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Evgeny Jenya Chumin 

CORTICAL CONNECTIVITY IN ALCOHOLISM 

Alcoholism carries significant personal and societal burdens, and yet we still lack 

effective treatments for alcohol use disorders. Several lines of research have 

demonstrated disruption of major white matter (WM) tracts in the brains of detoxified 

alcoholics. Additionally, there are several reports of alterations in the dopaminergic 

system of alcoholics. A better understanding of the relationships of brain structure and 

function in the alcoholic brain is necessary to move toward more efficacious 

pharmacological interventions. In this dissertation, there are three main chapters. First, 

reduced WM integrity was reported in a sample of individuals with active alcohol use 

disorder (AUD). This is a relatively understudied population, which is believed to 

represent a less severe phenotype compared to the in-treatment samples that are typically 

studied. Second, higher WM integrity was reported in a sample of college-age, active 

AUD. In a subsample of these individuals, graph theory measures of structural brain 

network connectivity were shown to be altered in cigarette-smoking social-drinking 

controls and smoking AUD subjects, compared to nonsmoking healthy individuals. 

Finally, a novel multimodal approach that combines diffusion weighted imaging and 

[11C]raclopride positron emission tomography identified differential relationships 

between frontostriatal connectivity and striatal dopamine tone in active AUD versus 

social-drinking controls. This suggests that aberrations in frontostriatal connectivity may 

contribute to reported differences in dopaminergic function in AUD. In summary, these 

results show that similar to detoxified/in-treatment alcoholics, active AUD samples 
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present with WM integrity alterations, and changes in both structural connectivity and 

frontostriatal structure/function relationships.    

David A. Kareken, Ph.D., ABPP, Chair 
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Introduction 

 

Alcohol is a widely consumed substance throughout the modern world. At low to 

moderate levels of consumption of 1-2 drinks/day or less (Department of Health and 

Human Services, 2015a), its effects on health are marginal. However, in a proportion of 

the population whose drinking levels far exceed those, alcohol use disorders become a 

significant risk. The American Psychiatric Association in its Diagnostic and Statistical 

Manual (DSM-V) defines alcohol use disorder (AUD) as a brain disease characterized by 

loss of control over one’s alcohol use despite consequences (APA, 2013). Within the 

United States, 15.1 million of individuals over 18 had an AUD in 2015 (Department of 

Health and Human Services, 2015b). Worldwide, 3 million deaths annually are attributed 

to alcohol misuse, which makes up 5.3% of all reported deaths (WHO, 2014). It is 

estimated that 88,000 deaths annually are related to alcohol, which makes it the third 

leading preventable cause of death in the United States (CDC, 2013). Additionally, 

alcohol misuse was estimated to cost the United States economy $249 billion in 2010 

(Sacks et al., 2015). All this poses AUD as a significant problem that must be addressed 

in research, to increase our understanding of this disease and to improve treatment 

outcomes. 

Chronic AUD has been linked to various types of cancers, as well as liver and 

cardiac disorders (CDC, 2013). In the brain, AUD is associated with atrophy, as well as 

executive, memory, and other cognitive deficits (Sullivan et al., 2010). In the most severe 

cases, AUD can lead to neurological conditions such as Wernicke-Korsakoff syndrome, 

cerebellar degeneration, or Marchiafava-Bignami disease (Zahr and Pfefferbaum, 2017). 
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While these diseases present with varying symptomatology, in terms of brain regions 

affected and presence of cognitive symptoms, at their core they are all related to poor 

nutrition that is a consequence of chronic alcohol misuse. Additionally, cessation of 

alcohol use after prolonged dependence will lead to a state of withdrawal. In a majority of 

cases, the symptoms are mild; however, they are collinear with severity of prior use and 

can require in-patient treatment for what is referred to as the alcohol withdrawal 

syndrome. Symptoms may include nausea/vomiting, delirium tremens, seizure, and 

possibly hallucinations (Goodson et al., 2014). For individuals in a state of withdrawal, 

treatment is centered on mitigation of presented symptoms and close observation of the 

patient. Unfortunately, treatment options for post-withdrawal recovery and relapse 

prevention are few and are of limited efficacy. 

The most commonly thought of model for AUD treatment has been one of 

complete abstinence, endorsed by support groups such as Alcoholics Anonymous. 

However, the success of these groups is difficult to assess due to the anonymity within 

them. There are also behavioral intervention treatments, such as cognitive behavioral 

therapy, which involves working with a mental health professional to develop skills and 

support systems to help stop or reduce one’s alcohol habits. In recent years medications 

have also become available that can help reduce craving (e.g. Naltrexone, Acamprosate) 

or aid in alcohol avoidance by blocking the body’s ability to metabolize alcohol 

(Disulfiram). According to the National Institute on Alcohol Abuse and Alcoholism, not 

all treatment options are equally effective for all patients and the ideal approach should 

be a combination of treatments tailored to the individual by a health professional. Yet 

despite the treatment resources available, over 50% of AUD individuals will relapse in 
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the short-term, with that number increasing to as high as 80% over long-term (Moos and 

Moos, 2006). Research into the neurobiology of AUD can facilitate a better 

understanding of the mechanisms involved in the maintenance of addiction, which can in 

turn lead to informed development of novel treatments. In this report, we investigated 

understudied clinical populations with AUD, in order to increase our understanding of the 

neurobiological consequences of early/middle adulthood AUD and to inform future 

intervention development efforts.   

 

Neurocircuity of Reward 

 

Dopamine (DA) releasing neurons located in the ventral tegmental area (VTA), 

play a major role in reward from natural (e.g. food) as well as non-appetitive (e.g. 

monetary) reinforcers. Most drugs of abuse are believed to exert their pharmacological 

effect in a way that modulates DA function. The anatomical dopaminergic (DAergic) 

projections from the VTA to the striatum (predominantly the ventral portion (VST)) and 

the frontal cortex, along with a reciprocal VST to VTA Gamma-Aminobutyric acid 

(GABA) projection and cortical glutamatergic (GLUergic) inputs to both the VST and the 

VTA form the mesocorticolimbic circuit that has been widely implicated in alcohol 

dependence (Alasmari et al., 2018). The earliest research that hinted at the involvement 

of this circuit in reward was done by Olds and Milner (1954), which showed that rats will 

self-administer electrical stimulation when the electrodes were placed in the general area 

of the VST. Since then, a plethora of research has shown that mammals will self-

administer drugs of abuse (for review see Clemens and Holmes (2018)), such as alcohol 
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(Samson et al., 1988, Stangl et al., 2017, Matson and Grahame, 2013) and that this 

behavior is in part modulated by activity of the VST (Samson et al., 1992, Hodge et al., 

1997, Doyon et al., 2003, Boileau et al., 2003). 

In recent decades, the neurocircuitry of reward and addiction has been expanded, 

as our understanding of its underlying mechanisms evolved. It is now believed to involve 

processes related to motivation, decision-making, salience, and habit formation (Kalivas 

and Volkow, 2005, Haber and Behrens, 2014, Tang et al., 2015). The mesocorticolimbic 

circuit is positioned within a larger, basal ganglia circuit, which includes the amygdala, 

hippocampus, thalamus, globus pallidus, and midbrain nuclei (Haber and Knutson, 2010, 

Haber, 2014, Parent and Hazrati, 1995). Together this circuitry is necessary for goal-

directed actions, with the striatum serving as the input of the basal ganglia regions such 

as the amygdala and hippocampus, to integrate information about emotion and 

environment, as well as cortical and thalamic inputs, which relay motivation and 

behavioral adaptation related information (Haber and Behrens, 2014). 

The striatum has been classically subdivided into the dorsal striatum (caudate and 

putamen) and the VST, which encompasses the nucleus accumbens (NAc) and ventral 

portions of the precommissural caudate and putamen. It contains predominantly 

GABAergic medium spiny neurons (MSNs), which receive excitatory GLUergic inputs 

from the aforementioned cortical and thalamic regions, modulatory DAergic connections 

from the VTA (Gerdeman et al., 2003), and local inhibitory inputs from GABAergic 

interneurons and other MSNs (Bolam and Izzo, 1988). The terminal fields of these 

projections are arranged in a partially overlapping topographical manner, further 

supporting its role in integrative processing (Haber et al., 2006, Choi et al., 2017, Haber 
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and Behrens, 2014). Additionally, drugs of abuse have been shown to modify the 

morphology of MSNs (Robinson and Kolb, 1997, Robinson et al., 2001), a likely 

neuroadaptation that may lead to sensitization and habit formation. In summary, the 

mesocorticolimbic and cortico-basal ganglia circuitry are key in motivation and control in 

response environmental stimuli, such as drugs of abuse. While nonhuman research has 

been able to tease out the circuitry with great detail, neuroimaging studies in humans with 

AUD have focused on global white matter or regional gray matter disruption. Integration 

of information from nonhuman studies into hypotheses that can be tested in vivo in 

humans has tremendous translational potential. The following section will focus on 

alcohol and its effects on the two major neurotransmitter systems (DA and glutamate 

(GLU)) within the frontostriatal portion of this circuitry, as a basis for Chapter 4 of this 

report that addresses, the structure/function relationship disruption in human subjects 

with AUD. 

 

Alcohols Effects on Reward-Related Neurotransmitter Systems 

 

The DAergic system is one that is most frequently associated with alcoholism and 

reward/addiction in general. Generally referred to as the DAergic reward system, it 

includes the VTA/substantia nigra neurons that terminate in the striatum, and to a lesser 

extent in the cortex. There are five metabotropic DA receptor types in the mammalian 

brain. The D1-like receptors (D1, D5) are stimulatory in nature and upon the binding of 

DA increase the activity of adenylyl cyclase, which leads to increased levels of cyclic 

adenosine monophosphate (cyclic AMP). Conversely, the D2-like receptors (D2, D3, and 
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D4), are inhibitory and lead a reduction in cyclic AMP and activation of potassium 

channels. In the striatum, these receptors are found on dendritic branches of MSNs, 

where D1 activation makes them more excitable via a protein kinase-A dependent 

modulation of ionotropic GLU receptor expression, and D2 activation reduces 

excitability through mechanisms that internalize alpha-3-hydroxy-5-methyl-4-

isoxazoleproprionic acid (AMPA) receptors and release intracellular calcium stores. 

Additionally, DA reduces the amount of GLU released into the synapse by binding to D2 

autoreceptors on the presynaptic DAergic neuron axons (Surmeier et al., 2007). The 

relative distribution of DA receptors is such that D1 receptors are more prevalent in the 

cortex, while both D1 and D2 receptors show similar densities in the striatum, with some 

exceptions such as the pallidum, where regional specificity exists (Hall et al., 1994, 

Palacios et al., 1988). Additionally, within the striatum, two MSN subtypes exist, the 

striatonigral, which express high levels of D1 receptors, and striatopallidal, which have 

high D2 expression (Surmeier et al., 2007). Both human and animal research has shown 

that DA is elevated in response to alcohol (Doyon et al., 2003, Yoder et al., 2016, Oberlin 

et al., 2015b, Gonzales et al., 2004). Additionally, in human positron emission 

tomography studies, the role of D2 receptors in the striatum in alcoholism is well 

established (see section below on Human Neuroimaging in Alcohol Use Disorder).  

In line with other drugs of abuse, alcohol enhances DAergic function in the 

striatum. However, unlike cocaine, which directly increases synaptic DA by blocking its 

reuptake, alcohols actions are indirect. Administration of alcohol increases levels of 

extracellular DA in the NAc of rodents, but not through direct actions in the NAc (Yim et 

al., 1998) nor through actions of its first metabolite acetaldehyde (Clarke et al., 2014). 
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Rather, alcohol decreases the activity of N-methyl-D-aspartate (NMDA) receptors 

(Lovinger et al., 1989) and enhances the activity of GABA and glycine, both of which 

contribute the observed increase in DA seen after alcohol administration (Vengeliene et 

al., 2008). One theory is that DA in the mesocorticolimbic circuitry plays a role of 

salience attribution to rewarding environment stimuli (Berridge, 2006, Berridge and 

Robinson, 2016, Gonzales et al., 2004, Oliva and Wanat, 2019) and that alcohol and other 

drugs of abuse sensitize this system (Gerdeman et al., 2003). At the neuronal level, 

transition from an initial seeking behavior to a habitual and even compulsive use is likely 

to involve a complex system of cascading feedback loops (Melis et al., 2002, Haber and 

Behrens, 2014), competing DAergic activity (Grace and Bunney, 1985), as well as the 

interaction of DA and other neurotransmitter systems.   

