributed more than 2 

kcal·mol-1 to the interaction energy with Smac while Gly-306, Asp-309, and Trp-310 bound more 

weakly to Smac with approximately 1 kcal·mol-1in the energy decomposition (Fig. 2.7C). In the 

XIAP•Smac dimer, Arg-258 forms a salt bridge with Glu-9 on Smac. However, iterative truncation 

of the first nine residues of the Smac peptide down to the first five residues did not affect the binding 

affinity to the BIR3 domain of XIAP [74]. Therefore, it is unlikely that Arg-258 is critical to 

XIAP•Smac binding and inhibition. Gly-306 and Thr-308 are native lysine residues in the BIR2 

domain of XIAP, and may account for the differences in binding affinity between the BIR2 and 

BIR3 domains [74]. While Gly-306 cannot be tested through alanine scanning, computational 

mutation of Thr-308 to alanine resulted in negligible change in the binding free energy and are not 

considered hot spots. 

Decomposition energies were determined for 17-23 to compare with interaction energies 

of the Smac native ligand (Fig. 2.8A). Among the six hot spots that we found on XIAP (Arg-258, 

Leu-307, Trp-310, Glu-314, Trp-323, and Tyr-324), three interact strongly with the compounds, 

namely Leu-307, Glu-314 and Trp-323. These three amino acids show the tightest binding to both 

Smac and compounds. Trp-310 binds to Smac with a decomposition energy of -1.53 ± 0.01 

kcal·mol-1, which is relatively weak. However, most compounds interact with this residue as 

strongly as Smac, except for 18, which interestingly is one of the weaker compounds with an 

experimental binding affinity of -6.2 kcal·mol-1. Arg-258 and Tyr-324 are hot spots that do not bind 

to any of the compounds, even though Arg-258 shows very strong interaction to Smac. Further 

inspection of the data reveals Thr-308 binds strongly to all compounds as evidenced by 

decomposition energies that are on average -5 kcal·mol-1. Asp-309 was not as critical to the binding 

since two of the most potent inhibitors, namely 17 and 23, do not engage this residue with high 

affinity.  
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Figure 2.7. XIAP•Smac. (A) The protein complex of XIAP and Smac/DIABLO. XIAP is shown 

in surface and colored by hydrophobicity, with more hydrophobic residues in brown and more 

hydrophilic residues in green. Smac is shown in cyan and represented in cartoon with side chains 

in stick. (B) Surface representation of XIAP, where residues at the interface on XIAP are colored 

based on the change in free energy after mutating the residue to alanine. (C) Surface representation 

of XIAP colored by per-residue decomposition energy with Smac.  
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Figure 2.8. XIAP•Smac comparison with inhibitors. (A) Residues on XIAP at the interface of the 

protein-protein interaction. On the left, residues are color-coded based on experimental 

mutagenesis studies. Known hot spots residues are highlighted in green and residues that are not 

hot spots are highlighted in orange. The first two columns show alanine scanning and per-residue 

decomposition at the specific residue in the protein-protein complex, respectively. The third to last 

column show the per-residue decomposition of at the specific residue for each co-crystallized 

inhibitor. Alanine scanning and per-residue decomposition energies are color-coded per the scales 

in Fig. 2.7B and Fig. 2.7C, respectively. Experimental ∆G are shown in the first row for each 

complex. Numbers are shown in kcal·mol-1. (B) Surface representation of XIAP colored by per-

residue decomposition energy with compound 19.  
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In the protein-protein complex, the bulk of the contribution at Glu-314 is from electrostatic 

interactions with the N-terminal Ala-1 residue of the Smac peptide. Among the compounds, there 

is a common amine moiety that replicates this interaction. The binding mode of 19 is shown in Fig. 

2.8B. Compounds 19-21 differ only by a hydroxymethyl, methylamine, and ethylamine substituent 

on the seven-membered ring, respectively. This results in an approximately 1.1 kcal·mol-1 stronger 

interaction with Asp-309 on XIAP. While, the residue is not critical to Smac binding, and the Kd 

and IC50 of 20 is about four-fold weaker than the other two compounds. The fused cycloheptane 

and pyrrolidine ring mimic the side chains of Val-2 and Pro-3 of the Smac peptide, respectively. 

The fused ring also serves to bury the hydrophobic Leu-307 and Trp-323 residues. The final critical 

residue of the Smac peptide, Ile-4, is mimicked by one of the two benzene rings of the compound. 

While not hot spots, the compound is stabilized by hydrogen bonds between the backbone of Gly-

306 with the acetylamide by the two benzene rings of the compound and Thr-308 with the 

aminobutanamide substituent of the fused ring. The two micromolar compounds, 18 and 21, fail to 

mimic Val-2 and Ile-4 of the Smac peptide, respectively. 

2.2.7 IL-2•IL-2Rα. IL-2 is produced after antigen activation during an immune response 

and binds to a combination of α-, β-, and γ- IL-2 receptors [109]. While each receptor subunit can 

bind to IL-2 at varying affinities, ranging from approximately 10 nM for the α-subunit to about 0.7 

mM for the γ subunit, the tetramer complex is approximately 5 pM [48]. Here, we explore the 

heterodimeric interface between IL-2 and its α-subunit (Fig. 2.9A). Site directed mutagenesis and 

other hot spot identification techniques have identified Lys-35, Arg-38, Phe-42, Lys-43, Tyr-45, 

Glu-62, and Leu-72 as critical residues on IL-2 at the interface [110-112]. Comparative 

mutagenesis of IL-2 with both the α-subunit and compound 27 showed that Phe-42, Tyr-45, and 

Glu-62 were critical for binding, while mutations Met-39, Thr-41, Lys-43, Phe-44, and Leu-72 

showed moderate disruption in binding affinity of subunit binding [84]. However, mutations at 

Lys-35 and Arg-38 showed less than 5-fold change in binding affinity and mutations at Pro-65 and 

Val-69 were negligible [84]. 

Both the alanine scanning (Fig. 2.9B) and residue decomposition (Fig. 2.9C) analyses of 

the IL-2•IL-2Rα largely replicate the experimental mutagenesis of interface residues. Residues that 

contribute more than 2 kcal·mol-1 to the binding affinity in the residue decomposition include Lys-

35, Arg-38, Phe-42, Lys-43, Tyr-45, Glu-62, and Pro-65. Along with these residues, Phe-44 and 

Glu-61 are hot-spots residues from the alanine scanning that resulted in greater than 1.5 kcal·mol-

1 difference in binding affinity when computationally mutated. Despite the nearly 3-fold decrease 

in binding affinity from experimentally mutating Arg-38, the residue contributes about -9 kcal·mol-

1 to the decomposition and approximately 9.5 kcal·mol-1 change in free energy upon computational 
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mutation to alanine. In the complex, Arg-38, along with Lys-35 and Lys-43 are among a set of 

positively charged residues that interacts with a set of negatively charged residues on the α-subunit. 

Decomposition energies for compounds 24-27 were determined to compare their 

interaction to IL-2•IL-2Rα. Among the nine hot spots that were identified from our alanine scan, 

six of them engage compounds very strongly, namely Lys-35, Arg-38, Phe-42, Lys-43, Glu-62, and 

Leu-72. However, only four of these hot spots bind strongly to most compounds, namely Arg-38, 

Phe-42, Lys-43, and Glu-62. Lys-35 only binds to 26 with decomposition energy that is less than 2 

kcal·mol-1 in magnitude, although this is still weaker than the residue’s binding to IL-2Rα. It is 

interesting to note that compound 26 is the most potent inhibitor. Arg-38 shows substantial binding 

to IL-2Rα and engages compounds with favorable decomposition energies around -2 kcal·mol-1. 

These interactions remain substantially lower than the very strong interaction between Arg-38 and 

IL-2Rα. One residue, namely Leu-72, shows relatively high affinity to most compounds, yet the 

residue was not found to be a hot spot in our alanine scan. Two hot spots, Tyr-45 and Phe-44 show 

weak interaction with the compounds. In the case of Phe-44, even IL-2Rα binds weakly to the 

residue. 

Compounds 24-27 interact with major hot spots on IL-2 in a similar manner to IL-2Rα 

(Fig. 2.10A). Compared to the native subunit, the antagonists show similar interactions at Arg-38, 

Phe-42, Lys-43, Glu-62, and Leu-72, and weaker interaction energies at Lys-35, Tyr-45, and Pro-

65. A common imine group mimics Arg-36 on the subunit and forms hydrogen bonds with the side 

chain of Glu-62. Another common carbonyl forms hydrogen bonds with the Lys-43 hot spot to 

stabilize the compound. At the opposite end of the compound, aromatic rings form salt bridges with 

Arg-38. The orientation on the hot spot Phe-42 side chain points down into the binding pocket 

when bound to the antagonists but points out when bound to the native α-subunit. The 

conformational change at this residue flattens the interface, allowing the compounds to adopt their 

respective binding modes. Compounds 25-27 are analogs with a common binding mode (26 is 

shown in Fig. 2.10B). Compounds 26 and 27 feature additional substituents compared to their 

analogs 23 and 25. Extending the core structures and adding carboxylic acid and amide moieties in 

27 and 28, respectively, allow the compounds to mimic Asp-4 on the native ligand and interact 

with the Lys-35 hot spot on IL-2. A π-cation interaction between Tyr-45 on IL-2 and Arg-35 on the 

native ligand is not seen in any of the compounds. A cyclohexane in 25 and isobutyl groups in 26 

and 27 form weak contacts with Tyr-45, but the decomposition energy is less favorable than -1.3 

kcal·mol-1.  
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Figure 2.9. IL-2•IL-2Rα. (A) The protein complex of IL-2 and IL-2Rα. IL-2 is shown in surface 

and colored by hydrophobicity, with more hydrophobic residues in brown and more hydrophilic 

residues in green. IL-2Rα is shown in cyan and represented in cartoon with side chains in stick. (B) 

Surface representation of IL-2, where residues at the interface on MDM2 are colored based on the 

change in free energy after mutating the residue to alanine. (C) Surface representation of IL-2 

colored by per-residue decomposition energy with IL-2Rα.  
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Figure 2.10. IL-2•IL-2Rα comparison with inhibitors. (A) Residues on IL-2 at the interface of the 

protein-protein interaction. On the left, residues are color-coded based on experimental 

mutagenesis studies. Known hot spots residues are highlighted in green and residues that are not 

hot spots are highlighted in orange. Mutations that do not greatly impact the interaction are 

highlighted in yellow. The first two columns show alanine scanning and per-residue decomposition 

at the specific residue in the protein-protein complex, respectively. The third to last column show 

the per-residue decomposition of at the specific residue for each co-crystallized inhibitor. Alanine 

scanning and per-residue decomposition energies are color-coded per the scales in Fig. 2.9B and 

Fig. 2.9C, respectively. Experimental ∆G are shown in the first row for each complex. Numbers 

are shown in kcal·mol-1. (B) Surface representation of IL-2 colored by per-residue decomposition 

energy with compound 26.  



38 

2.2.8 BRD4•H4. The second primary interaction involves a prototypical member of the 

bromodomain family, BRD4, and an acetylated histone tail. The family contains 61 bromodomains 

on 46 proteins that affect post-translational modification by reading the acetylated lysines of 

epigenetic markers [113, 114]. The structure contains two acetylated lysine residues at Lys-5 and 

Lys-8 buried deep into a hydrophobic pocket on the first bromodomain of BRD4 (Fig. 2.11A). 

Alanine scanning of a tetra-acetylated H4 peptide revealed that residues immediately flanking the 

first two acetylated sites, Lys-5(ac) and Lys-8(ac), were critical (i.e. Gly-4, Gly-6, Gly-9, and Leu-

10) [85]. On the interface between BRD4 and Lys-5(ac) and Lys-8(ac) H4, mutations at Trp-81, 

Leu-94, Tyr-97, Asn-140, Asp-145, and Met-149 resulted in approximately ten-fold reduction in 

binding activity, while mutations at Pro-82, Tyr-139, Asp-144, and Ile-146 resulted in 

approximately two-fold reduction in binding activity [85]. 

In the computational alanine scan, we identify several residues as potential hot spots (Fig. 

2.11B). These include Phe-79, Val-87, Leu-94, Asp-96, Tyr-139, Asn-140, Lys-141, Asp-144, 

Asp-145, Ile-146, and Met-149. While mutation of Ile-146 only reduced binding activity of the 

double acetylated peptide by two-fold, the residue contacts both acetylated residues in the complex 

and contributes significantly to both histone and compound interactions. In the residue 

decomposition, we identify the trio of Tyr-139, Asn-140, and Ile-105 contributing more than 2 

kcal·mol-1 to the interaction between BRD4 and double acetylated H4 (Fig. 2.11C). Although Trp-

81 was identified as a critical residue, it only contributes approximately 0.76 kcal·mol-1 in both the 

residue decomposition and alanine scanning. In the crystal structure, the residue is solvent exposed 

and shields Lys-8(ac) from the solvent. 

Decomposition energies for compounds 28-36 reveal that most hot spots on BRD4 do not 

effectively engage the bound small molecules. For example, Phe-79, Asp-96, Tyr-139, Asp-144, 

Asp-145, and Met-149 show no interaction with the compounds. In fact, Asp-96 and Tyr-139 

appear to be critical for H4 binding to BRD4 as evidenced by the loss of more than 8 kcal·mol-1 

upon their mutation to alanine. Inspection of Fig. 2.11A shows that these residues are located 

outside the binding pocket that is occupied by the BRD4 antagonists. Compound substituent that 

bind outside the binding pocket occupy sites that contain Trp-81 and Ile-146, both of which do not 

contribute as much to H4 binding as Asp-96 and Tyr-139. Several amino acids that are not hot spots 

showed strong binding to compounds. Pro-82 binds to compounds 33 and 36 with decomposition 

energies that are more favorable than -2 kcal·mol-1. Another example is Leu-92, which showed a 

penalty of 1.44 ± 0.49 kcal·mol-1 upon mutation to alanine and engaged most compounds with 

decomposition energies that are less than -2 kcal·mol-1.  
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Figure 2.11. BRD4•H4. (A) The protein complex of BRD4 and H4 peptide. BRD4 is shown in 

surface and colored by hydrophobicity, with more hydrophobic residues in brown and more 

hydrophilic residues in green. The H4 peptide is shown in cyan and represented in cartoon with 

side chains in stick. (B) Surface representation of BRD4, where residues at the interface on BRD4 

are colored based on the change in free energy after mutating the residue to alanine. (C) Surface 

representation of BRD4 colored by per-residue decomposition energy with H4.  
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Figure 2.12. BRD4•H4 comparison with inhibitors. (A) Residues on BRD4 at the interface of the 

protein-protein interaction. On the left, residues are color-coded based on experimental 

mutagenesis studies. Known hot spots residues are highlighted in green. Mutations that do not 

greatly impact the interaction are highlighted in yellow. The first two columns show alanine 

scanning and per-residue decomposition at the specific residue in the protein-protein complex, 

respectively. The third to last column show the per-residue decomposition of at the specific residue 

for each co-crystallized inhibitor. Alanine scanning and per-residue decomposition energies are 

color-coded per the scales in Fig. 2.11B and Fig. 2.11C, respectively. Experimental ∆G are shown 

in the first row for each complex. Numbers are shown in kcal·mol-1. (B) Surface representation of 

BRD4 colored by per-residue decomposition energy with compound 29.  
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Compounds 28-36 do not appear to engage the hot spots of BRD4 as strongly as inhibitors 

of the other protein-protein interactions considered in this work (Fig. 2.12A). Compounds 28-32 

and 34 share a common core structure and binding mode. One example is the interaction between 

29 (JQ1) and BRD4, which consists primarily of hydrophobic contacts and van der Waals 

interactions (Fig. 2.12B). A triazole ring on 29 forms a hydrogen bond with the Asn-140 hot spot, 

mimicking Lys-5(ac). The chlorobenzene ring of the compound occupies the pocket formed by 

Lys-8(ac). The t-butyl acetate moiety in 29 is replaced by different moieties in the other analogs 

and extends out of the pocket into solution. In 28, the phenyl substituent forms a π-π interaction 

with Leu-92, a non-hot-spot residue. Compound 34 differs by replacing the t-butyl group with a 

methyl, thereby exposing less of the compound into solution and reducing the compound’s binding 

affinity by approximately 13 nM and IC50 by more than 50 percent. Despite decreasing the size of 

this moiety, there is no observable effect on the energy decomposition of these two compounds. 

While the residue is more distant from Lys-8(ac) in the peptide, the residue serves to lodge the three 

fused rings of the compounds in the binding pocket. 

2.2.9 Mimicking Hot Spots on the Protein Ligand. Following our extensive study of 

small-molecule binding to receptor hot spots, we wondered how effectively existing small-

molecule protein-protein interaction inhibitors mimic the position of hot spots on the ligand protein 

of the complexes considered in this work. To explore compound overlap with protein ligand hot 

spots, we resorted to pharmacophore modeling. Hot-spot residues located on the ligand protein 

were identified from the literature for the Bcl-xL•Bak, MDM2•p53, XIAP•Smac, and BRD4•H4 

complexes. For IL-2•IL-2Rα, we could not identify a set of experimental hot-spot residues on the 

α-subunit; we selected all residues on IL-2Rα at the interaction interface for the pharmacophore 

modeling. Pharmacophore hypotheses were generated to summarize the physiochemical properties 

of hot-spot residue on the protein ligand using Schrödinger Phase [115, 116]. 

The overlap between compounds and hot spots on the protein ligand is system specific. For 

example, moieties on the inhibitors of the MDM2•p53 and XIAP•Smac interactions showed the 

most significant overlap with protein ligand hot spots. Small-molecule inhibitors of Bcl-xL•Bak, 

IL-2•IL-2Rα, and BRD4•H4 showed the lowest degree of overlap. For Bcl-xL•Bak, compounds 

overlap primarily with Leu-78 and Ile-85, while showing no detected overlap with the other four 

hot-spot residues, Val-74, Arg-76, Ile-81, and Asp-83 (Fig. 2.13). Compounds 2, 3 and 6 have 

moieties that mimic the hydrophobic side chain of Leu-78 on the Bak peptide while compounds 1-

4 mimic the hydrophobic moiety of Ile-85 on the Bak peptide. On the MDM2•p53 complex, small 

molecules showed excellent overlap with all three of the hot-spot residues on p53, namely Phe-19, 

Trp-23, and Leu-26 (Fig. 2.14). Compounds on MDM2•p53 antagonists mimic the indole of Trp-
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23 with similar indole or benzenes rings. The aromatic ring of Phe-19 is generally occupied by 

hydrophobic aliphatic moieties on the compounds (7, 11, 12, 14, 15, and 16), while aromatic groups 

on the compounds were introduced to mimic the hydrophobic side chain of Leu-26. Like 

MDM2•p53, small-molecule inhibitors of XIAP•Smac showed significant overlap with side chains 

of the Smac ligand. There are four hot spots residues at the N-terminal region of Smac (Fig. 2.15). 

Val-2, Pro-3, and Ile-4 all have hydrophobic pharmacophore features on their side chains. Most of 

the XIAP•Smac inhibitors we have considered in this study contain moieties that overlap with and 

mimic the side chains of these residues. The exceptions are compounds 18 and 23 overlapping with 

Val-2 and compound 22 overlapping with Ile-4. For IL-2•IL-2Rα, there was remarkably little 

overlap between inhibitors of this interactions and hot spots located on IL-2Rα. There are 10 

residues on the α-subunit at the IL-2•IL-2Rα interface (Fig. 2.16). All the compounds for this 

interaction have an amine group that mimics the positive charge on Arg-36. Finally, BRD4•H4 

interaction antagonists mimicked the two acetylated lysine residues (Fig. 2.17). Compounds 32, 

33, 35, and 36 mimic the hydrophobic pharmacophore feature on Lys-5(ac), while compounds 28, 

29, 33, and 34 mimic the hydrophobic pharmacophore feature on Lys-8(ac). 
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Figure 2.13. Hot-spot residues on the protein ligand Bak and overlap with inhibitors in Bcl-

xL•Bak. (A) The pharmacophore model of the protein-protein interaction complex. The 

pharmacophore features for each protein ligand are shown as small colored spheres: Hydrophobic 

(H, green), positive charge (P, dark blue), and negative charge (N, red). Tolerances are shown in 

transparent gray spheres around the pharmacophore centers. (B) The hot-spot residues on the 

protein ligand are shown with associated pharmacophore features for that residue. For each 

compound (shown column-wise), if a chemical moiety matches the associated pharmacophore 

feature at that residue, the box is colored blue.  
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Figure 2.14. Hot-spot residues on the protein ligand p53 and overlap with inhibitors in MDM2•p53. 

(A) The pharmacophore model of the protein-protein interaction complex. The pharmacophore 

features for each protein ligand are shown as small colored spheres: Hydrogen bond donor (D, light 

blue), hydrophobic (H, green), and aromatic ring (R, tan). Tolerances are shown in transparent gray 

spheres around the pharmacophore centers. (B) The hot-spot residues on the protein ligand are 

shown with associated pharmacophore features for that residue. For each compound (shown 

column-wise), if a chemical moiety matches the associated pharmacophore feature at that residue, 

the box is colored blue.  
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Figure 2.15. Hot-spot residues on the protein ligand Smac and overlap with inhibitors in 

XIAP•Smac. (A) The pharmacophore model of the protein-protein interaction complex. The 

pharmacophore features for each protein ligand are shown as small colored spheres: Hydrophobic 

(H, green). Tolerances are shown in transparent gray spheres around the pharmacophore centers. 

(B) The hot-spot residues on the protein ligand are shown with associated pharmacophore features 

for that residue. Alanine residues had no pharmacophore features that could be considered and were 

left blank. For each compound (shown column-wise), if a chemical moiety matches the associated 

pharmacophore feature at that residue, the box is colored blue.  
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Figure 2.16. Hot-spot residues on the protein ligand IL-2Rα and overlap with inhibitors in IL-2•IL-

2Rα. (A) The pharmacophore model of the protein-protein interaction complex. The 

pharmacophore features for each protein ligand are shown as small colored spheres: Hydrogen 

bond acceptor (A; red), hydrogen bond donor (D, light blue), hydrophobic (H, green), positive 

charge (P, dark blue), negative charge (N, red), and aromatic ring (R, tan). Tolerances are shown 

in transparent gray spheres around the pharmacophore centers. (B) The hot-spot residues on the 

protein ligand are shown with associated pharmacophore features for that residue. Cysteine residues 

had no pharmacophore features that could be considered and were left blank. For each compound 

(shown column-wise), if a chemical moiety matches the associated pharmacophore feature at that 

residue, the box is colored blue.  



47 

 

Figure 2.17. Hot-spot residues on the protein ligand H4 and overlap with inhibitors in BRD4•H4. 

(A) The pharmacophore model of the protein-protein interaction complex. The pharmacophore 

features for each protein ligand are shown as small colored spheres: Hydrogen bond donor (D, light 

blue) and hydrophobic (H, green). Tolerances are shown in transparent gray spheres around the 

pharmacophore centers. (B) The hot-spot residues on the protein ligand are shown with associated 

pharmacophore features for that residue. Glycine residues had no pharmacophore features that 

could be considered and were left blank. For each compound (shown column-wise), if a chemical 

moiety matches the associated pharmacophore feature at that residue, the box is colored blue.  
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Figure 2.18. Similarity in the dynamics of inhibitors with the native ligand on the protein receptor. 

(A-E) Dynamic cross-correlation matrices (DCCM) were generated for the protein-protein and 

protein-inhibitor complexes. At each residue, the Pearson correlation coefficient between the cross-

correlation of the protein-protein and protein-compound for (A) Bcl-xL•Bak, (B) MDM2•p53, (C) 

XIAP•Smac, (D) IL-2•IL-2Rα, and (E) BRD4•H4. A positive correlation at a residue indicates that 

the residue on the protein receptor in the protein-protein and protein-compound complexes are 

moving in a similar manner, while a negative correlation indicates that the residue is moving in an 

opposite manner between the protein-protein and protein-compound complexes. Residues at the 

protein-protein interaction interface on the protein receptor are shown as red squares at the bottom 

of each panel.  
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2.2.10 Effect of Native Protein Ligand and Small-Molecule Inhibitors on Receptor 

Dynamics. A question of interest is whether small-molecule inhibitors mimic the effect of the 

native ligand protein on the dynamics of the receptor. We compared the dynamics of the native 

ligand and each of the inhibitors using dynamic cross-correlation matrices (DCCM) [117]. A 

dynamic cross-correlated matrix measures the correlation of motion between each residue or ligand 

with every other residue or ligand in the complex. A correlation coefficient of 1 means that the 

residues are moving in the same direction, while -1 corresponds to two residues that are moving 

away from each other. We determine the similarity between the correlated motions between the 

native ligand and inhibitors for every residue on the protein receptor. Generally, the dynamical 

motion of residues on hot spots of the protein receptor is correlated between protein-protein and 

protein-compound complexes (Fig. 2.18). 

The mean correlations are highest in MDM2•p53 and BRD4•H4, with mean correlations 

of 0.95 ± 0.04 and 0.87 ± 0.00, respectively. These are the two systems that overlap with both the 

greatest number and percentage of hot spots on the ligand. These are followed by XIAP•Smac, Bcl-

xL•Bak, IL-2•IL-2Rα, with mean correlations of 0.50 ± 0.01, 0.46 ± 0.01, 0.31 ± 0.01, respectively. 

Similarly, compounds of the XIAP•Smac and Bcl-xL•Bak interactions overlap with one or two hot 

spots in their respectively interactions, while compounds of IL-2•IL-2Rα only overlap with a single 

hot spot. There is a significant difference in the correlations between residues at the interaction 

interfaces and residues outside of the interface (Bcl-xL•Bak, Mann-Whitney rank-sum test, p = 

1.55 × 10-5; MDM2•p53, Mann-Whitney rank-sum test, p = 4.81 × 10-6; XIAP•Smac, Mann-

Whitney rank-sum test, p = 1.76 × 10-6; IL-2•IL-2Rα, Student’s t-test, p = 6.38 × 10-15; BRD4•H4, 

Mann-Whitney rank-sum test, p = 5.41 × 10-29). 

 

2.3 DISCUSSION 

We carried out extensive molecular dynamics simulations followed by end-point free 

energy calculations of protein-protein and protein-compound complexes. The goal was to 

characterize how effectively existing small molecules that inhibit protein-protein interactions 

mimic the binding of the protein ligand to the receptor. We selected five protein-protein interactions 

for which small-molecule inhibitors have been developed and co-crystalized with their target. The 

five protein-protein interactions fall into three categories, namely primary (BRD4•H4 and 

XIAP•Smac), secondary (MDM2•p53 and Bcl-xL•Bak), and tertiary (IL-2•IL-2Rα). A total of 36 

compounds were considered. The compounds range in binding affinity and physicochemical 

properties. In most cases, the compound ligand efficiencies were below what is generally accepted 

as drug-like, namely 0.3. The only exceptions were the BRD4 antagonists. This is attributed to the 
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fact that large compounds had to be prepared to disrupt the protein-protein interactions, particularly 

for the tighter interactions. 

In addition to computational alanine scanning, we carried out decomposition energy 

calculations. The interaction energy of compounds with individual amino acids is determined using 

a similar approach to MM-GBSA, except that only atoms on the ligand and a single residue are 

included. Unlike alanine scanning, these calculations do not require a mutation and therefore the 

effect on the interaction of the compound with the protein is not affected by the absence of the 

residue. One can imagine that mutation of an amino acid with a side chain that plays a critical role 

in the structural integrity of the protein could lead to changes to the stability of the protein that may 

introduce changes to the free energy of binding of a small molecule that are unrelated to the protein-

compound interaction. While in general we see a good correlation between ∆∆GMM-GBSA
AlaScan  and 

∆EGBTOT
Decomp

, there were, for each case, several exceptions. Several residues were predicted to be hot 

spots, yet the intermolecular decomposition of the native peptide to the residue was not very strong. 

This includes Phe-146 for the Bcl-xL•Bak, Trp-310 for XIAP•Smac, and Phe-79, Val-87, Leu-94, 

Asp-96, Lys-141, and Asp-145 for BRD4•H4. The weaker decomposition energy interaction 

energy can be attributed to the fact that the contribution of these residues to binding involves 

entropy factors that are not considered in the decomposition energy calculations. Conversely, we 

found several examples of native protein ligands that strongly engaged residues that were not found 

to be hot spots in the alanine scan. Examples include Val-126 on Bcl-xL, Thr-26 and Lys-51 on 

MDM2, and Thr-308 on XIAP. Interaction of small molecules with residues that are not considered 

hot spots provides an opportunity to design compounds with greater specificity. 

Computational alanine scanning and decomposition energy calculations were carried out 

for each protein-protein complex, and decomposition energies were calculated for each protein-

protein and protein-compound complex. Overall inspection of these color-coded maps reveals that 

small molecules strongly engage a set of hot spots on the receptor. These include Phe-97, Leu-130, 

and Arg-139 in Bcl-xL•Bak, Leu-54 and Val-93 in MDM2•p53, Leu-307, Glu-314, and Trp-323 in 

XIAP•Smac, Phe-42, Lys-43, and Glu-62 in IL-2•IL-2Rα, and Ile-146 in BRD4•H4. More notable, 

however, was the number of predicted hot spots that were not engaged by small-molecule 

inhibitors. These include Arg-100 and Glu-129 in Bcl-xL•Bak, Met-50 and Tyr-100 in MDM2•p53, 

Trp-310 and Tyr-324 in XIAP•Smac, Tyr-45 and Pro-65 in IL-2•IL-2Rα, and Asp-98, Tyr-139, 

Lys-141, Asp-144, Asp-145, and Met-149 in BRD4•H4. The lack of engagement of these hot spots 

on Bcl-xL, MDM2, and BRD4 are examples of residues further outside the binding pocket, which 

may provide additional opportunities for the design of inhibitors.  
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In addition to engagement of receptor hot spots, we explore how effectively small-molecule 

protein-protein interaction inhibitors mimic hot spots on the protein ligand. We found that only the 

MDM2•p53 and XIAP•Smac compounds effectively mimicked the side chain of hot spots on the 

protein ligands of these interactions. Surprisingly, substantially less overlap between compounds 

and ligand hot spots was found for Bcl-xL•Bak, IL-2•IL-2Rα, and BRD4•H4 interactions. The most 

surprising finding was that of IL-2•IL-2Rα, which showed no overlap with any of the hydrophobic 

residues on IL-2Rα. This is not unexpected considering that for Bcl-xL and IL-2 antagonists, a 

fragment-based approach was followed to develop small-molecule antagonists. The lead 

optimization efforts were mainly driven by an attempt to occupy the pockets at the protein interface 

and maximize interaction with receptor residues. This is evidenced by overall strong engagement 

of receptor hot spots by Bcl-xL and IL-2 inhibitors. Generally, it is not essential that small 

molecules engage all hot spots at the protein-protein interface or engage all hot spots to the same 

extent as the ligand protein to be effective inhibitors. However, small molecules that bind more 

tightly to hot spots than the native ligand may result in more potent inhibitors that will likely exhibit 

greater ligand efficiency.  

Finally, few studies have explored how effectively small-molecule protein-protein 

interaction inhibitors mimic the dynamics of the native protein ligand. In a protein-protein complex, 

the binding of the ligand modulates the motion of a receptor. We quantify this effect using cross-

correlated dynamical maps, which determine the correlation of motion between the ligand protein 

and every residue on the receptor. We compare the correlation coefficients between residues on the 

protein receptor with the native protein ligand and with compounds. Interestingly, we found that in 

some systems, such as MDM2•p53 and BRD4•H4, the protein ligand dynamics correlated 

remarkably well to small-molecule inhibitors of these interactions. For Bcl-xL•Bak and 

XIAP•Smac, correlation between native protein and compound was overall weak. Interestingly, 

very little correlation between protein ligand and compound dynamical changes on the receptor 

were found for IL-2•IL-2Rα. Lead optimization efforts for the design of protein-protein interactions 

seldom consider the effect of compounds on the dynamics of the receptor. This approach may be 

used as a strategy to favor compounds that more closely mimic the dynamics of the native ligand. 

 

2.4 MATERIALS AND METHODS 

2.4.1 Structure Preparation. A set of protein structures corresponding to both protein-

protein and protein-compound complexes were identified from 2P2I [118] and UniProt [119] 

(Table 2.1). In total, 36 protein-compound complexes for inhibitors of five protein-protein 

interactions that possess binding affinity data were collected. Existing experimental measure of 
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binding affinity (Kd), inhibition constants (Ki), and concentration at which 50% inhibition is 

observed (IC50) for each complex were identified from the literature, whenever available. Protein-

compound affinities were confirmed against data in the PDBbind [120], BindingMOAD [121], and 

BindingDB [122] databases, whenever possible. 

The structure of each complex was retrieved and prepared using Protein Preparation 

Wizard in the Schrödinger software package (Schrödinger LLC, New York, NY, 2015). Bond 

orders were assigned, hydrogen atoms were added, and disulfide bonds were created. Water 

molecules were retained while additional ions and heteroatom groups aside from the inhibitor were 

discarded. Missing side chains and loops were introduced using the Prime module [123]. The 

resulting protein and compound structures were protonated at pH 7.0 using PROPKA [124] and 

Epik [125] in Schrödinger, respectively. Schrödinger concurrently samples sidechain orientations 

and protonation states to optimize hydrogen bonding, charge interactions, and orientations of 

hydroxyl, thiol, terminal amide groups of Asn, Gln, and His residues. Protein-protein complexes 

were separated into monomeric chains and protein-inhibitor complexes were separated into protein 

and compound structures for molecular dynamics simulations. 

2.4.2 Molecular Dynamics Simulations. Prepared structures were used to run molecular 

dynamics simulations using the AMBER14 software package [126]. Each compound was assigned 

AM1-BCC [127] charges and gaff [128] atom types using antechamber [129]. Crystal water 

molecules were retained. Complexes were immersed in a box of TIP3P [130] water molecules. No 

atom on the complex was within 14 Å from any side of the box. The solvated box was further 

neutralized with Na+ or Cl- counterions using the tleap program. Simulations were carried out using 

the GPU accelerated version of the pmemd program with ff12SB [131] and gaff [128] force fields 

in periodic boundary conditions. All bonds involving hydrogen atoms were constrained by using 

the SHAKE algorithm[132], and a 2 fs time step was used in the simulation. The particle mesh 

Ewald [133] (PME) method was used to treat long-range electrostatics. Simulations were run at 

298 K under 1 atm in NPT ensemble employing Langevin thermostat and Berendsen barostat. 

Water molecules were first energy-minimized and equilibrated by running a short simulation with 

the complex fixed using Cartesian restraints. This was followed by a series of energy minimizations 

in which the Cartesian restraints were gradually relaxed from 500 kcal∙Å-2 to 0 kcal∙Å-2, and the 

system was subsequently gradually heated to 298 K with a 48 ps molecular dynamics run. For each 

complex, we generated 10 independent simulations (replicates) that are each 10 ns in length. The 

initial velocities for each trajectory were randomly assigned using the built-in random number 

generator in Amber. This ensures that the trajectories follow different paths in phase space, 

resulting in better sampling of the molecular dynamics of the protein-protein or protein-ligand 
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complexes. In total, 100 ns of simulation were carried out for each protein-protein and protein-

compound complex. We chose to run multiple short trajectories over one long trajectory as the 

former is widely accepted to result in more efficient sampling of the conformational space of the 

protein-protein or protein-ligand complex. 

2.4.3 Free Energy Calculations. In each of the 10 trajectories (10 ns in length), the first 2 

ns were discarded for equilibration. Snapshots were saved every 1 ps, yielding 8000 structures per 

trajectory. A total of 80000 snapshots were generated per 100 ns of simulation. 1000 snapshots 

were selected at regular intervals from the 80000 snapshots for free energy calculations using the 

cpptraj program [134]. The Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) 

[135] method was used to calculate the free energy using the MMPBSA.py script [136]. The 

calculation using the GB method was performed with sander and Onufriev’s GB model [137, 138]. 

Solvent-accessible surface area (SASA) calculations were switched to the icosahedron (ICOSA) 

method, where surface areas are computed by recursively approximating a sphere around an atom, 

starting from an icosahedron. Salt concentration was set to 0.1 M. The entropy was determined by 

normal mode calculations [139] with the mmpbsa_py_nabnmode module by selecting 100 of the 

1000 snapshots used in the free energy calculations at regular intervals. The maximum number of 

cycles of minimization was set to 10000. The convergence criterion for the energy gradient to stop 

minimization was 0.5. In total, 1000 frames were used for each MM-GBSA calculations while 100 

frames were used for each normal mode analysis. All other parameters were left at default values. 

The strength of protein ligand binding can be estimated by combining molecular-

mechanics (MM) calculations with either Poisson-Boltzmann (PB) or generalized-Born (GB) 

surface area (SA) continuum solvation methods (MM-PBSA and MM-GBSA) [140]. One of the 

primary advantages of these methods is the modular  nature of the individual contributions. 

For example, the MM-GBSA binding free energy is expressed as: 

∆GMM-GBSA = ∆EGBTOT − T∆SNMODE 

where ∆EGBTOT is the combined internal and solvation energies, T is the temperature (298.15 K). 

∆SNMODE is the entropy determined by normal mode calculations. The total enthalpy from the 

generalized Born model, ∆EGBTOT, is the sum of 4 components: 

∆EGBTOT = ∆EVDW + ∆EELE + ∆EGB + ∆ESURF 

where ∆EVDW and ∆EELE are the van der Waals and electrostatic energies, respectively, and ∆EGB 

and ∆ESURF are the polar and non-polar desolvation energies, respectively. The total enthalpy 

solvation energy is determined using Generalized-Born (GB) solvation models (∆ESOLV): 

∆EGBTOT = ∆EGAS + ∆ESOLV 
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where ∆ESOLV is the solvation free energy and ∆EGAS is the molecular mechanical energies (gas-

phase). The gas-phase energies are composed of two components: 

∆EGAS = ∆EVDW + ∆EELE 

The GB solvation free energy is expressed by the polar and non-polar contributions to the solvation 

free energy: 

∆ESOLV = ∆EGB + ∆ESURF 

All binding energies are determined by: 

∆E = ECOM - EREC - ELIG 

where ECOM, EREC and ELIG are total energies corresponding to the complex, receptor, and ligand, 

respectively. 