One such neurotransmitter system that is modulated by DAergic activity, 

especially in the striatum, is the GLUergic neurotransmitter system. GLU is the major 

excitatory neurotransmitter in the mammalian brain, with both ionotropic (NMDA, 

AMPA) and metabotropic (mGluR) receptors. Activation of ionotropic receptors leads to 

conformational changes that allow cation influx into the cell, depolarizing it. Binding of 

GLU to mGluRs leads to signaling cascades that are mGluR type dependent. Type 1 

mGluRs are coupled to G-proteins that initiate phospholipase C, insositol 1,4,5-

triphosphate, and diacylglycerol signaling cascades, while Type 2,3 receptor types are 

coupled to inhibitory G-proteins that reduce cyclic AMP levels (Willard and 

Koochekpour, 2013, Meldrum, 2000). The striatum receives multiple GLUergic inputs 

from throughout the brain, which makes it key in information integration. The NAc 

receives GLUergic inputs from the frontal cortex, amygdala, hippocampus, and thalamus 
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(Everitt and Robbins, 2005). These connections terminate primarily onto the dendritic 

branches of MSNs, which express variable subunit composition AMPA receptors 

depending on MSN subtype (Stefani et al., 1998). In addition, both NMDA ionotropic 

and mGluR metabotropic receptors are found on MSNs. One of the roles of mGluRs in 

the striatum is to modulate AMPA activity via changes in phosphorylation (Dell’Anno et 

al., 2013). The receptor type and subunit distribution of GLU receptors can be altered in 

an activity dependent manner, e.g. through trafficking/membrane cycling of AMPA 

receptor subtypes (Werner et al., 2017), and these receptor alterations are believed to play 

a major role in transition to addiction (Alasmari et al., 2018). 

It has been well established that alcohol alters GLUergic transmission, as first 

shown in hippocampal neurons (Lovinger et al., 1989). Subsequent research has shown 

that alcohol exposure increased AMPA activity of D1 expressing MSNs (Xiao et al., 

2008), as well as NMDA-dependent LTP/LTD in D1+/D1- MSNs, respectively (Renteria 

et al., 2017). In vivo, long-term vapor exposure to alcohol increased choline and GLU in 

the basal ganglia of rodents (Zahr et al., 2008) and it has been shown that GLU signaling 

in the NAc is tied to alcohol reinforcement (Vengeliene et al., 2008). Additionally, 

AMPA and NMDA receptors on MSNs as well as on DA neurons from the VTA 

influence alcohol response after a period of deprivation, but not in cue-induced 

reinstatement (Eisenhardt et al., 2015). In summary, the GLUergic and DAergic systems 

are heavily involved in alcoholism, suggesting that GLU dependent plasticity is involved 

in transition to addiction behaviors such as habitual and compulsive drinking (Alasmari et 

al., 2018). With a large GLUergic input from the frontal area to the striatum, 

understanding the frontostriatal connectivity disruptions as a consequence of alcoholism 
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could offer meaningful insight into the neurobiology of alcoholism and contribute to 

novel treatment interventions. We are unable to directly investigate connectivity and 

neurotransmitter function in vivo in humans. However, noninvasive neuroimaging 

techniques that are presented in the subsequent sections and utilized in this report, can 

offer indirect metrics of white matter structural integrity and receptor availability that 

may serve as proxy for the underlying neurobiology of interest. 

 

Human Neuroimaging in Alcohol Use Disorder 

 

The above-mentioned research has advanced our understanding of the 

neurocircuitry and mechanisms underlying alcoholism and addiction a great deal. 

Unfortunately, nonhuman research of alcoholism often suffers the limitation of a lack of 

generalizability. Therefore, in order to achieve a comprehensive understanding of the 

mechanisms and consequences of alcoholism, a complementary body of research 

involving human subjects is necessary. Since the late 1970’s, research that utilizes the 

noninvasive magnetic resonance imaging (MRI) as well as minimally invasive positron 

emission tomography (PET) techniques has aimed to understand the mechanisms of 

alcoholism in human subjects. The following two subsections will provide an overview 

of how these imaging techniques have contributed to our increased understanding of the 

consequences of alcoholism in humans.  
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Positron Emission Tomography (PET) 

PET imaging offers an ability to noninvasively investigate the neurochemical 

underpinnings of the human brain. Radiotracers (so named because they are delivered in 

trace amounts) are compounds that are radioactively labeled and injected into the body. 

These radiotracers are continuously undergoing decay, emitting β particles, which 

annihilate with electrons to produce γ rays that are detected by the PET scanner. Two 

commonly used elements for labeling are carbon ([11C]) and fluorine ([18F]), which have 

half-lives of approximately 20.3 and 109.8 minutes, respectively, and are ideal for PET 

studies of a single bolus tracer injection.  

Early studies which applied PET to alcoholic patients utilized [15O]water, 

[11C]glucose, and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG). Continuously infused labeled 

water (due to the short half-life of 15O) was used as an indicator of blood flow and acute 

alcohol administration was shown to reduce blood flow in cerebellum and increase it in 

the right temporal and prefrontal regions (Volkow et al., 1988). More recently, 15O water 

was utilized to show an increase in relative cerebral blood flow in alcoholics who were in 

a state of early withdrawal (Umhau et al., 2013). Both [11C]glucose and [18F]FDG are 

used as indices of energy utilization and glucose metabolism. Alcohol dependent 

individuals have shown decreased glucose metabolism compared to controls (Wang et al., 

1993, Volkow et al., 2015) and alcohol administration results in acute reduction in 

glucose utilization (Volkow et al., 1990, de Wit et al., 1990, Volkow et al., 2006). The 

interpretation is that administration of alcohol leads to a shift from utilization of glucose 

to acetate (an alcohol metabolite) as the source of energy in the brain (Volkow et al., 

2013, Volkow et al., 2015).  
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Another unique advantage of PET over other human neuroimaging techniques is 

the ability to image various receptors systems. Agonist, antagonist, and allosteric 

modulator drugs have been utilized to image changes in endogenous neurotransmitter 

levels, receptors number, and responses to pharmacological and behavioral 

manipulations. In alcohol dependent samples alterations have been reported in both major 

excitatory and inhibitory neurotransmitter systems. The radioligand [11C]ABP688, has 

shown altered mGluR5 in the amygdala of recovering alcoholics (Akkus et al., 2018) and 

the GABAa allosteric site ligand [11C]Ro15 4513 was used to show reduced GABAa 

alpha 1/5 subunit availability in the NAc, hippocampus, and amygdala of >6wk abstinent 

alcoholics (Lingford-Hughes et al., 2010). However, studies with [11C]flumazenil (Ro15 

1788) a competitive GABAa inhibitor at the benzodiazepine site, as well as 

[123I]iomazenil single-photon emission computerized tomography (SPECT), have shown 

in primates, an increase in GABAa availability in early abstinence (Cosgrove et al., 2014, 

Hillmer et al., 2016). This increase was normalized at 1 month abstinence in primates, 

and prolonged abstinence from alcohol in humans normalized GABAa in nonsmokers, 

but not in cigarette users (Cosgrove et al., 2014). 

Due to its extensive role in addiction and reward, the DAergic system has been 

widely investigated in AUD. Majority of research with DAergic PET has utilized the DA 

receptor type 2/3 antagonists [11C]raclopride (RAC) and [18F]fallypride (FAL). These two 

tracers offer distinct advantages, with RAC suitable for investigations of striatal DA 

function and displacement studies (i.e. experimental designs that involve a challenge 

condition that is meant to increase or decrease DA). Additionally, the relatively short 

half-life of RAC allows for multi-scan designs to be carried out in a single day. 
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Alternatively, the half-life of FAL is almost 2 hours, which limits investigator to a single 

scan session per day, but its increased signal to noise properties allow for quantitation of 

cortical DA. The most common outcome measure from receptor system PET studies is 

binding potential (BPND), which quantifies the ration of specific to nondisplaceable 

binding in the tissue. Two methods commonly utilized to estimate BPND are kinetic 

modeling and the Logan graphical analysis (Innis et al., 2007, Ichise et al., 2003, Logan 

et al., 1996). 

FAL studies that focused on cortical DA have shown no differences in cortical 

BPND in saline versus intravenous (IV) ethanol (Pfeifer et al., 2017) in healthy 

individuals, or versus IV citalopram (a selective serotonin reuptake inhibitor (SSRI)) in 

alcohol dependent compared to healthy individuals (Zorick et al., 2019). In the former, 

orbitofrontal, inferior frontal, and prefrontal cortex BPND correlated with self-reported 

liking of alcohol (Pfeifer et al., 2017), while in the latter the SSRI condition was 

associated with reduced self-reported cue-induced craving for alcohol (Zorick et al., 

2019). A longitudinal study reported a reduced FAL BPND in the thalamus, hippocampus, 

insula, and temporal regions of alcoholics compared to controls. Additionally, at one year 

follow-up BPND of recovering alcoholics who abstained or reduced their drinking 

increased relative to baseline (Rominger et al., 2012). 

While Rominger et al. (2012) found no difference in baseline striatal FAL BPND 

of alcoholics compared to controls, studies that utilized RAC have shown a reduction in 

BPND in the striatum of chronic alcoholics (Martinez et al., 2005, Volkow et al., 2002), 

that can recover with prolonged abstinence (Volkow et al., 2002). Additionally, alcohol 

dependent participants showed a diminished DA response to an amphetamine challenge 
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(Martinez et al., 2005). Family history (FH) of alcoholism has also been implicated in 

DAergic differences, with higher BPND in FH positive compared to FH ambiguous and 

FH negative individuals (Alvanzo et al., 2017), although Munro et al. (2006) found no 

differences. Furthermore, change in BPND after amphetamine challenge, showed no 

differences in FH positive from negative individual in either study. Finally, there is 

evidence for the role of striatal (specifically the ventral striatum (VST)) DA in acute 

alcohol and alcohol-related stimulus response. Baseline DA is correlated to perceived 

intoxication (Yoder et al., 2005, Yoder et al., 2007) and IV alcohol has been shown to 

increase DA activity in the VST (Aalto et al., 2015, Yoder et al., 2016). Additionally, 

beer flavor presentation alone was able to elicit a DAergic response in the right VST 

(Oberlin et al., 2013, Oberlin et al., 2015b). Interestingly, the DA radiotracers 3,4-

dihydroxy-6-[18F]fluoro-l-phenylalanine ([18F]L-DOPA; index of DA synthesis capacity) 

and [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2b][1,4]oxazin-9-ol 

([11C]PHNO; a D3 receptor agonist), did not show any differences between alcoholics 

and controls (Heinz et al., 2005, Deserno et al., 2015, Erritzoe et al., 2014, 

Thiruchselvam et al., 2017).  

In summary, evidence from PET imaging studies in humans supports animal 

research findings that alcohol acts to disrupt the function of major neurotransmitter 

systems. Alterations in DAergic function in acute alcohol administration and in GABA 

and GLU systems in chronic alcoholism, further lend credence to the animal studies that 

suggest a shift from alcohol reinforcement (DA related) to compulsive/dependent alcohol 

consumption. However, the underlying mechanisms of this shift in humans remains 

unclear. The following section provides an overview of white matter structural 
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disruptions in AUD, which may influence the observed changes in PET studies, a topic 

addressed in Chapter 4 of this report. 

 

Diffusion Weighted Imaging (DWI) 

 DWI is an MRI sequence that takes advantage of the magnetic properties of 

protons in water in order to model water diffusion in the brain. In cortical white matter 

(WM), where axons form highly structured bundles referred to as fiber tracts, diffusion of 

water can be an approximation of WM orientation and coherence. Most commonly a 

diffusion tensor model is fit to the signal (generally referred to a diffusion tensor imaging 

(DTI)), which estimates diffusion in a voxel as an ellipsoid (Alexander et al., 2007). A set 

of diffusion scalar metrics can then be calculated from the eigenvalues and eigenvectors 

of those ellipsoids. The four commonly used metrics are (1) axonal diffusivity (AD), 

which is the eigenvalue along the longest axis and is believed to indicate relative axonal 

health, (2) the average of the two smaller eigenvalues that is related to demyelination 

called radial diffusivity (RD), (3) the average of all three eigenvalues that is indicative of 

membrane density called mean diffusivity (MD), and (4) fractional anisotropy (FA), 

which is a metric of variance of the eigenvalues and is thought to be an indicator of 

microstructural integrity (Alexander et al., 2007). Several studies have shown that DTI 

can model structural connectivity in the brain, especially of the major WM tracts (Haber 

and Knutson, 2010, Draganski et al., 2008, Lehericy et al., 2004, Jarbo and Verstynen, 

2015). However, the limitations of DWI, particularly in areas of crossing WM fibers and 

highly curved tracts (Maier-Hein et al., 2017) need to be considered in the interpretations 

of DWI results. 
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 Chronic alcohol misuse had been related to alteration in DTI indices of WM 

(Pfefferbaum et al., 2009, Yeh et al., 2009, Fortier et al., 2014, Pfefferbaum et al., 2014). 

Measures of WM integrity were also correlated with AUD severity (Yeh et al., 2009, 

Monnig et al., 2014, Monnig et al., 2015, Pfefferbaum et al., 2006b, Müller-Oehring et 

al., 2009). Some of these studies did not account for differential cigarette use between 

alcoholics and controls. Cigarette use has been shown to disrupt WM and affect treatment 

outcomes in recovering alcoholics (Savjani et al., 2014, Yeh et al., 2009, Durazzo et al., 

2014a, Durazzo et al., 2014b) and is highly comorbid in the AUD population, ranging 

between 60% and 90% (Falk et al., 2006, Kalman et al., 2005). Therefore, comorbid 

cigarette and alcohol use is carefully considered in subsequent chapters.  

 DTI investigations in AUD have primarily involved in-treatment/detoxified 

individuals and to some extent a similar pattern is observed in PET studies. Yet the 

majority of those with AUD have not sought any treatment and as such represent an 

understudied, perhaps distinct phenotype of those with AUD. Thus, Chapters 1 and 2 

investigate microstructural differences in distinct AUD populations of nontreatment-

seekers and college-aged early onset AUD samples, respectively. Additionally, novel 

approaches from network science were employed (see subsequence section for an 

overview) in order to relate WM microstructural disruptions in AUD to alterations of 

structural connectivity. 
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Applications of Network Science to the Human Brain in Alcoholism 

 

 Recent improvements in MRI technology and DWI sequences, as well as 

tractography algorithms have allowed for estimation of structural connectivity at the 

whole brain level. This model of whole brain connectivity can be represented as a 

numeric matrix of NxN brain regions (nodes), referred to as the connectome (Rubinov 

and Sporns, 2010). Initial models contained binary information of whether a connection 

(i.e. edge) was present for a particular region pair, but recently the use of weighed edges 

that represent the strength of connectivity (e.g. number of streamlines or FA) has become 

increasingly common. This representation of the brain can offer unique insight into brain 

structure and function. Analytic techniques from the areas of graph theory and network 

science offer an approach to study conditions such as alcoholism on a systemic level. 

This is intuitively appealing as alcohol effects are seen throughout the brain.   

 Graph theory investigations in alcohol-related populations that utilize functional 

networks (resting state functional MRI (fMRI) and electroencephalogram (EEG) 

recordings) have observed a varying degree of alterations. Alcohol dependent individuals 

showed no differences in global fMRI network metrics, however measures of network 

efficiency and clustering correlated with alcohol dependence duration and severity 

(Sjoerds et al., 2017), while in EEG-based networks alcoholics had reduced nodal 

clustering during a cognitive task (Cao et al., 2014). Acute alcohol administration in 

primate fMRI resulted in altered hub node (a heavily connected regions) and community 

structure, while healthy human EEG studies under acute alcohol showed alterations in 

global efficiency, albeit these results were likely due to differences in network density 
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(Telesford et al., 2013, Lithari et al., 2012). Alterations in functional network structure 

have also been observed in family history of alcoholism positive high-risk youth and in 

children with fetal alcohol spectrum disorder (Holla et al., 2017, Wozniak et al., 2012). 

To my best knowledge, only one investigation examined structural networks in alcoholic 

individuals compared to unaffected siblings as well as healthy controls and found altered 

rich club (a group of heavily connected nodes) organization as well as differential local 

clustering and efficiency of left caudate, right putamen, and left hippocampus among 

groups (Zorlu et al., 2017). It is not known whether alterations in global graph theory 

metrics of structural connectivity are present in active AUD. Therefore, the goal of the 

latter part of Chapter 2 as well as Chapter 3 was to address this in active young/middle 

adulthood nontreatment-seeking AUD samples.   

 

Possible Role of Frontostriatal Connectivity in AUD 

 

The role of frontostriatal circuitry in neurobiology of alcoholism has been 

highlighted throughout this introduction. In order to translate preclinical work into 

humans, it is necessary to employ multimodal neuroimaging studies that combine 

information about structure and function. Such studies have a great potential to increase 

our understanding of the consequences of alcoholism, yet these investigations have been 

extremely limited. One study showed that in healthy individuals, DWI-quantified 

structural connectivity can be used to parcellate the striatum based on cortical inputs, 

resulting in a spatially coherent pattern of connectivity (Tziortzi et al., 2014). In addition, 

the authors found BP changes in response to an amphetamine challenge in [11C]PHNO 
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and [11C]raclopride to be more homogeneous within connectivity-based than anatomical 

striatal subdivisions. The second study performed in nonhuman primates, assessed 

[18F]fallypride PET change in BP after methylphenidate administration in the caudate and 

found it to be correlated with functional connectivity within the prefrontal cortex (Birn et 

al., 2019). Thus, the aim of this report, and specifically the fourth chapter was to 

investigate whether indices of frontostriatal WM integrity and striatal DA function were 

related and if these metrics were disrupted in AUD. 

The above sections provide a review of addiction circuitry and processes as 

related to AUD, as well as evidence from human structural and functional neuroimaging 

studies. While there is extensive evidence for functional disruption of the striatal DAergic 

system and aberrant WM integrity and connectivity, combined structure/function 

investigations of frontostriatal projections are limited. Frontostriatal connectivity is of 

special interest as it is involved in transition to compulsive alcohol use and addiction. 

Network science approaches in combination with multimodal imaging methodologies can 

offer a novel insight into the neurobiology of alcoholism. Notably, future studies need to 

be aware of potential confounds of comorbid cigarette use on brain structure in 

alcoholism as well as of the methodological limitations of network science that can affect 

the finding (i.e. sufficient sample size, impact of network construction and false-

positives, and statistical multiple comparisons problems).   
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Chapter 1:  Differences in White Matter Microstructure and Connectivity in 

Nontreatment-Seeking Individuals with Alcohol Use Disorder 

 

This chapter describes the use of diffusion weighted imaging (DWI) to assess 

microstructural differences in the white matter (WM) in alcohol use disorder (AUD). A 

sample of thirty-eight actively drinking nontreatment-seeking alcoholics (NTS) were 

compared to nineteen social drinking (SD) controls. This NTS sample is distinct from the 

predominantly studied detoxified/in-treatment alcoholics. In addition, the sample consists 

of all cigarette smoking participants, as cigarette use can confound DWI outcome 

measures. Subjects underwent a DWI and a high-resolution anatomical T1-weigned scan. 

Fractional anisotropy (FA) data were analyzed with the Tract-Based Spatial Statistics 

(TBSS) framework. From all participants, recent alcohol consumption was quantified 

with the Timeline Follow-Back questionnaire. 

Results of this study were consistent with existing literature that shows reduced 

WM integrity, as indexed by FA, in alcoholics compared to controls. Across both groups, 

average number of drinks per week correlated negatively correlated with FA. Qualitative 

analysis of tractography modeled WM connections through regions of group difference 

implicated areas of the frontal, temporal, and parietal regions as possible terminations of 

those WM projections.  
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Introduction 

 

An estimated 15 million people in the United States have an alcohol use disorder 

(AUD) (Department of Health and Human Services, 2015b), which in 2010 cost the 

nation 249 billion dollars (Sacks et al., 2015). Additionally, in AUD, the prevalence of 

tobacco use has been estimated to be ~60-90%, as compared to ~10% in a light-drinking 

population (Falk et al., 2006, Kalman et al., 2005, Romberger and Grant, 2004). 

Numerous neuroimaging studies have reported deleterious effects of alcohol on regional 

white matter (WM) microstructure in AUD (Bagga et al., 2014, Müller-Oehring et al., 

2009, Pfefferbaum et al., 2006b, Pfefferbaum and Sullivan, 2002, Pfefferbaum et al., 

2000, Yeh et al., 2009, Monnig et al., 2013, Pfefferbaum et al., 2014, Segobin et al., 

2015). However, this established body of research typically does not address the potential 

confound of cigarette smoking in abnormalities of brain structure in AUD. There is also a 

body of literature that indicates cigarette smoking has detrimental effects on WM (Zhang 

et al., 2011, Savjani et al., 2014, Baeza-Loya et al., 2016, Zou et al., 2017). However, 

given that up to 85% of alcoholics are also smokers (Durazzo et al., 2007b, Romberger 

and Grant, 2004), it is still unclear what the relative contribution of chronic alcohol use is 

to deficits in WM. Some work in nontreatment-seeking (NTS) individuals with AUD has 

shown differences in brain volumes of NTS compared to light drinking controls 

(Cardenas et al., 2005), that could be, in part, attributed to smoking status (Durazzo et al., 

2007a); but the effects of extensive alcohol misuse alone have not yet been isolated.  

While research into WM microstructural abnormalities in detoxified/abstinent 

AUD is extensive, the same cannot be said for the NTS population. This is important, as 
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findings from detoxified alcoholics may not generalize to community-dwelling NTS. 

Only 8.3% of those with an AUD have sought treatment (Department of Health and 

Human Services, 2015b), which makes the NTS population the majority of individuals 

with AUD. Additionally, as noted above, the presence of comorbid cigarette use in AUD 

has been overlooked in neuroimaging studies of the NTS population. Thus, the 

overarching goal of this work was to determine if there are detectable effects of alcohol 

dependence on WM microstructure in a currently drinking NTS population, while 

controlling for cigarette smoking status. Based on existing literature in detoxified AUD 

subjects, we hypothesized that smoking NTS will have lower WM integrity (assessed 

with fractional anisotropy, FA) compared to social drinking (SD) controls. To test our 

hypothesis, we utilized Tract-Based Spatial Statistics (TBSS) to identify areas of 

compromised WM microstructure in NTS. We also applied a novel, WM tractography-

based approach, to objectively identify the gray matter regions that could be targets of 

cortical projections that pass through any observed WM differences. 

 

Materials and Methods 

 

Subjects 

All procedures were approved by the Indiana University Institutional Review 

Board in accordance with the Belmont Report. Subjects were recruited from the 

community using advertisements in a local paper and social media. Written informed 

consent was obtained after confirmation that breath alcohol concentration (BrAC) was 

zero and study procedures were explained. Subjects were 21-55 years old, and were able 
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to read, understand, and complete all procedures in English. This study was a 

retrospective analysis of magnetic resonance imaging (MRI) data from nineteen smoking 

social drinkers (SD) and thirty-eight smoking nontreatment-seeking (NTS) alcohol 

dependent participants. MRI data were acquired in subjects who participated in the 

positron emission tomography (PET) studies designed to investigate the dopamine 

system; PET data from most subjects in the current work have been published (Albrecht 

et al., 2013, Yoder et al., 2011b, Oberlin et al., 2015a, Yoder et al., 2016, Yoder et al., 

2011a). All subjects included in the present analyses were cigarette smokers. Exclusion 

criteria were: history or presence of any psychiatric, neurological, or other medical 

disorder, current use of any psychotropic medication, positive urine pregnancy test, 

positive urine toxicology screen for illicit substances, and contraindications for safety in 

the MRI scanner. The Semi-Structured Assessment for the Genetics of Alcoholism was 

administered to confirm presence or absence of AUD. NTS met DSM-IV criteria for 

alcohol dependence, had not received treatment within the past year, and were not 

actively seeking treatment. The following questionnaires were also administered: a 

medical history and demographics questionnaire, the 90-day Timeline Follow-Back for 

alcohol use (TLFB), Alcohol Dependence Scale (ADS), Fagerstrom Test for Nicotine 

Dependence (Pomerleau et al., 1994), Edinburgh Handedness Inventory, and an 

internally-developed substance use questionnaire.  

 

Imaging 

MRI imaging was done on a 3T Siemens Magnetom Trio with a 12-channel head 

coil array (Siemens, Erlangen, Germany). Diffusion-weighted imaging (DWI) data were 
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acquired using monopolar Stejskal-Tanner diffusion weighting, single shell (b-value = 

1000 s/mm2), and 48 distinct diffusion gradients (eight b = 0 images acquired first; 

GRAPPA with in-plane acceleration of 2). Other parameters were 81ms echo time (TE), 

0.7ms echo spacing, scan duration 8:10min, 128x128 matrix, anterior to posterior phase-

encoding , 6/8 partial Fourier phase, 68 axial slices, and 2x2x2 mm3 isotropic voxels. 

There were minor variations in TE and scan duration, as the DWI sequence was 

incrementally adjusted over time to minimize bed vibration and image artifacts. A small 

subset of data (n = 7) were collected with one b = 0 volume. A high-resolution, T1-

weighted, whole-brain magnetization prepared rapid gradient echo (MP-RAGE) image 

was acquired with the parameters optimized for the Alzheimer’s Disease Neuroimaging 

Initiative (http://adni.loni.usc.edu/): 9:14 min, no GRAPPA, matrix size 240x256, 160 

sagittal slices, 2.91ms TE, 1.05x1.05x1.2 mm3 voxels. 

 

Image Processing 

Processing was carried out with an in-house pipeline implemented in Matlab 

(MathWorks, version 2014b) that incorporated programs from the Oxford Centre for 

Functional MRI of the Brain (FMRIB) Software Library (FSL version 5.0.9)(Jenkinson et 

al., 2012) and Camino (Cook et al., 2006) software suites. Figure 1 illustrates the key 

steps of the image processing. 