2.4.4 Alanine Scanning. Computational alanine scanning was calculated for each of the 

five protein-protein complexes using the MMPBSA.py script [40, 136]. The free energy change that 

results from mutation of a residue to alanine is averaged over all snapshots collected at equal 

intervals over the course of each trajectory. We carry out 10 runs × 10 ns trajectories (100 ns total) 

for each complex, and we discard the first 2 ns of each run. We collect 100 snapshots at equal 

intervals (1000 snapshots in total). The 1000 frames collected for the MM-GBSA calculations were 

used for alanine scanning. Contact residues on the protein receptor within 5 Å of the protein ligand 

were identified in each protein-protein complex. Residues at the interface that are alanine and 

glycine cannot be mutated using the MMPBSA.py program and were not included. In addition, 

cysteine residues that form disulfide bonds were not included. Each remaining residue was mutated 

to alanine using Schrödinger Maestro and saved as a separate protein receptor and complex. Amber 

topologies were generated for the single mutant protein receptor and complex using tleap. Alanine 

scanning was performed using the MMPBSA.py script as described above. The change in free 

energy between the original and mutated complexes (∆∆GMM-GBSA
AlaScan ) is calculated as: 

∆∆GMM-GBSA
AlaScan

 = ∆GMUT - ∆GWT 

where ∆GMUT is the complex with a single alanine mutation and ∆GWT is the wild-type 

complex. A negative ∆∆G suggests that the mutation stabilizes the complex, while a positive value 

suggests that the mutation destabilizes it. Alanine scanning using MMPBSA.py assumes that a 

mutation will not change the overall dynamics of the complexed system, and merely changes the 

side chains of the lone mutated residue from the overall trajectory. We consider a residue to be a 

hot spot if ∆∆GMM-GBSA is ≥ 1.5 kcal·mol-1. We chose this cutoff as a change of approximately 1.4 

kcal·mol-1 in free energy (∆G) results in an order of magnitude change in binding affinity (Kd). 

2.4.5 Decomposition Energy. Per-residue MM-GBSA decomposition energies were 

calculated in addition to the total free energy through the MMPBSA.py script [40, 136] and the 
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above GB model. The decomposition scheme estimates the contributions to the total free energy 

on a per-residue basis (idecomp = 2). The per-residue decomposition energy includes only the 

contributions by the gas-phase and solvation energies (∆EGBTOT
Decomp

 and its components) and does not 

incorporate entropy (∆SNMODE). 

Calculated free energies can be decomposed into specific residue contributions using either 

GB or PB implicit solvent models. These schemes were developed by Gohlke and co-workers [40]. 

The energy terms are decomposed using the following equation: 

Δ𝐸𝐷𝑒𝑐𝑜𝑚𝑝 = ∑ (〈𝐸𝐶𝑂𝑀𝑃𝐿𝐸𝑋(𝑖, 𝑗)〉 − 〈𝐸𝑅𝐸𝐶𝐸𝑃𝑇𝑂𝑅(𝑖, 𝑗)〉)

𝑗∈𝐶𝑂𝑀𝑃𝐿𝐸𝑋 ⋀ 𝑗∈𝑅𝐸𝐶𝐸𝑃𝑇𝑂𝑅

+ ∑ (〈𝐸𝐶𝑂𝑀𝑃𝐿𝐸𝑋(𝑖, 𝑗)〉 − 〈𝐸𝐿𝐼𝐺𝐴𝑁𝐷(𝑖, 𝑗)〉)

𝑗∈𝐶𝑂𝑀𝑃𝐿𝐸𝑋 ⋀ 𝑗∈𝐿𝐼𝐺𝐴𝑁𝐷

 

where the first and second terms represent the average contribution over snapshots 𝑖 from the MD 

simulation in residues j on the receptor and ligand, respectively. The term 𝐸𝐺𝐵𝑇𝑂𝑇(𝑖, 𝑗) corresponds 

to the contribution of the gas phase and solvation energies, that is: 

𝐸𝐺𝐵𝑇𝑂𝑇(𝑖, 𝑗) = 𝐸𝐺𝐴𝑆(𝑖, 𝑗) + 𝐸𝐺𝐵𝑆𝑂𝐿𝑉(𝑖, 𝑗)

= 𝐸𝑉𝐷𝑊(𝑖, 𝑗) + 𝐸𝐸𝐿𝐸(𝑖, 𝑗) + 𝐸𝐺𝐵(𝑖, 𝑗) + 𝐸𝑆𝑈𝑅𝐹(𝑖, 𝑗) 

where 𝐸𝑉𝐷𝑊 and 𝐸𝐸𝐿𝐸  are the van der Waals and electrostatic energies in the gas-phase (𝐸𝐺𝐴𝑆), 

respectively. 𝐸𝐺𝐵 and 𝐸𝑆𝑈𝑅𝐹  are the polar and non-polar contributions to the solvation free energy 

by the GB solvation model (𝐸𝐺𝐵𝑆𝑂𝐿𝑉), respectively. Entropy is not included in the decomposition 

method. 

The popular GBOBC model I [137] approximates the solvation electrostatic E𝐺𝐵 by an 

analytical formula: 

𝐸𝐺𝐵 = −
1

2
∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
(1 −

exp(−Κ𝑓𝐺𝐵)

ϵ
)

𝑖𝑗

 

and 

𝑓𝐺𝐵 = √𝑟𝑖𝑗
2 + 𝑅𝑖𝑅𝑗 exp (−

𝑟𝑖𝑗
2

4𝑅𝑖𝑅𝑗
) 

where 𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗, 𝑅𝑖 and 𝑅𝑗 are the effective Born radii of atoms 𝑖 

and 𝑗, Κ is the Debye-Hückel screening parameter, 𝜖 is the dielectric constant, and 𝑓𝐺𝐵 is a smooth 

function. Each atom in the GB model is represented as a sphere with radius 𝜌𝑖 with charge 𝑞𝑖. The 

𝑓𝐺𝐵 function is used to describe the distance between two atoms and their effective Born radii. 

The non-polar contribution to the solvation free energy is calculated by approximating the 

total SASA of the molecule: 
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𝐸𝑆𝑈𝑅𝐹 = 𝛾𝑆𝐴𝑆𝐴 + 𝛽 

where 𝛾 and 𝛽 are the surface tension and offset terms, respectively. By default, 𝛾 and 𝛽 are 0.0072 

and 0.0, respectively. The ICOSA method is used to determine SASA [40, 126]. In this method, 

surface areas are computed by recursively approximating a sphere around an atom. The first sphere 

is modeled as an icosahedron. In each subsequent step, the faces of the polyhedron are divided into 

four equal sized triangles to better approximate the sphere. 

 

We consider a residue to be important to the interaction if it contributes ≤ -2.0 kcal·mol-1 

in the decomposition energy. We found that this cutoff identified residues in the energy 

decomposition that were also identified from the computational alanine scan across each of the PPI 

systems. 

2.4.6 Ligand Pharmacophore. A pharmacophore-based approach was used to identify 

how co-crystallized inhibitors overlapped with and mimicked known hot spots in each of the 

protein-protein complexes. First, the structures of each co-crystallized inhibitor were aligned to the 

reference protein-protein structure using the align function in PyMOL (version 1.8, Schrödinger, 

LLC). For each hot-spot residue, we defined a set of pharmacophore hypotheses corresponding to 

the physiochemical properties of the individual residue’s side chain using the Phase package in 

Schrödinger [115, 116]. Phase has six built-in types of pharmacophore features: (i) hydrogen bond 

acceptor (A); (ii) hydrogen bond donor (D); (iii) hydrophobe (H); (iv) negative ionizable (N); (v) 

positive ionizable (P); and (vi) aromatic ring (R). By default, Phase does not place a hydrophobic 

feature for the aromatic ring feature; it will not identify an aromatic or aliphatic group in a lipophilic 

area of a binding pocket. Since hydrophobic moieties are commonly used to mimic aromatic rings, 

we generate a separate hydrophobic feature for aromatic ring pharmacophores. In the 

pharmacophore calculations, we use existing conformers from the aligned structures and set the 

intersite distance matching tolerance to 2.5 Å. All other parameters were set at default values. 

2.4.7 Dynamic Cross-Correlation Matrix. Dynamic Cross-Correlation Matrices 

(DCCM) were calculated from the set of 1000 snapshots from the free energy calculations using 

the matrix correl function in the cpptraj program [134]. Correlation matrices were calculated by 

grouping together atoms of the same residues with no averaging by atom mass. Each DCCM is 

truncated to only include residues on the protein receptor. In this n×n matrix, each element is the 

correlation in dynamical motion between two residues in a protein-protein or protein-compound 

complex. Elements in a 1×n vector of this matrix thus corresponds to the correlation between a 

single residue with every other residue in the complex. A correlation coefficient of 1 corresponds 

to two residues moving in the same direction, while -1 corresponds to two residues that are moving 
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away from each other. To determine the similarity in motion between the native protein-protein 

and a protein-compound complex, at each residue, we calculate the Pearson’s correlation 

coefficient between the two corresponding 1×n vectors for that residue. 

2.4.8 Statistical Analysis. Values are expressed as mean ± standard error, unless otherwise 

specified. Performance to rank-order complexes was evaluated using three correlation metrics, 

namely the Pearson’s correlation coefficient (r), Spearman’s rho (), and Kendall’s tau (τ). To test 

for significance between two groups, we first test for both normality within each group and equality 

of variances between groups using the Shapiro-Wilk test (α = 0.05) and Levene’s test (α = 0.05), 

respectively. A choice of Student’s t-test (normal distribution and equal variance), Welch’s t-test 

(normal distribution and unequal variance), or Mann-Whitney rank-sum test (non-normal 

distribution) for significance is then selected as appropriate. Tests of statistical significance and 

correlation analysis were performed using the SciPy [141] package in Python. 
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Chapter 3 

MIMICKING INTERMOLECULAR INTERACTIONS OF TIGHT PROTEIN-PROTEIN 

COMPLEXES FOR SMALL-MOLECULE ANTAGONISTS 

 

3.1 INTRODUCTION 

Protein-protein interactions range from weak (Kd > 1000 nM), moderate (100 nM < Kd < 

1000 nM), to tight (Kd < 100 nM) [25-27]. Kastritis and co-workers found that 68% of a set of 144 

curated co-crystallized protein-protein interactions were both tight and occurred over a large 

binding interface (> 1000 Å2) [142]. Yet, despite the gradual increase in the number of small-

molecule protein-protein interaction inhibitors [49, 51, 58, 64, 143-146], only a handful among 

them are inhibitors of tight protein-protein interactions as shown in the previous chapter. Small-

molecule inhibitors of tight interactions tend to be much larger than typical drugs, and generally 

have poor ligand binding efficiencies, which could explain the tendency for these compounds to 

fail in clinical trials. The development of small molecules that disrupt tight protein-protein 

interactions could expand the number of druggable proteins for the development of therapeutic 

agents. 

Considering the ever-expanding size of commercial compound libraries, virtual screening 

could provide an avenue for developing chemical starting points that can be turned into potent 

inhibitors of tight protein-protein interactions. To the best of our knowledge, one study has used 

virtual screening to identify small-molecule inhibitors of a tight protein-protein interaction without 

extensive cycles of design and synthesis [147]. The most common approach for discovery of 

protein-protein inhibitors involves the identification of a weak-affinity fragment whose affinity is 

optimized by growing the fragment into neighboring pockets. For Bcl-xL•Bax [58] and IL-2•IL2-

Rα [48], fragment-based approaches and synthesis of derivatives to optimize binding to pockets at 

the protein-protein interfaces led to highly potent small-molecule inhibitors of the protein-protein 

interactions. 

Historically, most rational approaches for the design of small-molecule inhibitors of 

protein-protein interactions have focused on mimicking the position of amino acids located on the 

protein ligand of a protein-protein interaction [42, 148, 149]. Several studies have used interface 

residues of the protein ligand of a protein-protein interaction to guide the design of small-molecule 

inhibitors in virtual screening and lead optimization [150-156]. The most common approach is 

based on pharmacophore modeling to enrich libraries for compounds that possessed substituents 

that not only adopted the same position as the amino acid side chain, but also possessed similar 

physicochemical properties to the side chain. This strategy has worked reasonably well, although 
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it is worth mentioning that there are no examples to date of small molecules that disrupt tight 

protein-protein interactions that emerged directly from virtual screening. Another strategy consists 

of finding molecules that bind directly to the receptor with the hope that these compounds will 

disrupt the protein-protein interaction. This strategy has never led to inhibitors of tight protein-

protein interactions. This is attributed to the fact that mere binding to the receptor is not sufficient 

and critical residues, sometimes referred to as hot spots, must be engaged.  

Here, we explore a new approach that is focused on mimicking the pairwise binding profile 

of the native protein ligand to the protein receptor of a tight protein-protein interaction. We use a 

fingerprint approach to represent the binding profile of the protein ligand. We use this fingerprint 

to screen commercial chemical libraries for small molecules that mimic the pairwise interaction 

profile of the native protein ligand. We also consider the strategy of combining the fingerprint 

approach to the standard pharmacophore method that identifies molecules that mimic the position 

of protein ligand amino acids. We use the tight uPAR•uPA protein-protein interaction as a platform 

to test these methods. We dock a library of commercially-available compounds to uPAR and rank 

compounds using the binding profile of the native ligand following three different methods. 

Compounds are tested for activity using fluorescence polarization and microtiter-based ELISA 

confirm disruption of the uPAR•uPA interaction. We also test for direct binding with microscale 

thermophoresis. All active hits are tested for thiol reactivity, redox activity, and stability. An 

analog-by-catalog procedure to explore structure-activity relationships led to the selection and 

testing of several derivatives for each hit compound. To the best of our knowledge, this is the first 

example of the use of structure-based virtual screening that leads to small-molecule inhibitors of a 

tight protein-protein interaction. 

 

3.2 RESULTS 

3.2.1 uPAR•uPA as a Platform to Test Rank-Ordering Methods. The urokinase 

receptor (uPAR, PLAUR) is a cell surface glycophosphatidylinositol (GPI)-anchored receptor that 

is part of an extensive network of protein-protein interactions. Its binding partners include the serine 

proteinase urokinase type plasminogen activator uPA (PLAU) [157] and the glycoprotein 

vitronectin (VTN) [158-160]. The uPAR•uPA interaction is characterized by a β-turn on the protein 

ligand uPA ensconced in a large interface on the protein receptor uPAR [161-164]. The interaction 

is mediated by a 25-residue growth factor-like domain (GFD), and residues from a kringle-like 

domain of uPA (Fig. 3.1A). 
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Figure 3.1. Structure of the uPAR•uPA binding pocket (PDB ID: 3BT1). (A) uPAR is shown in a 

surface representation with residues colored based on hydrophobicity. More hydrophobic residues 

are colored brown while more hydrophilic residues are colored green. uPA is colored cyan and 

shown in cartoon. The side chain of the four interface residues on uPA used in the pharmacophore 

analysis are shown in stick. (B) Experimental alanine scan of the uPAR•uPA binding pocket. The 

change in free energy between the mutated and wild-type complexes (∆∆G) after mutation of the 

residue to alanine is color-coded. (C) Per-residue decomposition energies of the uPAR•uPA 

binding pocket. The total enthalpic contribution of each residue is color-coded.  
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Figure 3.2. Workflow for the fingerprint method used to identify compounds that mimic the 

intermolecular binding interactions in the uPAR•uPA complex. The per-residue interaction 

energies of docked compounds are compared to those of the native protein ligand uPA. These 

interaction energies are used to generate a bitwise fingerprint, where each position on the 

fingerprint corresponds to the interaction energy between uPAR and the compound of interest. This 

fingerprint is compared to fingerprints of the native ligand uPA. Compounds are rank-ordered 

based on their Tanimoto distance with the fingerprints of uPA and total interaction energy ∆EGBTOT. 
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Hot spot residues are featured on both uPAR and uPA, resulting in a tight (Kd = 1 nM) and 

stable (koff = 10-4∙s-1) complex. In a comprehensive alanine scanning study, mutation at 15 residues 

on uPAR resulted in a significant decrease in binding affinity (∆∆G ≥ 1 kcal∙mol-1) [164]. Many of 

these residues are located in the binding pocket of uPA, including Leu-55, Tyr-57, Leu-66, and 

Leu-150. On uPA, the sidechain of five residues extend into the hydrophobic pocket of uPAR and 

are considered hot spots: Lys-23, Tyr-24, Phe-25, Ile-28, and Trp-30 [157]. 

3.2.2 A New Fingerprint Method to Rank-Order Compounds Based on their Ability 

to Mimic the Binding Profile of uPA to Residues on uPAR. Although previous studies have used 

key residues on the protein ligand to guide the design of small-molecule inhibitors, interactions 

with residues on the receptor have been generally ignored. Here, we utilize the interaction energies 

in the native protein-protein interaction to select top candidates that emerge from virtual screening 

of chemical libraries. We introduce a new approach that uses the native ligand to identify 

compounds that mimic the protein ligand’s interaction with key receptor interface residues. To 

accomplish this, we use a fingerprint method summarized in Fig. 3.2. These fingerprints consist of 

strings of bits with length equal to the number of residues on the protein target, in our case uPAR. 

Each bit in the fingerprint corresponds to the interaction energy between the compound and a 

residue on uPAR. If the interaction energy between the ligand and the residue is greater than a 

threshold, the value of the bit is assigned to ‘1’. For compounds, the interaction energy consists of 

the computational decomposition energy. A value of ‘1’ is assigned to a bit if the total 

decomposition energy (∆EResidue) is less than -1.0 kcal·mol-1. For the native protein ligand, uPA, we 

generate two types of fingerprints based on either experimental data or computational 

decomposition energy. The first type of fingerprint is constructed using the experimentally-

determined alanine scanning data of the uPAR•uPA complex (Fig. 3.1B). In this fingerprint, a value 

of ‘1’ is assigned to a bit if the change in free energy following mutation of the residue to alanine 

(∆∆GAlaScan) is greater than 1.0 kcal·mol-1. The second fingerprint is constructed using the 

decomposition energies from the molecular dynamics simulation of the uPAR•uPA complex (Fig. 

3.1C). A value of ‘1’ is assigned to a bit if the total decomposition energy (∆EResidue) is less than -

1.0 kcal·mol-1. If the threshold is not met, the value of the bit is ‘0’. 

Following the docking of small molecules from commercial libraries to uPAR, a fingerprint 

is generated for each protein-compound structure. Each of these compound fingerprints is 

compared to the native protein ligand uPA fingerprint. Compounds with the most similar 

fingerprints to the protein ligand uPA are given higher priority. We use the Tanimoto distance (Td) 

to compare the similarity between compounds and protein ligand uPA fingerprint. Td is defined as 

the ratio between the number of bits in the fingerprint where both uPA and the compound have a 
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value of ‘1’ over the number of ‘1’ bits in the uPA fingerprint. The fingerprint generated from 

either alanine scanning or energy decomposition only includes positions where the corresponding 

uPA fingerprint has a value of ‘1’. However, the Tanimoto distance does not consider the positions 

of the specific bits when used to rank-order compounds. Similarly, the limited length of each 

fingerprint results in compounds sharing similar Tanimoto distances. If the Tanimoto distance of 

two compounds is equal, the total enthalpy from the MM-GBSA calculation of the compound 

(∆EGBTOT) is used to give higher priority to the compound with higher predicted binding affinity. 

3.2.3 Application of the Fingerprint Method to Rank-Order Compounds using uPAR 

Interface Residues. We use the uPAR•uPA interaction as a platform to test our fingerprint method 

to rank-order compounds based on their interaction with receptor interface residues. The positions 

of the residues at the uPAR•uPA interface that were used to generate fingerprints are shown in Fig. 

3.3A. Four residues on uPAR are present in both the uPA fingerprints based on the experimental 

alanine scanning and the fingerprints from energy decomposition: Leu-55, Leu-66, Leu-150, and 

His-166. 

We separately rank-order the 5.1 million docked compounds based on their Td value using 

(i) the uPA alanine scanning fingerprint and (ii) the uPA decomposition energy fingerprint. We 

select the top 500 candidates from each type of fingerprint. We examined how these compounds 

bind to each of these residues on uPAR (Fig. 3.3B). For compounds identified using the uPA 

fingerprint derived from energy decomposition, over 90% of the selected compounds interact 

favorably with Arg-53, Leu-55, Leu-66, Leu-150, and Ala-255. His-166 and Asp-25 interact with 

41% and 86% of the compounds, respectively. For compounds identified using the uPA fingerprint 

derived from the experimental alanine scanning experimental data, 95% of the selected compounds 

interact with Leu-55, Leu-66, Leu-150, and His-166. Only 36% interacted with Arg-53, a residue 

that was included in the decomposition but not the alanine scanning fingerprint. 

The top 500 compounds from both the energy decomposition and alanine scanning search 

strategies were independently clustered to 50 compounds using hierarchical clustering. Among the 

50 compounds from each strategy, 29 from the uPA alanine scanning fingerprint and 24 from the 

uPA decomposition energy fingerprint were purchased for experimental validation. These 53 

compounds were initially tested for binding to uPAR using a fluorescence polarization (FP) assay 

that we have previously developed (Fig. 3.3C) [165]. The assay consists of a fluorescently labeled 

α-helical peptide (AE147-FAM) that binds to uPAR at the uPAR•uPA interface. 
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Figure 3.3. A virtual screen utilizing the interface residues of uPAR and validation of hits. (A) 

Residues used in the uPAR fingerprints are colored on the surface of uPAR as follows: (i) 

Experimental alanine scan (orange), (ii) decomposition (pink), (iii) both (green). uPA is 

transparently overlaid in cartoon, with the side chain of interface residues in stick. (B) Among the 

top-ranking 500 compounds from each of the fingerprints generated from decomposition energies 

or experimental alanine scanning, the proportion of compounds that overlap with each fingerprint 

residue. (C) Single-concentration FP screen of compounds resulting from the virtual screen based 

on uPAR residues. Each compound was screened in duplicate at 50 µM concentration (mean ± SD). 

Hit compound 1 (IPR-2797) is highlighted in green. (D) Concentration-dependent FP assay 

measuring the inhibition of uPAR•AE147-FAM peptide interaction by 1 (IPR-2797). 

Representative of at least two independent experiments, where each concentration point is 

measured in duplicates (mean ± SD). 

  



65 

 

Figure 3.4. Screening the derivatives of compound 1 (IPR-2797). (A) The binding mode of 1 in 

the uPAR•uPA binding pocket. The compound is shown in yellow. uPAR is shown in white 

cartoon, with the side chain of interface residues shown in pink stick. uPA is shown in partial 

transparent cyan cartoon. The side chain of four interface residues on uPA are shown in stick and 

colored cyan. (B) Derivatives of 1 were screened at a single 50 µM concentration via the 

uPAR•AE147-FAM peptide FP assay in duplicates (mean ± SD). Further pursued hits are 

highlighted in green. (C) Chemical structures of the pursued derivative hits.  
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One compound, 1 (IPR-2797), inhibited by more than 40%. A concentration-dependent 

study led to a Ki of 7.1 ± 1.2 µM (Fig. 3.3D). A follow-up study using a microtiter ELISA method 

to analyze the compound inhibition of the uPAR•uPAATF interaction was performed. The compound 

did not show activity in the ELISA even at 100 µM. 

We next assessed 1 for both reactivity and stability. The potential for 1 to covalently react 

with cysteine residues of a protein was evaluated using a (E)-2-(4-mercaptostyryl)-1,3,3-trimethyl-

3H-indol-1-ium (MSTI)-based assay [166]. The compound did not react with MSTI suggesting that 

it is not thiol reactive. The compound was tested for redox activity by a Horseradish Peroxidase-

Phenol Red (HRP-PR) assay and was found to be redox inactive at 100 µM concentration. 

Compound stability was tested in methanol, phosphate-buffered saline (PBS), and in the presence 

of uPAR by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The 

compound showed the same retention time in HPLC and the mass remained the same, indicating 

that the compound is stable. 

The predicted binding mode of 1 shows that the benzene of the benzofuran moiety overlaps 

with Phe-25 on uPA (Fig. 3.4A). In addition, a nitrogen in the piperazine ring of the compound is 

located near the positively charged amine on the side chain of Lys-23. Starting with the structure 

of 1, we searched commercially-available libraries for analogs to conduct a preliminary structure-

activity relationship (SAR) study. A set of 36 derivatives of 1 were identified, purchased, and 

screened at 50 µM using our FP assay (Fig. 3.4B). Three compounds, 2 (IPR-2944), 3 (IPR-2962), 

and 4 (IPR-2966), showed 75%, 66%, and 82% inhibition, respectively (Fig. 3.4C). The 

compounds inhibited the uPAR•AE147-FAM interaction in a concentration-dependent manner, 

although all were weaker than the parent compound. The most potent derivative, 4 (Ki = 8.6 ± 1.1 

µM), contains a fluorine atom on the aromatic ring of its benzofuran moiety. 

3.2.4 Selecting Rank-Ordered Compounds using uPA Interface Residues. We explore 

another ranking method that strictly uses the interface residues located on the ligand protein to 

guide the selection of compounds. Our hypothesis is that small molecules docked to uPAR that 

mimic the side chain position of interface residues on the protein ligand will disrupt the uPAR•uPA 

interaction. At the uPAR•uPA interface, the side chain of five interface residues on uPA extend 

into the hydrophobic pocket of uPAR: Lys-23, Tyr-24, Phe-25, Ile-28, and Trp-30 (Fig. 3.5A). 
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Figure 3.5. A virtual screen utilizing four interface residues of uPA. (A) Features of the 

pharmacophore model used to identify compounds that overlap with and mimic the interface 

residues of uPA. uPAR is shown in the background colored in white and shown in cartoon. uPA is 

shown in transparent cyan cartoon, with the five interface residues shown in stick. A 

pharmacophore model was used to assign features to four of the five interface residues (Ile-28 was 

excluded). (B) Co-occurrence of interface residues among all compounds that overlapped with at 

least one residue on uPA.  



68 

 

Figure 3.6. Validation of hits of virtual screen utilizing four interface residues of uPA. (A) Single-

concentration FP screen of compounds resulting from the virtual screen based on uPA interface 

residues. Each compound was screened in duplicate at 50 µM concentration (mean ± SD). Hits that 

are followed up are highlighted in green while those with problematic moieties are highlighted in 

red. Chemical structures of the highlighted molecules are shown above. (B) Overlap between the 

predicted binding mode of the hit molecules and the uPA residues are highlighted. FP and microtiter 

ELISA assays were used to measure the Ki and IC50 of the compounds in inhibiting uPAR•AE147-

FAM peptide and uPAR•uPAATF interactions, respectively. Results are based on at least two 

independent concentration-dependent experiments where each concentration point was measured 

in duplicates (mean ± SD).  
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We use a pharmacophore approach [115, 116] to identify compounds with substituents that 

occupy the same position as the side chains of these residues. This approach consists of searching 

for small molecules that possess substituents that overlap with similar moieties (pharmacophores) 

on the side chain of amino acids. For example, a compound that possesses a benzene group that 

occupies the same position as the aromatic ring (pharmacophore) of a tyrosine residue is expected 

to disrupt binding of the residue to uPAR. In the pharmacophore model, the ε-amine on Lys-23 was 

modeled using a positive charge, while the benzene rings of Tyr-24 and Phe-25 were modeled using 

aromatic rings. We assigned separate aromatic ring features to the benzene and pyrrole rings on the 

indole of Trp-30. 

For each of the 5.1 million docked compounds to uPAR, we determined whether there was 

an overlap with the defined pharmacophores on uPA. This resulted in 21312, 809846, 1297014, 

and 23047 matches for Lys-23, Tyr-24, Phe-25, and Trp-30, respectively. In total, approximately 

1.8 million of the 5.1 million docked compounds overlapped with at least one of the 

pharmacophores corresponding to an interface residue on uPA (Fig. 3.5B). Among compounds that 

overlapped with a single residue, 54% and 27% matched the pharmacophores of Phe-25 and Tyr-

24, respectively. Less than 2% of compounds overlapped with either the Lys-23 or Trp-30 

pharmacophore. In contrast, 16% of compounds overlapped with both the Tyr-24 and Phe-25 

pharmacophores. 

We identified 1899 compounds that overlapped with 3 of these 4 residues, and no 

compounds that overlapped with all four residues. These compounds were hierarchically clustered 

to 200 using atom triplet Daylight fingerprints. We identified 130 commercially-available 

compounds that were purchased. These compounds were tested for binding to uPAR using our FP 

assay (Fig. 3.6A). 

We initially tested the 130 compounds for activity using our FP assay at 50 µM. We 

selected six compounds (5-10) that inhibited more than 40% (Fig. 3.6B). Compounds 5 (IPR-2477), 

6 (IPR-2496), and 9 (IPR-2532) overlapped with Tyr-24, Phe-25, and Trp-30, while 7 (IPR-2500), 

8 (IPR-2529), and 10 (IPR-2565) overlapped with Lys-23, Tyr-24, and Phe-25 (Fig. 3.6B). A 

concentration-dependent study for these compounds led to Ki values that ranged from 6 to 97 µM. 

A follow-up study using a microtiter ELISA to analyze the compound inhibition of the 

uPAR•uPAATF interaction was performed. Although the ELISA cannot be used to obtain inhibition 

constants, it is a useful assay to determine whether compounds bind and disrupt the protein-protein 

interaction between uPA and uPAR. Four compounds, namely 6, 7, 9, and 10 showed activity in 

the ELISA assay with IC50s ranging from 7 to 230 µM.  



70 

We assessed the reactivity and stability of all hit compounds. Compound 6 contains a Betti 

base that may cause the compound to be unstable and reactive, while 10 was thought to have a 

potential activated thiol group. The MSTI thiol reactivity assay was performed for each of the hits. 

Compound 10 readily reacted with MSTI as evidenced by a decrease in the fluorescence of MSTI. 

Compound 6 displayed no detectable MSTI reactivity, but we suspected that this was due to the 

unstable nature of the compound. The HRP-PR redox activity assay showed no significant redox 

capacity for compounds 5-10. At this point, we decided to pursue compounds 5, 6, 8, and 9. HPLC-

MS stability assay for 8 and 9 showed the same single peak for both methanol and PBS buffers, 

indicating that the compounds were stable. However, 5 was found to be a mixture in HPLC-MS, 

suggesting that the compound inhibits in a non-specific manner. Compound 6 was pursued with 

reservation considering the reactive Betti base and found to bind non-specifically. Although 

compounds 8 and 9 inhibited uPAR, follow-up studies with derivatives showed that the effect was 

weak. 

3.2.5 Selecting Rank-Ordered Compounds using both uPA and uPAR Interface 

Residues. We wondered whether combining our fingerprint method with the pharmacophore 

approach could yield small-molecule uPAR•uPA inhibitors. We combined the two search methods 

to identify a set of 69 compounds that overlapped with three of the four interface residues on uPA 

as well as engage residues in the uPA binding pocket on uPAR. A set of 39 compounds selected 

from among the 69 compounds were purchased for binding studies. The 39 compounds were tested 

in our FP assay (Fig. 3.7A). Seven compounds (23-29) were assessed using a concentration-

dependent manner to determine the Ki values (Fig. 3.7B). Compounds 23 (IPR-2986), 26 (IPR-

2992), 27 (IPR-2993), 28 (IPR-3089), and 29 (IPR-3193) overlapped with Lys-23, Tyr-24, and 

Phe-25 on uPA, while 24 (IPR-2987) and 25 (IPR-2989) overlapped with Tyr-24, Phe-25, and Trp-

30. In comparison to hits that emerged from fingerprint or pharmacophore methods, the compounds 

had better Ki values that ranged from 6 to 52 µM. Only 25, 26, 28, and 29 inhibited uPAR•uPAATF 

based on a concentration-dependent study using our ELISA. The compounds had IC50 values of 

68.3 ± 11.0, 140.6 ± 19.0, 172.8 ± 42.5, and 24.8 ± 2.2 µM in the ELISA, respectively. The presence 

of α,β-unsaturated carbonyls on 23, 24 and 27 suggested potential reactivity with residue on uPAR 

and uPA. However, none of the hits from this screen showed reactivity with the activated thiol of 

the MSTI compound suggesting that the activity of the compounds is unlikely due to covalent bond 

formation. Compounds 24 and 27 displayed slight redox capacity in the HRP-PR assay, while 

compounds 23, 25, 26, 28, and 29 showed no redox activity. We focused our attention on 26, 28, 

and 29 as these compounds do not contain any problematic moiety and showed no covalent reaction 
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or redox activity. HPLC-MS analysis of these three compounds showed the compounds to be stable 

in both methanol and PBS buffers, with similar retention times. 

Compound 26 binds into the uPAR•uPA pocket, mimicking the side chains of uPA and 

engaging interface residues on uPAR (Fig. 3.8A). A benzene moiety overlaps with Phe-25 on uPA. 

In the binding mode, a morpholino group is located between Lys-23 and Tyr-24 of uPA. In addition, 

a methyl substituent on the core quinoline ring points towards Trp-30. The core structure of 26 was 

used to identify derivatives. The derivatives we identified showed modifications at five substituents 

on 26 (Fig. 3.8B). A set of 136 derivatives of 26 were purchased and screened at 50 µM (Fig. 

3.8C). The best hits were tested in concentration-dependent manner and their Kis ranged from 2 to 

37 µM (Table 3.1). The compounds were further tested in the uPAR•uPAATF ELISA assay to 

determine whether they can inhibit the protein-protein interaction. Only 32 (IPR-3026) and 39 

(IPR-3116) failed to inhibit in the ELISA. 

The best derivative among the 26 derivatives was 30 (IPR-3011). The binding mode of 30 

shows that the additional moiety fits into a pocket lined by Asn-157, His-166, Leu-168, and Ala-

255 on uPAR (Fig. 3.8A). The FP and ELISA inhibition curves of 26 and 30 are shown in Fig. 

3.9A and Fig. 3.9B, respectively. The Ki and IC50 in the FP and ELISA assays for 30 are 2.5 ± 0.3 

and 15.5 ± 1.4 µM, respectively. Compounds 26 (Fig. 3.9C) and 30 (Fig. 3.9D) were tested using 

microscale thermophoresis to assess direct binding to uPAR. The resulting Kd of 26 and 30 towards 

uPAR were 5.8 ± 1.3 and 2.0 ± 0.4 µM, respectively, consistent with the FP data for these 

compounds. Compound 30 and several of the other 26 derivatives have limited solubility. Like its 

parent 26, 30 displayed no significant redox activity at 100 µM. 

The binding mode of 28 shows overlap with Lys-23, Tyr-24, and Phe-25 on uPA (Fig. 

3.10A). A set of 59 derivatives of 28 were purchased and screened by single concentration FP at 

50 µM (Fig. 3.10B). The six best compounds, 44-49 (Fig. 3.10C), were tested in a concentration-

dependent manner using the FP assay. While the analogs had Ki values ranging from 5 to 160 µM, 

the compounds did not inhibit in the ELISA. The first set of analogs, 44-46, modify both the 

biphenyl and methyl group on the benzimidazole of the parent compound, yielding compounds that 

were less potent than the parent compound. The second set of analogs, 47-49, modifies only the 

methyl group on the benzimidazole. Compound 49 (IPR-3485) lacks the methyl group entirely, 

resulting in threefold weaker inhibition constant than the parent. Compounds 47 and 48 possess 

aromatic substituents instead of the methyl group, resulting in Kis of 5 µM in the FP assay. The 

lack of inhibition in the ELISA suggests that the compounds, while robust, may not be engaging 

the right set of residues to disrupt the full protein-protein interaction. 
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The binding mode of 29 reveals overlap with Lys-23, Tyr-24, and Phe-25 on uPA (Fig. 

3.11A). A set of 20 derivatives of 29 were purchased and screened at 50 µM (Fig. 3.11B). The five 

best compounds, 50-54 (Fig. 3.11C), were tested at multiple concentrations using FP and 

uPAR•uPAATF ELISA. All but 53 (IPR-3235) (FP Ki = 5.6 ± 0.6 µM, ELISA IC50 = 52.0 ± 4.1 µM) 

and 54 (IPR-3236) (FP showed no inhibition; ELISA IC50 = 65.3 ± 12.3 µM) had limited solubility 

in the two assays. Compound 29 was tested for direct binding in the MST assay and binds to uPAR 

with a Kd of 22.7 ± 11.5 µM. 

 

3.3 DISCUSSION 

The design of small-molecule inhibitors of protein-protein interactions has primarily 

focused on developing small molecules that bear substituents that mimic the position of amino acid 

side chains of the protein ligand in a protein-protein interaction. Here, we complement this 

approach by exploring a strategy that searches for small molecules that mimic the binding profile 

of the native protein ligand to the receptor of a protein-protein interaction. We hypothesize that 

small molecules that mimic the interaction of the native protein ligand to receptor are more likely 

to disrupt tight protein-protein interactions. To test this hypothesis, we introduced a quantitative 

approach to enable the comparison of the binding profiles of compounds to the binding profile of 

the protein ligand. We use a bitwise fingerprint to represent the pairwise interactions with amino 

acids on the receptor. When the ligand (protein or compound) engages a residue above a threshold, 

we assign the bit as ‘1’. The pairwise binding is based on the decomposition energy method that 

was introduced by Gohlke and co-workers to study the effect of individual amino acids on a protein-

protein interaction [40]. The decomposition energy consists of the intermolecular energy between 

the ligand and each amino acid. This energy includes van der Waals, electrostatic, and polar and 

non-polar solvation energies. Following the creation of a fingerprint for the native protein ligand, 

in our case uPA, we used structure-based virtual screening to identify small molecules that shared 

a similar fingerprint. To do this, we docked a large number of compounds to uPAR, and generated 

fingerprints for all these compounds using the predicted binding pose. Compounds were ranked 

based on how closely their fingerprint matched the native ligand’s (e.g. uPA). To accomplish this, 

we borrow from the cheminformatics field and use the Tanimoto distance to quantify the similarity 

between fingerprints.  
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Figure 3.7. A virtual screen utilizing interface residues on both uPAR and uPA. (A) Single-

concentration FP screen of compounds resulting from the virtual screen based on uPA interface 

residues. Each compound was screened in duplicate at 50 µM concentration (mean ± SD). Hits that 

are pursued are highlighted in green while those with problematic moieties are highlighted in red. 