 

T1 preprocessing  

Preprocessing steps included: (1) Denoising of each subjects’ T1-weighted image 

with an optimized nonlocal means filter for 3D MRI (Coupé et al., 2008), (2) Automated 
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Figure 1.  Overall processing scheme for isolating tractography-derived streamlines that 

passed through regions of significantly different FA in the TBSS group analyses. Each 

subject’s gray matter (derived by segmenting the T1 image; top left) is divided into 278 

functionally-derived regions (top middle, GM regions color-coded). Diffusion-weighted 

image (DWI) data (bottom left) are preprocessed to obtain diffusion tensor information 

and fractional anisotropy (FA) volumes. Anatomical and DWI data information are 

combined to perform deterministic tractography (top right). FA data are analyzed with 

tract-based spatial statistics (TBSS). The TBSS-derived significant clusters (bottom 

middle; orange-red) are used to “filter” the reconstructed fiber tracts to identify those that 

passed through the significant clusters (bottom right). The fiber tracts are color-coded to 

indicate their predominant orientation (left/right in red; anterior/posterior in green; 

inferior/superior in blue). 
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cropping and bias field correction (FSL robustfov and FAST), (3) Brain extraction (FSL- 

BET), and (4) Tissue-type (FSL-FAST) and subcortical structure (FSL-FIRST) 

segmentation.  

Both gray and white matter (GM, WM) images from FSL-FAST were enlarged by 

a single modal dilation. The GM-WM spatial overlap provided an interface region that 

defined seed regions for tractography. A combined cerebrospinal fluid (CSF; from FSL-

FAST) and subcortical GM (from FSL-FIRST) masks were used to minimize erroneous 

assignment of WM voxels as GM. 

 

DWI preprocessing 

Diffusion images were visually inspected for signal dropout and significant head 

motion artifacts. Only datasets that passed visual inspection were included. DWI images 

were denoised with a local principal component analysis filter (Manjón et al., 2013). The 

eight b = 0 volumes were spatially registered (FSL-FLIRT dof6) to the first volume and 

averaged to optimize image quality and minimize effects of head motion. Motion 

correction of each DWI volume was achieved with linear registration (FLIRT dof6) to the 

reference b = 0 volume. Eddy current correction was performed with FSL eddy correct 

(Jenkinson and Smith, 2001). The b = 0 volume was co-registered (dof6 and WM 

boundary-based registration [BBR]) to the preprocessed T1 image and this transformation 

was subsequently applied to the DWI data. Voxel-wise calculation of fractional 

anisotropy (FA) and tensor modeling were conducted using multi-tensor fitting in 

Camino, where each voxel was classified as either isotropic, single-tensor (anisotropic, 
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Gaussian), or crossing fibers (anisotropic, non-Gaussian). At multiple points throughout 

the preprocessing steps, images were visually inspected for quality assurance. 

 

Tract-Based Spatial Statistics (TBSS) 

Voxelwise statistical analysis of the FA data was performed with FSL’s Tract-

Based Spatial Statistics (TBSS) (Smith et al., 2006). Each subject’s FA data were aligned 

into a common space using the nonlinear registration (FNIRT), which uses a b-spline 

representation of the registration warp field. Next, a mean FA volume was created and 

thinned to form an FA skeleton that represented the centers of all tracts in the sample. 

Each subject's aligned FA data were then projected onto the skeleton, and the resultant 

datasets served as input into the voxelwise statistics algorithm. Group differences were 

interrogated with FSL’s randomise permutation testing. Contrasts were generated after 

10,000 permutations with Threshold-Free Cluster Enhancement (TFCE) (Smith and 

Nichols, 2009), and were corrected for multiple comparisons (family-wise error; FWE). 

The anatomic locations of significant clusters were used as a starting point for post-hoc, 

qualitative tractography analyses (2.6). Cluster size, peak voxel significance and the 

corresponding coordinate, as well as the mean FA value of each significant cluster were 

extracted with the FSL cluster tool. Additionally, the mean FA value from each subject’s 

FA skeleton was extracted using Matlab. These extracted average FA values were tested 

for a relationship with recent alcohol use by nonparametric correlation analysis 

(Spearman’s rho) in SPSS 24. A nonparametric test was chosen because recent alcohol 

use (drinks/week) was non-normally distributed. 
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Connectivity Analyses 

 

Deterministic Tractography 

Deterministic tractography conducted in Camino with the Fiber Assignment by 

Continuous Tracking (FACT) algorithm used a single seed per voxel at the GM-WM 

interface region. Fiber assignment began in a seed voxel, with 1 mm increments (1 step 

per voxel). Except for two-tensor voxels, fiber tracking followed the major diffusion 

gradient from voxel-to-voxel except when the turning angle exceeded 45º in 5 steps, 

which resulted in termination of tracking. Encountering a two-tensor voxel led to fiber 

duplication, with each of the two fibers following one of the tensor directions. 

Streamlines were restricted to WM voxels where FA > 0.1, and were terminated when 

they reached a GM voxel on either end. Very short (< 8 mm) or long (> 180 mm) 

streamlines were discarded. 

 

Tract (Streamline) Isolation 

To isolate fibers passing though voxels with significant group differences in FA, 

the TBSS output images were transformed into each subject’s native space with FSL 

tbss_deproject. Camino procstreamlines projected the cluster maps onto each subject’s 

tractography results, and constrained the tractography data to fibers that passed through 

the significant clusters (e.g., TBSS p-value volumes; Figure 1). To perform quality 

checks of modeled streamlines, fiber data were converted to trk format for visualization 

in TrackVis (Wang et al., 2007).  
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Gray Matter Parcellation 

Each subject’s gray matter was subdivided into 278 regions based on a 

functionally-derived parcellation (Shen et al., 2013). This allowed us to locate gray 

matter sources of streamlines passing through white matter areas of significantly different 

FA. The parcellation was applied to each subject’s data by the following steps: 1) spatial 

transformation of the native T1 volume into MNI space (FSL: flirt-dof6, flirt-dof12, 

fnirt); 2) application of the individual inverse transformation parameters to the MNI 

template parcellation; and 3) masking the resultant native-space parcellation with each 

subject’s GM mask from FSL-FAST. For quality assurance, the final parcellations were 

overlaid on the respective T1 volumes for visual inspection.  

 

Connectivity Visualization 

The number of streamlines that connected any pair of gray matter regions was 

obtained from a connectivity matrix generated with the Camino conmat function. 

Connections were assessed separately for NTS and SD. For each group, a region-by-

region connectivity matrix was generated with the conservative requirement that, to be 

counted, a given connection must be present in all subjects within that group. GM regions 

that were connected via the significant cluster areas were visualized by an overlay of the 

connected GM regions for each group onto a Colin 27 (CH2) MNI brain template. 

 

Other Statistical Analyses 

Group differences in sample characteristics were assessed with independent-

samples t-tests or χ2 tests (R; version 3.3.0). 
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Results 

 

Subjects 

Subject characteristics are presented in Table 1. NTS and SD were well-matched 

on all demographic characteristics and tobacco use. NTS reported significantly higher 

alcohol consumption and scored higher on the Alcohol Dependence Scale (ADS). 

 

TBSS: SD vs. NTS 

NTS had lower FA compared to SD, predominantly in the left hemisphere 

(p<0.05 TFCE, FWE-corrected; Figure 2). Thirty-three significant clusters were 

identified. Data for the largest (exceeding 90 mm3) and likely most relevant clusters are 

presented in Table 2.  

 

Correlations of FA with recent alcohol use 

Across all subjects, number of drinks per week had a significant negative 

correlation with average FA from the TBSS skeleton (Spearman’s ρ = -0.348, p = 0.008; 

Figure 3).  

 

Structural Connectivity  

In SD, 42 of the 278 gray matter regions were connected though the significant 

clusters from the NTS < SD TBSS contrast, while NTS had 40 connected gray matter 

regions. Spatially, these regions were largely overlapping between groups, with some 

regions unique to each group. Figure 4 illustrates the connected GM regions for each 
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Table 1.  Subject Characteristics. Data are mean ± standard deviation.  TLFB:  TimeLine 

Follow Back.  ADS:  Alcohol Dependence Scale.  SD:  social drinkers.  NTS:  

nontreatment-seeking alcoholics.  AA:  African-American.  HL:  Hispanic Latino.  R:  

right.  A:  ambidextrous.  n.s.:  not significant.  

 SD NTS p-value 

N 19 38  

Age 37.8 ± 8.6 38.6 ± 8.1 n.s. 

Gender 3 F 7 F n.s. 

Race 6 AA 17 AA n.s. 

Ethnicity 0 HL 0 HL  

Education (years) 12.8 ± 2.3 12.7 ± 1.9 n.s. 

Handedness 19 R 36 R; 2 A  

Drinks/DD 3.4 ± 1.4 8.8 ± 3.3 < 0.05 

Drinks/Week 6.4 ± 7.5 38.4 ± 18.9 < 0.05 

ADS 3.9 ± 2.8 12.5 ± 5.4 < 0.05 

Fagerstrom (smokers only) 4.4 ± 1.4 4.3 ± 2.1 n.s. 
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Figure 2.  TBSS results. Areas of significant group differences in FA (p < 0.05, FWE-

corrected, red-yellow colors) superimposed on the mean fractional anisotropy (FA) 

skeleton shown in green. Smoking social drinkers (SD) compared to nontreatment 

seekers NTS. Axial slice positions are illustrated in the sagittal section. For better 

visualization, significant voxels within the white matter skeleton were thickened with 

tbss_fill. 
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Table 2.  Characteristics of significant clusters from the NTS < SD TBSS contrast.  

* Eleven clusters (< 90 mm3) were omitted. 

# Coordinates are in Montreal Neurological Institute (MNI) space. 

TBSS:  tract-based spatial statistics.  SD:  social drinkers.  NTS:  nontreatment-seekers.  

FA:  fractional anisotropy.  FWE:  Family-wise error.  MNI: Montreal Neurological 

Institute. 

Cluster* 

Cluster 

Size 

(mm3) 

FA 

SD 

FA 

NTS 

Peak 

p-value 

(FWE) 

Peak MNI 

coordinates# 

(mm) (x, y, z) 

1 1298 0.59 ± 0.07 0.54 ± 0.09 0.028 -39, -12, 28 

2 417 0.55 ± 0.10 0.47 ± 0.12 0.045 -31, -24, -7 

3 340 0.60 ± 0.09 0.53 ± 0.13 0.044 -19, 42, 4 

4 319 0.57 ± 0.10 0.52 ± 0.10 0.045 14, -20, 30 

5 296 0.58 ± 0.08 0.53 ± 0.09 0.045 -33, -20, -1 

6 282 0.52 ± 0.08 0.44 ± 0.07 0.044 12, 27, 14 

7 258 0.35 ± 0.09 0.27 ± 0.10 0.042 34, -38, 33 

8 202 0.57 ± 0.07 0.52 ± 0.10 0.044 -45, -46, 30 

9 168 0.52 ± 0.09 0.44 ± 0.08 0.046 -30, 8, 5 

10 133 0.55 ± 0.08 0.48 ± 0.08 0.048 -36, -54, 26 

11 122 0.67 ± 0.06 0.61 ± 0.08 0.046 -30, 12, 32 

12 120 0.78 ± 0.08 0.73 ± 0.09 0.042 -27, -3, 42 
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Figure 3.  Correlation of mean FA obtained from the TBSS white matter skeleton with 

self-reported average number of drinks per week in the past 90 days across the full 

sample.  FA: fractional anisotropy.  TFLB: Timeline Follow-Back.  ρ: Spearman’s rho. 
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Figure 4.  Spatial distribution of gray matter regions connected through TBSS-derived 

white matter clusters that showed significant group differences in FA. Connected regions 

are shown for both smoking social drinkers (SD, green) and smoking nontreatment-

seeking alcohol use disorder subjects (NTS; red). Note that NTS have a qualitatively 

distinct yet overlapping spatial distribution of connected GM regions that are also fewer 

in number compared to SD. Connected gray matter regions are overlaid on a Colin 27 

(CH2) MNI template brain, with MNI-coordinates provided below each slice. 
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group. There were qualitative differences in regional patterns of GM targets between 

groups (see Discussion). 

 

 Discussion 

 

This study found effects of alcohol dependence on WM microstructure in 

nontreatment-seeking alcohol dependent individuals who had lower FA relative to 

smoking social drinkers. Importantly, all subjects in both the NTS and SD groups were 

cigarette smokers. Not matching groups for smoking status is a potentially important 

confound that is often overlooked in neuroimaging studies of addiction. We used our 

results as a starting point for implementation of a novel approach to identify gray matter 

regions that could be the sources of denervation through the areas of compromised white 

matter (identified via TBSS). We also found that FA values in the whole study sample 

were negatively associated with recent drinking behavior. 

The areas in which NTS had significantly lower FA compared to SD were 

primarily in the left hemisphere, notably, in the external capsule and the superior 

longitudinal fasciculus. FA deficits in regions that contain these tracts have been 

previously reported in AUD (Pfefferbaum et al., 2009, Yeh et al., 2009) and altered WM 

integrity in the tracts has been associated with altered cognitive function (Bagga et al., 

2014, Trivedi et al., 2013). Also, detrimental effects of alcohol on callosal WM have 

been reported to occur preferentially in the genu of the corpus callosum (Estruch et al., 

1997, Pfefferbaum et al., 1996), and anterior WM tracts have also been shown to have 

greater deficits in FA (Pfefferbaum et al., 2009). Thus, the pattern of WM deficits that we 
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observed in NTS are consistent with previous findings, and provide additional evidence 

that anterior WM and longer tracts, such as the superior longitudinal fasciculus, may be 

more vulnerable to the effects of alcohol. At this time, it is not clear why the results were 

apparently lateralized; however, it is possible that larger n may have revealed bilateral 

effects. 

To begin to understand possible changes in brain function as a consequence of 

WM disruption, we employed a novel filtered tractography approach, whereupon the 

putative GM endpoints of compromised WM tracts were identified. There were some 

regional differences in the connectivity patterns between NTS and SD. Connected GM 

regions that were only seen in the NTS group included areas in the frontal lobe and 

anterior cingulate gyrus. Connected regions that were only observed in SD included 

frontal lobe and middle/posterior cingulate gyrus, as well the left temporal, parietal, and 

occipital lobes. In NTS, the absence of connections to posterior regions in parietal and 

occipital lobes may be additional evidence that alcohol has detrimental effects on long 

WM tracts, such as the superior longitudinal fasciculus.  

The observed WM deficits in NTS are likely to have functional ramifications in 

the brain. Recent research with functional MRI showed that functional connectivity of the 

cingulate cortex was associated with time to relapse in a recovering AUD sample 

(Zakiniaeiz et al., 2017). In addition, functional connectivity of the precuneus in response 

to alcohol cues was associated with severity alcohol dependence (Courtney et al., 2014). 

Thus, it may be the case that with continued alcohol misuse, structural differences in 

individuals with AUD may be related to functional deficits that alter brain function. In 
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turn, this may contribute to the maintenance of AUD, and potentially increase the risk for 

relapse in those who attempt to quit drinking.  

Resting state functional MRI has been used to parse the brain into networks with 

functional significance (Yeo et al., 2011), which is helpful in interpreting structural 

connectivity results. In the present study, regions with differential structural connectivity 

between NTS and SD predominantly belonged to the ventral and dorsal attention 

networks (Fox et al., 2006), frontoparietal network (Vincent et al., 2008), and the default 

mode network (Andrews-Hanna et al., 2010). Broadly speaking, these networks are 

involved in orientation of attention to internal and external stimuli, decision-making, and 

self-referential processes – all of which are relevant to addictive processes. Indeed, 

studies of AUD-related populations have reported altered function of these networks 

(Fryer et al., 2013, Wetherill et al., 2012, Chanraud et al., 2011). Thus, the observed 

structural differences in NTS in the present work are consistent with these functional 

findings. However, in this retrospective study, functional MRI data were not available, so 

we were unable to relate brain function to the observed structural differences. 

There are other limitations to consider for this retrospective study. First, we were 

unable to test for any possible interaction of cigarette and alcohol use because a 

nonsmoking group was not available in this retrospective sample. We also lacked metrics 

on lifetime exposure to alcohol as well as continuous metrics of recent and lifetime 

smoking rates, which could have provided insight as to the putative cumulative effects of 

alcohol on WM and allowed for a more precise control for cigarette use. However, we 

believe that the observed negative association between recent drinking history and FA is 

likely related to lifetime alcohol exposure, as drinking patterns often solidify in early 
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adulthood. Second, recent research suggests that tractography algorithms may be prone to 

false positive results (Maier-Hein et al., 2017). The approach we applied here was 

designed to reduce the likelihood of such effects via application of a conservative, 

deterministic tracking algorithm and by restriction of the seeding area to the GM/WM 

interface, rather than utilizing the full extent of all GM voxels in the brain. Finally, this 

approach only investigated WM connectivity through TBSS skeleton, which represents 

the center of core WM, and not the full extent of the WM tracts. In addition, no 

distinctions were made as to which specific regions were connected to one another. 

However, this approach provided qualitative insight into putative GM connections of 

compromised WM tracts in AUD. It also sets a premise for future work to investigate 

specific structural connectivity in AUD with regional- and/or network-based tractography 

approaches. 

In conclusion, we used TBSS to assess the effects of alcohol dependence on WM 

integrity in currently-drinking subjects with alcohol dependence, while controlling for 

cigarette smoking status. We also found that recent drinking (a probable proxy for 

lifetime alcohol exposure) was inversely correlated with WM integrity. Additionally, we 

employed a novel, qualitative method to identify the GM regions that may be adversely 

affected by regions of significantly lower FA in NTS, such as the cingulate cortex and 

precuneus. The results strongly suggest that currently-drinking individuals with alcohol 

dependence have features of WM microstructural deficits. Presence of these deficits in 

NTS highlights the need for additional research on consequences of alcohol misuse in 

currently drinking, community-dwelling AUD populations, who represent the majority of 

individuals with the disorder. 
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Chapter 2:  Alterations in White Matter Microstructure and Connectivity in Young 

Adults with Alcohol Use Disorder 

 

This chapter describes the use of diffusion weighted magnetic resonance imaging 

(DWI) to assess whether alcohol misuse in emergent adulthood is associated with 

alterations in white matter (WM) microstructure. Twenty-two college-age individuals 

with alcohol use disorder (AUD) and eighteen social drinking controls (CON) underwent 

DWI as well as high resolution T1-weighted imaging. Scalar indices of diffusivity in 

WM, were estimated and compared between groups with the tract-based spatial statistics 

(TBSS) framework. Additionally, a graph theory-based analysis of structural connectivity 

was employed to assess for alterations in strength of community association among brain 

regions. 

Results of the voxelwise analysis of group differences revealed that the AUD 

group had higher fractional anisotropy (FA; and index of WM integrity) in cortical WM 

as well as lower FA in cerebellar and insular WM. Mean diffusivity was generally lower 

in AUD compared to CON group. Network analysis of strength of community structure 

showed lower co-classification of regions between the ventral attention and default mode 

networks, and higher co-classification between regions of visual, default mode, and 

somatomotor brain networks of AUD subjects. Additionally, AUD had higher fiber 

density between an adjacent pair of regions within the default mode network.  
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Introduction 

 

Alcohol use disorder (AUD) is the most common addictive disorder and is 

associated with significant morbidity, mortality, social, and economic burden (WHO, 

2014). Despite decades of research, a complete understanding of the disease processes 

remains incomplete, which hinders the development of successful treatments for AUD. 

One strategy to aid in our knowledge is to study younger individuals with AUD in order 

to better characterize the brain during the earliest stages of the disorder. Additionally, 

AUD is a significant health problem in young adults. According to the 2016 National 

Survey on Drug Use and Health (NSDUH), 12% of individuals aged 21- 25 years old 

report heavy alcohol use (binge drinking on five or more days in the past month), yet 

only 5.6% of those 35 and older report heavy alcohol use (Department of Health and 

Human Services, 2015b). Furthermore, among college aged students (age 18-25), studies 

show that between 10 - 20% meet the criteria for an alcohol use disorder; however, in the 

general population, only around 5% meet the criteria for AUD (Blanco et al., 2008, 

Department of Health and Human Services, 2015b). These epidemiological reports 

demonstrate that AUD in young adults is already a significant problem. Although a 

growing body of literature exists on the effects of drinking (and risk for AUD) on 

adolescent (age 13-17) brains (Nguyen-Louie et al., 2018, Tapert et al., 2003) (also, see 

below), little is known about brain structure in young adults (~18-25 years old) with 

AUD. Late adolescence/emerging adulthood is a critical neurodevelopmental window 

that involves maturation of reward-related regions and cortical areas involved with 

executive function (for review see Bava and Tapert (2010)). As this age group enters a 
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collegiate environment, the potential for greater exposure to alcohol increases. In turn, 

this increases the vulnerability for development of AUD and potential concomitant 

adverse consequences on brain development during this time period. Thus, there is a 

critical need to better understand the effects of AUD on the brain in younger individuals, 

as this may ultimately facilitate the ability to identify those at risk for sustained AUD. In 

turn, such knowledge could permit development of interventions to prevent extensive 

damage and/or persistence of AUD throughout adulthood. 

Diffusion weighted imaging (DWI) is a neuroimaging technique that allows a 

non-invasive investigation of white matter (WM) microstructure. In preclinical studies, it 

is well known that alcohol leads to myelination injury (De Bellis et al., 2008). Similarly, 

DWI studies have demonstrated that AUD is associated with deleterious effects on WM 

microstructure in recently detoxified individuals who reported, on average, two decades 

of alcohol use (Alhassoon et al., 2012, Konrad et al., 2012). While widespread deficits in 

WM tracts have been observed, damage has most consistently been demonstrated in the 

corpus callosum, frontal forceps, internal and external capsules, fornix, superior cingulate 

and longitudinal fasciculi (Pfefferbaum et al., 2009, Pfefferbaum et al., 2014, Bühler and 

Mann, 2011, Yeh et al., 2009). However, data on the consequences of alcohol misuse on 

WM integrity in college-age individuals (18-24 years of age) are extremely limited and 

equivocal. At a 2-year follow-up, 20-21 year-old binge drinkers had no changes in DTI-

based metrics over time, and were not different from controls (Correas et al., 2016). In 

addition, while lower FA has been reported in binge drinkers ~17 years of age (Jacobus et 

al., 2009), higher FA has been observed in individuals with AUD of similar age (De 
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Bellis et al., 2008). Thus, additional work is needed to better understand the ramifications 

of hazardous drinking in college-age young adults. 

Studies that employ DWI typically adopt a diffusion tensor model and quantify 

WM integrity utilizing fractional anisotropy (FA), which is a metric that represents the 

degree anisotropy of water diffusion. In the WM, lower FA values are indicative of less 

restriction in water movement, which suggests a disruption in the microstructural 

environment (Soares et al., 2013). In addition to FA, the full diffusion tensor shape can 

also be described with other scalar metrics such as mean, axial, and radial diffusivity 

(MD, AD, and RD, respectively; (Alexander et al., 2007)). 

Chronic alcohol misuse has been associated with a reduction in DWI-based 

measures of WM integrity (Pfefferbaum et al., 2009, Zahr and Pfefferbaum, 2017), 

whereas, in adolescent populations, higher measurements of WM integrity are typically 

reported, which are thought to reflect a predisposition to development of alcohol use 

disorder (Silveri et al., 2016). Few studies have sought to investigate the effects of 

alcohol on WM microstructure in emerging adulthood (ages 18-24), when persistent 

hazardous drinking behaviors are typically established. Increased understanding of the 

neurobiological consequences of AUD in this critical development period could bridge 

the gap between findings from adolescent and adult AUD research. Additionally, most 

DWI studies have been conducted in detoxified/abstinent AUD subjects; therefore, the 

present study makes a further contribution to the limited body of knowledge on WM 

microstructural differences in currently drinking, non-treatment seeking AUD subjects. 

While DWI is in widespread use in research and clinical examinations of WM 

microstructural defects, traditional metrics (e.g., FA) may not be sensitive enough to 
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detect structural differences in early AUD. However, network science-based 

connectomics methodology may offer a novel insight into microstructural deficits in early 

AUD. These methods are applied to data obtained from DWI tractography-modeled brain 

networks of nodes (regions) and edges (connections). One such network method is 

modularity, which represents the degree of segregation of a network into groups of 

interconnected nodes called communities (Newman, 2006, Sporns and Betzel, 2016). 

Putative differences in community structure between emerging adult AUD subjects and 

healthy individuals may represent a predisposition or an early consequence of AUD that 

has yet to be investigated. 

The purpose of the present study was to investigate the WM integrity in young 

adults with or without AUD using both traditional metrics and a novel community 

detection approach. We hypothesized that, similar to older cohorts, younger AUD 

subjects would display significant differences in WM microstructure and altered 

connectivity due to the development of and/or consequences of AUD.  

 

Materials and Methods  

 

Subjects 

All study procedures were approved by the Institutional Review Board at Indiana 

University. Informed consent was obtained from all subjects prior to study. Twenty-two 

subjects with alcohol use disorder (AUD) and eighteen healthy controls (CON) were 

recruited from the community as part of a larger study as described in (Finn et al., 2015). 