Chemical structures of the highlighted molecules are shown above. (B) Overlap between the 

predicted binding mode of the hit molecules and the uPA interface residues are highlighted. FP and 

microtiter ELISA assays were used to measure the Ki and IC50 of the compounds in inhibiting 

uPAR•AE147-FAM peptide and uPAR•uPAATF interactions, respectively. Results are based on at 

least two independent concentration-dependent experiments where each concentration point was 

measured in duplicates (mean ± SD). 
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Figure 3.8. Testing the derivatives of 26 (IPR-2992) leads to 30 (IPR-3011). (A) The binding mode 

of 26 (IPR-2992) and 30 (IPR-3011) in the uPAR•uPA binding pocket. The binding mode of 30 

(green) is overlaid on the binding mode of 26 (yellow). The additional ring at R1 allows 30 to bind 

deeper in the uPAR•uPA pocket. uPAR is shown in white cartoon, with the side chain of interface 

residues shown in pink stick. (B) The core of 26 was used to identify analogs at 5 positions. Among 

the analogs discovered was 30 (IPR-3011). (C) Derivatives of 26 were screened at a single 50 µM 

concentration via the uPAR•AE147-FAM peptide FP assay in duplicates (mean ± SD). The parent 

compound 26 is highlighted in orange, while compound 30 is highlighted in green.
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Table 3.1. Profiles of analogs of compound 26 (IPR-2992). 

 

Compound R1 R2 R3 R4 FP Ki 

(µM)a 

ELISA IC50 

(µM)a 

30 (IPR-3011) 

 

 

Me H 2.5 ± 0.3 15.5 ± 1.4 

31 (IPR-3015) 

 

 

Me H 37.1 ± 1.9 171.5 ± 35.7 

32 (IPR-3026) 

  

Me Cl 15.4 ± 3.4 No inhibition 

33 (IPR-3036) 

 

 

Me H 5.2 ± 0.5 62.7 ± 10.7 

34 (IPR-3037) 

 

 

Me H 8.0 ± 1.1 99.5 ± 14.2 

35 (IPR-3038) 

 
 

Me H 11.9 ± 2.0 67.9 ± 11.2 

36 (IPR-3039) 

 
 

Me H 8.4 ± 0.6 37.9 ± 2.4 
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37 (IPR-3040) 

 

 

Me H 26.6 ± 7.8 112.2 ± 8.6 

38 (IPR-3103) 

 

 

Me H 5.2 ± 1.1 31.0 ± 2.1 

39 (IPR-3116) 

 
 

H H 10.4 ± 3.1 No inhibition 

40 (IPR-3117) 

 
 

H H 9.2 ± 1.9 331.6 ± 197.0 

41 (IPR-3121) 

 
 

H H 3.4 ± 0.5 34.4 ± 7.4 

42 (IPR-3134) 

 
 

Me H 9.9 ± 1.4 122.8 ± 15.3 

43 (IPR-3147) 

 

 

Cl H 2.5 ± 0.3 26.3 ± 6.8 

aRepresentative of at least two independent experiments, where each concentration point is 

measured in duplicates (mean ± SD). 
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Figure 3.9. Concentration-dependents studies for 26 (IPR-2992) and 30 (IPR-3011). (A) 

Concentration-dependent FP assay measuring the inhibition of uPAR•AE147-FAM peptide 

interaction by 26 and 30. (B) Concentration-dependent ELISA assay measuring inhibition of 

uPAR•uPAATF interaction by 26 and 30. (C) MST experiment was performed with 40 nM NT-495-

labeled uPAR and varying concentrations of 26. (D) MST experiment was performed with 40 nM 

NT-495-labeled uPAR and varying concentrations of 30.  
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Figure 3.10. Screening the derivatives of compound 28 (IPR-3089). (A) The virtual screening 

binding mode of 28 in the uPAR•uPA binding pocket. The compound is shown in yellow. uPAR is 

shown in white cartoon, with the side chain of interface residues shown in pink stick. uPA is shown 

in partial transparent cyan cartoon. The side chain of four interface residues on uPA are shown in 

stick and colored cyan. (B) Derivatives of 28 were screened at a single 50 µM concentration via FP 

assay in duplicates (mean ± SD). Further pursued hits are highlighted in green. (C) Chemical 

structures of the pursued derivative hits of 28.  
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Figure 3.11. Screening the derivatives of compound 29 (IPR-3193). (A) The virtual screening 

binding mode of 29 in the uPAR•uPA binding pocket. The compound is shown in yellow. uPAR is 

shown in white cartoon, with the side chain of interface residues shown in pink stick. uPA is shown 

in partial transparent cyan cartoon. The side chain of four interface residues on uPA are shown in 

stick and colored cyan. (B) Derivatives of 29 were screened at a single 50 µM concentration via FP 

assay in duplicates (mean ± SD). Further pursued hits are highlighted in green. (C) Chemical 

structures of the pursued derivative hits of 29.  
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The top candidates that emerged from this screen were purchased and tested for binding to 

uPAR. Among them, we found one hit, 1 (IPR-2797), that inhibited a fluorescently-labeled peptide 

with an inhibition constant Ki of 7 µM. Analogs of 1 were purchased, confirming the activity of the 

parent compound and providing an opportunity for structure-activity relationships. Neither 1 nor 

its derivatives inhibited in our ELISA, which includes the entire protein-protein interaction 

interface. This suggests that improvements could be made to this method, such as perhaps focusing 

only on the most critical residues on the receptor. A more stringent threshold for picking interface 

amino acids could make this possible. Another possibility is that there exists a combination of 

residues that must be engaged to disrupt a protein-protein interaction, and that compound 1 does 

not engage the right combination of residues. Regardless, the compound offers an excellent starting 

point to develop potent small-molecule inhibitors of the tight uPAR•uPA protein-protein 

interaction. We found the compound to have good solubility, does not react with uPAR, and is not 

redox active. It is also stable in methanol and buffer as evidenced by LC-MS analysis. 

Another strategy that we followed was driven by the hypothesis that small molecules that 

possess substituents that mimic the position of protein ligand amino acid side chains will more 

likely disrupt the protein-protein interaction. This is a widely used method, but to the best of our 

knowledge has never been applied for the discovery of small-molecule inhibitors of tight protein-

protein interactions. We resorted to pharmacophore modeling to score compounds based on how 

effectively they overlap with native protein ligand residue side chains of uPA. This approach 

resulted in more hit compounds than the screen using receptor amino acids alone. However, close 

inspection of the structure of these compounds revealed potentially problematic groups, such as a 

Betti base in compound 6 (IPR-2496) that could result in unstable compounds, or a thiol reactive 

moiety in compound 10 (IPR-2565) that may lead to adduct formation with nucleophilic residues 

on uPAR. Among all the compounds, we confirmed that 10 is thiol reactive. Compound 6 was 

unstable, as expected, despite the single-digit inhibition in both the FP and ELISA assays for a 

series of derivatives. In fact, we confirmed that the activity of the compound was due to non-

specific reactivity through the synthesis of 18 (IPR-2804), a derivative that lacked the Betti base. 

Despite the lack of obvious unstable or reactive moieties for compound 5 (IPR-2477), we found it 

to be unstable and its activity is likely due to assay interference or reactivity with assay or protein. 

Compounds 8 (IPR-2529) and 9 (IPR-2532) were the most robust compounds we identified. Only 

compound 9 inhibited in both the FP and ELISA suggesting that it could be a good starting point 

for the development of uPAR•uPA inhibitors. Its large size, however, may make it difficult to 

optimize. Compound 8 did not inhibit uPAR•uPA in our ELISA suggesting that the compound 
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binds, but it may not effectively mimic uPA residues. It is also possible that the compound binds 

to residues on uPAR that negate the benefits of mimicking uPA.  

Finally, we wondered whether the use of interface residues on both uPAR and uPA could 

lead to better inhibitors from virtual screening. We combined our fingerprint and pharmacophore 

methods to rank-order compounds docked to uPAR. It is interesting that this method led to even 

more hit compounds than using fingerprint or pharmacophore alone. A total of seven hits were 

identified. Despite the initial concern that three of the compounds had potentially problematic α,β-

unsaturated carbonyls, such as in 23 (IPR-2986), 24 (IPR-2987), or 27 (IPR-2993), none of the 

compounds were found to be thiol reactive. One compound had an acylhydrazine moiety that could 

also be unstable at low pH, although our work is done at pH 7 suggesting that the compound should 

be stable. An interesting feature of these compounds compared to those that emerged from using 

strictly the pharmacophore method is that they had fewer rotatable bonds overall, and two 

compounds, namely 26 (IPR-2992) and 28 (IPR-3089) were fragment-like. Compound 26 was 

particularly interesting as it inhibited, albeit weakly, in both our FP and ELISA assays. Starting 

with 26, we followed an analog-by-catalog approach and purchased several derivatives. Among the 

derivatives, we discovered several compounds, including 30 (IPR-3011), which exhibited 

substantially higher binding affinity than the parent fragment-like compound. We confirmed direct 

binding of both 26 and 30 using microscale thermophoresis with Kd values that were similar to the 

Kis values measured by FP. 30 also possessed substantially better IC50s (single-digit micromolar 

range) in the disruption of the full uPAR•uPA interaction. Future optimization will focus on 

improving solubility of these derivative compounds and exploring additional substituents for 26. 

The methyl group located on the quinoline ring points towards the side chain of a critical tryptophan 

on uPA. The introduction of moieties that mimic the tryptophan side chain may result in 

substantially greater potency. 

In sum, we present a new approach to identify small-molecule inhibitors of tight protein-

protein interactions that uses the native ligand’s pairwise intermolecular interactions with the 

receptor of a protein-protein interaction. When combined with a pharmacophore approach that uses 

the native protein ligand interface amino acids, we identified robust small-molecule inhibitors of 

the tight uPAR•uPA. To the best of our knowledge, this is the first example of a virtual screen that 

uses the crystal structure of a tight protein-protein interaction and identified single-digit micromolar 

small-molecule inhibitors. These results suggest that while commercial libraries do not cover 

chemical space that is typical of protein-protein interaction inhibitors, it is possible to identify 

robust starting points that could be used to develop small-molecule inhibitors of tight protein-

protein interactions. The results also show that virtual screening is also prone to nuisance 
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compounds as several of the small molecules that initially showed promising activity were working 

through a non-specific mechanism. Finally, it is worth mentioning that small-molecule inhibitors 

that emerged from this work are structurally distinct from inhibitors that we previously identified 

for uPAR. We compared the structure of compounds 1-54 to our previously reported uPAR•uPA 

inhibitors IPR-803 [165] and IPR-1110 [167, 168]. The similarity between these compounds was 

assessed using atom triplet Daylight fingerprints. We find that generally, the Tanimoto similarity 

between compounds 1-54 and our previously described inhibitors range from 0.05 to 0.10. 

 

3.4 MATERIALS AND METHODS 

3.4.1 Virtual Screening. A set of commercially-available compounds from ChemDiv Inc. 

(San Diego, CA), ChemBridge Corporation (San Diego, CA), Life Chemicals (Munich, Germany), 

Princeton BioMolecular Research Inc. (Princeton, NJ), Specs (Zoetermeer, Netherlands), and 

Vitas-M Laboratory Ltd (Hong Kong) were retrieved from ZINC [169]. Small molecules in this 

library possessing pan-assay interference compound (PAINS) [170] or rapid elimination of swill 

(REOS) [171] moieties were filtered out using the Canvas package in Schrödinger (Schrödinger 

LLC, New York, NY, 2015). This resulted in a compound library of approximately 5.1 million 

small molecules. Individual MOL2 formatted files were converted to PDBQT format using the 

prepare_ligand4.py script in MGLTools [172].  

The structure of the uPAR•uPA complex (PDB ID: 3BT1) was retrieved and prepared 

using Protein Preparation Wizard in Schrödinger [173]. Bond orders were assigned, hydrogen 

atoms were added, and disulfide bonds were created. Vitronectin (chain B) was removed and the 

missing loop at residues Arg-83 and Ala-84 were introduced using the Prime module. The resulting 

structure was protonated at pH 7.0 using PROPKA [124] and separated into its respective 

monomeric chains. The uPAR structure (chain U) was converted to PDBQT format using the 

prepare_receptor4.py script in MGLTools. 

The compound library was docked to the prepared uPAR structure using AutoDock Vina 

[172]. The binding pocket was centered at the uPAR•uPA interface with a box with dimensions of 

21 Å × 21 Å × 21 Å. All other parameters were set to default values. The docked conformations 

were converted back to MOL2 format using in-house Python scripts for additional analysis. 

 3.4.2 uPAR Interface Residues. To find compounds that overlapped with residues on 

uPAR in the uPAR•uPA complex, we resorted to a fingerprint approach that utilizes interaction 

energies between the receptor and ligand. We determined the interaction energies of each docked 

compound to individual residues of uPAR using the Generalized Born Surface Area (GBSA) 

method in the Amber14 and AmberTools15 software packages [126]. Each docked compound was 



83 

assigned Gasteiger charges and gaff [128] atom types using the antechamber program [129]. 

Additional force field parameters were generated using the parmchk program. Topology and 

coordinate files for the docked complex and individual receptor and ligand were generated with 

ff14SB [131] and gaff [128] force fields using the tleap program. These topology and coordinate 

files were used as inputs to calculate the free energies and per-residue decomposition energies in 

the MMPBSA.py script [136]. The MMPBSA.py script was modified to include the missing atom 

radius for iodine atoms [174]. The calculation using the Generalized Born (GB) method was 

performed with sander and Onufriev’s GB model [137, 138]. Solvent-accessible surface area 

(SASA) calculations were switched to the icosahedron (ICOSA) method, where surface areas are 

computed by recursively approximating a sphere around an atom, starting from an icosahedron. 

Salt concentration was set to 0.1 M. Compounds with combined internal and solvation terms 

(∆EGBTOT) greater than -5.0 kcal·mol-1 were discarded. 

For each docked compound, we generate a one-dimensional array with length equal to the 

total number of residues of the uPAR structure. In this vector, each position corresponds to an 

individual residue of uPAR. Each position is assigned a value of ‘1’ (ON) or ‘0’ (OFF) based on 

the residue decomposition energy at that position and acts as a fingerprint for that compound. If the 

energy at the given residue is less than -1.0 kcal·mol-1, we assign the position a value of ‘1’. 

Otherwise, we assign the position a value of ‘0’. Residues for the fingerprints were identified from 

two sources: (i) an experimentally-determined alanine scanning of uPAR from Gårdsvoll and 

coworkers [164]; and (ii) a previously described molecular dynamics (MD) simulation of the 

uPAR•uPA complex [168]. Similar to the construction of the compound-specific bitwise arrays, 

we create vectors for each type of fingerprint where each position corresponds to an interaction 

energy of the uPAR•uPA complex. In the vector corresponding to the experimental alanine scan, a 

position was assigned a value of ‘1’ if the ∆∆G at that residue is greater than 1.0 kcal·mol-1 and ‘0’ 

otherwise. In the vector corresponding to the per-residue decomposition energies, a position is 

assigned a value of ‘1’ if the total energy (∆EGBTOT) at that residue is less than -1.0 kcal·mol-1 and 

‘0’ otherwise. 

In both fingerprints, only a small portion of uPAR will have values of ‘1’ with its native 

ligand uPA. Therefore, we reduce the length of each fingerprint to only include positions with ‘1’ 

bits in the uPAR•uPA complex. For each docked compound, we calculate the Tanimoto distance 

between the fingerprints of the complex and the compound in a bitwise manner. The fingerprint of 

the uPAR•uPA complex consists of only ‘1’ bits. Thus, this distance can be simply calculated by 

summing the number of ‘1’ bits in the compound fingerprint and dividing by the length of the 
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fingerprint. Compounds were rank-ordered based on their Tanimoto distance, and in cases where 

compounds had the same Tanimoto distance, we used ∆EGBTOT to rank these compounds. 

3.4.3 uPA Interface Residues. A pharmacophore-based approach was used to identify 

docked compounds that overlapped with and mimicked interface residues on uPA. We used four 

residues of uPA at the uPAR•uPA interface: Lys-23, Tyr-24, Phe-25, and Trp-30. For each residue, 

we defined a pharmacophore hypothesis corresponding to the physiochemical properties of the 

individual residue’s side chain using the Phase package in Schrödinger [115, 116]. Phase has six 

built-in types of pharmacophore features: (i) hydrogen bond acceptor, (ii) hydrogen bond donor, 

(iii) hydrophobe, (iv) negative ionizable, (v) positive ionizable, and (vi) aromatic ring. We assigned 

a positive charged feature to the ε-amine on Lys-23 and aromatic rings features to the aromatic 

rings of Tyr-24, Phe-25, and Trp-30. A single pharmacophore feature was assigned to the benzene 

rings of Tyr-24 and Phe-25, while two separate pharmacophores were assigned to the pyrrole and 

benzene rings of the bicyclic indole on Trp-30. We searched for compounds containing ligand 

moieties that matched a corresponding pharmacophore feature. A compound that matched either of 

the two aromatic pharmacophore features on Trp-30 was considered to overlap and mimic the 

residue. Each pharmacophore feature was screened independently of one another. The aromatic and 

positively charged pharmacophores are represented as spheres centered on the side chain moiety 

with radii of 1.5 Å and 0.75 Å, respectively. Compound conformers from virtual screening were 

used to identify matches without refinement using Phase’s default fitness function. In this scoring 

function, three factors are used to describe the degree to which a compound matches a 

pharmacophore feature: (i) the site score, which describes how well the compound superimposes 

the pharmacophore feature, (ii) the vector score, which describes the cosine angle between the 

normal vector of an aromatic ring on the compound with an aromatic feature, and (iii) the volume 

score, which describes the proportion of the total volume of the pharmacophore feature overlapped 

by the compound. Compounds with either root-mean-square deviation (RMSD) overlap greater 

than 1.2 Å or did not overlap with the pharmacophore feature were discarded. For the aromatic 

pharmacophores, no consideration was given to the angle between the normal vectors of an 

aromatic feature and the orientation of an aromatic ring. All other parameters were set at default 

values. The remaining compounds that matched a given pharmacophore was retained without 

sorting compounds by Phase’s internal scoring function. Compounds that matched 3 of the 4 

residues were retained. 

3.4.4 Selection of Compounds. The top-ranking compounds following virtual screening 

using uPAR and uPA residues were retrieved and clustered using the Canvas package in 

Schrödinger. A hashed binary fingerprint corresponding to atom triplets of Daylight invariant atom 
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types were generated for these top-ranking compounds. Compounds were then hierarchically 

clustered using their atom triplet fingerprints and average linkage clustering. The Tanimoto 

similarity between a pair of fingerprints was used as the distance metric. Compounds corresponding 

to the cluster centers from hierarchical clustering were purchased for experimental validation. 

3.4.5 Fluorescence Polarization (FP) Assay. Polarized fluorescence intensities were 

measured using EnVision Multilabel plate readers (PerkinElmer, Waltham, MA) with excitation 

and emission wavelengths of 485 and 535 nm, respectively [165]. Samples were prepared in 

Thermo Scientific Nunc 384-well black microplate in duplicates. First, the compounds were 

serially diluted in DMSO and further diluted in 1× PBS buffer with 0.01% Triton X-100 for a final 

concentration of 200 – 0.2 μM. Triton X-100 was added to the buffer to avoid compound 

aggregation. 5 μL of the compound solution and 40 μL of PBS with 0.01% Triton X-100 containing 

uPAR was added to the wells and incubated for at least 15 min to allow the compound to bind to 

the protein. Finally, 5 μL of fluorescent AE147-FAM peptide solution was added for a total volume 

of 50 μL in each well resulting in final uPAR and peptide concentrations of 320 nM and 100 nM 

respectively. The final DMSO concentration was 2% v/v, which had no effect on the binding of the 

peptide. Controls included wells containing only the peptide and wells containing both protein and 

peptide each in duplicates to ensure the validity of the assay. A unit of millipolarization (mP) was 

used for calculating percentage inhibition of the compounds. When compounds were insoluble and 

visible precipitation was observed, the data points at the high concentrations were not included in 

the calculation of IC50 values. Inhibition constants were calculated from the IC50 values using the 

Ki calculator available at http://sw16.im.med.umich.edu/software/calc_ki/. 

3.4.6 Microtiter-Based ELISA for uPAR•uPA. uPAR without the 

glycosylphosphotidylinositol (GPI) anchor was obtained by a purification process as previously 

described [175]. High-binding microplates (Greiner Bio-One, Kremsmünster, Austria) were 

incubated for 2 h at 4 °C with 100 μL of 4 μg·mL-1 of uPAATF in PBS for immobilization as 

previously described [165]. The plate was washed with 0.05% Tween-20 in PBS buffer between 

each step. A 1:1 mixture of Superblock buffer in PBS (Thermo Fisher Scientific, Inc. Waltham, 

MA) with 0.04 M NaH2PO4 and 0.3 M NaCl buffer was used for blocking at room temperature for 

45 min. Following removal of the blocking buffer and washing, 100 µL of 0.85 nM uPAR in PBS 

with 0.01% triton X-100 was added with 100 to 0.4 μM compounds in 1% v/v DMSO. Following 

incubation for 30 min and subsequent washing steps, biotinylated human uPAR antibody (1:3000 

dilution of 0.2 mg·mL-1 BAF807, R&D Systems, Minneapolis, MN) in PBS containing 1% bovine 

serum albumin (BSA) was added to the wells (100 μL/well) and incubated for 1 h to allow for the 

detection of bound uPAR. Following washing, streptavidin-horseradish-peroxidase in PBS 
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containing 1% BSA was added to the wells and incubated for 20 min. The signal developed in the 

presence of 3,3’,5,5’-tetramethylbenzidine (TMB) in phosphate-citrate buffer (pH 5) and hydrogen 

peroxide was stopped by adding H2SO4 solution and was detected using a SpectraMax M5e 

(Molecular Devices, Sunnyvale, CA). When compounds were insoluble and visible precipitation 

was observed, the data points at the high concentrations were not included in the calculation of IC50 

values. 

3.4.7 Microscale Thermophoresis (MST). uPAR was labeled with NT-495 fluorescent 

dye (Nanotemper, Munich, Germany) according to the manufacturer’s instructions. Compounds 

were serially diluted in DMSO and further diluted in PBS buffer with 0.025% v/v Tween-20. 10 

µL of fluorescently-labeled uPAR and 10 µL of compound solution were combined to final 

concentrations of 40 nM fluorescently-labeled uPAR, 2% v/v DMSO and compound concentrations 

ranging from 200 µM to 0.1 µM. The protein-compound solution was incubated for 10 min at room 

temperature in the dark, before being taken up in Monolith NT.115 series standard-treated 

capillaries. The capillaries were measured on Monolith NT.115 (Nanotemper, Munich, Germany) 

at 25 ºC, with LED power at 40% and MST power at 40%, and the MST was measured for 30 s. 

The data was analyzed using the “Thermophoresis with T-jump” function within the NanoTemper 

Affinity Analysis version 2.0.2 software (Nanotemper, Munich, Germany). The data was then fit 

with the “Kd Model” function within the software to calculate the Kd. 

3.4.8 (E)-2-(4-mercaptostyryl)-1,3,3-trimethyl-3H-indol-1-ium (MSTI) Assay. MSTI 

assay was performed according to the manufacturer’s recommendations (Kerafast, Inc. Boston, 

MA) [166]. A 10 mM solution of acetyl-MSTI was added to 50 mM PBS buffered solution at pH 

12.0 with 50% v/v methanol in a ratio of 1:10 v/v. After mixing and incubating for 2 min at room 

temperature, the solution was diluted with 50 mM PBS at pH 7.4, containing 0.01% NP-40 and 5% 

v/v methanol to generate a final concentration of 30 µM MSTI at pH 7.4. 19.6 µL aliquots of the 

MSTI solution was dispensed in 384-well flat-bottom black plate and 0.4 µL of 5 mM compounds 

in DMSO were added make a 100 µM final concentration. Unreacted MSTI solution without added 

compound, but with equal amount of DMSO, was used as a negative control, while inactivated 

acetyl-MSTI solution with DMSO was used as a positive control. The plate was then incubated 

with shaking for 30 min at room temperature and the fluorescence intensities were measured using 

a Flexstation 3 plate reader (Molecular Devices, Sunnyvale, CA) at excitation and emission 

wavelengths of 510 and 650 nm, respectively. 

3.4.9 Horseradish Peroxidase-Phenol Red (HRP-PR) Redox Activity Assay. HRP-PR 

assay was performed according to the published protocol [176, 177]. In brief, 20 µL of 300 µM 

compounds in 3% v/v DMSO in Hank’s balanced salt solution (HBSS) (Cat. No. SH30268.02; 



87 

HyClone, Logan, UT) was dispensed into a 384-well clear, flat-bottomed polystyrene plate (Cat. 

No. 781101; Greiner Bio-One, Monroe, NC). Controls with 3% v/v DMSO and 300 µM H2O2 were 

dispensed. 20 µL of 2.4 mM fresh dithiothreitol (DTT) in HBSS was added to each well. For the 

H2O2 controls, 20 µL HBSS with no DTT was added. After 5 min incubation at RT, 20 µL solution 

of 300 µg·mL-1 Phenol Red (Cat. No. P-2417; Sigma-Aldrich, St. Louis, MO), 180 µg·mL-1 HRP 

(Cat. No. P-2088; Sigma-Aldrich, St. Louis, MO) was added. After 20 min incubation at room 

temperature, the absorbance was read at 610 nm on a SpectraMax M5e (Molecular Devices, 

Sunnyvale, CA). 

3.4.10 High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). 

Compounds at 200 µM were incubated in methanol, PBS, or 30 µM uPAR in PBS for 1 h at room 

temperature. The samples were injected onto a Kinetex 2.6 µm XB-C18 100 Å column (Cat. No. 

00B-4496-E0; Phenomenox, Torrance, CA) on an Agilent 6130 Quadrupole LC/MS system 

(Agilent, Santa Clara, CA). Compounds 6 (IPR-2496), 12 (IPR-2605), and 29 (IPR-3193) were 

eluted by a linear gradient from Buffer A (H2O) to Buffer B (acetonitrile, 5 mM NH4OAc) over 15 

min. Compounds 1 (IPR-2797), 8 (IPR-2529), 9 (IPR-2532), 26 (IPR-2992), and 28 (IPR-3089) 

were eluted by a linear gradient from Buffer A (H2O, 0.1% formic acid) to Buffer B (acetonitrile, 

0.1% formic acid) over 15 min. Column elution was tracked by UV absorption at 256 nm and the 

masses were detected by positive ion mode. 
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Chapter 4 

CHEMICAL SPACE OVERLAP WITH CRITICAL PROTEIN-PROTEIN INTERFACE 

RESIDUES IN COMMERCIAL AND SPECIALIZED SMALL-MOLECULE LIBRARIES 

 

4.1 INTRODUCTION 

There is growing interest in applying computational methods for the discovery of small-

molecule PPI inhibitors, particularly for tight secondary and tertiary interactions. We have 

successfully used virtual screening to identify inhibitors of the tight tertiary interaction between the 

urokinase receptor uPAR and its protein ligand uPA with compounds ranging from sub-micromolar 

to micromolar affinity [165, 168, 178]. In one case, we screened multiple structures that were 

sampled from explicit-solvent molecular-dynamics simulations and identified a sub-micromolar 

affinity compound [165]. The predicted structure of the compound was independently confirmed 

by X-ray crystallography [179]. In the previous chapter, we introduced a fingerprint method that 

uses the native protein ligand as a guide to identify small molecules that mimic the interaction of 

the protein ligand [178]. Using the fingerprint method, we identified several hit compounds with 

single-digit micromolar affinities. Finding highly potent inhibitors of tight PPIs by virtual screening 

of commercial libraries remains extremely challenging, but we have shown that quality hit 

compounds with single-digit micromolar binding affinities can be identified. 

Although progress has been made in the development of scoring and docking methods to 

enrich compound collections for the discovery of PPI inhibitor hit compounds, relatively little work 

has been done on the suitability of existing commercial and specialized collections for PPI drug 

discovery. Databases such as iPPI [180], 2P2I [181], and TIMBAL [182] have been created to 

explore additional chemotypes for PPIs. A few studies have explored whether commercial and 

specialized libraries contain small molecules that are suitable for disrupting PPIs [183-185]. These 

studies suggest that small-molecule PPI inhibitors tend to cover different chemical space than 

enzyme inhibitors. Another approach to determine whether a compound collection is enriched with 

compounds that are suitable for disrupting PPIs is to explore how effectively compounds mimic 

the sidechains of critical amino acids of the PPI ligand protein, or whether compounds engage 

critical residues on the PPI receptor protein [186]. Small molecules that better mimic or engage 

critical residues are expected to be more effective inhibitors of PPIs [30-32]. 

In this chapter, we explored how effectively small molecules in a commercial library 

(ChemDiv), a collection of diversity-oriented synthesis (DOS) libraries, and the “Screenable 

Chemical Universe Based on Intuitive Data Organization” (SCUBIDOO) compound collection 

mimic the positions of critical residues at tight protein-protein interfaces. We employed a combined 
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docking and pharmacophore approach to measure overlap between chemical structures and the 

sidechains of interface residues. We selected three tight PPIs for which extensive alanine-scanning 

studies have identified critical hot spot residues; these include the interaction between the urokinase 

receptor (uPAR) and its serine proteinase ligand urokinase (uPA), the transcription factor TEAD 

and its co-activator Yap (TEAD•Yap), and the α- and β-subunits of the voltage-gated calcium 

channels (CaVα•CaVβ). Our findings suggest that smaller conformationally-restricted compounds 

show excellent overlap with hot spots. In a proof-of-concept study, we experimentally validated 

the compounds identified from virtual screening of a library of conformationally-restricted 

commercially-available compounds against the PPIs of uPAR•uPA and TEAD•Yap. 

 

4.2 RESULTS 

 4.2.1 Analysis of Compound Collection Physicochemical Properties. Several types of 

chemical library have been created over the years that may be suitable in identifying PPI inhibitors. 

Among them, diversity-oriented synthesis (DOS) represents a strategy to efficiently generate 

compound collections with a high degree of structural diversity [187, 188] and produce new 

biological probes [42, 189-194]. The DOS approach aims to achieve building-block, functional 

group, stereochemical, and skeletal diversity, with DOS compounds occupying a middle ground 

between the structural complexity of natural products and the efficiency of commercially-available 

synthetic libraries [195]. In addition to commercially available and DOS compounds, there is an 

increasing number of specialized libraries that have been constructed for use in virtual screening. 

These libraries were designed to overcome some of the shortcomings of commercial libraries, 

namely the limited chemical space commercial libraries cover and the large number of nuisance 

compounds [196-198]. The Screenable Chemical Universe Based on Intuitive Data Organization 

(SCUBIDOO) library [199] is one example. It consists of compounds constructed by combining 

building blocks from 58 organic reactions known to the pharmaceutical field. 

To explore the structural overlap between small molecules and amino-acid sidechains at 

protein-protein interfaces, three compound collections from both commercial and non-commercial 

sources were selected. The first was the commercially-available library from ChemDiv, Inc. 

(ChemDiv), which is frequently used in compound screening. The second was a collection of DOS 

libraries [194, 200] from the Broad Institute (DOS), and the third was SCUBIDOO [199]. The 

physicochemical properties of the compounds in each of the three collections were determined (Fig. 

4.1). Compounds in DOS had a mean molecular weight (MW) of 512 ± 94 Da, which is larger than 

the mean molecular weight of compounds in ChemDiv (MW = 410 ± 74 Da) and SCUBIDOO 

(MW = 327 ± 49 Da).  
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Figure 4.1. Histograms of individual physicochemical properties of the ChemDiv, DOS, and 

SCUBIDOO compound collections. Distributions highlight differences in size, flexibility, and 

complexity.  
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Figure 4.2. Principal component analysis (PCA) of physicochemical properties. Compounds from 

each of the three collections were projected onto the first two principal components, each of which 

is also represented by its marginal distribution on a per-collection basis. 
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Table 4.1. Parameters for principal component analysis for each of the eight input descriptors 

across the first three principal components. 

 
Scale PC1 PC2 PC3 

AlogP 1.907 -0.157 0.692 -0.056 

Hydrogen-bond acceptor 1.860 -0.439 -0.082 -0.241 

Hydrogen-bond donor 0.965 -0.300 -0.338 -0.061 

Molecular weight 106.326 -0.493 0.135 0.189 

Polar surface area 32.87 -0.448 -0.152 -0.330 

Rotatable bond 2.220 -0.421 -0.044 -0.061 

Chiral center 1.719 -0.132 -0.407 0.733 

Ring count 0.975 -0.233 0.438 0.499 

Standard deviation 
 

1.865 1.210 1.064 

Component variance 
 

0.435 0.183 0.142 

Cumulative variance 
 

0.435 0.618 0.760 
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Figure 4.3. Principal moments of inertia (PMI) illustrate the shape diversity of three compound 

collections. (A) ChemDiv, (B) DOS, (C) SCUBIDOO. The top left-hand corner represents a linear 

molecule (e.g., diacetylene), the top right-hand corner represents a spherical molecule (e.g. 

adamantane) and the bottom corner represents a disc-like molecule (e.g., benzene).  
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Lipophilicity, characterized here by computed AlogP values, plays a crucial role in 

determining solubility. Compounds in ChemDiv had a mean AlogP of 3.6 ± 1.5. ChemDiv 

compounds are predicted to be generally less soluble than compounds from DOS or SCUBIDOO 

considering their substantially lower mean AlogP values of 2.3 ± 1.6, and 1.3 ± 1.8, respectively. 

To gain insight into the three-dimensional characteristics and complexity of compounds in these 

collections, the number of chiral centers was counted. DOS compounds had generally more chiral 

centers (3.6 ± 0.8), compared with SCUBIDOO (2.4 ± 0.7) and ChemDiv compounds (0.7 ± 1.2). 

These data confirmed that DOS compounds are generally more stereochemically complex than 

SCUBIDOO compounds. ChemDiv compounds showed a remarkably low number of chiral centers 

per compound compared with both DOS and SCUBIDOO. 

A measure of flexibility is the number of rotatable bonds in a compound. There were more 

rotatable bonds on average per compound in DOS (RB = 6.8 ± 2.1) compared with SCUBIDDO 

(RB = 3.8 ± 1.1) and ChemDiv (RB = 5.5 ± 2.1). The molecular weight of a compound was 

generally correlated with the number of rotatable bonds in the DOS (Pearson’s r = 0.68) and 

ChemDiv collections (r = 0.55), but not in the SCUBIDOO library (r = 0.13). There was a similar 

trend in the correlations between molecular weight and number of chiral centers in DOS (r = 0.31), 

ChemDiv (r = 0.20), and SCUBIDOO (r = 0.08). Similarly, the number of chiral centers and 

rotatable bonds was only correlated in the DOS collection (r = 0.27). 

Polar surface area (PSA) is a commonly-used descriptor to provide insight into compound 

permeability and oral bioavailability [201]. In addition, PSA is often used in combination with the 

number of rotatable bonds to reflect molecular flexibility [202]. Compounds in DOS had the highest 

PSA values with a mean of 104 ± 31 Å2, followed by ChemDiv (PSA = 84 ± 27 Å2) and 

SCUBIDOO (PSA = 66 ± 28 Å2). We found that PSA and the number of rotatable bonds were most 

strongly correlated in DOS (r = 0.60) and ChemDiv (r = 0.40), but not in SCUBIDOO (r = -0.02). 

The number of hydrogen-bond donors (HBDs) and hydrogen-bond acceptors (HBAs) are 

important parameters related to compound polarity and membrane permeability. It has been 

suggested that the number of HBDs may be more important than the number of HBAs to enhance 

bioavailability and membrane permeability of lead compounds [201, 203, 204]. We found that DOS 

compounds had the highest number of HBDs and HBAs (HBD = 2.0 ± 0.9; HBA = 5.2 ± 1.6), 

followed by ChemDiv (HBD = 1.0 ± 0.8; HBA = 3.8 ± 1.4) and SCUBIDOO (HBD = 1.2 ± 0.9; 

HBA = 2.6 ± 1.4). Among all the physicochemical properties that we have considered, only the 

ring count was similar among the three collections. Since SCUBIDOO was built by limiting the 

number of building blocks, compounds in SCUBIDOO have lower molecular weight, rotatable 

bonds, and chiral centers compared to compounds in DOS and ChemDiv. 



95 

We next compared the distributions of these eight physicochemical properties of the three 

collections using principal component analysis (PCA). Compounds from each of the three 

collections were projected onto the first two principal components (Fig. 4.2). In the first principal 

component, the distributions were separated such that there are distinct peaks for each of the three 

sources (PC1DOS = -1.6 ± 1.7; PC1ChemDiv = 0.1 ± 1.3; PC1SCUBIDOO = 1.5 ± 0.9). This effect is seen 

qualitatively in the marginal distributions for PC1 for each compound collection, where each set 

was projected onto different ranges of the first principal component. In the second principal 

component, however, the marginal distributions of DOS (PC2DOS = -0.5 ± 0.9) and SCUBIDOO 

(PC2SCUBIDOO = -0.5 ±1.1) overlaped and each partially overlaped with the marginal distribution of 

ChemDiv (PC2ChemDiv = 0.9 ± 1.0). The loadings of the PCA are provided to illustrate the relative 

contributions of each of the eight input descriptors (Table 4.1). The total variance explained by the 

first two principal components were 44% and 18%, respectively. When the third principal 

component is included, the cumulative variance explained reached 76%. 

To gain further insight into the structure of compounds in these three collections, the 

molecular shape diversity of each was evaluated using principal moments of inertia (PMI) (Fig. 

4.3). PMI plots represent the shape distribution of a collection of molecules. The three vertices of 

the triangular plot represent the extremes of molecular geometry. The top-left, top-right, and bottom 

corners correspond to small molecules with linear (e.g., diacetylene), spherical (e.g., adamantane), 

and disc-like (e.g., benzene) shapes, respectively. Compounds in SCUBIDOO (I1/I3 = 0.26 ± 0.12; 

I2/I3 = 0.88 ± 0.08) were predominantly linear compared to compounds in ChemDiv and DOS. 

ChemDiv (I1/I3 = 0.31 ± 0.13; I2/I3 = 0.84 ± 0.09) and DOS (I1/I3 = 0.33 ± 0.12; I2/I3 = 0.82 ± 0.09) 

compounds were primarily along the diagonal between linear and disc-like structures. Despite the 

substantial difference in the number of chiral centers and rotatable between DOS (chiral center = 

3.6 ± 0.8; RB = 6.8 ± 2.1) and ChemDiv (chiral center = 0.7 ± 1.2; RB = 5.5 ± 2.1), there was little 

difference in the shape diversity between the two collections. 