To qualify, participants had to be 18 – 30 years old, have at least 6th grade level of 
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English comprehension, had consumed alcohol previously, and had no history of 

psychiatric illness or head trauma. AUD subjects had a current lifetime diagnosis of 

AUD. Four AUD participants also had a past lifetime diagnosis of a Substance Use 

Disorder other than alcohol; one AUD participant met criteria for marijuana use disorder. 

Severity of lifetime alcohol problems was measured using the Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA) (Bucholz et al., 1994), as the total 

count of all positive responses to all SSAGA questions in the Alcohol Diagnosis section 

(Cheng et al., 2018). The score range across all subjects was 0-99. Recent alcohol 

consumption was quantified as the total number of self-reported drinks in the last 2 

weeks. Prior to study day, subjects were asked to abstain from alcohol for 12 hours. A 

breath alcohol test confirmed sobriety on scan day (Alco-Sensor IV, Intoximeters, St. 

Louis, MO). 

 

Imaging  

Data were acquired on a Siemens 3T Trio-Tim (Siemens, Erlangen, Germany). 

Diffusion weighted data were collected with a single-shell (b=1000 s/mm2) 2D 

acquisition; 64 diffusion directions and 8 b = 0 volumes; A-P phase encoding; 128x128 

matrix; 72 slices; 2 x 2 x 2 mm3 voxels, iPAT factor = 2. A T1-weighted 3D anatomic 

sequence was also acquired (Field of view = 192x168 matrix, 160 sagittal slices, and 1.3 

x 1.3 x 1.3 mm3 voxels).  
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Image processing 

An in-house Matlab-based pipeline that utilizes FSL (Version 5.0.9) (Jenkinson et 

al., 2012) and Camino (Cook et al., 2006) was applied for image processing. Each 

subjects' anatomic T1-weighted image was denoised (Coupé et al., 2008), skull stripped 

(FSL bet), and segmented according to tissue-type (FSL FAST). Diffusion weighted data 

were first denoised with local principal component analysis filter (Manjón et al., 2013), 

then the eight b0 volumes were registered to the first volume and averaged. The data 

were then corrected for motion, eddy currents, and registered to each subject's anatomic 

space. This image processing procedure has been previously published in detail 

elsewhere (Chumin et al., 2018). At each voxel, tensor estimation was done with multi-

tensor fitting in Camino in which voxels were classified as isotropic, anisotropic 

Gaussian (single tensor), or nonGaussian (multi-tensor). Scalar metrics of diffusion 

including FA, MD, AD, and RD were derived from tensor data. Streamline tractography 

was carried out in Camino with Fiber Assignment by Continuous Tracking algorithm in 

each subject’s anatomic space. Relevant tractography parameters were: 1 seed per voxel 

at the interface of gray matter (GM) and WM (obtained from the overlap of dilated GM 

and WM tissue masks), with an additional seed placed if a streamline encountered a 

multi-tensor voxel, whereupon each streamline followed one of the tensor directions; step 

size 1 voxel; maximum turning angle of 45 degrees over 5 steps. Streamlines terminated 

upon reaching another seed voxel at the GM/WM interface. After tracking, a length filter 

was applied to discard very short (<8mm) or extremely long (>180mm) streamlines. 

Throughout the processing, data were visually inspected for proper alignment and 

quality. 
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Tract-Based Spatial Statistics (TBSS) 

FA maps for each subject were generated in subjects’ anatomical space and 

analyzed via Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006). These data were 

nonlinearly registered onto the FMRIB58 template FA image (FSL’s FNIRT). The mean 

FA volume was created and thinned to generate a skeleton representation of core WM 

tracts. Each subject’s FA data were then projected onto the skeleton and used for 

subsequent analysis. 

 

Structural Network Assembly 

For each subject, we generated a structural connectivity network matrix, where 

the cortical nodes were based on a previously published brain parcellation (Shen et al., 

2013). For the subcortical nodes, we implemented regions defined by Mawlawi et al. 

(2001) for the striatum and by (Behrens et al., 2003) for the thalamus. The thalamic 

regions were further consolidated from 7 to 4 regions (pre-motor, primary motor, and 

sensory input regions were combined, and occipital and temporal regions were combined) 

per hemisphere to ensure sufficiently sized regions for tractography analysis. For all 

region pairs, number of streamlines and average seed surface area were extracted from 

the whole-brain tractogram with the Camino conmat function. The number of streamlines 

matrix was then thresholded to zero any values ≤ 2 to minimize the influence of false 

positive connections (Maier-Hein et al., 2017). Finally, network edges were quantified as 

fiber density (number of streamlines / average seed surface of connected regions; 

Hagmann et al. (2008)) between any pair of connected regions. Global metrics of 
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network connectivity were calculated from the fiber density matrices with the Brain 

Connectivity Toolbox (Rubinov and Sporns, 2010). 

 

Community Structure (From Hierarchical Consensus Clustering) 

For each subject’s structural connectivity network matrix (see above), a set of 

1000 modularity partitions was generated with methodology that is part of a novel 

Multiresolution Consensus Clustering procedure developed by Jeub et al. (2018). This 

method samples the full resolution range of resolution of modularity across a given 

number of partitions. A co-classification (CA) matrix was then generated, where edge 

weights are the frequency with which two nodes belong to the same module across the 

identified ensemble of partitions.  

 

Statistical Analyses 

Group subject demographics were assessed with independent-samples t-tests or 

chi-squared tests, and results at p < 0.05 were considered statistically significant. Group 

differences in FA images from TBSS were interrogated with permutation testing in FSL’s 

randomise. Contrasts were generated after 10,000 permutations with Threshold-Free 

Cluster Enhancement (TFCE) for multiple comparisons correction across all skeleton 

voxels (Smith and Nichols, 2009). Significant clusters from all contrasts were ordered by 

size and thresholded at the largest 1% (corresponding to > 500 voxels in size) of clusters 

across all comparisons (8 contrasts with a total of 1469 clusters that range 1 to 12892 

voxels in size). FSL’s cluster tool was used to extract mean cluster FA. Comparisons of 

continuous measures of subject characteristics and global metrics of network connectivity 
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were conducted with independent samples t-tests. Chi-squared tests were used to test for 

differences in categorical variables. The Network Based Statistics (NBS; Zalesky et al. 

(2010)) Toolbox was used to compare the fiber density and CA network matrices 

between groups. False Discovery Rate (FDR) after 5,000 permutations was used to 

control for multiple comparisons. 

 

Results 

 

Subjects Characteristics  

Subject characteristics are presented in Table 3. AUD and CON were well 

matched, with no significant differences in age, gender, education, or smoking status. In 

the AUD group, the mean age of AUD onset was 17.23 ± 1.4, and mean age at first drink 

was 14.82 ± 1.47, compared to 18 ± 1.91 in CON. Additionally, AUD reported 

significantly higher lifetime alcohol problem counts (p < 1 × 10-5) and total number of 

drinks in the two weeks prior to interview (p < 1 × 10-10) compared to CON.  

 

TBSS: AUD vs. CON 

Young individuals with AUD showed higher FA values compared to CON 

throughout the WM skeleton (pTFCE < 0.05; Figure 5). This apparent difference in FA is 

likely a function of lower RD (Figure 6C; Figure 7A) in the AUD group. MD was also 

reduced in AUD (pTFCE < 0.05; Figure 6A), predominantly in areas where FA differences 

are absent; these differences in MD were likely due to significantly reduced AD (pTFCE < 

0.05; Figure 6B). Concurrently, AUD subjects exhibited lower FA values in WM tracts 
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Table 3.  Subject Characteristics. Data are mean ± standard deviation. CON: Controls; 

AUD: Alcohol Use Disorder; M: Male; F: Female. n/a: not applicable. 

  CON 

(n = 18) 

AUD 

(n = 22) 
p-value 

Age  22.39 ± 3.35 22.73 ± 2.73 0.73 

Gender 9 F 8 F 0.36 

Cigarette use (n) 4 8 0.33 

Education (years) 14.17 ± 1.65 14.18 ± 1.22 0.97 

Total Drinks (Last 2 Weeks) 6.22 ± 6.75 66.32 ± 49.49 9.68 x 10-6 

Lifetime Alcohol Problems 2.50 ± 3.19 48.10 ± 20.93 3.99 x 10-11 

Age at first drink 18 ± 1.91 14.82 ± 1.47 2.15 x 10-6 

Age of AUD onset n/a 17.23 ± 1.41  
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Figure 5.  TBSS results for fractional anisotropy (FA). Areas where young adult alcohol 

use disorder (AUD) subjects had either higher (red-yellow) or lower (blue) FA compared 

to controls (CON) (pTFCE < 0.05). Group differences are superimposed on the mean FA 

skeleton (green); the mean FA image of the sample is the underlay. For visualization 

purposes, significant voxels within the WM skeleton were thickened with tbss_fill. 
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Figure 6.  TBSS results for (A) mean diffusivity (MD), (B) axial diffusivity (AD), and 

(C) radial diffusivity (RD). Areas where alcohol use disorder (AUD) subjects had either 

higher (red-yellow) or lower (blue) scalar diffusion measures compared to controls 

(CON) (pTFCE < 0.05). Group differences are superimposed on the mean FA skeleton 

(green); the mean FA image of the sample is the underlay. For visualization purposes, 

significant voxels within the WM skeleton were thickened with tbss_fill. 
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Figure 7.  Mean axial (left) and radial (right) diffusivity values extracted from largest 1% 

clusters, which showed significant differences in fractional anisotropy. X-axis labels 

correspond to FA clusters shown in Figure 5. AUD-alcohol use disorder; CON-control. 

Diffusion data are presented as mean ± standard deviation in mm2/s. For all clusters mean 

axial diffusivity did not differ, while mean radial diffusivity was statistically (p < 0.05) 

different between groups. 
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Figure 8.  Comparisons of mean fractional anisotropy (FA) for largest 1% of clusters (> 

500 voxels). TBSS results (pTFCE < 0.05) showed higher FA in alcohol use disorder 

(AUD) subjects compared to controls (CON) in clusters encompassing the (A) posterior 

internal capsule, (B) inferior fronto-occipital, (C) cingulum, (D) callosal, (E) superior 

longitudinal, and (F) inferior longitudinal tracts. Mean FA images show the anatomic 

position of each cluster. Data are mean ± standard deviation (black), with individual data 

points in gray filled circles. Tract labels were obtained from the Johns Hopkins 

University white-matter tractography atlas available in FSL. 
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Figure 9.  Comparisons of mean diffusivity (MD) for largest 1% of clusters (> 500 

voxels). TBSS results (pTFCE < 0.05) showed reduced MD in portions of the (A) superior 

longitudinal, (B) inferior longitudinal and internal capsule, as well as (C) thalamic white 

matter. Mean FA images from the sample show the anatomic position of each cluster in 

red. Data are mean ± standard deviation (black), with individual data points in gray filled 

circles. Tract labels were obtained from the Johns Hopkins University white-matter 

tractography atlas in FSL. 
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Figure 10.  Mean axial (left) and radial (right) diffusivity values extracted from largest 

1% clusters, which showed significant differences in mean diffusivity. X-axis labels 

correspond to MD clusters in Figure 6A. AUD-alcohol use disorder; CON-control. 

Diffusion data are presented as mean ± standard deviation in mm2/s. For all clusters mean 

axial diffusivity did not differ, while mean radial diffusivity was statistically (p < 0.05) 

different between groups. 
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Figure 11.  Characterization of networks from tractography-based structural 

connectomes (A, B, C) and comparisons of measures of network segregation and 

integration (D,E). Structural networks of CON and AUD groups were similar in density 

(A) and mean degree (B), while mean strength of edges was significantly (p = 0.0248) 

higher in the AUD group. Clustering coefficient, a measure of network segregation did 

not differ between groups, while global efficiency, a network integration metric, was 

significantly (p = 0.0354) higher in the AUD group. P-values for independent-samples t-

test are indicated when significant. 

  



 

57 

 

Figure 12.  Results from the network based statistics comparison of fiber density and co-

classification (pFDR < 0.05). (A) Higher fiber density in alcohol use disorder (AUD) 

subjects compared to controls (CON) was found between nodes located in the middle 

frontal and superior frontal gyri. (B) Co-classification index (measure of strength of 

association of a pair of nodes in an ensemble of community structure partitions obtained 

from modularity), was higher in AUD compared to CON in edges that connect middle 

frontal gyrus and pre/postcentral gyrus (left) node pairs, cuneus and middle temporal 

gyrus (right), and supplementary motor area and middle occipital gyrus (right). (C) One 

edge that connected nodes in the cuneus and inferior insula showed lower co-

classification in AUD compared to CON. Renders are on a Montreal Neurological 

Institute 1mm template included in FSL, visualized with MRIcroGL software. Node pairs 

with edges that differed between groups are overlaid in shaded gray. A black line was 

used to specify the connected pair, when multiple pairs are presented on a single 

underlay. R and L represent right and left hemisphere, respectively.  
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associated with the right insular cortex and in cerebellar WM (pTFCE < 0.05; Figure 5). 

Mean FA and MD values and anatomical position for clusters > 500 voxels are shown in 

Figures 8 and 9, respectively. Mean AD and RD values from clusters with significant 

differences in FA or MD are shown in Figures 7 and 10, respectively. 

 

Network Metrics of AUD vs. CON Structural Connectivity 

Comparisons of global measures of structural connectivity showed increased 

network strength (pFDR < 0.02) and global efficiency (pFDR < 0.04) in AUD, while 

network density, degree, and clustering coefficient did not differ (Figure 11). AUD had 

higher fiber density in a single connection between a node in the middle frontal gyrus and 

a node in the superior frontal gyrus (Figure 12A). In AUD, co-classification (CA) was 

greater between nodes in middle frontal and pre/postcentral gyri (Figure 12B, left), 

between nodes in the cuneus and the middle temporal gyrus, and between supplementary 

motor and middle occipital areas (Figure 12B, right). AUD also had lower CA between 

nodes in the middle temporal gyrus and inferior insula (Figure 12C). 

 

Discussion  

 

Studies employing DWI frequently focus on alcoholism in detoxified/abstinent 

older adults, but few DWI studies have investigated the WM differences in currently-

drinking young adults with AUD. Emerging adulthood is a critical period for alcohol use 

as it represents the time period when one reaches the legal drinking age with greater 

access to alcohol use. This, coupled with increasing social acceptance of heavy drinking 



 

59 

at this age, means that emerging adulthood is likely an important stage for the 

development and/or maintenance of AUD (Jennison, 2004). The present study 

demonstrates that there are alterations in WM microstructure in young adults with AUD. 

Additionally, our investigation of structural network modularity utilizing a novel 

connectomics based approach yielded differences in community structure in the brains of 

young AUD subjects. This study represents one of the first investigations of WM 

differences in an emerging adulthood AUD sample using a network science based 

analysis in addition to traditional DWI metrics. 

Alterations in FA, MD, AD, and RD values reflect differences in axonal 

diameters, density, and myelination (Alexander et al., 2011, Alexander et al., 2007, 

Feldman et al., 2010). Consistently, the literature has reported that decrements in WM 

integrity are associated with alcohol use (for review see Zahr and Pfefferbaum (2017)) 

and higher WM integrity is associated with better cognitive functioning (Elofson et al., 

2013). However, our results show that young AUD subjects have elevated FA, with lower 

MD, RD, and AD throughout major WM tracts of the TBSS FA-skeleton. This suggests 

that young AUD may have differential axonal diameters, density, and/or myelination 

compared to CON subjects. The present findings are consistent with several reports that 

observed higher FA in at-risk adolescent populations and adolescent-onset AUD (De 

Bellis et al., 2008, Tapert and Schweinsburg, 2005, Bava et al., 2009). There are several 

potential explanations for these unexpected results. It is possible that accelerated 

myelination of callosal tracts may present a vulnerability for adolescent AUD (De Bellis 

et al., 2008). Alternatively, such WM changes might reflect compensatory responses that 

occur during the early progression of AUD (Bava et al., 2009). Indeed, fMRI studies have 
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shown that subtle reorganization of functional activation may occur during the 

progression of AUD with increasing use (Tapert et al., 2004). Taken together, these 

findings could suggest that the early stages of AUD may be associated with higher FA in 

many regions, either as a function of predisposition to AUD (Cardenas et al., 2013) or as 

a result of the effects of extensive alcohol exposure during the early stages of AUD. 

Further work is needed to understand whether or not these neurophysiological signatures 

are related to behavioral and cognitive endophenotypes in early-stage AUD, and whether 

they are predictive of sustained alcohol use disorders throughout adulthood. 

The lower FA values in WM tracts near the insula indicate potential 

demyelination or damage in insular tracts. The insula is an important neural substrate for 

reward and addiction, and is critical for mediating cue-induced craving that can drive 

drug use (Naqvi et al., 2014, Droutman et al., 2015). This is supported by rodent models 

of alcohol addiction, which have shown that disrupting excitatory insular-striatal circuitry 

decreases alcohol self-administration and increases sensitivity to alcohol (Jaramillo et al., 

2018a, Jaramillo et al., 2018b). Decrements in FA in the vicinity of the insula in our 

young adult AUD sample may lead to impaired ability to detect changes in internal states 

such as alcohol intoxication (Berk et al., 2015, Migliorini et al., 2013). Additionally, the 

key role of the insula in salience attribution (Seeley et al., 2007) to the effects of alcohol 

intoxication could also be altered with deficits of WM adjacent to the insula. In support 

of this, a recent resting state fMRI study demonstrated that alcohol disrupted the 

connectivity between the anterior insular cortex and dorsal cingulate cortex (key nodes in 

the salience network), and that this disrupted connectivity was associated with greater 

“relaxing” effects of alcohol (Gorka et al., 2018). 
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To our knowledge, only one other structural connectivity study used graph theory 

analyses in AUD and demonstrated that the AUD group had significantly weaker 

connectivity, primarily in the right hemisphere (Zorlu et al., 2017). The edges or tracts of 

significance included connections of the putamen and hippocampus with other brain 

regions (Zorlu et al., 2017). We add to these findings by reporting AUD had lower co-

classification of nodes between ventral attention (supplementary motor and inferior 

insula/superior temporal areas) and default mode (superior middle temporal gyrus) 

networks and higher co-classification between nodes of visual (middle occipital/temporal 

areas) and somatomotor (supplementary motor area) networks. Additionally, AUD had 

higher fiber density between a pair of nodes within the default mode (middle frontal and 

superior frontal areas) network and a pair of nodes between the dorsal attention 

(precentral/middle frontal area) and somatomotor (precentral/postcentral area) networks.  

We recently reported structural connectivity differences in the ventral and dorsal 

attention networks, frontoparietal network, and default mode network in adult 

nontreatment-seeking AUD subjects (Chumin et al., 2018). In agreement with our 

previous findings, here we demonstrate that younger AUD subjects have altered 

connectivity in the ventral and dorsal attention networks and default mode network in 

addition to differences in the visual and somatomotor networks. Structural networks 

generally correspond to functional networks (Bullmore and Sporns, 2009); therefore, 

alterations to structural networks likely result in disrupted function. Respectively, the 

dorsal and ventral attention networks mediate voluntary shifts in attention, and detect 

unexpected, behaviorally-relevant stimuli (Vossel et al., 2014). The default mode 

network is a set of nodes broadly thought to be active during rest and silent during 
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cognitive activities (Greicius et al., 2003). Importantly, the functions of the dorsal and 

ventral attention network and default mode network are relevant to alcohol abuse and 

dependence. Disrupted functional connectivity in the default mode has been reported in 

heavy drinking populations (Chanraud et al., 2011, Shokri-Kojori et al., 2016). 

Attentional bias and deficits are also frequently observed in AUD patients (Field and 

Cox, 2008, Fryer et al., 2013). Disruptions in the somatomotor and visual networks are 

less frequently associated with AUD; however, altered functional connectivity has been 

observed in the somatomotor and visual networks during alcohol intoxication (Esposito et 

al., 2010, Khalili-Mahani et al., 2012). Thus, the functional findings in the literature are 

consistent with our present structural connectivity data in young adult AUD.  

Nodes within the networks referred to above, including the superior frontal 

cortex, insular cortex, temporal cortex and lateral parietal cortex, have been shown to be 

highly connected regions with a central position in the overall network (van den Heuvel 

and Sporns, 2013). These densely connected "hubs" or "rich clubs" play key roles in 

integrating information between segregated parts of the brain. It has been suggested that 

alterations in these hubs or interconnections could likely lead to severe impairments 

because of their roles in whole-brain integrative processes (van den Heuvel and Sporns, 

2013, van den Heuvel et al., 2013). For instance, abnormal rich club organization has 

been reported in structural connectivity analysis of patients with AUD (Zorlu et al., 

2017). The differences seen here may represent a network phenotype associated with a 

predisposition to develop AUD. However, it should be noted that the neurophysiological 

and cognitive/behavioral relevance of alterations in hubs and their interconnectedness are 

not fully understood.  
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The present study contains some limitations that should be considered. Not all 

individuals with hazardous drinking behavior in emerging adulthood will continue on to 

AUD as they age (for review see O'Malley (2004)). It is possible that subjects meeting 

the criteria for AUD in our study may “grow out” or “age out” of the AUD status as they 

progress through adulthood. Nonetheless, identifying differences in WM integrity and 

structural connectivity in young adult subjects currently meeting AUD criteria and 

experiencing the burden of heavy alcohol use is necessary, as these differences could 

represent areas of lasting neuroanatomical changes that continue regardless of the 

retention of AUD status. In addition, information on family history of AUD, which is a 

strong predictor for eventual development of AUD, was not available for this sample, and 

may be a contributing predisposing factor toward alterations of DWI scalar metrics (for 

review see Cservenka (2016)). Finally, this study utilized a relatively small, retrospective 

sample; longitudinal research with larger sample sizes is necessary to determine whether 

differences in scalar DWI metrics, fiber densities, and node associations contribute to the 

development of AUD, or are a consequence of the early stages of AUD.  

In summary, we utilized traditional DWI metrics and a novel connectomics-based 

approach to examine WM differences in young adult AUD subjects. We demonstrated 

that young AUD subjects had distinct differences in microstructure with both higher WM 

integrity in many tracts and lower WM integrity in others. The connectomics analysis 

also revealed altered structural connectivity in this young adult AUD sample. The 

presence of these differences indicates that alterations in WM may not only appear after 

years of chronic alcohol abuse, but may in fact emerge during the early stages of AUD. 

The connectomics approach also detected structural connectivity differences in regional 
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and global network connectivity measures in these emerging adulthood AUD subjects, 

and suggests that DWI studies investigating WM microstructure in AUD populations 

may benefit from utilizing this complementary, network science-based approaches. The 

present findings demonstrate WM microstructural structural connectome patterns that 

may be important for further understanding the early stages of AUD. This is clinically 

relevant, as young adult AUD represents a crucial time period for intervention to prevent 

maintenance of AUD throughout adulthood and subsequent potentially damaging 

changes to brain tissue.  
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Chapter 3:  Differences in Consensus Community Structure in Cigarette Smokers 

with and without Alcohol Use Disorder 

 

 This chapter utilizes graph theory methodology to investigate the relationships 

between alcohol and/or cigarette use and structural brain connectivity as indexed by 

diffusion weighted imaging (DWI). Structural connectomes (N x N matrix, where N is 

number of brain regions) were estimated for healthy controls (CON), otherwise healthy 

cigarette users (SMK), and cigarette smoking nontreatment-seeking alcoholics (SNTS). 

Each group consisted of 19 demographically matched participants. Global measures of 

network connectivity (density, degree, and strength) as well as measures of network 

segregation (transitivity) and integration (global efficiency) were compared between 

groups. Additionally, community detection was utilized to identify a consensus brain 

partition for each group. 

 Results from this analysis revealed that consensus community organization was 

similar between groups. However, SMK and SNTS showed a reduction in longer inter-

community structural connections, compared to CON. These results suggest that cigarette 

smoking may be the dominant contributor to observed differences in DWI tractography-

derived structural brain connectivity, possibly through disruption of the microstructural 

environment of longer inter-community white matter connections.  
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Introduction 

 

Cigarette smoking is one of the leading causes of mortality in the world, with 7 

million deaths per year attributed to tobacco use (WHO, 2017). Chronic cigarette use also 

increases the risk of multiple forms of cancer (Onor et al., 2017), as well as respiratory 

and cardiac diseases (D'Alessandro et al., 2011, Rab et al., 2013). In certain populations, 

cigarette use rates are greatly increased. In particular, approximately 60-90% of 

individuals with alcohol use disorders (AUD) are chronic smokers (Falk et al., 2006, 

Kalman et al., 2005, Romberger and Grant, 2004), compared to ~15% of the general 

population of the United Sates (WHO, 2017). Adverse effects of cigarette smoking on the 

brain have been demonstrated by magnetic resonance imaging (MRI) studies. For 

example, structural MRI of brain morphology in smokers showed reduced cortical and 

subcortical gray matter volumes (Durazzo et al., 2017, Sutherland et al., 2016, Yu et al., 

2018, Zhong et al., 2016). Diffusion weighted imaging (DWI) studies have shown both 

increased (Hudkins et al., 2012, Liao et al., 2011) and decreased white matter (WM) 

integrity in smokers (Baeza-Loya et al., 2016, Lin et al., 2013). Similar to chronic 

smoking, AUD is also associated with widespread brain abnormalities (Bühler and Mann, 

2011). Reductions in gray and callosal WM volumes (Gazdzinski et al., 2005, 

Pfefferbaum et al., 1996) as well as WM integrity have been found in detoxified 

alcoholics (Pfefferbaum et al., 2006b, Pfefferbaum et al., 2000, Rosenbloom et al., 2008, 

Yeh et al., 2009, Zorlu et al., 2013). In addition, community-dwelling, actively drinking 

AUD individuals (who represent a distinct population of AUD), also have decrements in 

WM integrity (Cardenas et al., 2005, Chumin et al., 2018, Fortier et al., 2014). 
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Recently, novel methodologies have offered valuable insight into disruptions of 

brain structure and function in substance abuse. For example, brain connectomics applies 

network science to the study of biological networks and combines information from 

multiple MRI modalities to represent and study the brain as a network of interconnected 

regions (Fornito et al., 2015). This network, referred to as a “connectome”, is comprised 

of gray matter nodes and edges that represent pairwise structural connections or 

functional associations (Rubinov and Sporns, 2010). In structural connectomes, an edge 

indicates the existence and possibly strength of a connection obtained from DWI and 

streamline tractography metrics. For functional connectomes, an edge is typically 

represented by a correlation coefficient between functional MRI (fMRI) time series of 

two nodes (Rubinov and Sporns, 2010) and estimates the level of functional coupling. 