 4.2.2 Compound Overlap with Protein-Ligand Hot Spots at Protein-Protein 

Interaction Interfaces. We wondered if the chemical scaffolds found in each compound collection 

would yield compounds that could overlap and mimic the physicochemical properties of amino 

acid sidechains at protein-protein interfaces. To explore this question, we selected three high-

affinity (Kd < 100 nM) PPIs with three distinct binding motifs: (i) a β-turn motif at the interface 

between the urokinase receptor and its serine proteinase ligand urokinase (uPAR•uPA); (ii) a 

twisted-coil motif at the Ω-loop between the transcription factor TEAD and its co-activator Yap 

(TEAD•Yap); and (iii) an α-helix motif between the α-and β-subunits of the calcium channel 

(CaVα•CaVβ). 
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We first docked compounds from the ChemDiv, DOS, and SCUBIDOO to the protein 

receptor at each of the three interaction interfaces. A ligand-based pharmacophore approach was 

used to identify compounds that overlap with interface residues on the protein ligand. Six possible 

pharmacophore features can be assigned to the sidechains of protein residues: hydrogen bond 

acceptor (A) and donor (D), hydrophobic group (H), negatively (N) and positively (P) charged 

group, and aromatic ring (R). These pharmacophore sites are characterized by type, location, and, 

if applicable, directionality. 

4.2.3 uPAR•uPA. The uPAR•uPA interface consists primarily of a β-turn on the protein 

ligand uPA ensconced in a large pocket on the protein receptor uPAR, leading to an interaction that 

is both tight (Kd = 1 nM) and stable (koff = 10-4 s-1) (Fig. 4.4A and 4.4B). At the uPAR•uPA interface, 

the sidechain of five hot-spot residues from uPA extend into the hydrophobic pocket of uPAR: Lys-

23, Tyr-24, Phe-25, Ile-28, and Trp-30 (Fig. 4.4C) [157]. We used pharmacophores to represent 

the position and physicochemical properties of the sidechains of these five residues. For a given 

pharmacophore, we compared each docked compound and determined whether it had a chemical 

moiety that overlaps with the pharmacophore with the appropriate physicochemical property. For 

example, a compound that possesses a benzene group that occupies the same position as an aromatic 

ring (pharmacophore) of a tyrosine residue on uPA is expected to mimic the properties of the 

tyrosine residue in the interaction between uPAR•uPA and disrupt binding. In the pharmacophore 

model, the ε-amine on Lys-23 was modeled using a positive charge feature, while the benzene rings 

of Tyr-24 and Phe-25 were modeled using aromatic ring features. We assigned separate aromatic 

ring features to the benzene and pyrrole rings on the indole of Trp-30. The aliphatic side chain of 

Ile-28 was represented by a hydrophobic feature centered at the Cβ-Cγ1 bond. We searched for 

compounds containing functional moieties that matched a corresponding pharmacophore feature. 

There were 31387, 3157, and 11 compounds in ChemDiv that overlap with one, two, and three 

distinct hot spots on uPA, respectively (Table 4.2). For DOS, fewer compounds were found to 

overlap with hot spots. In total, 19210, 952, and 10 compounds overlapped with one, two, and three 

hot spots, respectively (Table 4.3). The number of overlaps for SCUBIDOO was similar to DOS, 

with 17992, 1033, and 8 compounds that overlapped with one, two, and three hot spots, respectively 

(Table 4.4).  
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Figure 4.4. The protein complex of uPAR and uPA peptide. (A) uPAR is shown as a surface 

colored by hydrophobicity, with more hydrophobic residues in brown and more hydrophilic 

residues in green. The uPA peptide is shown as a cyan ribbon. (B) The uPAR•uPA complex and 

the five hot spots (sidechains in stick representation) on uPA (cyan ribbon). (C) Pharmacophore 

features for uPA are shown as small colored spheres: positive charge (Lys-23 in dark blue), 

hydrophobic (Ile-28 in green), and aromatic rings (Tyr-24, Phe-25, Trp-30 in tan).  
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Table 4.2. Matching count for compounds in ChemDiv against hot spots on uPA. 

ChemDiv 
Whole Collection Top 1000 (<500 Da) 

1 2 3 1 2 3 

Lys-23 72 11 0 12 1 0 

Tyr-24 13370 3118 11 64 100 0 

Phe-25 17161 3040 11 427 99 0 

Ile-28 784 145 11 0 0 0 

Trp-30 0 0 0 0 0 0 

Total 31387 3157 11 503 100 0 
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Table 4.3. Matching count for compounds in DOS against hot spots on uPA. 

DOS 
Whole Collection Top 1000 (<500 Da) 

1 2 3 1 2 3 

Lys-23 1094 161 2 13 6 0 

Tyr-24 8579 750 7 104 31 0 

Phe-25 6304 541 6 277 35 0 

Ile-28 1674 246 8 2 0 0 

Trp-30 1559 206 7 1 0 0 

Total 19210 952 10 397 36 0 
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Table 4.4. Matching count for compounds in SCUBIDOO against hot spots on uPA. 

SCUBIDOO 
Whole collection Top 1000 (<500 Da) 

1 2 3 1 2 3 

Lys-23 773 184 8 97 64 4 

Tyr-24 7618 954 8 38 85 4 

Phe-25 9531 918 8 361 61 4 

Ile-28 70 10 0 0 0 0 

Trp-30 0 0 0 0 0 0 

Total 17992 1033 8 496 105 4 
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There are differences in the degree of overlap with individual hot spots among the three 

collections. At Lys-23, DOS and SCUBIDOO compounds showed dramatically greater overlap 

compared with ChemDiv. A total of 1094 and 773 compounds from DOS and SCUBIDOO, 

respectively, overlapped with Lys-23 compared to only 72 for ChemDiv. Similarly, for compounds 

that overlapped with Lys-23 and one other hot spot, we found 161 DOS and 184 SCUBIDOO 

compounds, compared with only 11 in ChemDiv. This finding might be attributed to the larger 

average AlogP value of ChemDiv (AlogP = 3.6 ± 1.6), which contains fewer polarizable moieties 

than DOS (AlogP = 2.3 ± 1.6) and SCUBIDOO (AlogP = 1.3 ± 1.8). Analogous trends were 

observed for both Ile-28 and Trp-30. At Ile-28, 784 ChemDiv and 1674 DOS compounds 

overlapped with the residue, while only 70 SCUBIDOO compounds showed overlap with this 

residue. At Trp-30, none of the compounds in ChemDiv or SCUBIDOO overlapped with either the 

indole or benzene rings of the sidechain, while a total of 1772 compounds from DOS overlapped 

with Trp-30, including 213 compounds that overlap Trp-30 and at least one other residue. The latter 

finding may be attributed to the fact that Trp-30 is positioned outside of the deep binding pocket 

on uPAR and may be more difficult to reach by the smaller compounds in ChemDiv and 

SCUBIDOO. When comparing the DOS compounds that overlap with Trp-30 to all DOS 

compounds, there was a slight shift in the distribution of aromatic rings from 4.0 ± 0.9 to 4.3 ± 0.9, 

the distribution of rotatable bonds from 6.8 ± 2.1 to 7.0 ± 2.1, and the distribution of chiral centers 

from 3.6 ± 0.8 to 3.7 ± 0.7. Compared to DOS and SCUBIDOO, the number of compounds in 

ChemDiv that overlapped with Tyr-24 and Phe-25 was nearly double when considering only 

compounds that overlap with a single hotspot. Similarly, there was more than a threefold increase 

in the number of compounds that overlapped with Tyr-24 or Phe-25 and one other hot spot. 

Although DOS compounds have proven successful in producing probe molecules after high-

throughput screening, many of these compounds have high molecular weight [200]. Indeed, in our 

study, compounds from DOS that overlap with hot spots had higher molecular weight (MW = 536 

± 97 Da) than those from ChemDiv (MW = 408 ± 71 Da) and SCUBIDOO (MW = 332 ± 45 Da). 

A question of interest is whether compounds that are predicted by docking studies to have 

higher binding affinities will show different overlap with hot-spot residues at the protein-protein 

interface. To address this question, we repeated the above analysis except that only compounds (i) 

that are 500 Da or less, and (ii) that are among the top 1000 highest-scoring from a docking 

simulation were considered. There were 603, 433 and 605 compounds from ChemDiv, DOS, and 

SCUBIDOO that matched at least one hot spot. ChemDiv and SCUBIDOO compounds all 

possessed substituents that occupy the same position as Lys-23, Tyr-24 or Phe-25 sidechains on 

uPA, while none overlapped with hot spots on uPA located at Ile-28 and Trp-30. The DOS 
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collection had only three compounds that overlapped these residues. Furthermore, except for 

SCUBIDOO, none of the compounds in ChemDiv or DOS simultaneously showed an overlap with 

three hot spots. The four compounds from SCUBIDOO overlapped with Lys-23, Tyr-24, and Phe-

25. It is interesting that compounds from SCUBIDOO, which are generally smaller in size than 

DOS and ChemDiv compounds, are able to mimic more hot spots at the protein-protein interface. 

4.2.4 TEAD•Yap. The PPI between TEAD and Yap occurs over a large interface of 1300 

Å2.[205] The TEAD-binding domain of Yap wraps around the globular structure of TEAD via three 

interfaces (Fig. 4.5A). The twisted-coil region of Yap at the Ω-loop is most critical for complex 

formation (Fig. 4.5B). There are six hot spots at this region, with four hydrophobic residues (Met-

86, Leu-91, Phe-95, and Phe-96), one charged residue (Arg-89), and one polar residue (Ser-94). 

The aliphatic sidechains of Met-86 and Leu-91 were identified as hydrophobic features in the 

pharmacophore model, the sidechain of Arg-89 was modeled using a positive charge feature, and 

the benzene rings of Phe-95 and Phe-96 were modeled using aromatic ring features. The hydrogen 

and oxygen atom on the sidechain of Ser-94 were identified as a hydrogen-bond donor and acceptor, 

respectively (Fig. 4.5C). In the native complex, two hydrogen bonds are formed between Ser-94 

on Yap and Glu-240 and Tyr-406 on TEAD [206]. 

There were 47061, 8862, 403, and 5 compounds in ChemDiv that overlapped with one, 

two, three, and four different hot spots on Yap, respectively (Fig. 4.5D). From the DOS collection, 

50976, 9570, 425, and 3 compounds overlapped with one, two, three, and four different hot spots 

on Yap, respectively (Fig. 4.5E). From the SCUBIDOO library, only 35369, 4341, and 59 

compounds overlapped with one, two, and three hot spots simultaneously, while no compounds 

matched four hot spots (Fig. 4.5F). Among compounds that overlapped with multiple hotspots, 

ChemDiv and DOS had similar distributions while SCUBIDOO had approximately half the number 

of compounds that overlapped with two hotspots and approximately 15% of the number of 

compounds that overlapped with three hotspots when compared to the other two collections. 
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Figure 4.5. The protein complex of TEAD and YAP peptide. (A) TEAD is shown as a surface 

colored by hydrophobicity, with more hydrophobic residues in brown and more hydrophilic 

residues in green. The YAP peptide is shown as a cyan ribbon. (B) The TEAD•YAP complex and 

the six hot spots (sidechains in stick representation) on YAP (cyan ribbon). (C) Pharmacophore 

features for YAP are shown as small colored spheres: hydrophobic (Met-86 and Leu-91 in green), 

positive charge (Arg-89 in dark blue), hydrogen bond acceptor (Ser-94 in red), hydrogen bond 

donor (Ser-94 in light blue), and aromatic rings (Phe-95, Phe-96 in tan).  
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Table 4.5. Matching count for compounds in ChemDiv against hot spots on Yap. 

ChemDiv 
Whole Collection Top 1000 (<500 Da) 

1 2 3 4 1 2 3 4 

Met-86 25855 7869 395 5 108 16 0 0 

Arg-89 28 6 0 0 6 2 0 0 

Leu-91 9890 4336 381 5 43 9 0 0 

Ser-94 84 81 23 4 1 0 0 0 

Phe-95 11108 5372 393 5 73 17 0 0 

Phe-96 96 60 17 1 0 0 0 0 

Total 47061 8862 403 5 231 22 0 0 
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Table 4.6. Matching count for compounds in DOS against hot spots on Yap. 

DOS 
Whole Collection Top 1000 (<500 Da) 

1 2 3 4 1 2 3 4 

Met-86 29112 7746 399 3 117 83 6 0 

Arg-89 2099 881 97 1 26 9 1 0 

Leu-91 9501 3459 305 3 46 14 3 0 

Ser-94 5481 3112 229 3 160 97 5 0 

Phe-95 4580 3704 224 2 41 49 3 0 

Phe-96 203 238 21 0 0 0 0 0 

Total 50976 9570 425 3 390 126 6 0 
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Table 4.7. Matching count for compounds in SCUBIDOO against hot spots on Yap. 

SCUBIDOO 
Whole Collection Top 1000 (<500 Da) 

1 2 3 4 1 2 3 4 

Met-86 23848 4180 59 0 152 38 0 0 

Arg-89 89 17 3 0 6 1 0 0 

Leu-91 5674 2190 55 0 89 20 0 0 

Ser-94 0 0 0 0 0 0 0 0 

Phe-95 5735 2283 58 0 107 19 0 0 

Phe-96 23 12 2 0 0 0 0 0 

Total 35369 4341 59 0 354 39 0 0 
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In all three sets, approximately a quarter of all compounds overlapped with the 

hydrophobic pharmacophore on Met-86. Similarly, about 10% in each collection overlapped with 

the hydrophobic Leu-91 and aromatic Phe-95 residues on Yap. At Phe-96, DOS had substantially 

more compounds that overlapped with the residue either alone or with one other residue compared 

to the other two collections. Overlap with Arg-89, Ser-94, and Phe-95 were less prevalent in 

ChemDiv and SCUBIDOO compared to DOS. Moreover, no compounds in SCUBIDOO matched 

the pharmacophore of Ser-94. This observation may be attributed to the lower molecular weight 

and more limited structural diversity in this library, which limits the ability of compounds to 

overlap with residues that are outside the immediate binding pocket. 

As with uPAR•uPA, we explored hot-spot overlap of compounds that were predicted by 

docking to have the highest binding affinities to the protein receptor, in this case TEAD4. A 

collection of compounds was created by selecting 1000 compounds with the highest binding scores 

and molecular weights less than 500 Da. In ChemDiv, there were 231 and 22 compounds that 

overlapped with one or two hot spots, respectively (Table 4.5). In DOS, there were 390, 126, and 

6 compounds that match one, two, and three hot spots, respectively (Table 4.6). From SCUBIDOO, 

we found a total of 354 and 39 compounds that matched the sidechain of one or two hot spots, 

respectively (Table 4.7). The compounds in ChemDiv and SCUBIDOO mainly mapped onto the 

hydrophobic residues of Met-86, Leu-91, and Phe-95, while DOS compounds generally had overlap 

with Ser-94 and Met-86. Interestingly, no compound overlapped with Phe-96 from any of the three 

collections. Moreover, in DOS, there were six compounds that overlapped with three hot spots 

simultaneously. All six compounds overlapped with Met-86 and have 6.8 ± 1.9 rotatable bonds and 

3.8 ± 1.7 chiral centers. One compound overlapped with the nearby Arg-89, which is located at the 

periphery of the binding pocket. This compound is structurally complex (RB = 7, chiral centers = 

3), but its molecular weight is only 345.3 Da, which suggests that compound flexibility may play 

a larger role than molecular weight in targeting the flat TEAD•Yap pocket. 

4.2.5 CaVα•CaVβ. The structural basis of the CaVα•CaVβ interaction was revealed in a co-

crystal structure between CaVβ3 and the α-interacting domain (AID) of CaVα (CaVαAID) (Fig. 4.6A). 

CaVαAID is a 25-residue α-helix that binds to a well-defined groove on the GK domain of CaVβ3 

(Fig. 4.6B). Previous biophysical studies combined with site-directed mutagenesis on CaVαAID 

revealed the presence of three hot-spot residues on the α-helix at Tyr-437, Trp-440, and Ile-441 

[207]. The side chains of these residues are ensconced into three sub-sites. The aliphatic side chain 

of Ile-441 was identified as a hydrophobic feature in the pharmacophore model, while the benzene 

ring of Tyr-437 was modeled using an aromatic ring feature. We assigned separate aromatic ring 

features to the benzene and pyrrole rings on the indole of Trp-440 (Fig. 4.6C).  
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Figure 4.6. The protein complex of CaVβ and CaVα peptide. (A) CaVβ3 is shown as a surface colored 

by hydrophobicity, with more hydrophobic residues in brown and more hydrophilic residues in 

green. The CaVα peptide is shown as a cyan ribbon. (B) The CaVα•CaVβ3 complex and the three hot 

spots (sidechains in stick representation) on CaVα (cyan ribbon). (C) Pharmacophore features for 

CaVα are shown as small colored spheres: hydrophobic (Ile-441 in green) and aromatic rings (Tyr-

437, Trp-440 in tan).  
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Table 4.8. Matching count for compounds in ChemDiv against hot spots on CaVα. 

ChemDiv 
Whole Collection Top 1000 (<500 Da) 

1 2 3 1 2 3 

Tyr-437 26800 33684 2099 97 509 50 

Trp-440 28235 35170 2099 226 529 50 

Ile-441 4136 9026 2099 10 68 50 

Total 59171 38940 2099 333 553 50 

  



110 

Table 4.9. Matching count for compounds in DOS against hot spots on CaVα. 

DOS 
Whole Collection Top 1000 (<500 Da) 

1 2 3 1 2 3 

Tyr-437 20509 7980 476 270 104 2 

Trp-440 25864 9767 476 327 90 2 

Ile-441 11846 8953 476 62 108 2 

Total 58219 13350 476 659 151 2 
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Table 4.10. Matching count for compounds in SCUBIDOO against hot spots on CaVα. 

SCUBIDOO 
Whole Collection Top 1000 (<500 Da) 

1 2 3 1 2 3 

Tyr-437 19108 12144 40 99 478 2 

Trp-440 22112 15168 40 301 544 2 

Ile-441 3877 4202 40 2 72 2 

Total 45097 15757 40 402 547 2 
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There were 59171, 38940, and 2099 compounds in ChemDiv that overlapped with one, 

two, and three hot spots, respectively (Table 4.8). From DOS and SCUBIDOO, substantially fewer 

compounds were found to overlap with multiple hot spots. There were 58219, 13350, and 476 

compounds from DOS that overlapped with one, two, and three separate hot spots, respectively 

(Table 4.9), and correspondingly 45097, 15757, and 40 from SCUBIDOO (Table 4.10). While the 

number of compounds that overlap with a single hot spot are similar, the number of compounds 

that overlap with two or three hot spots is substantially different for ChemDiv compared to DOS 

and SCUBIDOO. The largest difference was seen in compounds that overlap with either Tyr-437 

or Trp-440 as well as one other hot spot. In ChemDiv, approximately 35000 compounds overlapped 

with one of the two aromatic hot spots as well as another residue. If a compound in ChemDiv was 

overlapping with multiple residues, it was often at both the Tyr-437 and Trp-440 sites, while fewer 

compounds overlapped with one of these two aromatic residues and the hydrophobic Ile-441. This 

trend was also observed in SCUBIDOO, where there was much higher co-occurrence of a 

combination of Tyr-437 and Trp-440 than between one of the two aromatic residues and Ile-441. 

Among DOS compounds, in contrast, the co-occurrence rate between the three residues was more 

uniform, with 7980, 9767, and 8953 compounds that overlapped with Tyr-437, Trp-440, and Ile-

441 and one other residue, respectively. 

We again considered compounds with highest predicted binding affinities and low 

molecular weight. The top highest-scoring 1000 compounds with molecular weights less than 500 

Da were selected based on docking score. There were 936, 812, and 951 compounds for ChemDiv, 

DOS, and SCUBIDOO matching at least one hot spot. It is interesting that despite the higher 

complexity of DOS compounds (chiral centers = 3.5 ± 1.0) fewer matched hot spots than ChemDiv 

and SCUBIDOO compounds, which are less rich in chiral centers (ChemDiv chiral centers = 0.4 ± 

0.7; SCUBIDOO chiral centers = 1.3 ± 1.0). Interestingly, there were twice as many compounds in 

ChemDiv and SCUBIDOO that overlapped with at least two hot spots than DOS. Remarkably, 

there were 50 compounds in ChemDiv that overlapped with three hot spots compared to only two 

each for DOS and SCUBIDOO. 

4.2.6 Virtual Screening of Commercial Library Against Two Protein-Protein 

Interactions. The discovery that conformationally-restricted fragment-like libraries such as 

SCUBIDOO can be effective in mimicking protein-ligand hot spots for interfaces with well-defined 

pockets prompted us to test this observation with virtual screening and experimental validation. 

The ChemDiv commercial library was filtered for conformationally-restricted compounds and 

tested against the uPAR•uPA interaction. The ChemDiv library was filtered for compounds 

between 350 and 500 Da having six or fewer rotatable bonds as well as high predicted solubility 
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(AlogP ≤ 4). The resulting collection of 50,893 compounds was docked to uPAR at the uPAR•uPA 

interface and to TEAD at the TEAD•Yap interface. Compounds were ranked based on their overlap 

with hot-spots located at the protein-protein interface. The top 85 compounds were selected and 

tested for inhibition of uPAR•uPA and TEAD•Yap using a previously developed fluorescence 

polarization assay. The compounds were first tested in duplicate at a single concentration of 50 µM 

(Fig. 4.7). For the uPAR•uPA interface, five compounds, namely 1 (IPR-3247), 2 (IPR-3260), 3 

(IPR-3271), 4 (IPR-3288) and 5 (IPR-3305) inhibited more than 25%. These compounds were also 

tested in a concentration-dependent manner (Fig. 4.8). All five compounds inhibited the FP assay, 

with Kis in the double-digit micromolar range. All five were predicted to overlap with two aromatic 

hot spots on uPA, Tyr-24 and Phe-25 (Fig. 4.9). Compound 1, however, appears to have poor 

solubility at concentrations that are higher than 25 µM. Compounds 3 and 5 also exhibited poor 

solubility at higher concentrations. The two compounds with reasonably good solubility were 1 and 

4 with Kis of 25 and 62 µM, respectively. 

Conformationally-restricted compounds from ChemDiv were docked against TEAD at the 

TEAD4•Yap interface. The top 81 compounds from virtual screening against the Ω-loop pocket on 

TEAD4 were experimentally validated using a fluorescence polarization assay. Compounds were 

tested in duplicate at an initial concentration of 50 µM. No compounds were found to inhibit more 

than 15%. TED-97, a previously discovered small-molecule inhibitor of TEAD4•Yap1 was used 

as positive control. A concentration-dependent study was performed for compounds that inhibited 

by 15%, but none exhibited concentration-dependent inhibition. The lack of hits confirms the 

highly challenging nature of this interaction and the fact that to successfully inhibit this target, 

larger more complex compounds such as DOS may be required. 

The ranking of the filtered and unfiltered compound sets from uPAR was compared to 

determine whether pre-filtering by rotatable bonds, molecular weight, and AlogP led to further 

enrichment of the original library for hit compounds. We identified the ranking of the five active 

compounds using the distribution of dockingscores of the compounds in the unfiltered ChemDiv 

library (Fig. 4.10). For the unfiltered library, we found that four of the five hit compounds have 

docking scores that puts them between the 25th and 75th percentiles. In other words, had we strictly 

ranked the unfiltered library, these hit compounds would not have been selected as they would not 

have been among the top candidates chosen for experimental validation. Only compound 3 (IPR-

3271) would have been among the top 100 compounds in the unfiltered library (i.e., without 

physicochemical filters).  
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Figure 4.7. Virtual screening of commercial library against uPAR. A set of 85 compounds from 

virtual screening were tested at a single concentration of 50 µM in a fluorescence polarization (FP) 

assay for inhibition of uPAR•AE147-FAM interaction. Structures are provided for compounds 1-5 

(green bars) that were advanced to concentration-response experiments.  
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Figure 4.8. Concentration-dependent of compounds identified from initial screening against uPAR. 

Concentration-dependent FP assay measuring the inhibition of uPAR•AE147-FAM peptide 

interaction by compounds. At high concentrations, some compounds were insoluble and high-

concentration data points were omitted from curve-fitting.  
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Figure 4.9. Binding modes of hit compounds. Virtual screening binding modes of 1-5 (yellow 

sticks) in the uPAR•uPA binding pocket. uPAR is shown as a white surface and ribbons on the left 

and right, respectively. uPA is shown as a partially transparent cyan ribbon. The side chains of four 

interface residues on uPA are shown as a stick representation and colored cyan.  
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Figure 4.10. Distribution of docking scores (GlideScores) for all compounds in ChemDiv 

compared to the five active compounds identified. All compounds in ChemDiv are grouped by the 

number of uPA hot spots overlapped and rank-ordered by GlideScore. Five active compounds (red 

dots) are depicted: 1 (IPR-3247), 2 (IPR-3260), 3 (IPR-3271), 4 (IPR-3288), and 5 (IPR-3305).  
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4.3 DISCUSSION 

Three chemical libraries were compared for their ability to mimic the positions of amino-

acid sidechains of critical residues at protein-protein interfaces: (i) a commercial library from 

ChemDiv; (ii) a collection of diversity-oriented synthesis (DOS) libraries from the Broad Institute; 

and (iii) SCUBIDOO, a non-commercial library built by combining building blocks of common 

reactions in medicinal chemistry. The physicochemical properties of each of these three collections 

was explored. DOS compounds were larger, had more chiral centers, and were more flexible as 

evidenced by a larger number of rotatable bonds compared with ChemDiv and SCUBIDOO. 

Similarly, the molecular weight distributions of the compound collections correlate well with the 

number of rotatable bonds and chiral centers in DOS and ChemDiv, but not SCUBIDOO. Principal 

component analysis revealed a primary separation of all three collections in the first component, 

while the second principal component did not distinguish DOS from SCUBIDOO libraries. Finally, 

principal moment of inertia analysis suggests that compounds in the SCUBIDOO library are 

enriched for linear compounds, while ChemDiv and DOS contain compounds with more disc-like 

and some globular characteristics. 

We explored the ability of these three compound collections to mimic the physicochemical 

properties of amino acid side chains of hot spots at the interface of three PPIs. Three tight PPIs 

were selected: (i) a β-turn motif at the interface between the urokinase receptor and its serine 

proteinase ligand urokinase (uPAR•uPA), (ii) a twisted-coil motif at the Ω-loop between the 

transcription factor TEAD and its co-activator Yap (TEAD•Yap), and (iii) an α-helix motif between 

the α-and β-subunits of the calcium channel (CaVα•CaVβ). In each system, hot-spot residues were 

identified on the protein ligand at each PPI interface. Each library showed different overlap with 

individual hot spots in each PPI. For example, for uPAR•uPA, ChemDiv contains more compounds 

that overlap with the two aromatic residues Tyr-24 and Phe-25, while DOS and SCUBIDOO 

possess many more compounds that overlap with the positively charged Lys-23 residue. Similarly, 

DOS was twice as likely to overlap with Ile-28 than ChemDiv and 20 times as likely than 

SCUBIDOO. DOS was also the only collection to have compounds that overlapped with the more 

distant Trp-30 hot spot. Similar trends were observed in TEAD•Yap, where DOS compounds were 

better able to mimic Arg-89, Ser-94, and Phe-96 compared to ChemDiv and SCUBIDOO, but 

ChemDiv compounds were better able to mimic Phe-95 compared to the other two collections. In 

CaVα•CaVβ, we found similar distributions in the number of compounds that overlapped with a 

single hot spot, but more than two and four times the number of compounds that overlapped with 

two and three distinct hot spots in ChemDiv compared to DOS. The gap is further exacerbated 
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when comparing ChemDiv and SCUBIDOO, where there were two and 50 times as many 

compounds that overlapped with two and three hot spots, respectively. 

We refined our analysis, except that the top 1000 best scoring compounds by docking 

simulation were selected, subject to a molecular weight filter. This new set of compounds was 

enriched for small molecules predicted to bind to the target with high affinity. Interestingly, there 

were many more small molecules from ChemDiv and SCUBIDOO that overlapped with at least 

two hot spots for uPAR•uPA and CaVα•CaVβ. In fact, for the CaVα•CaVβ interaction, there were 

more than 50 compounds in ChemDiv that overlapped with three hot spots, compared with only 

two for both DOS and SCUBIDOO. For TEAD4•Yap1, the DOS collection showed substantially 

greater overlap. These results can be explained by the fact that when compounds are ranked by 

their binding affinity, the resulting set is likely enriched for small molecules that make the best 

shape complementarity with existing pockets and therefore result in the largest solvent-accessible 

surface area change. In the case of uPAR and CaVβ, both receptors possess well-defined binding 

pockets. Considering that ChemDiv and SCUBIDOO possess a large number of small fragment-

like compounds, it is more likely that these compounds will fit best into pockets and sub-pockets 

of these receptors. DOS compounds, on the other hand, are larger and more flexible, and may not 

score as well as SCUBIDOO and ChemDiv library small molecules, which may explain why there 

are fewer of these compounds that overlap with two or more hot spots in the top 1000 set. Since 

TEAD4 has a shallow pocket, DOS compounds will probably score higher, since for a flat surface, 

a larger compound is much more likely to lead to greater surface burial and therefore a better score. 

These results were tested by carrying out a virtual screen of more than 50,000 compounds from the 

ChemDiv library against uPAR and TEAD. We selected conformationally-restricted compounds 

between 350 and 500 Da in MW. Interestingly, several hits emerged in uPAR, and the most 

promising among them are fragment-like hits that have 2-3 rotatable bonds. No hits were identified 

for TEAD4. 

Our work suggests that small fragment-like compounds that are conformationally-

restricted can be good candidates for PPI with well-defined pockets, while larger more complex 

compounds may be a better option for PPI with large but flat and featureless surfaces. The affinity 

of large hit compounds is generally driven by entropy, so these compounds may not show optimal 

fit to smaller, well-defined binding pockets. Hence, improving the enthalpy of binding becomes a 

significant challenge that is only accomplished by substantial modifications to the compound 

structure. Small fragment-like compounds are generally driven by enthalpy. These compounds tend 

to show optimal fit into pockets. It is easier to modify these compounds by extending them into 

neighboring pockets while at the same time improving entropy of binding. 
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4.4 MATERIALS AND METHODS 

4.4.1 Ligand Preparation. Three libraries were chosen to compare how compounds 

mimicked the hot-spot residues on the different PPI interfaces. The first is the ChemDiv library, 

which consists of over 1.7 million compounds that were retrieved from the ZINC15 website [208]. 

The second collection is a set of diversity-oriented synthesis (DOS) libraries prepared at the Broad 

Institute. This collection consists of 100,903 compounds from 32 libraries that were synthesized 

using DOS principles applied to 11 different reaction pathways [194, 200]. The third collection is 

from SCUBIDOO, which was developed from 58 organic reactions known in the pharmaceutical 

field totaling over 21 million compounds [199]. The SCUBIDOO website provides three different 

representative samples created using a stratified sampling algorithm. We selected the M library 

from SCUBIDOO consisting of 99,977 compounds. Compounds predicted to be pan-assay 

interference compounds (PAINS) were identified and filtered using the PAINS1, PAINS2, and 

PAINS3 filters in Canvas [209, 210], resulting in 1,428,800 compounds for ChemDiv, 99,663 

compounds for DOS, and 93,074 compounds for SCUBIDOO. ChemDiv compounds retrieved 

from ZINC were previously prepared through their internal workflow [211]. Compounds from DOS 

and SCUBIDOO were prepared using LigPrep [173]. Epik was used for protonation-state 

assignment and tautomer generation [125]. The OPLS_2005 force field was used for minimization 

and the ionization sates were generated at pH 7 [212]. Compounds were desalted to exclude 

additional molecules such as counter ions in salt and water molecules and tautomers were 

generated. For DOS and SCUBIDOO, stereoisomers were generated by retaining specified 

chiralities and varying those where the stereochemistry of the chiral center were undefined. Up to 

32 different stereoisomers per ligand were generated in this manner, resulting in 127,483 

compounds for DOS and 125,917 compounds for SCUBIDOO. The size of each compound library 

was normalized by random sampling to 125,917 compounds. 

4.4.2 Principal Component Analysis. Principal component analysis (PCA) aims to 

simplify high-dimensional data by projecting the data onto a new set of dimensions that most 

effectively captures the variance in the data. We used it to visualize similarities and differences 

between the physicochemical properties of different collections of compounds. Eight 

physicochemical features were used for PCA: molecular weight (MW), aLogP, number of 

hydrogen-bond acceptors (HBA), number of hydrogen-bond donors (HBD), number of rotatable 

bonds (RB), polar surface area (PSA), number of chiral centers, and number of rings. The mean of 

each feature is shifted to zero and each feature is scaled to have unit variance prior to the analysis. 

PCA is calculated using singular value decomposition in R (version 3.2.3). 
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4.4.3 Principal Moment of Inertia. Principal moment of inertia (PMI) descriptors provide 

an intuitive notion of the three-dimensional shape diversity of the various compound data sets. 

Low-energy conformations are identified for each molecule in the data set, and three PMI values 

(I1, I2 and I3; where I3 ≥ I2 ≥ I1) are calculated for each conformer. Normalized ratios of PMI (I1 / I3 

and I2 / I3) are then calculated and plotted on a triangular graph, with the vertices (0,1), (0.5,0.5), 

and (1,1) representing a perfect linear (diacetylene), disc-like (benzene), and spherical 

(adamantane) compound, respectively. The moments of inertia in the three spatial dimensions were 

calculated by the calculate_pmi.py script in Schrödinger. 

4.4.4 Protein Preparation. The structures of the uPAR•uPA (PDB ID: 3BT1), TEAD•Yap 

(PDB ID: 3KYS), and CaVα•CaVβ (PDB ID: 1VYT) interactions were retrieved and prepared using 

the Protein Preparation Wizard using the Schrödinger Suite [173, 213]. Bond orders were assigned, 

hydrogen atoms were added, and disulfide bonds were created. Water residues and additional ions 

and heteroatom groups were discarded. Missing sidechains and loops were introduced using the 

Prime module [123]. The resulting protein structures were protonated at pH 7.0 using PROPKA 

[124]. 

 4.4.5 Virtual Screening. The compound library was docked to the prepared protein 

structures using AutoDock Vina (Version 1.1.2) [172]. The binding pocket was centered at each of 

the interfaces with a box with dimensions of 21 Å × 21 Å × 21 Å. All other parameters were set to 

default values. The docked conformations were converted back to MOL2 format using in-house 

Python scripts for additional analysis. Glide was used to score the Vina-docked binding modes in 

place using the GlideHTVS scoring function [214, 215]. 

4.4.6 Ligand Pharmacophore. A previously described [178] pharmacophore-based 

approach was adapted and used to identify how docking compounds overlapped with and mimicked 

known hot spots of the protein ligand in each of the protein-protein complexes. A set of 

pharmacophore hypotheses was constructed corresponding to the physicochemical properties of 

the protein ligand sidechain using the Phase package in Schrödinger [115, 116]. Phase has six built-

in types of pharmacophore features: (i) hydrogen-bond acceptor (A); (ii) hydrogen-bond donor (D); 

(iii) hydrophobe (H); (iv) negative ionizable (N); (v) positive ionizable (P); and (vi) aromatic ring 

(R). The docked ligand conformation was used for pharmacophore calculations with an intersite 

distance matching tolerance of 2.0 Å. Hydrogen-bond acceptor sites were positioned on atoms that 

carry one or more donatable lone pairs, while hydrogen-bond donor sites were centered on each 

electrophilic site. Negative and positive ionizable sites were modeled as single points located on a 

formally charged atom, or at the centroid of a group of atoms over which the ionic charge is shared. 

Rings, isopropyl groups, t-butyl groups, various halogenated moieties, and aliphatic chains are 
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treated as hydrophobic sites [116]. Aromatic rings were distinguished from other hydrophobic 

groups and designated as a separate type of pharmacophore feature (i.e., ‘‘R’’ rather than ‘‘H’’). In 

these cases, a single site was placed at the centroid of each aromatic ring. In aromatic ring 

pharmacophores, a normal vector was projected orthogonal to the plane of each ring. Similarly, in 

positive and negative ionizable pharmacophores (i.e., “P” and “N”, respectively), a vector parallel 

to the plane of the respective atom was formed. 

Compound conformers from virtual screening were used to identify matches without 

refinement using Phase’s default fitness function. In this scoring function, three factors are used to 

describe the degree to which a compound matches a pharmacophore feature: (i) the site score, which 

describes how well the compound superimposes the pharmacophore feature, (ii) the vector score, 

which describes the cosine angle between the normal vector of an aromatic ring on the compound 

with an aromatic feature, and (iii) the volume score, which describes the proportion of the total 

volume of the pharmacophore feature overlapped by the compound. The vector score ranges from 

-1.0 (antiparallel) to 1.0 (parallel) in positive and negative ionizable pharmacophores, and 0.0 

(perpendicular) to 1.0 (parallel) in aromatic pharmacophores. Vector scores less than 0.8, 

corresponding to angles more than ±37°, were rejected. Compounds with either root-mean-square 

deviation (RMSD) overlap greater than 1.2 Å or that did not overlap with the pharmacophore 

feature were discarded. All other parameters were set at default values. The remaining compounds 

that matched a given pharmacophore were retained without sorting compounds by Phase’s internal 

scoring function. 

4.4.7 Fluorescence Polarization (FP) Assay. Polarized fluorescence intensities were 

measured using EnVision Multilabel plate readers (PerkinElmer, Waltham, MA) with excitation 

and emission wavelengths of 485 and 535 nm, respectively [165]. Samples were prepared in 

Thermo Scientific Nunc 384-well black microplate in duplicates. First, the compounds were diluted 

in DMSO and further diluted in 1× PBS buffer with 0.01% Triton X-100 for a final concentration 

of 200 – 0.2 μM. Triton X-100 was added to the buffer to avoid compound aggregation. 5 μL of 

the compound solution and 40 μL of PBS with 0.01% Triton X-100 containing uPAR was added 

to the wells and incubated for at least 15 min to allow the compound to bind to the protein. Finally, 

5 μL of fluorescent AE147-FAM peptide solution was added for a total volume of 50 μL in each 

well resulting in final uPAR and peptide concentrations of 250 nM and 100 nM respectively. For 

the TEAD4•Yap1 FP assay, final concentrations of 64 nM GST-TEAD4 (217-434) and 16 nM 

FAM-labeled Yap1 peptide (residues 60-99) were used. The final DMSO concentration was 2% 

v/v, which had no effect on the binding of the peptide. Controls included wells containing only the 

peptide, and wells containing both protein and peptide, each in duplicate to ensure the 
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reproducibility of the assay. When compounds were insoluble and visible precipitation was 

observed, the data points at high concentrations were not included in the calculation of IC50 values. 

Inhibition constants were calculated from the IC50 values using the Ki calculator available at 

http://sw16.im.med.umich.edu/software/calc_ki/. 

  

http://sw16.im.med.umich.edu/software/calc_ki/


124 

Chapter 5 

SMALL-MOLECULE BINDING SITES TO EXPLORE NEW TARGETS IN THE 

CANCER PROTEOME 

 

5.1 INTRODUCTION 

Large-scale sequencing studies of human tumors such as The Cancer Genome Atlas project 

(TCGA) provide an opportunity to uncover the genetic basis of the processes that drive cancer. 

Analysis of this genomic data has revealed that the complex phenotypes that define cancer are 

driven by tens of somatic mutations that occur on proteins across the cellular network [216]. Recent 

whole genome sequencing studies have profiled the molecular signatures of individual tumors to 

identify underlying driver mutations of each disease [4-9, 217]. Tumors were found to harbor tens 

of mutations. Whole-genome gene expression profiling studies have been instrumental not only in 

classifying tumors and uncovering genetic alterations in cancer cells (mutations, copy number, and 

rearrangements), but as a rich source of potential targets in cancer [2, 3]. A growing list of three-

dimensional protein structures make it now possible to rationally develop small-molecule probes 

to explore these targets. Small-molecule probes can also provide leads for drug-discovery 

validation. 

TCGA is an ongoing effort that aims to catalog clinical and molecular profiles of tumor 

samples from over 30 cancer types to discover cancer-causing alterations in large cohorts through 

integrated multi-platform analyses. The project aims to integrate the clinical and molecular profiles 

of at least 500 tumors for each disease and to determine its underlying molecular mechanism. 

Multiple platforms capture the clinical, pathological, genomic, epigenomic, transcriptomic, and 

proteomic profiles of cancers in TCGA project. Among these platforms, RNA-seq is a widely-used 

technology for the characterization of mRNA expression. RNA-seq uses high-throughput short 

reads that offer several distinct advantages over its array-based predecessors. RNA-seq is not 

limited by a set of predetermined probes seen in microarrays, and is superior in its ability to identify 

low abundance transcripts, biological isoforms, and genetic variants [218]. RNA-seq was 

performed for both tumor and normal tissue for each disease at TCGA. Comparison of tumor and 

normal mRNA levels can be used to identify overexpressed genes and their corresponding protein 

product that may contribute to tumor formation, progression, and metastasis. Patient information 

that accompanies the genomic data affords further analyses to assess the correlation of mRNA 

levels with patient outcome. Survival curves constructed by plotting patient outcome with time can 

be used to generate metrics such as hazard ratios and other coefficients to determine the correlation 

between overexpression of individual genes and clinical outcome. This analysis has been widely 
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used in clinical trials, where Kaplan-Meier survival curves are used to determine the time-to-event 

differences between placebo and drug groups [219]. 

Extensive data from TCGA combined with the exponentially growing structural data at the 

Protein Data Bank (PDB) offers a unique opportunity to identify protein structures of overexpressed 

or clinically-relevant genes in cancer. These structures can be used to scan for binding sites to 

develop chemical probes and lead compounds for drug discovery. In addition to detecting binding 

sites, algorithms have been developed to score these binding sites based on whether they can 

accommodate a small molecule. Both SiteMap and fpocket provide descriptors to assess binding 

sites that are suitable for small-molecule ligands based on the amino acid composition of the 

binding site and its collective physicochemical properties. SiteMap uses the hydrophobicity and 

accessibility of a detected binding site to assess how likely a small-molecule inhibitor will bind. It 

provides two scores, SiteScore and DrugScore. The latter score goes beyond just assessing a 

binding site for ligand binding. It measures whether a binding site is druggable, or whether it 

possesses similar proteins to other binding sites that have led to FDA-approved drugs. fpocket 

provides a measure called the Druggability Score, which is a general logistical model based on the 

local hydrophobic density of the binding site, as well as a hydrophobicity and normalized polarity 

score. The discovery of binding sites within structures that are encoded by overexpressed genes 

with clinical relevance is highly significant as these binding sites can be used to develop novel 

cancer therapeutics that are likely to exhibit greater efficacy in humans. 

In addition to druggability, the binding sites must be functionally important to serve as 

targets for small molecules. For example, binding sites located at enzyme active sites or at the 

interface between a protein-protein complex are expected to disrupt protein function. Protein 

kinases are one example of an enzyme class with druggable binding sites that occur at the enzyme 

active site [220]. The ATP binding site of kinases is highly druggable with a SiteMap SiteScore 

and DrugScore above 1.1 [221]. There are fewer small-molecule inhibitors of protein-protein 

interactions, which is partly due to the lack of druggable binding sites at protein-protein interfaces. 

The only examples of PPI inhibitors that have shown in vivo efficacy, such as MDM2/p53 or BcL-

xL, possess druggable binding sites (DrugScore of 0.92 and 0.82, respectively) [222]. Therefore, 

the identification of binding sites that are considered druggable at protein-protein interaction 

interfaces can provide new avenues to develop chemical probes and cancer therapeutics. Finally, it 

is worth mentioning that binding sites located outside an enzyme active site or protein-protein 

interface can also be functionally relevant. These binding sites may modulate protein function in 

an allosteric manner through long-range interactions that involve dynamic changes of the target 
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protein [167, 223-226]. Allosteric inhibitors have been successfully used to inhibit kinase activity 

and in some cases, such as AKT, have shown more promise than competitive inhibitors. 

Here, we collect gene expression profiles for 10 cancer types from TCGA and compare the 

expression profiles between cancer and normal samples to identify genes that are overexpressed in 

each cancer type. We search the Protein Data Bank for crystal structures of the protein products of 

these genes. We scan the surface of these proteins and identify binding sites. The functional 

relevance of these binding sites is explored by classifying them into known enzyme active sites, 

protein-protein interaction sites, or other sites that may lie outside of functional sites. To further 

explore the biological outcome of small molecules that bind to these binding sites, proteins 

harboring binding sites are further characterized in the context of a global PPI network and cancer 

signaling pathways to gain insight into the biological effect of binding at these binding sites. Patient 

data is used to investigate the correlation of overexpressed genes with clinical outcome. Our 

analysis uncovered new unexplored and potentially druggable and clinically-relevant protein 

targets. The study also provides new avenues for the rational design of small-molecule probes for 

well-established oncogenes. This is the first study that maps binding pockets on three-dimensional 

structures of the PDB within the context of cancer genomic data. 

 

5.2 RESULTS 

5.2.1 Three-Dimensional Structures of Proteins Encoded by Differentially Expressed 

Genes. We collected mRNA gene expression profiles of 10 cancer types from TCGA: breast 

invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), 

head-and-neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), thyroid adenocarcinoma 

(THCA), triple-negative breast cancer (TNBC), and uterine corpus endometrioid carcinoma 

(UCEC). For each cancer type, we collected the gene expression profiles of both normal and tumor 

samples from RNA sequencing platforms using TCGA’s Level 3 data. A search from among the 

20192 reference proteins using UniProt [227] identifiers led to 7044 proteins that are encoded by 

TCGA overexpressed genes (Table 5.1). 

For each cancer type, we identified the number of overexpressed genes with protein 

products having at least one high-resolution crystal structure by mining the Protein Data Bank. A 

total of 5069 unique protein chains on 2758 crystal structures from the PDB mapped to at least one 

of the 7044 overexpressed genes. In cases where more than one crystal structure was identified for 

a protein, the computer program CD-HIT was used to cluster the protein sequences of the crystal 
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structures to find a set of non-redundant representative structures for the given protein. This resulted 

in 1624 unique crystal structures of proteins encoding overexpressed genes. 

The total number of proteins that encoded overexpressed genes ranged from 839 for TNBC 

to 2096 for LUSC (Table 5.2). Overall, the percentage of differentially expressed genes with at 

least one crystal structure spanning at least a portion of the gene sequence ranges from 20% in 

LUSC to 34% in GBM. 

Additionally, we introduce more stringent cutoffs to distinguish between proteins that can 

act as probes versus those that feature druggable binding sites by increasing cutoffs of both the log2 

fold change and the druggability property of a binding site. Using these increased cutoffs, we 

identify 5218 overexpressed proteins in TCGA, with only 1218 having a high-quality crystal 

structure at the PDB (Table 5.1). 

5.2.2 Identification of Binding Sites on Protein Structures at the PDB. Using the three-

dimensional structure of overexpressed genes for each disease, we scanned their surfaces for 

binding sites using the SiteMap computer program. SiteMap identifies binding sites by overlaying 

a three-dimensional grid around the entire protein to determine the van der Waals energies at each 

point of the grid (site point). By linking together site points on the protein surface that are protected 

from the solvent, SiteMap identifies potential binding sites on a protein surface. Each binding site 

identified by SiteMap is evaluated based on its ability to bind a ligand (SiteScore) and its 

druggability (DrugScore). Both SiteScore and DrugScore use the weighted sums of the same 

parameters, namely the (i) number of site points in the binding site; (ii) enclosure score that is a 

measure of how open the binding site is to solvents; and (iii) hydrophilic character of the binding 

site (hydrophilic score). Unlike DrugScore, SiteScore limits the impact of hydrophilicity in charged 

and highly polar sites. A binding site with SiteScore and DrugScore of 0.8 is considered to be able 

to fit a small molecule ligand. SiteScore and DrugScore values closer to 0.8 are considered 

‘difficult’ to drug, while binding sites with SiteScore and DrugScore closer to 1.1 are classified as 

highly ‘druggable’ [221]. In this work, we consider a binding site with SiteScore and DrugScore 

values of 0.8 or greater as able to be probed and a binding site with DrugScore greater than 1.0 as 

druggable.  
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Table 5.1. Structural coverage of TCGA and the human proteome. 

 

TCGA Druggable 

Binding Sites 

(log2FC ≥ 2.0, DS ≥ 1.0) 

TCGA Binding 

Sites 

(log2FC ≥ 1.5, 

DS ≥ 0.8) 

All 

Proteins 

Total Number of Proteins 5,218 7,044 20,192 

Proteins with Structure 1,218 1,624 4,124 

Proteins with Druggable 

Binding Sites 405 1,044 2,607 

Number of Druggable Binding 

Sites 502 2,214 5,498 

       ENZ 126 434   

       PPI 55 231   

       OTH 331 1,576   
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Table 5.2. Distribution of protein structures and druggable binding sites among cancer types 

(log2FC ≥ 2.0, DS ≥ 1.0). 

Cancer 

Type Cancer Name 

Total 

Number 

of 

Proteins 

Proteins 

With 

Structure 

Proteins 

with 

Druggable 

Binding 

Sites 

Number 

of 

Druggable 

Binding 

Sites 

Binding Site 

Type 

ENZ PPI OTH 

BRCA Breast invasive 

carcinoma 

1314 280 79 93 29 14 54 

COAD Colon 

adenocarcinoma 

971 187 47 64 15 8 45 

GBM Glioblastoma 

multiforme 

1168 429 161 145 34 13 99 

HNSC Head and neck 

squamous cell 

carcinoma 

697 128 28 34 10 4 21 

KIRC Kidney renal clear 

cell carcinoma 

1437 376 132 158 32 19 109 

LUAD Lung 

adenocarcinoma 

1780 363 114 169 38 15 117 

LUSC Lung squamous cell 

carcinoma 

2096 402 111 158 49 16 96 

THCA Thyroid 

adenocarcinoma 

888 207 65 103 27 7 72 

TNBC Triple-negative 

breast carcinoma 

839 211 51 64 21 10 38 

UCEC Uterine corpous 

endometrioid 

carcinoma 

1449 332 95 136 37 17 86 
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Figure 5.1. Examples of binding site annotations. Proteins are represented in cartoon format. The 

monomer structure with binding sites present is in white. SiteMap sites are shown as spheres, bound 

ligands are shown as sticks. (A) Enzyme (ENZ) site occupied by a bound inhibitor on the protein 

kinase domain of AURKB (PDB: 4AF3A). (B) PPI site at the interface of CCNE1 (PDB: 1W98B) 

with CDK2 (green). (C) OTH (Non-ENZ, non-PPI) site on ADA (PDB: 3IARA).  
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Figure 5.2. Classification of enzyme types by EC codes. Binding sites that were classified as 

enzyme (ENZ) through manual annotation via UniProt and Catalytic Site Atlas were classified 

using the protein’s EC codes. Binding sites were filtered using SiteScore and DrugScore greater 

than 0.8. Druggable binding sites feature a more stringent DrugScore cutoff of 1.0. While kinases 

are normally classified as part of the transferase family, here we have separated the two.  
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Among 1624 overexpressed proteins with at least one high-resolution human crystal 

structure, 1044 (~64%) had at least one binding site (Table 5.1). Similarly, among the 1218 highly 

overexpressed proteins with crystal structures, 405 (~33%) had at least one druggable binding site. 

For individual diseases, roughly 30% of proteins with crystal structures corresponding to highly 

overexpressed genes possessed at least one druggable binding site (Table 5.2). For example, 51 

proteins with a crystal structure from among 211 in TNBC had a druggable binding site, while 114 

proteins with a crystal structure in LUAD were found to have a binding site among 363. Generally, 

we found more binding sites than proteins with crystal structures, suggesting that although many 

of the proteins harbored more than one binding site, a large portion might only act as probes rather 

than druggable sites. An average of about 0.38 druggable binding sites were identified per protein 

with crystal structures. For example, a total of 145 druggable binding sites were identified on the 

429 proteins with crystal structures corresponding to differentially expressed GBM genes. Among 

the most frequently overexpressed proteins with druggable binding sites are the members of the 

matrix metalloproteinases (MMPs) and protein kinases related to cell signaling. 

5.2.3 Classification of Binding Sites. To characterize the potential functional impact of 

each of these binding sites, we classified each binding site by its functional role based on its 

structural features and location on the protein surface, particularly whether it corresponds to a 

catalytic site or to a binding site located at a protein-protein interaction interface. Using the 

proximity of known structural features and the functional annotations of key residues, we 

characterize each binding site on the protein structure of overexpressed genes from TCGA into 

three groups: enzyme (ENZ), protein-protein interaction (PPI), and other (OTH). Fig. 5.1 shows 

examples of each of the three binding sites. For example, the ATP binding site of a protein kinase 

is classified as enzyme (ENZ), while a binding site at the interaction interface between two 

members of the protein families CDKs and cyclins are classified as PPI. All other binding sites are 

referred to as “other” (OTH). Within the binding sites that we identified, there is a wide distribution 

of binding site functions for each cancer type (Table 5.1 and 5.2). Overall, there are many more 

‘OTH’ binding sites than ENZ and PPI across all tumors. OTH binding sites constitute 

approximately 70% of the binding sites observed, while ENZ and PPI are observed in about 20 and 

10% of structures, respectively. Among those binding sites that we classify as druggable, the 

distributions are 25, 11, and 66% for the ENZ, PPI, and OTH binding sites, respectively. OTH 

binding sites may correspond to uncharacterized enzyme active sites or may occur at PPI interfaces 

that have not been characterized. 

5.2.4 Cavities at Enzyme Active Sites. Enzyme active site binding sites were identified 

by first mapping known catalytic residues from Catalytic Site Atlas (CSA) [228] and UniProtKB 
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[227] onto the identified structures of each protein. CSA identifies catalytic residues as those that 

are (i) directly involved in a catalytic mechanism; (ii) alter the pKA of another residue or water 

involved in the catalytic mechanism; (iii) stabilize a transition or intermediary state; and/or a(iv) 

activate a substrate [228]. UniProt defines these residues as being directly involved in catalysis 

[227]. If one of the catalytic residues was within the binding site, we classify the binding site as 

ENZ. In total, we identified 434 unique enzyme active site binding sites and 126 druggable binding 

sites on proteins that are encoded by overexpressed genes at TCGA (Table 5.1). The number of 

druggable ENZ binding sites ranged from 10 for HNSC to 49 for LUSC. For example, there were 

34, 21, and 38 druggable enzyme binding sites for GBM, TNBC and LUAD, respectively (Table 

5.2). We further classify enzymes by their catalytic function and distinguish between the 

druggability of the binding site (Fig. 5.2). We treat kinases separately from the transferases. When 

kinases and transferases are combined, they, along with the hydrolases, are the largest group among 

the enzyme active site binding sites. There were 70, 91, 83, and 141 oxidoreductases, transferases, 

kinases, and hydrolases, respectively. Lyases, isomerases, and ligases, on the other hand, were the 

least common among proteins with ENZ binding sites (26, 16, and 9, respectively). 

5.2.5 Cavities at Protein-Protein Interaction Interfaces. Despite the fact that protein-

protein interactions play a crucial role in a range of diseases including cancer, few successful PPI 

inhibitors have been developed to date. This is attributed to the fact that PPI interfaces are usually 

large and devoid of well-defined binding cavities. Druggable binding sites that occur at protein-

protein interfaces could be used to develop small molecules to disrupt the protein-protein 

interaction. PPI binding sites were identified by looking at the crystal structures with protein 

complexes with respect to the representative structures for a given protein. For each representative 

structure of a given protein, we went back to our sequence-based clustering approach in CD-HIT 

and identified the set of protein structures that shared significant sequence identity with the 

representative structure. We then aligned all the crystal structures from this alternative set of 

structures back onto the representative structure. This superimposition resulted in the identification 

of PPI interfaces that might not have appeared in the reference structure and their positions with 

respect to the previously identified binding sites. In total, we identified 231 unique binding sites 

located at protein-protein interaction interfaces, of which only 55 were druggable. As expected, 

there were significantly fewer binding sites that occurred at PPI interfaces than any of the other 

classes of binding sites. These ranged from 4 for HNSC to 19 for KIRC (Table 5.2). 

5.2.6 Proteins with Binding Sites Located at Both Enzyme Active Sites and Protein-

Protein Interaction Interfaces. While OTH binding sites were predominant among the different 

cancer types, the ENZ and PPI binding sites give greater insight into the binding site’s function. 
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Interestingly, there are proteins that contain binding sites that are classified as both ENZ and PPI 

(Table 5.3). Of these 24 proteins, 10 have binding sites that are druggable and are part of the 

enzyme active site and a PPI interface. Among these are proteins that are implicated in cancer 

progression and metastasis, such as CDA [229] (Fig. 5.3A), MMP14 [230] and DDR1 [231]. In 

these cases, the binding site at the catalytic site is also part of a PPI interface. Many of the cases 

where the ENZ and PPI binding sites overlap correspond to binding sites that occur at the active 

site of proteases. The binding partner is usually a protease inhibitor, for example, AGT and TIMP1 

in ANPEP and MMP14, respectively. Generally, these interactions may not be promising targets 

since proteolytic activity may contribute to tumor invasion and metastasis. However, the 

overexpression of protease inhibitors such as TIMPs and serpins suggest that inhibition of proteases 

may oppose growth and metastasis of a tumor. 

Other proteins contain distinct enzyme and PPI binding sites (Table 5.4). Of these 24 

proteins, only ALOX12 and NR1L2 feature both druggable ENZ and PPI binding sites. These 

proteins can be placed into two categories based whether or not the binding sites are on the same 

protein domains. Some have ENZ and PPI binding sites on the same domain such as the 

decarboxylase GAD1, which has a catalytic site as well as a PPI binding site at its homodimer 

interface. Another example is the phosphoribosyltransferase NAMPT, which is implicated in cancer 

metabolism [232], and has an ENZ binding site with an inhibitor bound as well as a PPI binding 

site between the homodimer structure (Fig. 5.3B). Other proteins have ENZ and PPI binding sites 

on separate domains. For example, the serine/threonine-protein kinase PLK1 has both an enzymatic 

ATP binding site on its protein kinase domain and a binding site at the PPI interface at its POLO-

box domain. Another similar example is the receptor tyrosine kinase EPHB4, which has an 

enzymatic ATP binding site on its protein kinase domain (Fig. 5.3C) and a binding site at the PPI 

interface with an ephrin ligand EFNB2 on its ligand binding domain (Fig. 5.3D). These binding 

sites may be used to develop allosteric modulators. Small molecules that bind to the PPI binding 

site may alter substrate binding to the active site. A small-molecule inhibitor of enzyme activity 

may affect the protein-protein interaction of the protein.  
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Table 5.3. Proteins with binding site that is both ENZ and PPI. 

  Interaction Partner 

PDB Symbol Name 

ANPEP Aminopeptidase N 4FYSC AGT Angiotensinogen 

CDA Cytidine deaminase 1MQ0A CDA Cytidine deaminase 

CTSV Cathepsin L2 3KFQC† CSTA Cystatin-A 

DDR1 Epithelial discoidin 

domain-containing 

receptor 1 

3ZOSA DDR1 Epithelial discoidin 

domain-containing receptor 

1 

DNM1 Dynamin-1 2X2ED DNM1 Dynamin-1 

GAPDH Glyceraldehyde-3-

phosphate dehydrogenase 

1ZNQR† GAPDH Glyceraldehyde-3-

phosphate dehydrogenase 

GLA Alpha-galactosidase A 3HG3B GLA Alpha-galactosidase A 

GSG2 Serine/threonine-protein 

kinase haspin 

4OUCB† HIST2H3A Histone H3.2 

HDC Histidine decarboxylase 4E1OE† HDC Histidine decarboxylase 

HOGA1 4-hydroxy-2-oxoglutarate 

aldolase, mitochondrial 

3SO5A† HOGA1 4-hydroxy-2-oxoglutarate 

aldolase, mitochondrial 

KIF3C Kinesin-like protein 

KIF3C 

3B6VB KIF3C Kinesin-like protein KIF3C 

MMP14 Matrix metalloproteinase-

14 

3MA2B TIMP1 Metalloproteinase inhibitor 

1 

PCSK9 Proprotein convertase 

subtilisin/kexin type 9 

3BPSP† PCSK9 Proprotein convertase 

subtilisin/kexin type 9 

PGC Gastricsin 1AVFQ PGC Gastricsin 

PGD 6-phosphogluconate 

dehydrogenase, 

decarboxylating 

2KJVC PGD 6-phosphogluconate 

dehydrogenase, 

decarboxylating 

PKLR Pyruvate kinase PKLR 4IMAC PKLR Pyruvate kinase PKLR 

PNLIPRP2 Pancreatic lipase-related 

protein 2 

2PVSB† PNLIPRP2 Pancreatic lipase-related 

protein 2 

PNP Purine nucleoside 

phosphorylase 

4ECEE† PNP Purine nucleoside 

phosphorylase 

REN Renin 3G72A† REN Renin 

RNASE2 Non-secretory 

ribonuclease 

2BEXB RNH1 Ribonuclease inhibitor 

RRM1 Ribonucleoside-

diphosphate reductase 

large subunit 

2HNCB RRM1 Ribonucleoside-

diphosphate reductase large 

subunit 

SEPT3 Neuronal-specific septin-3 3SOPB SEPT3 Neuronal-specific septin-3 

TDO2 Tryptophan 2,3-

dioxygenase 

4PW8E† TDO2 Tryptophan 2,3-

dioxygenase 

UCHL1 Ubiquitin carboxyl-

terminal hydrolase 

isozyme L1 

3IFWB UBC Polyubiquitin-C 

† The identified binding site is druggable (DS ≥ 1.0).  
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Figure 5.3. Examples of proteins with both ENZ and PPI binding sites. Proteins are represented in 

cartoon format. The monomer structure with identified binding sites is in white. SiteMap binding 

sites are shown as spheres, bound ligands are shown as ball-and-sticks. (A) The homodimeric 

structure of CDA (PDB: 1MQ0B) with a bound inhibitor at a binding site classified as both ENZ 

and PPI. (B) The homodimeric structure of NAMPT (PDB: 4O0ZB) with an ENZ (peach, bound 

inhibitor) and a PPI (blue) binding site on the same domain. (C-D) The protein kinase (PDB: 

2VWYA) and ligand binding domain (PDB: 2HLEA) of EPHB4 featuring an ENZ (C) and a PPI 

(D) binding site on separate domains. The binding site on the protein kinase domain is not shown 

as spheres but is occupied by the bound inhibitor (green).  
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Table 5.4. Proteins with both ENZ and PPI binding sites. 

Symbol Name 

Interaction Partner 

PDB Symbol Name 

ACMSD 2-amino-3-

carboxymuconate-6-

semialdehyde 

decarboxylase 

4IH3A ACMSD 2-amino-3-

carboxymuconate-6-

semialdehyde 

decarboxylase 

ADH1C Alcohol dehydrogenase 1C 1HSOA ADH1C Alcohol dehydrogenase 1C 

ALOX12 Arachidonate 12-

lipoxygenase, 12S-type 

3D3LB† ALOX12 Arachidonate 12-

lipoxygenase, 12S-type 

AOC1 Amiloride-sensitive amine 

oxidase 

3MPHB AOC1 Amiloride-sensitive amine 

oxidase 

BHMT Betaine--homocysteine S-

methyltransferase 1 

1LT7B BHMT Betaine--homocysteine S-

methyltransferase 1 

CTSE Cathepsin E 1TZSP CTSE Cathepsin E 

DDC Aromatic-L-amino-acid 

decarboxylase 

3RBFB DDC Aromatic-L-amino-acid 

decarboxylase 

DDX39A ATP-dependent RNA 

helicase DDX39A 

1T6NB DDX39A ATP-dependent RNA 

helicase DDX39A 

EPHB2 Ephrin type-B receptor 2 2QBXD 
 

Ephrin binding site 

EPHB4 Ephrin type-B receptor 4 2HLEB EFNB2 Ephrin-B2 

GAD1 Glutamate decarboxylase 1 3VP6A GAD1 Glutamate decarboxylase 1 

GPI Glucose-6-phosphate 

isomerase 

1JIQB GPI Glucose-6-phosphate 

isomerase 

HK2 Hexokinase-2 2NZTA HK2 Hexokinase-2 

HMGCS2 Hydroxymethylglutaryl-

CoA synthase, 

mitochondrial 

2WYAD HMGCS2 Hydroxymethylglutaryl-

CoA synthase, 

mitochondrial 

NAMPT Nicotinamide 

phosphoribosyltransferase 

4O0ZA NAMPT Nicotinamide 

phosphoribosyltransferase 

NR1I2 Nuclear receptor subfamily 

1 group I member 2 

3CTBB† NR1I2 Nuclear receptor subfamily 

1 group I member 2 

NTRK1 High affinity nerve growth 

factor receptor 

1WWWV NGF Beta-nerve growth factor 

PLK1 Serine/threonine-protein 

kinase PLK1 

1Q4KE 
 

Phosphopeptide 

PYGL Glycogen phosphorylase, 

liver form 

2ZB2B PYGL Glycogen phosphorylase, 

liver form 

RHOC Rho-related GTP-binding 

protein RhoC 

3KZ1A ARHGEF11 Rho guanine nucleotide 

exchange factor 11 

SULT1C2 Sulfotransferase 1C2 3BFXA SULT1C2 Sulfotransferase 1C2 

TH Tyrosine 3-monooxygenase 2XSNC TH Tyrosine 3-monooxygenase 

TPH2 Tryptophan 5-hydroxylase 

2 

4VO6B TPH2 Tryptophan 5-hydroxylase 2 

UPP1 Uridine phosphorylase 1 3EUFB UPP1 Uridine phosphorylase 1 

† The identified binding site is druggable (DS ≥ 1.0).  
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5.2.7 Unclassified Binding Sites. Binding sites that were neither enzyme active sites nor 

located at protein-protein interactions were classified as OTH. In total, more than 1500 of these 

binding sites were identified on proteins that are encoded by differentially expressed genes. These 

binding sites could potentially be either unassigned enzyme active sites, part of structurally 

unresolved protein-protein interaction sites, or allosteric sites. A binding site is considered 

allosteric only if it occurs on a protein that has enzyme activity or that engages other ligands at sites 

that are distant from the allosteric binding site. Among the 782 proteins with OTH binding sites, 

323 also have at least one ENZ or PPI binding site. These binding sites offer an opportunity to 

design allosteric small molecule modulators of enzyme activity or protein-protein interactions. 

Allosteric regulation of enzyme activity has been successfully achieved with small molecules in 

several systems [233]. For example, small molecule kinase inhibitors have been developed to bind 

to allosteric binding sites to inhibit the enzyme activity of the protein kinase [234]. More recently, 

small molecules that bind to an allosteric binding site on the Ral GTPase was shown to modulate 

the distal interaction with its effector protein [235]. 

Many OTH binding sites occur on proteins with existing ENZ and/or PPI binding sites, 

which may be potential allosteric sites for protein inhibition. When the enzyme active site is well 

characterized on a protein surface, additional binding sites represent opportunities for allosteric 

inhibition of the protein’s function. For example, the sulfotransferase SULT2B1 has four binding 

sites on its protein surface (Fig. 5.4A). The ENZ binding site is encompassed by the adenosine 

nucleotide. Three additional OTH binding sites were detected on the surface of the protein and 

represent potential sites for allosteric sites. Another example of protein with both ENZ and OTH 

binding sites is the protein kinase RET (Fig. 5.4B). In this structure, a known inhibitor occupies the 

ENZ ATP binding site, while an additional allosteric binding site is formed near the αC helix. 

Similarly, there are proteins with both PPI and OTH binding sites. One example is the PPI between 

CHN2 and SLC9A1 (Fig. 5.4C), where an -helix from SLC9A1 occupies two PPI binding sites on 

CHN2. An additional potentially allosteric OTH binding site is formed on the backside of CHN2. 

Another example is the protein complex formed between PLAUR, PLAU, and VTN (Fig. 5.4D). In 

this example, binding sites were found on the monomer structure of the apo protein. After 

superimposition of additional crystal structures back onto the representative structure, two of the 

three detected binding sites were classified as PPI. The two separate PPI binding sites occupy the 

respective interfaces between PLAUR-PLAU and PLAUR-VTN. An additional OTH binding site 

was also detected on the protein surface and represents an allosteric site.  
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Figure 5.4. Examples of proteins with potentially allosteric OTH binding sites. Proteins are 

represented in cartoon format. The monomer structure with identified binding sites is in white. 

SiteMap binding sites are shown as spheres, bound ligands are shown as ball-and-sticks. (A) 

SULT2B1 (PDB: 1Q1QA) with an ENZ binding site occupied by a nucleotide and three additional 

OTH binding sites (green, blue, yellow). (B) RET (PDB: 2IIVA) with an ENZ binding site occupied 

by the bound inhibitor and an additional OTH binding site (green). (C) CHP2 (PDB: 2BECA) with 

two PPI binding sites (green, blue) at the interface with SL9CA1 (PDB: 2BECB) and an additional 

OTH binding site (peach). (D) The superimposed structure of PLAUR (PDB: 1YWHM) with two 

PPI binding sites at the interfaces with VTN (PDB: 3BT1B, green) and PLAU (PDB: 3BT1A, 

yellow) and an additional OTH binding site (peach). 
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Table 5.5. Proteins with potential PPI binding sites identified from search against PrePPI. 

Symbol Name 

Binding 

site 

Predicted PPI 

Model Symbol Name 

AK3 GTP:AMP phosphotransferase AK3, 

mitochondrial 

1ZD8A2 2BWJ AK5 Adenylate kinase isoenzyme 5 

ANK1 Ankyrin-1 1N11A3 2JAB ILK Integrin-linked protein kinase 

CHN1 N-chimaerin 3CXLA3 1OW3 RAC1 Ras-related C3 botulinum toxin substrate 1 

HOGA1 4-hydroxy-2-oxoglutarate aldolase, 

mitochondrial 

3S5OA1† 3DAQ HOGA1 4-hydroxy-2-oxoglutarate aldolase, mitochondrial 

HPD 4-hydroxyphenylpyruvate dioxygenase 3ISQA1† 1SQI HPDL 4-hydroxyphenylpyruvate dioxygenase-like protein 

LCN Lipocalin-1 3EYCA1† 2F91 OVCH1 Ovochymase-1 

NCS1 Neuronal calcium sensor 1 1G8IB2† 1AUI PPP3CA Serine/threonine-protein phosphatase 2B catalytic subunit 

alpha isoform 

RAP1GAP Rap1 GTPase-activating protein 1 1SRQA1 3BRW RAP1A Ras-related protein Rap-1A 

RHCG Ammonium transporter Rh type C 3HD6A1 2NUU RHAG Ammonium transporter Rh type A 

SHMT2 Serine hydroxymethyltransferase, 

mitochondrial 

3OU5A1 3GBX SHMT2 Serine hydroxymethyltransferase, mitochondrial 

STXBP2 Syntaxin-binding protein 2 4CCAA2 3C98 STX1A Syntaxin-1A 

THEM5 Acyl-coenzyme A thioesterase THEM5 4AE7A1 1Q4T THEM4 Acyl-coenzyme A thioesterase THEM4 

ZBTB32 Zinc finger and BTB domain-

containing protein 32 

3M5BB1 3BIM BCL6 B-cell lymphoma 6 protein 

† The binding site is druggable (DS ≥ 1.0) 
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5.2.8 A Search of Protein-Protein Interaction Networks to Identify OTH Binding Sites 

Located at PPI Interfaces. The majority of OTH binding sites occur on proteins with no 

discernable ENZ or PPI binding sites. To determine whether these binding sites could potentially 

be located at protein-protein interaction interfaces, a database of predicted protein-protein 

complexes known as PrePPI was explored [236]. The PrePPI method uses both structural and non-

structural evidence to predict whether two proteins form a complex. For complexes predicted based 

on structural information, PrePPI superimposes monomeric crystal structures onto a reference 

complex based on the structural similarities of the monomeric structures with the two structures 

forming the interaction interface. This model is then evaluated based on how well the individual 

residues of the predicted interaction interface overlap with the structural model. If the likelihood 

ratio of this structural modeling is above a given cutoff, PrePPI provides the identifiers of both the 

individual proteins and the reference structure for further evaluation. For the 458 proteins that 

contained only binding sites classified as OTH, we evaluated the structural models given by PrePPI 

to determine whether or not OTH binding sites overlapped with potential PPI interfaces. These 458 

proteins are represented by 395 unique crystal structures consisting of 806 binding sites of unknown 

function. Of these 806 OTH binding sites, 48 were on proteins without models of structural 

complexes in PrePPI. Among the remaining 758 OTH binding sites, we identified 17 OTH binding 

sites on 13 proteins that are likely binding sites at protein-protein interfaces (Table 5.5). In each of 

these 17 cases, a previously classified OTH binding site was predicted by PrePPI to be part of a 

known protein-protein interaction interface, and perhaps directly contributing to the PPI itself. It is 

interesting to note that several of these predicted protein-protein interactions are well-established 

despite the lack of a co-crystal structure: These include the ANK1-ILK [237] and CHN1-RAC1 

[238] interactions. In each of these cases, there was high degree of homology between the structure 

containing the OTH binding site and the PrePPI protein-protein complex to which it was 

superimposed. In most cases, however, the protein containing the OTH binding site did not show 

any homology with a protein in a PrePPI complex. In these cases, the similarity between the 

interaction interfaces of the two proteins and a model protein complex was used. The NCS1-

PPP3CA, LCN1-OVCH1, and ZBTB32-BCL6 interactions are examples in which the interaction 

was uncharacterized in both the literature and existing PPI databases. These three interactions were 

predicted based on the structural complementarity of both the interaction interface and the crystal 

structure. Overall, we predict that approximately 2% of OTH binding sites with unknown function 

to be part of a previously uncharacterized PPI interface. 

5.2.9 Cancer Signaling Pathways. Pathways reveal signaling transduction across a 

cascade of proteins that elicit a variety of cell phenotypes. Individual targets in these pathways are 
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potential sites through which small-molecule inhibition are expected to enhance or alter the 

subsequent cell phenotype. Alteration of individual genes within these signaling pathways lead to 

cancer related processes such as cell growth and adhesion. We have identified 27 cancer related 

signaling pathways in KEGG [239] and their respective proteins. Using the members in each of 

these signaling pathways, we map binding sites onto these individual proteins. We distinguish 

between binding sites with DrugScore greater than 0.8 on proteins with log2 fold change greater 

than 1.5 (i.e., able to be probed) (Fig. 5.5A) and those with DrugScore greater than 1.0 and log2 

fold change greater than 2 (i.e., druggable binding sites) (Fig. 5.5B). While some signaling 

pathways like the cell cycle contained binding sites of all functional types, no binding sites could 

be identified for the Hedgehog pathway on differentially expressed genes. 

To address crosstalk between signaling pathways, binding sites were also evaluated as 

being either unique to that signaling pathway or on proteins that occur in multiple signaling 

pathways. In a majority of cancer signaling pathways, there were more binding sites that occurred 

in multiple signaling pathways than in a signaling pathway, revealing proteins targets that are 

involved in multiple signaling processes. Only the Citrate Cycle, HIF-1, and PPAR signaling 

pathways had many more binding sites that were unique to the signaling pathway itself than in 

multiple signaling pathways. In signaling pathways such as focal adhesion and cytokine-cytokine 

receptor interactions, almost all of the druggable binding sites belonged to proteins that were 

involved in crosstalk across cancer signaling pathways. Finally, signaling pathways such as the cell 

cycle and Hippo pathways have an even mix of binding sites on unique and overlapping proteins. 
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Figure 5.5. Binding sites in cancer-related signaling pathways. Proteins with binding sites were mapped to 27 cancer related signaling pathways in 

KEGG. Identified binding sites were divided based on whether the protein was exclusive to one signaling pathway or occurred in multiple signaling 

pathways. (A) Identified binding sites had DrugScore greater than 0.8 on proteins with log2 fold change greater than 1.5. (B) Identified binding sites 

had DrugScore greater than 1.0 and log2 fold change greater than 2. 
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5.2.10 Correlation with Patient Survival for Proteins Encoded by Differentially 

Expressed Genes. We collected patient survival data from TCGA clinical records for each disease 

to identify the impact of gene expression on overall survival of cancer patients. To determine the 

overall survival rate, we first identified the date of death or date of the last checkup for deceased 

and living patients, respectively. For each differentially expressed gene among the 10 diseases we 

considered, the median expression value was used to divide patient tumors into two groups, high 

and low expression. For a given gene, we then paired a patient’s gene expression with their survival 

outcome to build a Cox proportional hazards regression model for differentially expressed genes. 

The ratio of the hazard rates between the high and low expression groups are summarized by a 

metric known as the hazard ratio. The hazard ratio derived from the regression model defines the 

probability that an event will occur in the next time interval. In this model, this time interval is 

made sufficiently small that the hazard rate is considered instantaneous. Therefore, the hazard ratio 

is used to describe the ratio between the hazard rate of two groups, that is, the survival of patients 

expressing a gene at high and low levels. 

In total, we identified 1343 differentially expressed genes across all 10 diseases with a 

hazard ratio above 1 and log2 fold change above 1.5. Among them, 202 contained at least one 

binding site (Fig. 5.6A). Both KIRC (121 total) and LUAD (57 total) had the greatest number of 

proteins that were both overexpressed and correlated with patient outcome. There were 45 

druggable genes that were found to be both overexpressed and correlated with patient outcome in 

more than one cancer type. The most frequently occurring are MELK and RRM2 in 4 separate 

cancers, while another 9 proteins have significant fold changes and hazard ratios in 3 cancers. The 

binding sites on these 202 proteins show a wide distribution in both their druggability and binding 

site type (Fig. 5.6B). 

Of the 601 unique binding sites on these proteins, 102 are ENZ, 46 are PPI, 444 are OTH, 

and 9 are classified as both ENZ and PPI. Both the SiteScore and DrugScore of the PPI binding 

sites have upper limits of about 1.1 for both metrics, while there are many ENZ and OTH binding 

sites that exceed this cutoff. Similarly, we focused on the subset of the proteins that were highly 

overexpressed and featured druggable binding sites. In total, we identified 60 proteins with at least 

one druggable binding site across 10 diseases with a log2 fold change greater than 2.0 and hazard 

ratio greater than 1.0 (Fig. 5.6C). Similarly, there are far fewer binding sites among proteins that 

fit these criteria. Of the 92 binding sites, 20 are ENZ, 6 are PPI, 65 are OTH, and 1 is both ENZ 

and PPI (Fig. 5.6D). 
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Figure 5.6. Proteins with binding sites that are both overexpressed and correlate with patient 

outcome. (A) Fold change versus hazard ratio across all cancer types on proteins with log2FC ≥ 

1.5, HR > 1.0, and DrugScore > 0.8. (B) SiteScore and DrugScore of binding sites by functional 

annotation. (C) Fold change versus hazard ratio across all cancer types on proteins with druggable 

binding sites with log2FC ≥ 2.0, HR > 1.0, and DrugScore > 1.0. (D) SiteScore versus DrugScore 

of druggable binding sites with log2FC ≥ 2.0, HR > 1.0, and DrugScore > 1.0.  
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Figure 5.7. Integrating druggable binding sites with protein-protein interaction networks. (A) 

Degree versus betweenness centrality from PPI network for all proteins with log2FC ≥ 1.5 and HR 

> 1. Proteins are colored coded based on whether there was a high-quality crystal structure (blue), 

a crystal structure but no identifiable binding sites (orange), binding sites with DrugScore between 

0.8 and 1.0 (gray), and druggable binding site with DrugScore greater than 1.0 (yellow). (B) Degree 

versus betweenness centrality from PPI network for all proteins with log2FC ≥ 2.0, HR > 1.0, and 

DrugScore > 1.0.  
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5.2.11 Protein-Protein Interaction Network. In addition to looking at differentially 

expressed genes in the context of their expression, we addressed their impact on the global protein-

protein interaction network. Networks have been used to not only model biological relationships, 

such as the relationship between drugs and diseases [240] or genes and diseases [241], to 

understand their underlying mechanisms, but also to identify new drug targets by identifying the 

relationships between a drug’s side effects [242] or gene expression profile [243]. Using 

experimental data, a global protein-protein interaction network was constructed from physical 

interactions in humans by integrating data from seven major interaction databases. This resulted in 

203068 non-redundant protein-protein interactions. To address the robustness of the network, we 

further filtered the interactions by only keeping those interactions that appeared in at least two of 

the seven databases. This resulted in a network with 38164 non-redundant protein-protein 

interactions. 

We then identified the network properties of each protein within this network to measure 

the centrality and essentiality of each protein to the overall network. Among the topological 

properties of a given protein are its degree, which describes the number of interactions that are 

formed by that protein, and its betweenness centrality, which describes the number of shortest paths 

that go through the given protein. In a biological context, betweenness centrality is a measure of 

the available paths that a signal can travel through a given network [244]. Thus, proteins with high 

betweenness are thought to be essential to biological function and are frequently targeted in drug 

discovery [245]. For example, TP53 has a betweenness centrality and degree of 4.1×10-2 and 236, 

respectively, while EGFR is 2.3×10-2 and 181 for the same properties. We examine the topological 

properties of all proteins that are overexpressed (log2 FC ≥ 1.5) and whose expression correlate 

with patient outcome (Fig. 5.7A). Of these 1343 proteins, 1001 (~75%) did not have a high-quality 

crystal structure and an additional 141 (~10%) had a structure but no binding sites. Of the remaining 

proteins, 117 (9%) and 84 (6%) have binding sites and druggable binding sites, respectively. When 

the differential-expression cutoff is increased to 2 and the minimum DrugScore is increased to 1.0, 

60 proteins have at least one druggable binding site (Fig. 5.7B). Among the proteins with the 

highest centrality and degree are PLK1, KPNA2, AURKA, and AURKB. 

5.2.12 New Unexplored Targets for the Development of Small-Molecule Probes and 

Cancer Therapeutics. For each of the previously identified 60 targets, we integrate their structural, 

genomic, biological, and clinical data to examine their druggability. We divide these targets into 

those that are already established in cancer and those that are uncommon or novel based on the 

number of citations found in PubMed. Similarly, we analyzed the 202 proteins that were identified 

using the lower cutoffs in fold change and binding site DrugScore. We rank-ordered the top targets 
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for each cancer based on their interconnectivity in the PPI network. Among these potential targets, 

we see a variety of biological processes represented, including many involved in the immune 

response, metabolism, homeostasis and cell cycle. Similarly, some are well-studied in cancer but 

lack small-molecule inhibitors, while others have no co-crystallized small-molecule inhibitors but 

inhibitors have been reported in the literature. For example, the well-studied transcription regulator 

TOP2A is altered in cancer cells resulting in chromosome instability and is among the genes that 

are overexpressed and correlate with survival, but has many topoisomerase-specific inhibitors 

available [246]. Other genes may act as markers for cancer and indicate late progression into cancer 

or are vital to the immune response against tumorigenesis. However, there are many targets whose 

biology and lack of potential inhibitors may prove to be interesting targets for future considerations. 

We identify examples of proteins with ENZ binding sites that have seldom been considered 

in cancer and lack therapeutics (e.g. PYCR1, QPRT, HSPA6), or are well-studied in cancer but lack 

small-molecule inhibitors (e.g. PKMYT1, STEAP3, NNMT). Similarly, we highlight examples of 

proteins with PPI binding sites that have not been previously targeted by small-molecule inhibitors 

and are either seldom considered in cancer (e.g. CASC5, ZBTB32, and CSAD), or are well-studied 

in cancer but lack small-molecule inhibitors (e.g. HNF4A, MEF2B, and CBX2). OTH binding sites 

can provide an avenue to modulate either enzymatic function or protein-protein interactions of the 

target. Compounds that bind to OTH sites could act either in an orthosteric manner if the binding 

site happens to be the binding site of a substrate or protein, or allosterically if the binding site is 

outside an enzyme active site or protein binding site. Among the genes whose overexpression 

strongly correlated with patient outcome and that possessed an OTH binding site, several had never 

been studied in cancer before nor do they have small-molecule inhibitors either in the literature or 

in co-crystallized complexes. Among these are four examples that span a variety of tumors: a 

protein of unknown function FAM83A, a water channel AQP2, a serine protease SERPIND1, and a 

protein associated with the immune response TNFAIP8L2. 

Among these targets, 26 have been previously probed with small-molecule ligands and X-

ray crystallography. Interestingly, many of these co-crystallized structures occur at binding sites at 

or below our higher DrugScore cutoff of 1.0, suggesting that a more stringent cutoff may discard 

otherwise druggable binding sites. Additionally, we mapped these druggable binding sites to 

conserved protein domains and find that these binding sites are mainly parts of the protein kinase, 

serpin, kinesin, and peptidase domains. When we consider only those without co-crystallized small-

molecule inhibitors, protein kinases and trypsin domains are removed. The majority of binding sites 

across both targeted and untargeted proteins are classified as OTH. In well-studied systems where 

the active site is known, these OTH sites represent opportunities for allosteric regulation. 
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We next looked at the secondary structure of residues that compose the individual binding 

sites of these proteins across their individual binding site annotations. By examining the residues 

around a binding site, we generalized the type of secondary structures that were used to construct 

the binding site itself (Fig. 5.8). The majority of binding sites identified were a mixture of 

secondary structures or random coils among all proteins with or without small-molecule inhibitors. 

Combined, these two secondary structures generally making up the large majority of all binding 

sites in each binding site type. In each case, the least frequently observed secondary structure 

among these binding sites were the helix-like (i.e. α-helix, 310 helix, or π-helix) and sheet-like 

structures (i.e. beta bridges and beta bulges). We then examined the secondary structures of the 

residues of the binding partner inside PPI binding sites. About 27 and 46% of the residues of the 

binding partners in the binding site were coil-like and helical (α-helix, 310 helix, or π-helix), 

respectively. Only 10% of the binding sites were characterized by strand-like structures (β-sheet or 

β-bridge). The remaining PPI binding sites were a combination of these. 

5.2.13 Missense Mutations on Protein Structures. A set of somatic mutations were 

obtained from a recent study from TCGA’s Pan-Cancer initiative [247]. We identified missense 

mutations from this study onto patients in 7 of 10 diseases and mapped these to protein structures. 

We classified these mutations as being (i) adjacent to a binding site; (ii) elsewhere on the protein 

surface; or (iii) buried in the interior of the protein (Fig. 5.9A). We find that the majority of these 

missense mutations are found on the surface of proteins but not within a predicted binding site. The 

frequency of mutations occurring in the interior of a protein is higher than the frequency of 

mutations that occur at binding sites. We explored some of the proteins with mutations occurring 

most frequently in the binding site (Fig. 5.9B). They include well-known genes that have been 

previously reported to be heavily mutated in cancer such as PIK3CA [248], SI [249], and PTEN 

[250]. On the most commonly mutated target, PIK3CA, mutation rates are approximately five-fold 

less at the binding site than the entire protein. Also, among the top targets is BRAF, which features 

the common V600E mutation, and has been used for the rational design of small-molecule 

inhibitors of the mutant protein [251-253].  

We matched these proteins with missense mutations with their gene expression levels and 

correlation with patient outcome. We find 29 binding sites on 26 proteins that are (i) overexpressed 

(log2 fold change ≥ 2); (ii) correlate with patient outcome (hazard ratio > 1); and (iii) have a 

missense mutation adjacent to a binding site in a given disease (Table 5.6). These 29 binding sites 

include 9 ENZ, 3 PPI, and 17 OTH pockets. Among these mutations adjacent to binding sites is the 

W167L mutation on the PPI interface between MAD2L1 and MAD1L1 in LUAD (Fig. 5.9C). This 

interaction is part of the spindle assembly checkpoint in the cell cycle [254]. Considering the 
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significant reduction in contact area upon replacing tryptophan with leucine, and the fact that 

tryptophan residues tend to often occur at protein-protein interaction interfaces, we expect that this 

mutation may impair the protein-protein interaction. Another mutation is the R121P mutation 

adjacent to the DNA-binding OTH binding site on EXO1 in LUAD (Fig. 5.9D). The DNA-binding 

protein is also involved in DNA repair during cell cycle regulation [255]. Unlike the previous 

mutation, arginine contains a positively charged group while proline is a neutral non-polar amino 

acid. 

We examined the mutation rates of individual amino acids by looking at the wild-type and 

mutated amino acids as a result of a mutation at each of the three locations on the protein (Fig. 

5.10). We find differences in the relative frequencies of specific point mutations between each 

location. For example, mutations to alanine is less favored in the pocket or on the surface of the 

protein than it is in the interior, especially at charged or polar groups. Among the most common 

mutations in the binding site and on the surface is from lysine to glutamic acid, which occurs at a 

much lower frequency in the interior of the protein. 

 

5.3. DISCUSSION 

The sequencing of the genome of human tumors has provided access to an unprecedented 

number of new opportunities for the development of cancer therapeutics. While biological methods 

such as siRNA or CRIPSR/Cas9 methods are useful tools to explore the role of potential targets, 

chemical tools provide a complementary approach to interrogate new targets. Small molecules do 

not affect the expression of the target thereby causing little disruption to the signaling networks. In 

addition, small molecules have significantly greater precision as they can be designed to binding to 

a single cavity within a protein and modulate the function of the protein by disruption of protein-

protein interactions or enzyme activity. Small molecules can work either in an orthosteric manner 

if they directly interfere with the binding of a protein or a substrate. They can also work in an 

allosteric manner by binding to cavities located outside protein-protein and protein-substrate 

binding interfaces and modulating the conformation and dynamics of the target. 
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Figure 5.8. Secondary structure composition of residues surrounding PPI binding sites PPI binding 

sites. The secondary structure composition of both the binding site and the binding partner within 

the binding site was identified by creating a 5 Å sphere around the center of each binding site. 

Secondary structures were obtained from DSSP and combined based on whether the residues were 

primarily helix-like (i.e. α-helix, 310 helix, or π-helix), sheet-like (i.e. beta bridges and beta bulges), 

random coils, or a mixture of these types. 
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Figure 5.9. Proteins with missense mutations. (A) Missense mutations were mapped to patients in 

7 of 10 diseases (COAD, THCA, and UCEC not included). Individual mutations were mapped to 

the protein structure and classified as being adjacent to the binding site, elsewhere on the protein 

surface, or buried in the interior of the protein structure. (B) Percentage of samples with missense 

mutations adjacent to a binding site in a given disease, showing the top 20 proteins rank-order using 

the sum of frequencies. (C) The W167L (green stick) mutation on the PPI interface between 

MAD2L1 (white) and MAD1L1 (cyan) is shown in cartoon (PDB ID: 1GO4). The PPI binding site 

is shown as transparent spheres. (D) The R121P (green stick) mutation adjacent to the DNA-

binding OTH site (tan, transparent spheres) on EXO1 (white cartoon) (PDB ID: 3QEB). DNA in 

the binding site from the crystal structure is also shown as cartoon.  
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Table 5.6. Mutations in binding site on overexpressed and clinically-relevant genes. 

Symbol Name 

Cancer 

Type Mutation Pocket Type 

ADH1C Alcohol dehydrogenase 1C LUAD G205C 1HSZA1 ENZ 

ADORA2A Adenosine receptor A2a BRCA R293P 3VG9A5 PPI 

C3 Complement C3 KIRC C873Y 2WIIB4 OTH 

CA6 Carbonic anhydrase 6 LUSC H113Q 3FE4A1 ENZ 

CCNA2 Cyclin-A2 LUAD L341F 2BPMD1 OTH 

CCNE1 G1/S-specific cyclin-E1 BRCA A338T 1W98B2 OTH 

CHEK1 Serine/threonine-protein kinase Chk1 LUAD V46A 2R0UA1 ENZ 

CYP2A6 Cytochrome P450 2A6 LUAD V306I 2PG6B1 OTH 

CYP2D6 Cytochrome P450 2D6 KIRC L213P 3QM4A1 OTH 

EXO1 Exonuclease 1 LUAD R121P 3QEBZ1 OTH 

F2 Prothrombin KIRC R543L 4NZQA3 OTH 

KIF15 Kinesin-like protein KIF15 LUSC G41A 4BN2C2 OTH 

KIFC1 Kinesin-like protein KIFC1 LUAD G568W 2REPA1 ENZ 

MAD2L1 Mitotic spindle assembly checkpoint 

protein MAD2A 

LUAD W167L 2V64F1 PPI 

MELK Maternal embryonic leucine zipper kinase BRCA 

LUAD 

Q115R 

V271A 

4UMUA2 

4UMUA2 

OTH 

OTH 

NEK2 Serine/threonine-protein kinase Nek2 LUAD R140L 2XK4A1 ENZ 

PCK1 Phosphoenolpyruvate carboxykinase, 

cytosolic [GTP] 

LUAD R137H 

A287S 

G289W 

2GMVA3 

2GMVA1 

OTH 

ENZ 

PSPH Phosphoserine phosphatase LUSC M52T 1L8OA1 ENZ 

RHCG Ammonium transporter Rh type C LUAD Q107H 3HD6A1 PPI 

RRM2 Ribonucleoside-diphosphate reductase 

subunit M2 

LUAD E207Q 2UW2A2 OTH 

SERPINB3 Serpin B3 LUAD A45T 2ZV6A3 OTH 

SERPINB4 Serpin B4 LUAD S33N 2ZV6A2 OTH 

SULT4A1 Sulfotransferase 4A1 KIRC M80R 1ZD1A1 ENZ 

TOP2A DNA topoisomerase 2-alpha LUAD E712V 

R736L 

4FM9A4 

4FM9A7 

OTH 

OTH 

TTK Dual specificity protein kinase TTK LUAD 

BRCA 

C604F 

G666E 

2ZMDA1 

2ZMDA1 

ENZ 

ENZ 

XDH Xanthine dehydrogenase/oxidase LUAD C43F 

N461T 

2E1QD3 

2E1QD8 

OTH 

OTH 
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Figure 5.10. Occurrence of individual missense mutations. The counts of missense mutations at 

the amino acid level divided classified as being adjacent to the binding site, elsewhere on the 

surface of the protein, or buried in the protein interior. The original amino acid is listed row-wise 

and the subsequent mutation is listed column-wise.  
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For small molecules to engage their targets with high affinity, a well-defined cavity that 

possesses suitable shape and physicochemical properties. The lack of such cavities is partly 

responsible for the difficulty in developing small-molecule therapeutic agents that bind directly to 

highly promising cancer targets such as mutated RAS GTPase or transcription factors such as c-

MYC. Conversely, the success of kinases as oncology targets can be attributed to the well-defined 

ATP-binding site. Using binding sites of kinases and other druggable targets, several algorithms 

have been developed to predict the druggable nature of a binding site using the three-dimensional 

structure of the protein that harbors them [256]. Among them, SiteScore and DrugScore, which 

have been developed using data from binding sites occupied by approved drugs [221, 257]. 

Druggable sites, the highly conserved nature of the ATP-binding site has been the main impediment 

in the development of kinase drugs. Developing highly selective kinase inhibitors is notoriously 

difficult, although some successes have been reported. Identifying novel targets with unique 

druggable binding sites located on potential cancer targets may lead to cancer therapeutics with 

greater efficacy and lower toxicity. 

Here, in an effort to facilitate the chemical probing of new targets in cancer, we explore 

RNA-seq data of 10 tumor types at TCGA to identify unique and druggable binding sites on 

proteins encoded by protein products of overexpressed genes. The large-scale effort of TCGA to 

sequence the genome of tumors from more than 30 cancers provides an unprecedented opportunity 

to uncover new targets for the development of cancer therapeutics. We identified genes whose 

mRNA levels are overexpressed in tumors compared with normal tissue. Patient data provided by 

TCGA was used to further narrow the list of targets to genes whose overexpression correlates 

strongly with patient survival. This was accomplished by constructing survival curves and 

evaluating a hazard ratio for each overexpressed gene. Genes with hazard ratio of 1 or greater where 

considered to correlate with worse patient survival. For each of the 10 diseases that we have 

considered in this work, we identified protein products of genes whose mRNA levels are 

differentially expressed that strongly correlate with patient survival. Additionally, we explored 

these targets in the context of cancer related signaling pathways and the protein-protein interaction 

network. 

The exponentially growing list of three-dimensional structures of proteins prompted us to 

search the PDB to identify structures for protein products of up-regulated genes that we identified. 

We used a stringent threshold for these scores to ensure that small molecules that bind to the 

druggable binding sites have the potential to be developed into therapeutic agents. Among all up-

regulated genes we found that 23% of their protein products had a structure at the PDB. Among the 

1218 proteins with structures, 405 (33%) had druggable binding sites. A similar ratio was found 
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among individual diseases. For example, 51 proteins with a crystal structure from among 211 in 

TNBC had a druggable binding site, while 114 proteins with a crystal structure in LUAD were 

found to have a binding site among a total of 363. When overexpressed genes are further filtered 

by hazard ratio, a total of 54 proteins that possess druggable binding sites and 65 possessed binding 

sites are identified among 1344 differentially expressed genes. There were 15 druggable proteins 

that are present in multiple tumor types. The most frequently occurring were MELK in 4 tumors. 

The presence of a binding site is not sufficient to serve as a suitable target site for chemical 

probe development and drug discovery. The binding site must possess functional relevance. Its 

position must be located at a site such that the binding of a small molecule will impair the function 

of the protein harboring the binding site. For example, small molecules that bind to a binding site 

located at an enzyme active site or protein-protein interface will disrupt enzyme activity or protein-

protein interactions and thereby impair the function of the target protein. Binding sites located 

outside an enzyme active site or protein-protein interface, may or may not modulate the activity of 

a protein. We classified all binding sites into enzyme active sites, protein-protein interaction sites, 

or other sites with yet unknown function that may provide an opportunity to modulate protein 

function through an allosteric mechanism. 

Many of the enzyme active sites occur on well-established oncology targets or have been 

inhibited by small molecules. However, there were several examples of enzymes whose function 

was explored in cancer but were never targeted with small molecules; these include PKMYT1, 

STEAP3, and NNMT. There were also several druggable active site binding sites that occurred on 

enzymes that have seldom been considered in cancer, such as PYCR1, HSPA6, and QPRT. We 

identified several proteins whose overexpression correlate with patient outcome that occurred at 

protein-protein interfaces. This discovery is highly significant as protein-protein interactions have 

been historically challenging due to the lack of well-defined binding sites at protein-protein 

interfaces [23, 258]. Protein-protein interfaces can offer an opportunity to develop highly selective 

compounds since many of these interfaces are structurally unique. Among all differentially 

expressed proteins with binding sites, 18% have binding sites that occurred at protein-protein 

interfaces. For the proteins encoded by genes that correlate with patient survival, we identified 28 

binding sites (7 druggable) on 25 proteins that occurred at protein-protein interfaces. Among these 

proteins, 13 have been studied in cancer. Examples include MEF2B, HNF4A, and CBX2. The 

remaining 15 proteins have seldom been studied in cancer, such as CASC5 and ZBTB32. 

Interestingly, several protein structures possess both PPI and ENZ binding sites either on the same 

domain (e.g. GAD1, NAMPT, and NR1I2) or on different domains (e.g. EPHB2, PLK1, and 
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NTRK1). Small molecules that bind to a binding site on these proteins may serve as allosteric 

modulator of PPI interactions. 

We found that the majority of binding sites were not located either at an enzyme active site 

or protein-protein interaction site. We refer to these binding sites as other (OTH). Of the 601 unique 

binding sites on the 202 proteins encoded by genes whose overexpression correlates with patient 

survival, 102 are ENZ, 46 are PPI, 444 are OTH, and 9 have been classified as both ENZ and PPI. 

It is likely that many of these OTH binding sites occur at protein-protein interfaces. To explore this 

possibility, we searched protein-protein interaction databases such as PrePPI for binding partners. 

Among 759 OTH binding sites located on overexpressed proteins, we identified 17 candidates that 

have the potential to be located at PPI interfaces. Examples of these proteins include ANK1, CHN1, 

and NCS1. While OTH binding sites that occur at enzyme active sites or protein-protein interaction 

sites can be used to develop probes that directly modulates the function of the target harboring these 

binding sites, the remaining OTH binding sites can provide an opportunity to modulate receptors 

through an allosteric mechanism [223, 259]. Whether a small molecule that binds to a binding site 

will allosterically modulate enzyme function or a PPI interaction is difficult to predict. Small 

molecules can serve as positive or negative allosteric regulators [167, 260, 261]. These OTH 

binding sites can also be used for the development of small molecules that can be attached to probes 

for proteasome degradation [262]. 

Finally, we mapped mutations that were previously identified at TCGA [247] onto the 

three-dimensional structure of proteins that are encoded by overexpressed genes that correlate with 

patient outcome. A recent study explored the role of mutations on tumorigenesis [263] and more 

recently using a structural genomics based approach [264, 265]. Our work complements these 

studies by identifying druggable binding pockets and classifying pockets into whether they occur 

at enzyme active sites or protein-protein interaction sites. Mutations that occur within these pockets 

are expected to have direct consequences to the function of a protein. These pockets could provide 

promising targets for the development of small-molecule therapeutic agents. Interestingly, several 

mutations occurred in enzyme active sites. These mutations may either enhance or inhibit enzyme 

activity. Most of the enzyme mutations appear to involve dramatic changes in physico-chemical 

properties such as H113Q, G568W, R140L, M80R for CA6, KIFC1, NEK2, and SULT4A1. Others 

involved subtler mutations such as V46A, A287S, and M52T for CHEK1, PCK1, and PSPH, 

respectively. Since we have focused on proteins that are expected to be overexpressed, it is likely 

that these mutations will further enhance the active of these enzymes. Three mutations were 

identified to occur at protein-protein interfaces, R293P, W167L, and Q107H. The first two may 

have disruptive effects considering that proline residues tend to disrupt secondary structures and 
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tryptophan residues are generally believed to tighten protein-protein interactions. The 

overwhelming majority occurred at OTH binding sites. These mutations provide an opportunity to 

validate the importance of these pockets. It suggests that these pockets may be located at unknown 

active sites or protein-protein interfaces. Considering that many of these OTH pockets occur on 

enzymes, it is more likely that they may be located at a protein-protein interface and could be useful 

targets for the disruption of protein-protein interactions. 

 

5.4 MATERIALS AND METHODS 

5.4.1 Gene Expression. Level 3 gene expression data expressed using RNA-seq (RNASeq 

Version 2) technology for ten cancer types was retrieved from The Cancer Genome Atlas (TCGA). 

Triple-negative breast cancer (TNBC) patients were identified from a subset of patients in BRCA 

by filtering clinical records for breast cancer patients who were negative for estrogen receptor (ER), 

progesterone receptor (PR), and Her2/neu. The gene expression data was used to build a matrix of 

read counts for each sample against each mapped gene. Only samples with designations of either 

the primary solid tumor or the solid tissue normal were kept in this matrix. Differential expression 

analyses between cancer and normal samples in the RNA-seq expression profiles were conducted 

using default parameters in the edgeR [266] package in R [267]. Differentially expressed 

(overexpressed) genes were defined as those genes with p < 0.001 and Q < 0.05. Two log2 fold 

changes of ≥ 2.0 and ≥ 1.5 were used to filtered genes for further analysis. Gene symbols provided 

by TCGA were mapped to their respective UniProt IDs using UniProt’s mapping tool 

(http://www.uniprot.org/mapping/). 

5.4.2 Protein Structures. An annotated set of 20,192 reference human protein identifiers 

was retrieved from UniProtKB/SwissProt [227]. The FASTA sequences were retrieved for each of 

these proteins and used to identify structures in the RCSB Protein Data Bank (PDB) [268]. Each 

FASTA sequence was queried against the pdbaa dataset using BLASTP (Protein-Protein BLAST 

v2.2.25+) [269]. To limit the search to protein structures that possess significant sequence identity 

and coverage to the query sequence, only structures with E-value < 10-5, >90% sequence identity, 

and PDB sequence coverage >80% were kept. We then identified the experimental methodology, 

taxonomy of the identified protein chain, and the structural resolution if the structure was from x-

ray diffraction. Previously identified structures were then filtered for only crystal structures from 

human proteins with a resolution better than 3 Å. To reduce the number of redundant structures 

identified by BLASTP and generate a representative set of crystal structures associated with each 

protein, CD-HIT (v4.6.1) [270] was used with default parameters to cluster the FASTA sequences 

of the PDB structures identified for each of the proteins. Only cluster centers identified by CD-HIT 
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were used to locate binding sites on the structures for the protein. In total, 4124 proteins had at least 

one crystal structure that met all of these criteria. 

5.4.3 Binding Site Identification. Identification of druggable binding sites on the crystal 

structures was carried out using the Schrödinger Software Suite. For each cluster identified by CD-

HIT, the cluster centers (i.e. the representative structures) were used to identify binding sites. 

Structures were first retrieved from PDB and binding partners were removed to identify the 

monomeric representative structures. All other heteroatoms, including solvent molecules and 

bound ligands, were removed. Selenomethonine residues were converted to methonines. These 

preprocessed PDB monomeric structures were then processed using the Protein Preparation Wizard 

workflow. Missing side chains and loops were added with the Prime [271] module. Disulfide bonds 

were added, and each crystal structure was protonated using PROPKA at pH 7.0. Binding sites 

were identified using the SiteMap [257] module in Schrödinger on the processed structure. Up to 

10 binding sites were kept, while all other parameters were left default. Only binding sites [221] 

with SiteScore and DrugScore above 0.8 were kept. The average coordinates of the SiteMap 

spheres were used to identify the centroid of the binding site. Druggable binding sites were 

distinguished as those with a DrugScore above 1.0. In total, we identified 5498 binding sites on 

2607 proteins. 

5.4.4 Binding Site Annotation. PyMOL scripts were generated to create individual 

sessions for each protein with druggable binding sites. The unprocessed protein structure, including 

all bound ligands and other non-solvent molecules was overlaid back atop the crystal structure. In 

addition, all redundant structures from the CD-HIT clustering were added and aligned back to the 

druggable protein. The location of enzymatic binding residues were retrieved from UniProt [227] 

and Catalytic Site Atlas [228] and highlighted on the processed protein structures. 

Each binding site identified by SiteMap was visually inspected and manually annotated to 

determine its functional role in the protein. If an enzymatic residue was in contact with the SiteMap 

spheres, or if an enzymatic molecule or inhibitor occupied the space of the spheres, the binding site 

was labeled ‘enzymatic’ (ENZ). If the binding site was at a protein-protein interaction (PPI) 

interface on the original structure or on any of the aligned structures, the binding site was labeled 

‘PPI’. Otherwise, if the binding site was neither enzymatic nor part of the interaction interface, it 

was labeled ‘Other’ (OTH). Binding sites of the recognition site of human leukocyte antigens 

(HLAs) and heme cofactor binding site of Cytochrome P450s were labeled ‘Other’. 

Secondary structures for each of the binding sites and their interaction partners were 

retrieved from DSSP [272]. The secondary structure of each residue of a crystal structure are 

classified into helix, sheet, or coil in DSSP. The number of residues falling into each category was 
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retrieved for the residues within 5 Å of the binding site. If there is at least a 60% consensus in the 

secondary structures for these residues, it was assigned into that category. Otherwise, the binding 

site was considered mixed. 

5.4.5 Survival Analysis. Kaplan-Meier curves were built using the survival package in R. 

For each disease, each patient’s time to last follow-up or time to death was collected from the 

clinical data depending on whether or not the patient was deceased. A patient’s overall survival 

was paired with their respective log2CPM and for diseases using RNA-seq. Expression levels for 

each gene was separated into ‘high expression’ and ‘low expression’ groups using the median 

expression of the gene across all patients for a given disease. A Cox proportional hazards regression 

model was fitted to the survival profile to determine the hazard ratio (HR) of each gene. Genes 

were filtered using p < 0.05 and HR > 1.0. 

5.4.6 Signaling Pathway. 27 cancer related signaling pathways were collected from 

KEGG [239]. Individual proteins within each of these pathways were collected and mapped to their 

respective UniProt IDs using the REST API in KEGG. Any protein that could not be mapped to a 

UniProt entry from the reference protein identifiers was filtered out. 

5.4.7 Protein-Protein Interaction Network. A protein-protein interaction network was 

constructed using the NetworkX [273] module in Python by retrieving human PPI data with 

experimental evidence from seven major interaction databases: Biomolecular Interaction Network 

Database (BIND) [274], BioGRID [275], Database of Interacting Proteins (DIP) [276], Human 

Protein Reference Database (HPRD) [277], IntAct [278], Molecular INTeraction database (MINT) 

[279], and Reactome [280]. Only those interactions with at least two occurrences among the seven 

databases were kept. The resulting network featured 9665 nodes and 38164 edges. 

5.4.8 Missense Mutations. Mutations were obtained from a recent study by Kandoth and 

coworkers [247]. The work identified somatic variants from 12 cancers as part of TCGA’s Pan-

Cancer initiative. We only use missense mutation data as other mutations result in the insertion or 

deletion of amino acids from the protein sequence, which would be very difficult to model onto the 

three-dimensional structure of the protein. Mutations were mapped using the sample ID barcode 

provided by TCGA to match patients with both mutation and gene expression data. The data for 

three diseases were not used since THCA was not included in the original study, while COAD and 

UCEC had low numbers of patient samples with matched gene expression data. Genes were 

mapped from Ensembl Transcript IDs to UniProt IDs using UniProt’s mapping tool. For each 

protein, the subsequent amino acid position on the protein sequence was mapped to the protein 

structure using the pairwise function in BLASTP. Each mutation was then classified by minimizing 

the Euclidean distance from the corresponding alpha carbon of the mutated residue to the site points 
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(grid spheres) of each binding site on the protein structure. In addition, the solvent-accessible 

surface area (SASA) of the mutated residue was calculated using NACCESS [281]. We used the 

SASA and distance to the closest binding site to classify each mutation as being (i) adjacent to a 

binding site; (ii) elsewhere on the protein surface; or (iii) buried in the interior of the protein. If the 

distance between the mutation and the closest binding site was less than 4 Å, the mutation was 

classified as being adjacent to the binding pocket. Otherwise, if the SASA of the mutated residue 

was greater than 10 Å2, the mutation was classified as being on the surface of the protein. If the 

mutation did not fit into either of these criteria, it was classified as located in the interior of the 

protein.  
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Chapter 6 

TUMOR-SPECIFIC CHEMOGENOMIC LIBRARIES BY STRUCTURE-BASED 

ENRICHMENT FOR GLIOBLASTOMA PHENOTYPIC SCREENING 

 

6.1 INTRODUCTION 

Like most solid incurable tumors, glioblastoma multiforme (GBM) exhibit multiple 

hallmarks of cancer as delineated by Hanahan and Weinberg [1]: Self-sufficiency in growth signals, 

insensitivity to growth inhibitory signals, evasion from programmed cell death (apoptosis), ability 

to undergo limitless cycles of cell growth, sustained ability to be supplied by blood (angiogenesis), 

and aggressive invasion of the brain parenchyma. These phenotypes are driven by multiple targets 

spanning interconnected signaling pathways across the human protein-protein interaction network. 

Large-scale sequencing studies of human tumors such as The Cancer Genome Atlas (TCGA) 

project have revealed that the complex phenotypes that define cancer are driven by a large number 

of somatic mutations that occur in proteins across the cellular network [216]. Recent whole genome 

sequencing studies have profiled the molecular signatures of various cancers, including ovarian [4], 

colorectal [5], breast [6], renal [7], lung [3, 8, 9], pancreatic [10, 11], and brain [12, 13], to identify 

underlying driver mutations and gene signatures of each disease. These studies have been 

instrumental not only in classifying tumors and uncovering genetic alterations in cancer cells 

(mutations, copy number, and rearrangements), but also a comprehensive resource for identifying 

potential targets. 

There is growing interest in harnessing the vast amount of tumor genomic data to guide 

phenotypic screening and cancer drug discovery. The discovery of small molecules that selectively 

suppress multiple targets and signaling pathways will likely have greater efficacy in the treatment 

of these tumors if molecules can be identified that selectively target tumor cells and not normal 

cells. There has been a resurgence of interest in phenotypic screening in cancer drug discovery 

[282]. Between 1999 and 2008, over half of FDA-approved first-in-class small-molecule drugs 

were discovered through phenotypic screening [283]. The increased interest in phenotypic 

screening is due in part to the lack of effective treatment options for incurable tumors such as GBM, 

which remains the most aggressive brain tumor and responds poorly to standard-of-care therapy 

that includes surgery, irradiation, and temozolomide. Standard-of-care therapies for GBM have 

been essentially unchanged for decades with a median survival of only 14-16 months and a five-

year survival rate of 3–5% [284, 285]. Ineffective tumor cell killing is largely due to intra-tumoral 

genetic instability which allows these malignancies to modulate cell survival pathways, 

angiogenesis, and invasion [286, 287]. In addition, the highly immunosuppressive GBM 
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microenvironment complicates therapeutic approaches that minimize tumor burden and promote 

host immunity [288-290]. Moreover, investigations to date indicate therapies that combine TMZ 

with immunotherapy-based approaches can either promote or deplete immunity [291-294]. 

Phenotypic screening can be an effective strategy for the development of small molecules to perturb 

the function of proteins that drive tumor growth and metastasis. Despite the increased interest in 

phenotypic screening in cancer drug discovery, the main limitations of the approach include (i) the 

lack of methods to tailor library selection to the tumor genome, (ii) cellular assays that do not 

accurately represent a tumor, (iii) overreliance on immortalized cell lines, (iv) targeting a single 

protein when tumors are driven by multiple proteins, and (v) confining compound screening to one 

phenotype. 

To date, most phenotypic screens are carried out on well-annotated tool compound libraries 

that include FDA-approved drugs. These are known as chemogenomic libraries, and they are used 

to uncover new biology for targets associated with these compounds or for drug-repurposing 

purposes [295-298]. However, existing approved drugs and tool compounds act on less than 5% of 

targets in the human genome [39]. The lack of target diversity in chemogenomic libraries presents 

an opportunity for the development of new chemical libraries or for the enrichment of existing 

libraries. The creation of diverse libraries for high-throughput screening is a major challenge 

considering the vastness of chemical space. Just among commercially-available compounds, there 

are now at least 400 million small organic compounds that can be purchased [208, 299]. In addition, 

specialized libraries designed using diversity-oriented synthesis (DOS) [300] and de novo 

combinatorial libraries such as SCUBIDOO [199] offer additional avenues to screen unexplored 

chemical space. 

Traditional two-dimensional monolayer assays utilizing cancer cell lines have been the 

most practical method to phenotypically screen these large libraries. However, these screening 

campaigns have yielded compounds that fail to model compound efficacy and cytotoxicity in more 

disease-relevant assays [301]. Traditional two-dimensional assays do not accurately capture the 

three-dimensional microenvironment of tumors, thus leading to toxic compounds that generally 

tend to block microtubule dynamics or lead to DNA modification [302, 303]. The use of 

immortalized cell lines to predict efficacy is now also recognized to be inadequate [304]. There are 

now many examples of small molecules that are efficacious in traditional in vitro and in vivo models 

yet fail to show clinical efficacy [305]. As a result, there has been intense interest in the 

development of more sophisticated three-dimensional assays. Cancer cells grown in three-

dimensional spheroids are now widely used to investigate the effects of small molecules on tumor 

growth and other endpoints such as invasion and remodeling of the tumor matrix. More 
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sophisticated assays, such as spheroid and organoids, have been developed to better represent the 

tumor and its microenvironment. 

Here we follow a rational approach to create chemogenomic libraries that are used for 

phenotypic screening to uncover novel GBM targets and generate starting points for the 

development of GBM therapeutic agents. We follow an innovative approach that combines catalogs 

of differentially expressed molecular targets identified by tumor genomic profiles along with 

cellular protein-protein interaction data to select a collection of targets with druggable binding 

pockets. A total of approximately 9000 in-house compounds are docked to each of these targets. 

Small molecules that are predicted to simultaneously bind to multiple proteins are selected for 

phenotypic screening using three-dimensional spheroids of patient-derived GBM cells. Hit 

compounds that inhibit cancer cell growth are also tested in non-transformed primary normal cell 

lines in (i) three-dimensional assays using CD34+ progenitor cells and (ii) two-dimensional assays 

using astrocytes. The effect of hit compounds on angiogenesis are also tested using a tube formation 

assay with brain endothelial cells. To uncover potential mechanisms of action, two compounds 

were selected for RNA sequencing of compound-treated and untreated cells. Thermal proteome 

profiling was performed for one compound to identify potential targets. Cellular thermal shift 

assays using antibodies were used to confirm the binding of the compound to targets that emerged 

from the thermal proteome profiling study. 

 

6.2 RESULTS 

 6.2.1 Target Selection, Virtual Screening, and Rank-Ordering of Chemical Library. 

A weakness of current implementations of phenotypic screening is the lack of rational approaches 

in the creation of chemical libraries. Here, we propose a strategy that uses the tumor’s genomic 

profile to enrich chemical libraries for phenotypic screening (Fig. 6.1). The process begins with the 

identification of druggable pockets on a large number of protein structures obtained from the 

Protein Data Bank (PDB) [306]. In previous work, we searched for druggable binding sites on 

proteins implicated in a range of cancers and classified them in the context of functional importance 

[307]. Druggable binding sites were classified based on whether they occurred at a catalytic site 

(ENZ), a protein-protein interaction interface (PPI), or an allosteric site (OTH). 

Using our approach, druggable binding sites were identified for GBM. Gene expression 

profiles were collected for GBM patients from TCGA. A total of 169 GBM tumors and 5 normal 

samples have been characterized using RNA sequencing platforms. The data were used to perform 

differential expression analysis to identify genes that are overexpressed in GBM (p < 0.001, FDR 

< 0.01, and log2 fold change (log2FC) > 1) (Fig. 6.2). In addition, a set of somatic mutations was 
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retrieved from GBM patients at TCGA and identified for 158 of the 169 tumor samples. In total, 

755 genes with somatic mutations were overexpressed in GBM patient samples. 

The set of 755 genes were subsequently filtered based on whether their protein products 

are involved in protein-protein interactions. Two large-scale protein-protein interaction networks 

of the human proteome were recently described by Rolland and co-workers [308]. The first network 

is from literature curation of seven widely used protein-protein interaction databases. The second 

network is based on systematically mapping human binary protein-protein interactions. The two 

protein-protein interaction datasets from both the literature-curated and experimentally-determined 

networks were combined to form a large-scale protein-protein interaction network consisting of 

approximately 8000 proteins and 27000 interactions. The protein products of the genes implicated 

in GBM were mapped onto this protein-protein interaction network to construct a GBM subnetwork 

(Fig. 6.3A). Among the 755 previously identified genes implicated in GBM, 390 had at least one 

interaction in the network. In total, 117 of the 390 proteins had at least one druggable binding site 

(Fig. 6.3B). 

To identify small molecules that inhibit phenotypes associated with GBM, an in-house 

library of approximately 9000 compounds was docked to the set of 316 druggable binding sites on 

proteins in the GBM subnetwork. The Support Vector Machine-Knowledge Based (SVR-KB) 

[309] scoring method was used to predict the binding affinities of each pair of protein-compound 

interactions. The number of druggable binding sites with affinities better than a given SVR-KB 

cutoff was used to rank-order compounds (Fig. 6.4A). In this work, an SVR-KB cutoff 

corresponding to a computational binding affinity of 10 nM was used. Approximately 55 percent 

of compounds were predicted to bind to five or less binding sites, and 20 percent of the docked 

compounds were predicted to bind to none of the pockets in the GBM subnetwork (Fig. 6.4B). Less 

than 4 percent of the compounds were predicted to bind to at least 30 of the 316 binding sites. Two 

separate phenotypic screens were carried out using different criteria on the number of predicted 

GBM targets. In the first phenotypic screen, small molecules with the highest number of predicted 

GBM targets were selected for further testing. In the second phenotypic screen, small molecules 

were identified using a set cutoff of 10 to 20 GBM targets. A total of 154 compounds were selected 

for the first screen that were predicted to target between 38 and 86 binding sites on GBM-specific 

proteins. The top 154 compounds were hierarchical clustered using chemical similarity. For each 

cluster, the compound corresponding to the cluster center was selected for phenotypic testing. 
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Figure 6.1. Workflow for the identification of druggable targets implicated in GBM. Workflow 

used to identify GBM-specific druggable targets through integration of genomic RNA-seq, somatic 

mutation, protein-protein interaction network, and protein structure data. Small-molecule 

compounds were screened against these pockets to identify compounds that could target proteins 

implicated in GBM.  
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Figure 6.2. Differential expression analysis of 169 tumor and 5 normal GBM RNA-seq samples 

from TCGA. Mean fitted counts for each gene are shown on the x- and y-axis, respectively.  
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Figure 6.3. Protein-protein interaction subnetwork of GBM-specific targets. (A) Interaction 

network for the GBM-specific targets. Proteins are shown as squares if there is a solved human 

crystal structure available or as circles otherwise. Proteins with a druggable binding pocket on an 

associated structure are colored red or white otherwise. (B) Degree (number of edges) versus 

betweenness centrality for GBM-specific targets in the GBM-specific subnetwork. 
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Figure 6.4. Rank-ordering of compounds by their predicted number of predicted GBM-specific 

targets. (A) Waterfall plot of each compound’s number of predicted GBM-specific targets using an 

SVR-KB cutoff of 10 nM. (B) Histogram plot showing the percentage of compounds predicted to 

bind to the number of GBM-specific targets using an SVR-KB cutoff of 10 nM.  
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Figure 6.5. Screening compounds against GBM43 leads to the identification of 1 (IPR-2025). (A) 

Screening the compounds predicted to maximally target GBM-specific proteins against GBM43 

spheroids at an initial concentration of 25 µM (mean ± SD; n = 3). Culture medium and 0.1% 

DMSO were used as negative controls. A TGV cocktail (200 µM temozolomide, 12.5 µM 

ipatasertib/GDC-0068 [pan AKT inhibitor], and 12.5 µM voxtalisib/VOX [PI3K/mTOR inhibitor]) 

and CCNU (50 µM lomustine) were used as positive controls. (B) Compound structure of 1 

identified from initial screening. (C) Stability from incubations of 1 in buffer (0.5 mL of a 1 mL 

incubation) using high performance liquid chromatography (HPLC). The compound is stable in 

buffer.  
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Figure 6.6. Concentration-dependent studies of 1 (IPR-2025) against cancer models. 

Concentration-dependent screening of 1 against a variety of glioblastoma multiforme (GBM), 

normal, and pancreatic adenocarcinoma (PDAC) models (mean ± SD; n = 3).  
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Table 6.1. Synthesized derivatives of 1 (IPR-2025). 

Compound Structure 

Physicochemical Properties IC
50 

(µM)a 

MW logP PSA logBB GBM43 GBM10 
SJ-

GBM2 

1 (IPR-2025) 

 

478.5 3.6 58.5 -1.00 
3.7 ± 

0.1 

4.9 ± 

1.1 

2.3 ± 

1.2 

22 (IPR-

3502) 

 

464.5 4.1 58.4 -0.59 NI NI ND 

23 (IPR-

3503) 

 

428.5 4.1 56.5 -0.38 NI NI ND 

24 (IPR-

3504) 
 

324.3 1.8 39.9 -0.85 NI NI ND 

25 (IPR-

3593) 

 

532.5 4.1 58.2 -0.65 
28.6 ± 

10.4 

10.9 ± 

4.4 

19.6 ± 

4.4 

26 (IPR-

3594) 

 

513.0 4.3 60.4 -0.96 NI NI NI 

27 (IPR-

3595) 

 

513.0 4.3 60.4 -0.96 NI NI NI 

aRepresentative of at least two independent experiments, where each concentration point is 

measured in duplicates (mean ± SD). 

ND: Not determined 

NI: No inhibition  
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Figure 6.7. Compound activities of resynthesized 1 and synthesized derivatives. Compound 

activity of 1 and six synthesized derivatives in the three GBM cell lines GBM43, GBM10, and SJ-

GBM2.  
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6.2.2 Exploring Compounds in Patient-Derived GBM Spheroids. A total of 47 

compounds selected from the library of 9000 compounds were tested in a three-dimensional 

spheroid viability assay [310, 311] using the patient-derived primary glioma cell line GBM43 [312] 

at 25 µM (Fig. 6.5A). Most compounds showed little to no effect on GBM43 cell viability, except 

for 1 (IPR-2025), which inhibited cell viability by 90% (Fig. 6.5B). The compound was 

resynthesized, and its stability was tested following incubation in buffer. The compound was stable 

in buffer. A follow-up concentration-dependent study of synthesized 1 revealed an IC50 of 3.7 ± 0.1 

µM in GBM43 (Fig. 6.6). Compound 1 was tested in two additional glioblastoma spheroid models 

derived from different patients with recurrent GBM, namely GBM10 and SJ-GBM2. GBM10 [312] 

is derived from an adult patient, while SJ-GBM2 [313] is derived from a pediatric patient. The IC50 

of 1 was 3.1 ± 1.5 µM and 2.9 ± 1.9 µM in GBM10 and SJ-GBM2, respectively. The effect of 1 on 

normal and non-transformed cell viability was explored using CD34+ progenitor cells and 

astrocytes (Fig. 6.6). Cell viability studies for CD34+ cells were performed using a colony 

formation assay, while a monolayer assay was used for astrocytes. Compound 1 had no effect on 

the cell viability of CD34+ or astrocyte cells up to 100 µM. As a clinical comparator in this assay, 

the standard-of-care temozolomide inhibits GBM43 with an IC50 of 244 ± 24 µM [314]. However, 

GBM43 is known to be moderately resistant to temozolomide [315]. An alternative treatment 

option is the chemotherapeutic CCNU (lomustine), which inhibited GBM43 and GBM10 cell 

viability weakly, showing about 50% inhibition at 100 µM. 

The activity of 1 was also assessed in three pancreatic ductal adenocarcinoma patient-

derived spheroid models [316-318]: Pa02C, Panc10.05 (Pa16C), and Panc198 (Pa20C). Pa02C is 

from liver metastasis of pancreatic cancer, while Panc10.05 and Panc198 are from the primary 

pancreatic tumor. Compound 1 showed no activity in Pa02C and Panc198 and weak activity in 

Panc10.05 with an IC50 of 26.0 ± 5.9 µM IC50. 

6.2.3 Structure-Activity Relationship (SAR) of 1 (IPR-2025). A set of 5 analogs from 

our internal library were identified with high Tanimoto similarity to 1: 2 (GFI-027), 3 (IPR-1909), 

4 (RAG-021), 19 (IPR-2024), and 20 (KLM-017). These 5 compounds were tested in a 

concentration-dependent manner in GBM43. Only 19 inhibited in a concentration-dependent 

manner like 1, although the compound only reaches 60% inhibition at 100 µM in GBM10 and has 

an approximate IC50 of 33 µM and no effect in GBM43. An analog-by-catalog approach was 

followed to identify another 15 derivatives. These compounds were tested in GBM43 and GBM10 

in a concentration-dependent manner. Substitution of the fused tricyclic moiety in 14 (IPR-3440), 

20, and 21 (IPR-3442), among others, led to loss of activity. Among the derivatives that share the 

fused tricyclic moiety of the parent, two also feature the sulfonyl group. 5 (IPR-3474) substitutes 
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the toluene group with a biphenyl and lacks the carbonyl group on the pyrrolidinone group, while 

6 (IPR-3476) replaces the pyrrolidinone group with an amine linker. These two compounds suggest 

the importance of the carbonyl group on the pyrrolidinone. Similarly, compounds that lack the 

sulfonyl group, like 3, also lacked activity. To further assess the importance of these moieties, three 

additional compounds, 22 (IPR-3502), 23 (IPR-3503), and 24 (IPR-3504), were synthesized that 

lack key moieties (Table 6.1 and Fig. 6.7). The removal of the carbonyl group on the pyrrolidinone, 

sulfonyl linker, or both the sulfonyl linker and the methylbenzene group in 22, 23, and 24, 

respectively, led to loss of activity in both GBM43 and GBM10. Three additional derivatives were 

synthesized to add halogen groups to 1. Substitution of the methyl group in R3 with a 

trifluoromethyl in 25 (IPR-3593) resulted in an almost ten-fold decrease in IC50 across each of the 

GBM spheroids compared to 1. Chlorine atoms were added to two separate positions of the fused 

ring structure in 26 (IPR-3594) and 27 (IPR-3595), resulting in no activity in either compound 

across the GBM spheroids. Of the 21 analogs of 1 that were tested across each of the three GBM 

spheroids, only the trifluoromethyl 25 resulted in appreciable IC50s. 

6.2.4 Additional Phenotypic Screens with Candidates with Fewer Predicted Targets. 

In the previous screen, compounds with the largest number of predicted GBM targets were selected 

for experimental validation. We repeated this process to explore whether fewer predicted targets 

would also yield active compounds. Compounds that were selected were predicted to bind to 10-

20 GBM targets using a similar SVR-KB cutoff of 10 nM. Among the top 50 compounds, three 

inhibited GBM43 viability by more than 80% at 25 µM (Fig. 6.8A). The structures of the three hits, 

28 (ALDH-22), 29 (IPR-196), and 30 (IPR-1964) are shown in Fig. 6.8B. 

Each compound was tested in a concentration-dependent manner across the patient-derived 

GBM spheroid models GBM43 and GBM10 (Fig. 6.9). Compound 28 inhibited cell viability of 

GBM43 and GBM10 with IC50s of 5.7 ± 2.6 and 21.8 ± 8.0 µM, respectively. Compound 29 

inhibited GBM43 with an IC50 of 19.7 ± 3.9 µM and GBM10 with an IC50 of approximately 30 µM. 

Like 29, 30 inhibited both GBM43 and GBM10 with low micromolar IC50s. Neither 29 nor 30 had 

an effect on CD34+ normal cell growth (Fig. 6.9). The activity of 29 was also assessed in the three 

PDAC spheroid models. Compound 29 inhibited cell viability in all three pancreatic models with 

approximately 10 µM IC50. 
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Figure 6.8. Reducing the number of predicted targets to select compounds for exploration in 

patient-derived GBM spheroids. (A) Screening compounds predicted to target between 10 and 20 

GBM-specific proteins against GBM43 spheroids at an initial concentration of 25 µM (mean ± SD; 

n = 3). (B) Compound structures of three hits identified. 
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Figure 6.9. Concentration-dependent studies of additional hits against cancer models. 

Concentration-dependent screening against a variety of GBM, normal, and PDAC models (mean ± 

SD; n = 3). 
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Table 6.2. Predicted protein targets of 1 (IPR-2025). 

Symbol Name 

Protein 

Family 

PPI Network TCGA GBM 

Degree 

Betweenness 

Centrality 

Fold 

Change Mutations 

Protein-Protein Interaction Interface 

PLK1 Serine/threonine-protein kinase PLK1 Ser/Thr protein kinase 15 1.70E-03 3.3 9 

NCF1 Neutrophil cytosol factor 1 - 9 1.70E-04 2.3 6 

PNP Purine nucleoside phosphorylase PNP/MTAP phosphorylase 2 0.00E+00 1.4 6 

 

DNA-Binding Site 

EXO1 Exonuclease 1 XPG/RAD2 endonuclease 10 3.40E-04 3.7 14 

TOP2A DNA topoisomerase 2-alpha Type II topoisomerase 3 2.50E-05 7.2 10 

 

Beta-Propeller 

CDC20 Cell division cycle protein 20 homolog WD repeat CDC20/Fizzy 8 3.10E-04 3.5 9 

GNB1 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) 

subunit beta-1 WD repeat G protein beta 29 4.60E-03 2.0 9 

ITGA5 Integrin alpha-5 Integrin alpha chain 2 1.50E-05 3.0 11 

RACK1 

Guanine nucleotide-binding protein subunit beta-2-like 

1 WD repeat G protein beta 5 1.10E-04 1.4 6 

 

Allosteric Site near Protein-Protein Interaction Interface 

NCF2 Neutrophil cytosol factor 2 NCF2/NOXA1 8 6.50E-04 2.3 9 

NEDD4 E3 ubiquitin-protein ligase NEDD4 - 15 1.10E-03 2.0 15 

PYGL Glycogen phosphorylase, liver form Glycogen phosphorylase 3 0.00E+00 3.2 19 

 

Allosteric Site near Enzymatic Nucleoside 

KIF11 Kinesin-like protein KIF11 Kinesin 4 8.40E-06 2.8 6 

TAP1 Antigen peptide transporter 1 ABC transporter 2 2.40E-04 2.4 12 
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Other Allosteric Site 

ACE Angiotensin-converting enzyme Peptidase M2 1 0.00E+00 1.9 19 

CENPE Centromere-associated protein E Kinesin 6 7.50E-05 2.8 17 

EZH2 Histone-lysine N-methyltransferase EZH2 

Histone-lysine 

methyltransferase 6 2.00E-04 4.5 10 

FLNA Filamin-A Filamin 34 7.90E-03 2.5 20 

GUSB Beta-glucuronidase Glycosyl hydrolase 2 0.00E+00 2.0 7 

MMP2 72 kDa type IV collagenase Peptidase M10A 4 7.40E-04 3.9 12 

MMP9 Matrix metalloproteinase-9 Peptidase M10A 4 1.60E-08 7.3 8 

NR5A2 Nuclear receptor subfamily 5 group A member 2 Nuclear hormone receptor 6 3.10E-05 4.4 6 

NRP1 Neuropilin-1 Neuropilin 2 4.10E-07 1.8 18 

PLA2G4A Cytosolic phospholipase A2 - 1 0.00E+00 1.6 7 

SHMT2 Serine hydroxymethyltransferase, mitochondrial SHMT 2 3.60E-06 2.0 7 

SPARC SPARC SPARC 1 0.00E+00 3.1 7 

TLR2 Toll-like receptor 2 Toll-like receptor 3 4.40E-05 2.0 17 
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Figure 6.10. RNA-Seq of 1 (IPR-2025) treated GBM43 cells. (A) Volcano plot of fold change 

versus log-transformed significance of GBM43 cells treated with 10 µM of 1 versus control. 

Differentially expressed genes are identified using a log2 fold change cutoff of 1. (B) The most 

similar 30 perturbagens to the gene signature of treated GBM43 identified using the L1000 

platform. Perturbagens are rank-ordered using the median τ statistic across nine cell lines, and are 

classified into gene knockdown (KD), overexpression (OE), and compounds (CP). 
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6.2.5 Compounds Inhibit Tube-Formation in Matrigel. Since the seminal work of 

Folkman [319], uncontrolled angiogenesis (the process of new blood vessel growth from existing 

ones) has become an established hallmark of cancer [1]. Solid tumors require a dedicated blood 

supply once they reach a certain, limiting size, and antiangiogenic agents can block tumor growth 

by starving the tumor of oxygen and nutrients. A so-called “angiogenic switch” is an integral part 

of tumor development: varied tumor types secrete vascular endothelial growth factor (VEGF) and 

other proangiogenic stimuli and downregulate antiangiogenic proteins. There have also been some 

promising clinical results with angiogenesis inhibitors in improving progression-free survival in 

both primary and recurrent GBM [320, 321]. This cancer is also characterized by microvascular 

proliferation [322] and high levels of VEGF [323]. Given the ample evidence of the importance for 

angiogenesis in the biology of these tumors, there is significant need to identify novel compounds 

with specific antiangiogenic activity. 

The parent compounds 1, 29, 30, and 31 were tested for their ability to inhibit tube 

formation of brain microvascular endothelial cells. Compound 1 inhibited tube formation with 

approximate 0.1 µM IC50, while 29, 30, and 31 inhibited tube formation with approximate 1 µM 

IC50. 

6.2.6 Structural Analysis and RNA Sequencing to Uncover Compound 1 Mechanism 

of Action. The binding modes of 1 to each of the targets predicted by the SVR-KB scoring function 

were examined in detail. Each target was classified using the structural context of the binding site 

and functional context of the protein (Table 6.2). Generally, the binding modes of 1 were at 

allosteric sites outside the active site on enzymes. Three allosteric sites were adjacent to known 

protein-protein interaction interfaces on NCF2, NEDD4, and PYGL. Similarly, 1 was predicted to 

bind to allosteric sites adjacent to the active sites on KIF11 and TAP1. The compound was predicted 

to bind at pockets at the protein-protein interfaces at the PLK1 polo box and at the homomers of 

NCF1 and PNP. The compound was also predicted to bind to the β-propeller structures of CDC20, 

GNB1, RACK1, and ITGA5. 

RNA sequencing was performed on untreated GBM43 cells and GBM43 cells treated with 

1 to validate the predicted targets of 1 and uncover a potential mechanism of action (Fig. 6.10A). 

GBM43 cells were treated with 1 and collected for analysis. Differential expression analysis (p < 

0.001, FDR < 0.01, |log2FC| > 1) revealed a set of 15 overexpressed and 20 underexpressed genes 

in GBM43 cells treated with 1. The sets of overexpressed and underexpressed were separately 

analyzed for overrepresented GO terms [324]. No significantly overrepresented terms were found 

among either set of differentially expressed genes. The set of differentially expressed genes (DEGs) 

were compared with those known to be causally implicated in cancer using the Cancer Gene Census 
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(CGC) [325]. Two DEGs were previously identified as oncogenes. The transcription factor GATA2 

has been shown to promote GBM progression through the EGFR/ERK/Elk-1 pathway [326]. 

Similarly, the kinase KDR (VEGFR2) is a known oncogene in lung, blood, and skin cancers and 

plays a key role in regulating angiogenesis [327]. 

The expression profile of cells treated with 1 was compared to the gene signatures of 

previously characterized compounds and gene knockdowns using the LINCS L1000 platform. The 

L1000 platform is an extension of the Connectivity Map (CMap) project [243], which used 

similarities in gene expression signatures to discover shared mechanisms of action between small 

molecule and genetic perturbations. The L1000 platform expands on CMap and uses a panel of 

approximately 1,000 landmark genes to characterize the molecular profiles of over 19,000 

compound and 5,000 gene perturbations across nine cell lines [328]. To compare the gene 

expression profile of 1 to the existing signatures in L1000, a signature query was generated using 

the sets of overexpressed and underexpressed genes. The similarity between the signature query is 

compared with all other signatures in L1000 using a connectivity score (τ), which corresponds to 

the percentage of all reference gene sets that are more similar than the observed gene signature. 

The most similar 30 gene and small molecule perturbations of 1 are shown in Fig. 6.10B. The most 

similar gene signatures are gene knockdowns of GNA15 and OGFOD1. The G protein α-subunit 

GNA15 is part of the heterotrimeric G protein complex consisting of α-subunit and βγ complex, 

which mediate downstream signaling of G protein-coupled receptors (GPCRs) [329]. While no α-

subunits were among the targets predicted to bind to the compound, both the G protein β-subunit 

GNB1 and β-like subunit RACK1 were predicted targets of 1. RACK1 acts as a scaffolding protein 

in transcription regulation of the transcription factor EIF4E [330]. Gene silencing and knockdown 

studies of RACK1 have resulted in promotion of apoptosis and inhibition of cell proliferation, 

migration, and invasion in glioma [331, 332]. The oxygenase OGFOD1 belongs to a family of 

transcriptional factor and chromatin regulators and has been found to inhibit cell proliferation in 

breast cancer cells [333]. Also among the knockdown gene signatures most similar to the gene 

signature of 1 in L1000 are the tumor suppressors AES [334] and TP53BP2 [335].  
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Figure 6.11. Thermal proteome profiling of 1 (IPR-2025) treated GBM43 cells. GBM43 cells 

treated with 10 µM 1 and untreated cells were serially heated to six different temperatures for 

thermal proteome profiling. Proteins were identified and quantified using mass spectrometry. 

Melting curves were fitted for each protein to determine the shift in melting temperature between 

untreated and treated proteins (ΔTm). The panel shows a scatterplot of the calculated melting 

temperature (Tm) in individual proteins between vehicle and compound-treated experiments. 
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Table 6.3. Proteins with largest increase in melting temperature when treated with compound 1 

(ΔTm ≥ 3 °C). 

Symbol Name 

ΔTm 

(°C) 

HTATSF1 HIV Tat-specific factor 1 10.6 

SPG20 Spartin 5.6 

IK Protein Red 5.3 

DCTN1 Dynactin subunit 1 4.4 

CTSB Cathepsin B 4.1 

HDLBP Vigilin 4.7 

TNPO1 Transportin-1 3.7 

PPP1CB Serine/threonine-protein phosphatase PP1-beta catalytic 

subunit 

3.6 

EIF3A Eukaryotic translation initiation factor 3 subunit A 3.3 

KIF5B Kinesin-1 heavy chain 3.3 

DNM2 Dynamin-2 3.3 

RACK1 Receptor of activated protein C kinase 1 3.1 

PFN2 Profilin-2 3.1 
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Figure 6.12. Comparison of proteins implicated by compound 1. The SVR-KB predicted targets 

(orange), differentially expressed genes (overexpressed: yellow, underexpressed: blue-purple), 

most similar perturbagens from L1000 analysis of differentially expressed RNA-seq genes (KD: 

purple, OE: blue), and proteins from thermal proteome profiling (ΔTm ≥ 3 °C: green, ΔTm ≤ -3 °C: 

red) are represented as nodes. Node borders are black if there is a solved human crystal structure 

available or uncolored otherwise. Nodes appear as rectangles if there is a druggable binding pocket 

on the associated protein or circles otherwise. Connections between nodes are built using STRING. 

Edges between connected proteins are filtered by confidence (STRING confidence: high, score ≥ 

0.7) and colored based on the source of evidence (co-expression: black, database: blue, 

experimental: magenta). Unconnected nodes are omitted.  
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Figure 6.13. Validation of RACK1 as a target of compound 1. Cellular thermal shift assay 

(CETSA) to determine direct binding of 1 (top) and inactive analog 22 (bottom) with RACK1. 

GAPDH act as negative controls. GBM43 cells were treated at various concentrations of compound 

and then heated to 45 ºC. The normalized RACK1/GAPDH circles at each concentration represent 

biological replicates (n = 2), with a horizontal bar representing the mean intensity of the replicates.  
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6.2.7 Thermal Proteome Profiling to Identify Potential Targets of 1 (IPR-2025). Once 

a compound is identified in a phenotypic screen, the challenge is to identify its targets. Several 

methods have been used in the past for target identification, such as biochemical, genomic, or 

computational approaches [336-339]. Computational methods make use of statistical and machine 

learning methods to link a novel compound to existing compounds by identifying common features 

between the two. Previously developed algorithms have used similarities in compound scaffolds 

[340, 341], protein structure similarity [342], side effects [242], and bioactivities [343] to infer a 

compound’s target. A more recent mass spectrometry-based method is thermal proteome profiling, 

which allows for systematic identification of a compound’s direct targets by analyzing shifts in 

melting temperature of the targets in cells [344, 345]. As a compound binds to its protein target, 

the protein becomes more resistant to heat-induced unfolding and denaturation. This in turn 

increases the melting temperature of the protein. 

Thermal proteome profiling was used to identify potential targets of 1. GBM43 cells were 

treated with 10 µM of 1 at six temperatures between 37 and 60 °C. Following heating, soluble 

proteins were extracted in phosphate-buffered saline (PBS) buffer, quantified and digested into 

peptides using trypsin. Digested peptides were analyzed by LC-MS/MS and quantified using label-

free precursor-ion (MS1) intensity. The iBAQ values (intensities normalized by the size of the 

proteins) acquired after data analysis using MaxQuant [346] were used to fit thermal melting curves 

and to determine the shift in melting temperature between untreated and compound-treated proteins 

(∆Tm). We acquired quantitative iBAQ data for over 1700 proteins across all temperatures at 1% 

FDR, of which the melting curves of 129 proteins were determined from the thermal profiling (Fig. 

6.11). A cutoff of 3 °C was used to identify proteins with significant thermal shifts when treated 

with 1. A total of 12 proteins were identified with ∆Tm ≥ 3 °C (Table 6.3). Interestingly, protein, 

RACK1, was both predicted to be a target of 1 (Table 6.2) as well as showed a significant thermal 

shift in TPP. In contrast, a set of 7 proteins were identified to be destabilized when exposed to 1, 

resulting in a change in melting temperature ∆Tm ≤ -3 °C. The largest observed destabilization was 

in DSTN, a component of the cytoskeleton. 

6.2.8 Integrated Analysis of Computational, RNA-seq, and TPP Data for Potential 

Mechanisms of Action. To uncover the potential mechanism of action of 1, proteins predicted to 

bind 1 by SVR-KB, and proteins implicated by compound-specific changes by RNA-seq profiling, 

L1000 comparisons, and thermal proteome profiling were integrated into a protein network (Fig. 

6.12). Proteins implicated from each of the four sources were connected based on structural and 

non-structural evidence using the STRING database[347]. STRING incorporates protein-protein 

interactions from both direct physical interactions as well as indirect functional associations. 



 

188 

Interactions come from a variety of sources, including experimental interactions from protein-

protein databases, pathway knowledge from manually curated databases, co-expression studies, 

and homology. Multiple interconnected modules are formed in the protein subnetwork. The largest 

module features genes associated with the cell cycle (PPP1CB, PLK1, EXO1, and CDC20) and 

metabolism of compounds with nucleobases (KIF11, EXO1, TOP2A, and CENPE). Within this 

cluster, several targets were predicted to bind to 1, including EXO1, TOP2A, CENPE, and KIF11. 

Three proteins in this cluster showed positive thermal shifts, DCTN1, KIF5B, and PPP1CB, as well 

as a negative thermal shift in ARCN1. Both DCTN1 and KIF5B act as motor proteins: DCTN1 is a 

subunit of dynactin, which binds to dynein and acts as cytoskeletal motors in cellular 

transport[348], while KIF5B is a motor protein involved in mitosis and meiosis, and acts as a 

catalytic subunit of the tumor suppressors NF1 and NF2[349]. Interestingly, upregulation of the 

dynactin mediator DYNC1I1 is observed in the RNA-seq analysis. A second interconnected module 

is formed by the G protein β-subunit and β-subunit-like proteins GNB1 and RACK1, respectively. 

The prediction of RACK1 as a direct target of 1 is supported by direct evidence from the thermal 

proteome profiling, as well as a similar stability shift in the RNA-binding protein HDLBP. 

Similarly, upregulation of the GPCR PTH2R and downregulation of the potassium channel 

KCNJ10, which belong to similar regulation pathways as GNB1, was also observed in the analysis 

of RNA-seq derived from treated versus non-treated GBM spheroids. 

To confirm direct binding to RACK1, the effects of 1 and the inactive analog 22 were 

examined in a concentration-dependent manner with an antibody-based cellular thermal shift assay 

(CETSA) (Fig. 6.13). Similar to thermal proteome profiling, GBM43 and GBM10 cells are treated 

with varying concentrations of the compound and then heated to 45 ºC. Direct binding of the 

compound to the protein will result in protein stabilization and an increase in melting temperature. 

In GBM43, there is an increase in RACK1 abundance at 50 and 100 µM in cells treated with 1, 

suggesting that RACK1 is among the targets of 1. To rule out non-specific binding of the compound, 

the assay was also performed on GAPDH, an enzyme involved in glycolysis, resulting in no 

difference in protein abundance with increase concentration of compound. When either RACK1 or 

GAPDH were treated with the inactive analog 22, the concentration of the compound did not affect 

protein abundance compared to the DMSO control.  
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Table 6.4. Predicted protein targets of 29 (IPR-196). 

Symbol Name 

Protein 

Family 

PPI Network TCGA GBM 

Degree 

Betweenness 

Centrality 

Fold 

Change 
Mutations 

ATP Binding Site 

DDX39A ATP-dependent RNA helicase DDX39A DEAD box helicase 5 4.80E-04 1.8 5 

Protein-Protein Interaction Interface 

PNP Purine nucleoside phosphorylase PNP/MTAP phosphorylase 2 0.00E+00 1.4 6 

Beta-Propeller 

ITGA5 Integrin alpha-5 Integrin alpha chain 2 1.50E-05 3 11 

Phospholipid Binding Site 

NR5A2 

Nuclear receptor subfamily 5 group A 

member 2 Nuclear hormone receptor 
6 3.10E-05 4.4 6 

Allosteric Site near Protein-Protein Interaction Interface 

PYGL Glycogen phosphorylase, liver form Glycogen phosphorylase 3 0.00E+00 3.2 19 

Other Allosteric Sites 

GLA Alpha-galactosidase A Glycosyl Hydrolase 1 0.00E+00 1.6 10 

GUSB Beta-glucuronidase Glycosyl hydrolase 2 2 0.00E+00 2 7 

ACE Angiotensin-converting enzyme Peptidase M2 1 0.00E+00 1.9 19 

APOBEC3C DNA dC->dU-editing enzyme APOBEC-3C 

Cytidine and deoxycytidylate 

deaminase 
3 4.50E-09 3.4 7 

BCHE Cholinesterase Type-B carboxylesterase/lipase 2 0.00E+00 2.2 9 

ITGB3 Integrin beta-3 Integrin beta chain 8 3.50E-04 3 16 

MMP9 Matrix metalloproteinase-9 Peptidase M10A 4 1.60E-08 7.3 8 

NRP1 Neuropilin-1 Neuropilin 2 4.10E-07 1.8 18 

PLA2G4A Cytosolic phospholipase A2  1 0.00E+00 1.6 7 

RRM2 

Ribonucleoside-diphosphate reductase 

subunit M2 

Ribonucleoside diphosphate 

reductase 
2 2.60E-06 7.2 5 

TOP2A DNA topoisomerase 2-alpha Type II topoisomerase 3 2.50E-05 7.2 10 
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Figure 6.14. RNA-Seq of 29 (IPR-196) treated GBM43 cells. (A) Volcano plot of fold change 

versus log-transformed significance of GBM43 cells treated with 10 µM of 29 versus control. 

Differential-expressed genes are identified using a log2 fold change cutoff of 2. (B) The most 

similar 30 perturbagens to the gene signature of treated GBM43 identified using the L1000 

platform. Perturbagens are rank-ordered using the median τ statistic across nine cell lines, and are 

classified into gene knockdown (KD), overexpression (OE), and compounds (CP). 

  



 

191 

 

Figure 6.15. Comparison of proteins implicated by compound 29. Comparison of proteins 

implicated by 29. The SVR-KB predicted targets (orange), most similar perturbagens from L1000 

analysis of differentially expressed RNA-seq genes (KD: purple, OE: blue), and differentially 

expressed genes (overexpressed: yellow, underexpressed: blue-purple) are represented as nodes. 

Node borders are black if there is a solved human crystal structure available or uncolored otherwise. 

Nodes appear as rectangles if there is a druggable binding pocket on the associated protein or circles 

otherwise. Connections between nodes are built using STRING. Edges between connected proteins 

are filtered by confidence (STRING confidence: high, score ≥ 0.7) and colored based on the source 

of evidence (co-expression: black, database: blue, experimental: magenta). Unconnected nodes are 

omitted.  
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6.2.9 Structural Analysis and RNA Sequencing to Uncover Compound 29 Mechanism 

of Action. The binding modes of 29 to the targets predicted by SVR-KB were further examined 

(Table 6.4). Like 1, most predicted binding sites of 29 occur at allosteric binding pockets. However, 

the predicted binding sites do not share similar protein functions. Compound 29 binds to only two 

sites that are known to be critical to protein function: the ATP binding site of DDX39A and the 

phospholipid binding site of NR5A2. The RNA helicase DDX39A alters RNA for transcription, 

splicing, and editing that is driven by ATPase activity[350, 351]. Similarly, the nuclear receptor 

NR5A2 (LRH-1) regulates bile-acid homeostasis and cholesterol transport, and features a 

hydrophobic ligand-binding pocket that normally binds phospholipids that mediates coactivator 

interaction and transcriptional activity [352]. The compound is also predicted to bind in the cavity 

formed by the FG-GAP repeat beta-propeller structure on the integrin ITGA5. It is also predicted 

to bind at homotrimer interface of PNP and at an allosteric pocket adjacent to the homodimer 

interface of PYGL. 

RNA sequencing of GBM43 treated with 29 was carried out at 10 µM to explore potential 

mechanism of action of the compound (Fig. 6.14A). Differential expression analysis was carried 

out and revealed a larger number of DEGs compared to 1. Considering the large number of genes, 

a more stringent fold change cut-off was used for differential expression (p < 0.001, FDR < 0.01, 

|log2FC| > 2). In total, 134 overexpressed and 65 underexpressed genes were identified. Gene 

overrepresentation analysis[324] of the overexpressed genes revealed two significant biological 

processes terms. The first term involves genes associated with cell-matrix adhesion (fold 

enrichment = 12.8, FDR < 0.04) and its parent term cell adhesion (fold enrichment = 4.1, FDR < 

0.03), such as integrins, FGL2, NTN4, and ANGPT2. The second term is cellular defense response 

(fold enrichment = 9.3, FDR < 0.01), which involves a set of genes in the human leukocyte antigen 

(HLA) system. No significant GO processes were identified among the set of underexpressed 

genes. Comparison of the differentially expressed genes with those with known causal mutations 

in cancer[325] include the tumor suppressing transcription factor KLF4 and oncogenes MET and 

MYCL. Similarly, CD74 and CIITA are associated with MHC-II immune response, while the 

lncRNA MALAT1 is associated with chemoresistance to temozolomide [353]. 

The L1000 platform [328] was used to identify known perturbations with the most similar 

expression signatures as 29 (Fig. 6.14B). The most similar pattern is overexpression of a gene in 

the HLA system, which is consistent with overrepresentation of genes involved in cellular defense 

response. The top knockdown signatures are genes involved in immunoregulation (e.g. FKBP1A 

and TFE3) and cell differentiation (e.g. BTG1, UBA52, and TLE3). Among the top compound 

signatures, the majority are known mTOR and PI3K kinase inhibitors. The sets of genes predicted 
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by SVR-KB, RNA sequencing, and L1000 platform were integrated using STRING[347] to 

uncover potential mechanisms of 29 (Fig. 6.15). Proteins implicated from each of the three sources 

were connected based on both structural and non-structural evidence. The gene signatures identified 

by L1000 are not directly associated with the set of SVR-KB genes. One exception is the connection 

between ITGB3 and KSR2 from SVR-KB predicted and L1000 knockdown, respectively, which 

are both involved in MAP2K/MAPK activation. 

The largest interconnected module in the subnetwork is formed by upregulation of integrins 

(e.g. ITGA2, ITGA3, ITGA4, ITGA11, and ITGB3) and downregulation of collagens (e.g. COL4A3, 

COL4A4, COL9A1, COL11A1), which is associated with the SVR-KB predicted targets ITGA5 and 

ITGB3. Similarly, our predicted target MMP9 is associated with the observed upregulation of 

NOX3, A2M, and MMP1 and downregulation of VEGFA and TGFB2 in the RNA-seq. The gene 

signature knockdown of SREBF2, a transcription factor associated with cholesterol homeostasis, is 

consistent with downregulation of a variety of cholesterol biosynthesis and regulation, including 

FDFT1, INSIG1, and HMGCS1, but is not associated with any of our predicted targets. Treatment 

with 29 resulted in up-regulation of a collection of genes associated with MHC-II immune response, 

including multiple HLAs, CD74, and CIITA. 

 

6.3 DISCUSSION 

Tumors such as GBM exhibit multiple phenotypes that include uncontrolled growth, angiogenesis, 

invasion, and immune evasion. These phenotypes are driven by perturbations in genes and their 

protein products working in concert across multiple signaling pathways. The multiple targets 

involved in promoting tumor growth and metastasis pose a major challenge for the development of 

small-molecule therapeutic agents to treat these tumors. To date, the most common strategy in 

cancer drug discovery is to develop small molecules that modulate the function of a single target. 

This approach has not yielded therapeutic agents that are efficacious for complex tumors such as 

GBM. At the other extreme, phenotypic screening has been used to uncover novel anti-cancer 

agents [282]. This strategy has led to several approved drugs, including eribulin in breast cancer, 

nelarabine in T-cell lympoblastic leukemia and lymphoma, and trametinib in metastatic melanoma 

[354]. However, the limited diversity of chemical libraries, the use of immortalized cell lines, and 

the reliance on two-dimensional cellular assays has mostly led to cytotoxic cell cycle inhibitors that 

have not yielded efficacy in patients [355]. 

We believe that a data-driven approach that combines genomic, structural, and protein-

protein interaction data to enrich chemical libraries using computational docking has the potential 

to overcome the limitations of phenotypic screening for cancer drug discovery. Here, in a proof-of-
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concept study, we propose a screening strategy that takes advantage and integrates vast orthogonal 

datasets including (i) tumor genomic data from patient-derived GBM samples available at TCGA, 

(ii) three-dimensional structures of human proteins that enable the identification of druggable 

pockets in proteins implicated in GBM, and (iii) the large number of cellular protein-protein 

interactions that have been mapped over the past decade using yeast-two-hybrid and other methods. 

Specifically, our approach initially utilizes expression data from TCGA to select all genes that are 

overexpressed and mutated in GBM. The PDB is subsequently mined to retrieve available protein 

structures that are encoded by these genes. Druggable pockets within these structures are identified 

and used for structure-based screening to identify potential small-molecule inhibitors. Proteins that 

are known to be involved in protein-protein interactions and possess druggable pockets are used 

for structure-based docking of an in-house library of 9,000 compounds. The resulting protein-

compound complexes were ranked to select 50 small molecules that bind to the highest number of 

GBM-specific proteins. In another strategy, we selected 50 compounds that bind to 20 predicted 

GBM-specific targets or less. The resulting 100 compounds were tested in a cell viability assay 

utilizing patient-derived GBM cells grown in a physiologically relevant three-dimensional format. 

Our strategy has a significant advantage over standard phenotypic screening, namely that large 

libraries containing thousands of compounds can be enriched to select a small collection of 

candidates that can be tested in more sophisticated assays and multiple phenotypes. Two assays are 

used, spheroid growth and tube formation assay in Matrigel. We also strictly use patient-derived 

low-passage cell lines to overcome the limitations of existing phenotypic screens that are done on 

established cell lines. In addition to using GBM cancer cell lines, we also employ low passage 

pancreatic ductal adenocarcinoma cell lines as well as normal non-transformed cells such as CD34+ 

progenitor cells and astrocytes. 

Compound collections were initially screened at a single concentration in duplicate using 

GBM43 cells grown in 3D spheroids. In the first set of compounds that were predicted to maximally 

bind to GBM-specific targets, one compound, namely 1 (IPR-2025), showed substantial inhibition 

of cell viability. For the second set of compounds that were predicted to bind to 20 or less GBM-

specific targets, three hits emerged, 28 (ALDH-22), 29 (IPR-196), and 30 (IPR-1964). All three 

compounds inhibited GBM spheroid viability by 80% or more at 25 µM. A concentration-

dependence study revealed that 1 (IPR-2025) showed the highest potency in all three patient-

derived GBM cell lines with IC50s < 4 µM, while the remaining compounds had IC50s that are 10 

µM or greater. All four were tested for their effect on tube formation in Matrigel, an indication of 

their potential usefulness in blocking angiogenesis and a key feature of GBM tumors, with sub-

micromolar IC50s. Two compounds, 1 and 29, were tested in both normal non-transformed human 
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CD34+ progenitor cells and primary brain astrocytes. Significantly, 1 had no effect on colony 

formation of CD34+ cells or astrocyte cell viability suggesting that there is a therapeutic window. 

Compound 29 also demonstrated negligible inhibition of CD34+ cell viability, but some 

cytotoxicity is detected at 30 µM or higher for astrocytes. The toxicity may be due to the lack of 

solubility of the compound at these higher concentrations since the compound shows substantial 

inhibition of GBM cell viability despite the lack of toxicity in astrocytes and CD34+ cells. To put 

these activities in perspective, standard-of-care temozolomide inhibits GBM43 growth with an 

approximate IC50 of 250 µM consistent with the high therapeutic doses used in GBM. 

RNA-seq was initially employed to uncover a potential mechanism of action for 1 and 29 

in GBM43 cell lines. Both compounds led to up-regulation and down-regulation of genes in cancer 

cells. Compound 1 exhibited remarkable selectivity as relatively fewer genes were affected by this 

compound compared to 29. The L1000 platform was employed to identify gene knockdowns that 

led to a similar effect on gene expression. However, L1000 utilizes adherent cell cultures and 

established cell lines in cancers other than GBM. In contrast, GBM43 is a low-passage patient-

derived cell line grown as a spheroid model and is expected to have a different underlying gene 

expression profile. Interestingly, the expression profile of 1 was most similar to the knockdown of 

G protein GNA15, which belongs to the same family as the predicted target GNB1 and structural 

homolog RACK1. 

Considering the GBM-specific activity of 1 (IPR-2025) and its lack of cytotoxicity in 

normal non-transformed cell lines, thermal proteome profiling was used to identify potential targets 

of this compound. TPP uncovered up to 11 potential targets of 1, including RACK1 and KIF5B. It 

is interesting that among them, one target (RACK1) was also among the targets of 1 that emerged 

from the structure-based docking and ranking analysis. Analysis of the predicted binding mode 

reveals that the compound binds within the central tunnel of the β-propeller structure. The 

scaffolding protein RACK1 has been shown to be upregulated during angiogenesis[356], and 

RACK1 in complex with VIM was shown to regulate angiogenesis by modulating 

PTK2/FAK1[357], providing further evidence that RACK1 could be a potential target of 1. Follow-

up CETSA analysis seems to support the fact that 1 may bind to RACK1 directly in cell culture. It 

is important to note that the TPP list is likely not a comprehensive list of all direct targets of 1, and 

it is also likely that the 20 top targets identified in TPP may not be all targets of 1, as the compound 

was designed to bind and modulate multiple targets. 

In summary, we developed a multi-target approach that integrates cancer genomics with 

the druggable protein interactome to identify therapeutic candidates of GBM. Either strategy in 

selecting compounds that were predicted to either target the highest number of GBM-specific 
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proteins or to a lower threshold of 20 or less GBM-specific proteins yielded candidate compounds. 

We pursued two compounds in RNA-seq, one from the first approach (compound 1) and another 

from the second approach (compound 29). Thermal proteome profiling of 1 revealed possible 

targets, including the computational predicted target RACK1. The ability of 1 to selectively target 

GBM phenotypes without affecting normal cell viability makes it suitable as a lead compound to 

uncover new targets in GBM and to develop potential therapeutic agents with multi-targeting 

properties. 

 

6.4 MATERIALS AND METHODS 

6.4.1 TCGA GBM Gene Expression and Somatic Mutations. RNA-sequencing and 

mutation data from GBM were identified from The Cancer Genome Atlas (TCGA) project [12, 

217] and collected from the National Cancer Institute’s Genomic Data Commons (GDC) data portal 

[358]. As part of the GDC pipeline, 169 tumors and 5 normal samples were previously aligned 

against the GRCh38 genome assembly using STAR 2-pass [359] and quantified using HTSeq 

[360]. Level 3 HTSeq fragment counts were collected from all 174 samples and used these as read 

counts for differential expression analysis. Differentially expressed genes were identified using the 

edgeR [266] package and the quasi-likelihood F-test pipeline [361] for hypothesis testing. A 

counts-per-million (CPM) threshold corresponding to a library count of 10 (CPM ≈ 0.15) was used 

to filter out genes with low reads. Overexpressed genes were defined as those with p < 0.001, FDR 

< 0.01, and log2 fold change (log2FC) > 1. Ensembl Gene identifiers from the differential expression 

analysis were mapped to UniProt [119] identifiers using BioMart [362]. Open-access mutation 

annotation format (MAF) files for GBM were also collected from the GDC data portal. The GDC 

pipeline used the MuTect2 [363] pipeline for mutation calling. As part of the GDC’s workflow, 

low quality and potentially germline variants were removed. Somatic mutations were mapped to 

their corresponding proteins using the UniProt ID. 

6.4.2 Protein-Protein Interaction Network. Rolland and associates [308] recently 

constructed two large-scale protein-protein interaction networks. The first is based on literature 

curation and benchmarking of seven protein-protein interaction databases, producing a network of 

approximately 5500 proteins and 12000 interactions. The second is based on systematic 

experimental testing of pairwise combinations of approximately 13000 genes and describes a 

network of approximately 4200 proteins and 14000 interactions. Entrez genes were mapped to 

UniProt identifiers using UniProt’s mapping tool (http://www.uniprot.org/mapping/) and these two 

networks were combined together using the NetworkX [273] module in Python. The resulting 
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protein-protein interaction network consists of approximately 27000 interactions across 8000 

proteins and was visualized using Cytoscape [364] (v3.3.0). 

6.4.3 Druggable Binding Sites. In a previous work, a set of druggable binding pockets 

were identified in the human proteome and explored in the context of functional importance, 

signaling pathways, and the human interactome [307]. In brief, a set of 4124 proteins were 

identified in the human proteome that have been solved with crystallography. Druggable binding 

pockets were found on these proteins using the SiteMap [221, 257] module in Schrödinger 

(Schrödinger LLC, New York, NY). Up to 10 binding sites were mapped for each structure. Each 

binding site was evaluated by its ability to bind a ligand (SiteScore) and its druggability 

(DrugScore). Only binding sites with SiteScore and DrugScore above 0.8 were kept. In total, 5498 

binding sites on 2607 proteins were found. Each binding site identified by SiteMap was visually 

inspected and manually annotated to determine its functional role in the protein. If an active site 

residue was in contact with the SiteMap spheres, or if a catalytic molecule or inhibitor occupied 

the space of the spheres, the binding site was labeled ‘enzyme’ (ENZ). If the binding site was at a 

protein-protein interaction (PPI) interface on the original structure or on any of the aligned 

structures, the binding site was labeled ‘PPI’. Otherwise, if the binding site was neither enzyme nor 

part of the interaction interface, it was labeled ‘other’ (OTH). 

6.4.4 Virtual Screening Against GBM Network. The set of druggable binding sites on 

proteins which were (i) overexpressed in GBM, (ii) featured somatic mutations in GBM, and (iii) 

were part of the PPI interactome were selected. Specifically, we focused on binding sites that were 

classified as either PPI or OTH and omitted those with solely ENZ classifications. In total, 316 

binding sites were identified. The set of binding pockets were docked against an internal chemical 

library of small molecules. These compounds are from previous screening campaigns primarily 

focused on targeting tight protein-protein interactions. Compounds possessing pan-assay 

interference compound (PAINS) [170] or rapid elimination of swill (REOS) [171] moieties were 

discarded. This resulted in a compound library of 9075 small molecules and their enantiomers. 

Compounds were docked against 316 binding sites on proteins implicated in GBM using AutoDock 

Vina [172] (v1.1.2). The average coordinates of the SiteMap spheres were used to identify the 

centroid of the binding site for docking. Each binding site was represented as a box with dimensions 

of 21 Å × 21 Å × 21 Å. All other parameters were set to default values. Docked poses were rescored 

using the previously developed Support Vector Machine-Knowledge Based (SVR-KB) [309] 

scoring function. In this scoring function, knowledge-based pair-potentials of co-crystal complexes 

are used to train a regression model to predict the binding affinity of docked complexes. To rank-

order compounds, the number of pockets with binding affinities better than a given SVR-KB cutoff 
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for that compound were counted. Here, an SVR-KB cutoff corresponding to a predicted binding 

affinity of 10 nM was used. Compounds were rank-ordered using the number of binding sites 

predicted to bind to the compound with an affinity better than the SVR-KB cutoff. The top 154 

compounds were retrieved and clustered using the Canvas module in Schrödinger. A hashed binary 

fingerprint corresponding to atom triplets of Daylight invariant atom types were generated for the 

selected compounds. Compounds were hierarchically clustered using their atom triplet fingerprints 

and average linkage clustering to 50 clusters. The Tanimoto similarity between a pair of fingerprints 

was used as the distance metric. Compounds corresponding to the centroid of each cluster were 

selected for experimental validation. 

6.4.5 Cell Culture. GBM43, GBM10, and SJ-GBM2 cells were cultured in DMEM 

medium with glutamine (Cellgro, Manassas, VA) supplemented with 10% FBS and 1% 

penicillin/streptomycin in 5% CO2 at 37 °C. 

6.4.6 Three-Dimensional Culture Models. The GBM43 cell line was generated as 

previously described [314]. The GBM43 xenograft tissue was a kind gift from Dr. Jann Sarkaria 

(Mayo Clinic, Rochester, IN), and tumors were expanded by passage in the flank of NOD/SCID 

γnull mice. To generate GBM43 cell lines, tumors were harvested, disaggregated, and maintained in 

2.5% FBS for 14 days on Matrigel-coated plates (BD Biosciences) to remove murine fibroblasts. 

In-vitro GBM43 cell lines were propagated in DMEM with 10% FBS for no more than 7 passages. 

Cell line identity was confirmed by DNA fingerprint analysis (IDEXX BioResearch) for species 

and baseline short-tandem repeat analysis testing. GBM43 spheroids were generated by plating 

early-passage cells at 2.5 × 104 cells per well in 96-well ultralow attachment plates (Corning Inc.) 

in DMEM/F12 (1:1; GIBCO) supplemented with 2% B27 supplement (GIBCO), 20 ng/mL 

epidermal growth factor (EGF), and 20 ng/mL fibroblast growth factor (FGF) (Peprotech) for 2 

days. The spheroids were then treated with compounds and growth analyzed by Alamar blue 

staining at day 5 following compound exposure. 

Astrocyte cell proliferation was determined by The CellTiter 96® AQueous Non-

Radioactive Cell Proliferation Assay (MTS) (Promega) performed in 96-well plates. Cells were 

seeded at 8 × 103/well in DMEM medium with 10% FBS and 1% 100X Penicillin/Streptomycin. 

Cell numbers were determined after 3 days of incubation with DMSO or compounds at indicated 

concentrations. 20 μL of MTS solution was added to the well. After 1 h incubation at 37 °C, the 

absorbance was measured at 490 nm. Experiments were done in triplicate. 

Half maximal inhibitory concentration (IC50) of cell viability curves were determined using 

a four-parameter logistic model [365]. IC50 values represent relative IC50s, that is, the minimum 
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parameter of the model is the lowest cell viability observed. Cell viability curves were determined 

using the non-linear least-squares method as implemented in the SciPy package in Python. 

6.4.7 Invasion Assay. The Matrigel based tube formation assay was performed as 

previously described [366]. Briefly, 50 µL Matrigel (Corning, Corning, NY) was allowed to 

solidify in a 96 well black, clear bottom plate at 37 °C for 20 min. Primary brain microvascular 

endothelial cells (BMECs; Cell Systems, Seattle, WA) were added to the solid Matrigel at 15,000 

cells per well in 100 µL endothelial growth medium-2 (EGM-2, Lonza, Walkersville, MD) and 

dosed with appropriate concentrations of compound with 1 µL DMSO per well. Tube formation 

was observed every 2 hours by brightfield microscopy and images were taken after 8 hours of tube 

formation. Six images per treatment were analyzed with the Angiogenesis Analyzer plugin for 

ImageJ [367], and BMEC total tubule length for treated cells was normalized to DMSO-treated 

samples. Statistical analysis using one-way ANOVA with Dunnett’s post hoc test to compare 

treatments with DMSO control was completed using GraphPad Prism (v7.0, GraphPad Software, 

La Jolla, CA). 

6.4.8 RNA-Seq of Compound-Treated Cells. GBM43 cells were treated with 10 µM 1 

(IPR-2025) and 29 (IPR-0196). RNA-seq analysis was conducted in triplicates for the untreated 

control, 1, and 29. After compound treatment, GBM43 cells were collected and rinsed with 1× PBS. 

The pellet was first homogenized in RLT lysis buffer plus β-mercaptoethanol and total RNA was 

extracted with RNeasy Mini Kit (Qiagen) in combination with QIAshredder (Qiagen). The RNA 

quality was assessed by A260/A280 ratio (NanoDrop) and stored at -80 °C. 

Total RNA was evaluated for its quantity and quality using the Agilent Bioanalyzer 2100 

system. For RNA quality, a RIN number of 7 or higher was desired. A total of 500 ng RNA was 

used. The cDNA library was prepared through mRNA purification and enrichment, RNA 

fragmentation, cDNA synthesis, ligation of index adaptors, and amplification, following the 

TruSeq Stranded mRNA Sample Preparation Guide, RS-122-9004DOC, Part# 15031047 Rev. E 

(Illumina, Inc.). Each resulting indexed library was quantified, and its quality accessed by Qubit 

and Agilent Bioanalyzer, and multiple libraries pooled in equal molarity. Five µL of 2 nM pooled 

libraries per lane was then denatured, neutralized, and applied to the cBot for flow cell deposition 

and cluster amplification, before loading to HiSeq 4000 for sequencing (Illumina, Inc.). 

The RNA-seq aligner from STAR [359] (v2.5) was used to map RNA-seq reads to the 

human reference genome (hg38), with the following parameter: ‘--outSAMmapqUnique 60’. 

Uniquely mapped sequencing reads were assigned to genes using featureCounts [368] (from 

subread v1.5.1) with the following parameters: ‘-s 2 -Q 10’. The genes were filtered for further 

analysis if their count per million (CPM) of reads was less than 0.5 in more than 4 samples. The 



 

200 

method of trimmed mean of M values (TMM) was adopted for gene expression normalization cross 

all samples, followed by differential expression (DE) analysis between different conditions using 

edgeR [266, 369] (v3.20.8). 

Differentially expressed genes (DEG) were determined using p-value and false discovery 

rate (FDR) cutoffs of 0.001 and 0.01, respectively. A fold change (|log2FC|) cutoff of 1 and 2 were 

used for 1 and 29, respectively. The functional analysis was performed on overexpressed and 

underexpressed DEGs separately with a cutoff of FDR < 0.05 to identify significantly 

overrepresented Gene Ontology (GO) and/or KEGG pathways using DAVID [370, 371] and 

PANTHER [324]. 

6.4.9 Thermal Proteome Profiling. GBM43 cells were harvested by centrifugation at 

500g and washed twice with PBS and protease inhibitor cocktail. Cells were then treated with 10 

µM 1 or DMSO (as control) for 24 h. Treated cells were pelleted again and re-suspended in ice-

cold PBS. This was repeated twice. Pellets were then exposed for 3 min to the following 

temperatures: (i) 37 °C, (ii) 40 °C, (iii) 45 °C, (iv) 50 °C, (v) 55 °C, and (vi) 60 °C. After a freeze-

thaw treatment, cells were pelleted again, and the supernatant was snap frozen in liquid nitrogen. 

After thaw, proteins concentration in each sample was determined by bicinchoninic acid 

(BCA) assay with BSA as a standard. About 50 µg protein from each sample was denatured by 

adding 50 µL of 8M urea, reduced by incubating with 10 mM dithiothreitol (DTT) at 50 °C for 

45 min, and cysteine alkylated with 20 mM iodoacetamide (IAA) in the dark for 45 min at room 

temperature, followed by incubation with 5 mM DTT for 20 min at 37 °C to scavenge residual 

IAA. Proteins were digested using sequencing grade trypsin and Lys-C mix from Promega at a 1:25 

(w/w) enzyme-to-protein ratio at 37 °C overnight. The digested peptides were cleaned using C18 

silica micro spin columns (The Nest Group Inc.) and peptides were eluted using 80% acetonitrile 

containing 0.1% formic acid (FA). The samples were vacuum dried and re-suspended in 3% 

acetonitrile and 0.1% formic acid. The peptide concentration was determined by BCA assay with 

BSA as a standard. Peptides concentration was adjusted to 0.2 µg/µL, soluble and insoluble samples 

were mixed together and 5 µL was used for LC-MS/MS analysis as described below. 

 Samples were analyzed by reverse-phase LC-ESI-MS/MS system using the Dionex 

UltiMate 3000 RSLCnano System coupled to the Q Exactive High Field (HF) Hybrid Quadrupole-

Orbitrap MS and a Nano-electrospray Flex ion source (Thermo Fisher Scientific). Peptides were 

loaded onto a trap column (300 µm ID  5 mm) packed with 5 µm 100 Å PepMap C18 medium, 

and then separated on a reverse phase column (15-cm long × 75 µm ID) packed with 3 µm 100 Å 

PepMap C18 silica (Thermo Fisher Scientific). All the MS measurements were performed in the 

positive ion mode, using 120 min LC gradient as previously described [372]. The mass 
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spectrometer was operated using standard data-dependent mode. MS data were acquired with a 

Top20 data-dependent MS/MS scan method. The full scan MS spectra were collected in the 400-

1,600 m/z range with a maximum injection time of 100 milliseconds, a resolution of 120,000 at 

200 m/z, spray voltage of 2 and AGC target of 3 × 106. Fragmentation of precursor ions was 

performed by high-energy C-trap dissociation (HCD) with the normalized collision energy of 27 

eV. MS/MS scans were acquired at a resolution of 15,000 at m/z 200 with an ion-target value of 1 

× 105 and a maximum injection of 20 milliseconds. The dynamic exclusion was set at 15 s to avoid 

repeated scanning of identical peptides. Instrument was calibrated at the start of each batch run and 

then in every 72 hours using calibration mix solution (Thermo Scientific). The performance of the 

instrument was also evaluated routinely using complex E. coli digest purchased from Sigma. 

Raw LC-MS/MS data were analyzed using MaxQuant [346] (v1.6.0.16) against the 

UniProt human protein database containing 40,707 proteins. The database search was performed 

with the precursor mass tolerance set to 10 ppm and MS/MS fragment ions tolerance was set to 20 

ppm. Database search was performed with enzyme specificity for trypsin and LysC, allowing up to 

two missed cleavages. Oxidation of methionine and N-terminal acetylation were defined as a 

variable modification, and carbamidomethylation of cysteine was defined as a fixed modification 

for database searches. The ‘unique plus razor peptides’ were used for peptide quantitation. The 

false discovery rate (FDR) of both peptides and proteins identification was set at 0.01. Data were 

searched with ‘match between runs’ option. In the case of identified peptides that are shared 

between two proteins, these were combined and reported as one protein group. Proteins matching 

to the reverse database were filtered out. 

Protein abundances were quantified using iBAQ [373] and transformed into relative 

concentrations relative to the lowest temperature (37 °C). Protein fold changes were normalized 

and melting curves were fitted following the protocol described by Savitski [344], Franken [345], 

and co-workers. The previously described normalization protocol [344] was adapted to fit the range 

of temperatures in our experiments. Melting curves were selected from both the vehicle and 

treatment groups where the fold change at 55 °C was between 0.4 and 0.6 and the fold change at 

60 °C was less than 0.4. Normalization was then applied as previously described [344]. Following 

normalization, melting curves were fitted into the sigmoidal function [345]: 

𝑓(𝑇) =
1 − 𝑝

1 + 𝑒
−(

𝑎
𝑇

−𝑏)
+ 𝑝 

where 𝑇 is the temperature, 𝑎 and 𝑏 are constants, and 𝑝 is the plateau as 𝑇 → ∞. The melting point 

𝑇𝑚 is found using: 
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𝑇𝑚 =
𝑎

𝑏 − ln (
1 − 𝑦
𝑦 − 𝑝

)
 

 at 𝑓(𝑇𝑚) = 𝑦 = 0.5. The slope of the melting curve 𝑠𝑙𝑜𝑝𝑒 = 𝑓′(𝑇𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛) is found at 

the inflection point 𝑇𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 where 𝑓′′(𝑇𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛) = 0. Melting curves were determined using 

non-linear least-squares method implemented in the SciPy package in Python. Proteins with poorly 

fitted curves were excluded if the parameters of the curve fit any of the following criteria: (i) vehicle 

or treatment curve with 𝑅2  <  0.8, (ii) vehicle 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 > 0.3, (iii) the number of points between 

(𝑝𝑙𝑎𝑡𝑒𝑎𝑢 + 0.1, 0.9) < 1, and (iv) vehicle or treatment 𝑠𝑙𝑜𝑝𝑒 > −0.06. In total, 129 proteins were 

identified that passed all quality control filters. The shift in melting point Δ𝑇𝑚 was determined as: 

Δ𝑇𝑚 = 𝑇𝑚
treatment − 𝑇𝑚

vehicle 

 A cutoff of Δ𝑇𝑚 ≥ 3.0 was used to identify proteins with significant thermal stability 

following compound treatment. 

6.4.10 Gene Set Analysis. The STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) database [347] incorporates protein-protein interactions from both direct physical 

interactions as well as indirect functional associations. STRING was used to integrate gene sets 

identified from protein target prediction using SVR-KB, differentially expressed genes identified 

from RNA sequencing, most similar gene signatures from L1000, and genes identified by thermal 

proteome profiling. A concatenated list of all HUGO gene symbols was used as input. Connections 

coming from text mining sources were excluded. Edges with confidence score < 0.7 (high 

confidence) and genes with no edges in the subnetwork were excluded. The resulting subnetworks 

were visualized using Cytoscape [364]. 

6.4.11 Cellular Thermal Shift Assay (CETSA). GBM43 and GBM10 cells were treated 

with 1 (IPR-2025) and 22 (IPR-3502) as previously described [374]. Cells were treated for 6 h in 

CO2 incubator at 37 °C. The treated samples were harvested and washed twice in PBS and 

suspended in PBS supplemented with a protease inhibitor cocktail (Sigma‐Aldrich). Each sample 

with 5 × 106 cells was heated at 45 °C for 3 min, then incubated for 3 min at room temperature, and 

frozen in liquid nitrogen. Samples were lysed with three freeze–thaw cycles using liquid nitrogen 

and a 25 °C water bath. Cell lysates were centrifuged at 100,000 × g for 20 min at 4 °C to separate 

protein aggregates from soluble proteins. Supernatants were collected for western blot with RACK1 

and GAPDH antibodies (Cell Signaling).  
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Chapter 7 

SUMMARY 

 

7.1 CONCLUSION 

 Protein-protein interactions (PPIs) control almost every aspect of normal cellular function. 

The phenotypes observed in diseases such as cancer is driven by perturbations in protein-protein 

interactions as a result of underlying driver mutations. Despite their importance in cell signaling, 

protein-protein interactions remain unviable targets in traditional drug discovery. This can be 

attributed to the large, flat, and featureless interaction interfaces that are typical of protein-protein 

interactions. However, recent advances have identified potential design strategies for targeting 

protein-protein interactions. 

 Understanding how existing compounds engage and mimic hot spots could help guide 

structure-based computational screening of chemical libraries for the discovery of small-molecule 

protein-protein interaction inhibitors. Thus, in Chapter 2, existing protein-protein interaction 

inhibitors were explored with respect to the native protein ligand. First, existing inhibitors were 

collected for which there is a crystal structure of both the protein-protein and protein-compound 

complex. Computational methods were used to identify hot spots at PPI interface using alanine 

scanning and per-residue energy decomposition as a means to explore engagement of compounds 

with hot spots on the protein receptor and overlap between compounds and ligand hot spots. It was 

found that in general, existing small-molecule inhibitors of protein-protein interactions do not 

engage and mimic hot spots on the protein receptor and ligand, respectively. Designing compounds 

that make better use of hot spots may represent a viable strategy for the discovery of more effective 

inhibitors of protein-protein interactions. 

 The goal of the second part of this work was to identify potential therapeutics for protein-

protein interactions. A traditional drug discovery campaign usually starts with structure-based 

virtual-screening to identify lead compounds. This process involves molecular docking of a 

compound library to a binding pocket on a target of interest to predict the binding pose of each 

compound. Binding poses are then evaluated with the use of scoring functions. Traditional scoring 

functions are developed for traditional binding pockets at active sites on enzymes and are not able 

to capture compound engagement with either receptor or ligand hot spots. In Chapter 3, a scoring 

method was developed to evaluate compound engagement with receptor hot spots. The scoring 

function made use of pairwise interactions of a compound with individual residues on the protein 

receptor. This fingerprint method was used to rank-order compounds based on their ability to mimic 

the interactions seen in the native protein ligand. The fingerprint method, which captures 
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engagement with receptor hot spots, was combined with a pharmacophore modeling method, which 

captures mimicry of ligand hot spots. This led to small molecules with novel chemotypes that 

inhibited a tight protein-protein interaction with single-digit micromolar binding affinities, 

suggesting that that mimicking the binding profile of the native ligand and the position of interface 

residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors 

of tight protein-protein interactions. 

 An additional challenge in structure-based virtual-screening is the selection of the 

compound library. Few studies have examined the compounds in existing commercial and 

specialized collections for PPI drug discovery. In Chapter 4, we explored how effectively small 

molecules in commercial library, a collection of diversity-oriented synthesis libraries, and a 

compound collection feature fragment-like compounds mimicked the positions of critical residues 

at tight protein-protein interactions interfaces. A combined docking and pharmacophore approach 

was used to measure the overlap between compounds and sidechains of interface residues of three 

distinct PPIs. Our results suggested that while small fragment-like conformationally-restricted 

compounds can provide good candidates for PPIs with well-defined pockets, PPIs with large, flat, 

and featureless surfaces may require larger, more complex compounds. 

 In contrast to the first and second part of the work that examined individual protein-protein 

interactions, the final part of this work explores targeting protein-protein interaction networks. 

Diseases such as cancer exhibit multiple phenotypes such as uncontrolled cell growth, evasion of 

programmed cell death, and tumor invasion and metastasis. This is a result of perturbations in 

multiple protein-protein interactions in the global PPI network. Thus, a potential therapeutic for a 

disease such as cancer will not have one specific target, but rather a collection of targets that 

collectively combat the disease phenotypes. In Chapter 5, we characterize the molecular landscapes 

of several cancers to identify a subset of genes and their protein products that are altered in these 

cancers. Specifically, we look for genes that are highly overexpressed and mutated with druggable 

binding pockets on their respective protein products. Many of these altered proteins do not have 

prototypical enzyme active sites traditional seen in single-target drug discovery efforts and can only 

be targeted through their protein-protein interactions. We explored the role of these genes in the 

context of cancer related signaling pathways and the protein-protein interaction network to identify 

putative candidates for drug discovery. 

An alternative to target-based process in drug discovery is the use of phenotype-based 

screens. Compared to traditional single target-based approaches, phenotypic screening identifies 

compounds that affect a specific phenotype, for example, cell viability or angiogenesis. However, 

traditional phenotypic screening is plagued by the identification of non-specific compounds and 
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inaccuracies in the experimental assays. To allay these issues, we describe a data-driven rational 

approach to create tumor-specific chemogenomic libraries for phenotypic screening of 

glioblastoma multiforme in Chapter 6. The approach combines catalogs of differentially expressed 

molecular targets identified by tumor genomic profiles along with cellular protein-protein 

interaction data to select a collection of targets with druggable binding pockets. Among the active 

hit compounds from phenotypic screening was a compound that inhibited cell viability of GBM 

spheroids and blocked tube-formation of endothelial cells but had no effect on primary 

hematopoietic progenitor or astrocyte cell viability. The success of the compound suggests that this 

approach to create a tumor-specific chemogenomic library may hold promise for cancer. 

Many of the chapters of this thesis have been adapted from published works. These include 

Chapters 2 [186], 3 [178], 4 [375], and 5 [307]. Permission for adapting these works are included 

in Appendix A. 

 

7.2 SUGGESTED FUTURE WORK 

The computational results and experimental validation demonstrate that tight protein-

protein interactions remain difficult targets for structure-based virtual design efforts in drug 

discovery. There are additional opportunities to build upon the previous described projects to 

identify initial small molecule candidates of protein-protein interactions for diseases such as cancer.  

The first portion of this work was focused on identifying protein-protein inhibitors of 

individual targets. Initially, a set of co-crystallized inhibitors was selected for five specific protein-

protein interactions. This represents only a portion of the vast structure-activity relationship data 

present of potential inhibitors for a single interaction. In the work, we only identified compounds 

with high-quality experimental data and a co-crystallized pose. One suggestion would be to include 

additional compounds with close co-crystallized analogs, and then modeling the binding poses of 

these additional compounds. The addition of more compounds would allow for more detailed 

examination of critical interactions in these tight protein-protein interactions. 

In the second work, which described a fingerprint approach to rank-order compounds based 

on similar engagement of receptor hot spots, further work could focus on the selection of residue 

for the individual fingerprints. In this approach, a strict cutoff was used to differentiate whether the 

protein receptor interacted with the protein ligand. An alternative strategy would be to compare bits 

in the fingerprint using the interaction energy of the native complex. However, this raises additional 

concerns, particularly in the relative difference in binding energy when using fingerprints from 

either energy decomposition or alanine scanning. We showed in the first project that there is high 
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correlation at individual residues between energy decomposition and alanine scanning, but there 

were also examples of residues where there were profound differences in the associated energies. 

In the third work, we looked at how different chemical libraries mimicked ligand hot spots 

for specific protein-protein interactions. Future work in this area could potential focus on using 

additional chemical libraries. Different combinatorial libraries, for example DNA-encoded 

libraries, offer additional opportunities that cover smaller areas of chemical space more robustly 

could be used for specific protein-protein interactions. Similarly, there is increasing interest in the 

development of PPI-specific libraries, which offer, for example, specifically alpha-helix or beta-

sheet mimetics.  

 The final part of this work explored identifying cancer-relevant targets at protein-protein 

interactions. Here, we identified high-quality human crystal structures associated with individual 

proteins. There are two areas to consider for future works, specifically, the use of (i) high resolution 

crystal structures from (ii) humans. We did not consider close homology models or crystal 

structures with high sequence identity but featured a homologous protein in another species. Often, 

there are crystal structures of protein domains which have near identical sequence to the associated 

human protein. For these cases, manually mutations of non-identical residues offer an opportunity 

to consider a greater proportion of available structures. Similarly, we used a clustering algorithm 

to filter redundant structures of the same sequence. While this dramatically decreases the number 

of structures to consider, it does not account for protein dynamics, which may lead to transient 

binding sites on these structures that may have been captured in an alternative conformation. 

Similarly, molecular dynamics simulations of these structures, while computational infeasible, may 

be an alternative strategy to identify druggable binding sites. 

Finally, we focused on targeting binding pockets implicated in GBM. Here, we focused on 

targets that were (i) overexpressed, (ii) mutated, (iii) had known PPIs, and (iv) had druggable 

binding sites. Somatic mutations in cancer can be classified as either driver or passenger mutations. 

In this work, we did not differentiate between the two. Similarly, genes that are mutated in GBM 

are not necessarily also overexpressed. This greatly limits the set of potential targets that were 

considered for this work. Another follow-up of this work could also focus on the selection of 

compounds. Here, we selected compounds that were the most promiscuous towards the set of GBM 

targets. Fortunately, we discovered through experimental follow-up that our hit compound was 

select to GBM. However, this should be considered in the initial selection, i.e., identifying 

compounds that selectively bind to GBM targets but not to non-GBM targets. We did not consider 

it in this study, mainly due to the already limiting selection of targets that already met the previous 

criteria. 
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In summary, we have described a series of studies related to inhibiting tight protein-protein 

interactions. First, we looked how existing protein-protein interactions inhibitors disrupt their 

targets. Second, we develop methods to identify candidates for individual protein-protein 

interactions by selecting compounds that mimic hot spot residues via both a scoring method and by 

enriching chemical libraries. Third, we identify potential protein-protein interactions that are 

relevant in the context of cancer. Finally, we developed a multi-target approach that integrates 

cancer genomics with the druggable protein interactome to identify therapeutic candidates of GBM. 
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