Findings based on connectomics of human neuroimaging data have shown alterations of 

network structure in clinical populations, including psychiatric disorders (Fornito et al., 

2015, Tomasi and Volkow, 2014, Zalesky et al., 2015), neurodegenerative diseases and 

aging (Gallen et al., 2016, Hojjati et al., 2017, Tinaz et al., 2017), and addiction/reward 

disorders (Kim et al., 2011, Verdejo-Román et al., 2016, Wang et al., 2015).    

Quantitative metrics of the brain connectomics can be classified as either 

indicators of network integration (the combination of information from distributed 

nodes), or segregation (specialized processing within interconnected regions) (Rubinov 

and Sporns, 2010). One approach to study network segregation is community detection, 

which divides a network into groups of (highly) interconnected regions (communities). 

The quality of the partition into communities can then be assessed by modularity (for 

review see Sporns and Betzel (2016)). A widely used maximization function for 
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modularity is Newman’s Q, which quantifies the quality of a network partition into 

communities compared to a random network (Newman, 2006). Functional networks in 

subjects with alcohol use disorder and cigarette smokers have been generally 

characterized by lower measures of segregation and integration compared to controls 

(Cao et al., 2014, Holla et al., 2017, Lin et al., 2014, Sjoerds et al., 2017, Wozniak et al., 

2012), although the evidence is less clear in cigarette smokers (Breckel et al., 2013). In 

structural networks of heroin-dependent individuals, global measures of network 

integration were either greater than (Zhang et al., 2015) or did not differ from controls 

(Sun et al., 2015).  

We are unaware of any applications of whole-brain structural network studies or 

community detection methodology to brain networks in either cigarette smokers or in 

AUD subjects. Whole-brain structural connectomics approaches are especially 

advantageous because the negative physiological consequences of cigarette and alcohol 

use are likely to be distributed throughout the brain (Laviolette and van der Kooy, 2004, 

Ron and Barak, 2016). Taken together, the goal of this retrospective analysis was to 

compare global network measures and community organization of structural brain 

networks in cigarette smokers, nontreatment-seeking AUD subjects who smoke, and 

nonsmoking controls. 
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Materials and methods 

 

Subjects 

Participants were recruited through local advertisements and social media from 

the greater Indianapolis area. Informed consent was obtained from all participants after 

confirmation that breath alcohol concentration was zero and all study procedures were 

explained. The study was approved by the Indiana University Institutional Review Board 

in accordance with the Belmont Report. Participants were between the ages of 21 and 55, 

right-hand dominant, and were able to read, understand, and compete all procedures in 

English. Magnetic Resonance Imaging (MRI) data were collected as part of positron 

emission tomography (PET) studies designed to investigate the dopamine system; PET 

data from these subjects have been previously published (Albrecht et al., 2013, Oberlin et 

al., 2015a, Yoder et al., 2016, Yoder et al., 2011b, Yoder et al., 2011a). Tract-Based 

Spatial Statistics (Smith et al., 2006) analysis of diffusion-weighted imaging (DWI) in 

cigarette-smoking participants herein has also been published (Chumin et al., 2018). The 

present study focuses on a retrospective analysis of DWI data using graph theory 

measures of structural brain network connectivity in a sample of smoking, nontreatment-

seeking alcohol-dependent participants (SNTS), otherwise healthy cigarette smokers 

(SMK), and nonsmoking controls (CON). Exclusion criteria were: any contraindications 

for MRI, positive urine pregnancy screen, positive urine toxicology screen for illicit 

substances, current use of any psychotropic medication, and history or presence of any 

psychiatric, neurological, or other medical disorders. At the time of study, all SNTS 

participants met DSM-IV criteria for alcohol dependence, had not sought treatment for 
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alcohol use disorder (AUD) in the past year, and were not actively seeking treatment at 

time of study. In all participants, presence or absence of AUD was confirmed by the 

Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Other 

administered questionnaires included the medical history and demographics 

questionnaire, the 90-day Timeline Follow-Back for alcohol use, Edinburgh Handedness 

Inventory, Fagerstrom Test for Nicotine Dependence (Pomerleau et al., 1994), Alcohol 

Dependence Scale (Horn et al., 1984), and an internally-developed substance use 

questionnaire. 

 

Image acquisition and processing 

MRI data were acquired on a 3T Siemens Magnetom Trio with a 12-channel coil 

array (Siemens, Erlangen, Germany). Whole brain DWI data were collected with a 2mm 

isotropic voxel resolution and 48 distinct diffusion directions at b = 1000 s/mm2 after 

initial 8 b = 0 (b0) volumes. A small subset of data (n = 4) were collected with a single 

b0 volume. A high-resolution T1-weighted volume (3D MP-RAGE; 1.05x1.05x1.2 mm3 

voxels) was acquired with the parameters optimized for the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI-1; http://adni.loni.usc.edu). A full description of the MRI 

acquisition and processing steps is provided in Chumin et al. (2018).  

Each participants’ T1-weighted image was preprocessed to facilitate parcellation 

of gray matter into network nodes (see below). T1-weighted images were denoised with 

an optimized nonlocal means filter (Coupé et al., 2008). The FMRIB Software Library 

(FSL) version 5.0.9 (Jenkinson et al., 2012) was then used to crop and bias-field correct 

(Zhang et al., 2011), skull-strip (Smith, 2002), and segment tissue types and subcortical 
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structures (Patenaude et al., 2011). All diffusion volumes were visually inspected for 

signal dropout and head motion artifacts. DWI data were denoised with a local principal 

component analysis filter (Manjón et al., 2013). For each participant, the diffusion-

weighted volumes were spatially registered (rigid-body) to a reference (mean) b0 volume 

and corrected for head motion during acquisition (Jenkinson et al., 2002). Eddy current 

correction was performed with FSL eddy_correct (Jenkinson and Smith, 2001). Finally, 

the mean b0 volume was coregistered to the T1-weighted image and the resultant spatial 

transformation was applied to the remaining diffusion data volumes. White matter 

tractography was carried out in each subjects’ T1 space. Visual quality control was done 

at all processing steps. 

 

Tractography and network construction 

Tensor modeling with multi-tensor fitting and calculation of voxelwise fractional 

anisotropy (FA) values from the DWI data were implemented in the Camino software 

suite (Cook et al., 2006). At each voxel, the tensor was classified as either isotropic, 

single-tensor (anisotropic, Gaussian), or crossing fiber (anisotropic, non-Gaussian). 

Deterministic streamline tractography was implemented in Camino with the Fiber 

Assignment by Continuous Tracking (Mori et al., 1999) algorithm using seed voxels at 

the gray-white matter interface. Other pertinent tractography parameters were: 1 

seed/voxel, 1 mm step size, maximum turning angle of 45 degrees over 5 steps, fractional 

anisotropy (FA) > 0.1, and an inclusion mask that was the result of addition of the seed 

voxels and the white matter mask obtained from the FSL segmentation. If a streamline (a 

line connecting image voxels based on their principal orientation) encountered a crossing 
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fiber voxel, a seed was placed into that voxel with one streamline following each 

direction. Streamlines were terminated upon reaching a seed voxel at the gray-white 

matter interface. Very short (< 8 mm) streamlines were discarded, whereas very long (> 

180 mm) streamlines were truncated at maximum allowable length of 180 mm. 

The 278-region brain parcellation described by Shen et al. (2013) was used to subdivide 

each participants’ gray matter into network nodes using the Camino conmat function. All 

nodes in this parcellation are similar in size, thus reducing the influence of seeded surface 

on connectivity measures. We used streamline density (e.g., number of streamlines 

connecting any pair of nodes, divided by the average seed surface of that node pair) to 

define network edges. Therefore, the brain structural network of each participant was 

represented as a 2-dimensional 278x278 adjacency matrix, in which streamline density 

values were edge weights. To reduce influence of false-positives, any edges with less 

than two streamlines (<2) were discarded and set to zero. 

 

Network measures and modularity 

Mean network density, strength, and degree, as well as global efficiency and 

transitivity of the networks were calculated using the Brain Connectivity Toolbox (brain-

connectivity-toolbox.net) (Rubinov and Sporns, 2010). Modularity quantification and 

community detection were performed with a generalized Louvain method as described in 

Mucha et al. (2010). This method identifies a common (consensus) partition in a group of 

networks. All of the participant networks within each group were stacked to form a 

categorical multi-slice network (i.e., each slice representing a network of a single 

participant). Community detection within the multi-slice networks of each group were 
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done at six different modularity resolution parameters (γ = 1, 2, 3, 4, 5, 6). At each 

resolution, the coupling parameter omega (ω) was incrementally increased in steps of 

0.005 with 100 iterations per step, until 17 out of 19 participants (~90% of group) had a 

consensus partition across 90% of iterations. Due to the nature of the algorithm, the 

consensus partitions obtained at each iteration could differ. To obtain a single 

representative partition per group at each γ parameter value, all partitions from the 100 

iteration run that met the above described criteria underwent consensus clustering as 

described by Lancichinetti and Fortunato (2012). Briefly, the partitions were used to 

create a co-assignment matrix (number of times any node pair was assigned to the same 

partition) that was thresholded to zero values below a predetermined parameter to 

facilitate convergence. Here, this parameter was set to zero, as the 100 partitions were 

similar enough to converge without the need for a threshold. The co-assignment matrix 

was then entered into the generalized Louvain modularity to obtain another set of 100 

partitions. This was repeated until all 100 partitions were identical. This partition was 

then used as the representative community structure for the group. Visualization of group 

consensus partitions was done with MRIcroGL 

(http://www.mccauslandcenter.sc.edu/mricrogl), in which partitions that shared highest 

number of nodes in common both between groups and across resolutions within group 

were assigned the same color label. For any particular community partition, network 

edges were classified as either within- or between-community if they connected nodes of 

the same or different communities, respectively. 
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Statistical analyses 

Group differences in sample characteristics were assessed with a one-way 

analysis of variance (ANOVA) or χ2 test when appropriate. Differences in tissue, seed, 

and streamline inclusion volumes were evaluated with a one-way ANOVA. Because 

global connectivity measures were not normally distributed, they were log transformed 

prior to group comparisons with an ANOVA, with Bonferroni-corrected post-hoc 

comparisons. Normalized (adjusted for number of elements) area under the curve of 

streamline length distributions obtained from the modularity partitions were compared 

with a mixed effects ANOVA, with Bonferroni corrected post-hoc t-tests. Associations 

between years of education and connectivity measures were investigated with linear 

regression. All statistical tests were performed in SPSS version 24 (IBM, Armonk, NY 

USA).  

  

Results 

 

Sample Characteristics 

The groups were matched for age and sex. Scores on the Fagerstrom test for 

nicotine dependence did not differ between the two smoking groups. All three groups 

were similar with respect to total intracranial and white matter volumes (Table 4). Years 

of education differed between groups (one-way ANOVA, F(2,53)=7.81, p < 0.001), 

however, there were no significant correlations between years of education and global 

network measures (degree, strength, density, transitivity, or global efficiency; Figure 13).  
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Table 4.  Sample Characteristics. Data are presented as mean ± standard deviation. CON: 

Controls; SMK: Cigarette smokers; SNTS: smoking nontreatment-seeking alcohol use 

disorder. M: Male; F: Female; ANOVA: analysis of variance; n.s.: not significant; n/a: 

not applicable. 

*Education was not available for one nonsmoking control. 

^Fagerstrom Test for Nicotine Dependence data were not available for two smoking 

controls. 

 CON SMK SNTS p-value 

Demongraphics     

 Group n 19 19 19  

 Age  34.7 ± 7.3 37.8 ± 8.6 35.8 ± 6.0 n.s. 

 Education* 15.4 ± 2.5 12.8 ± 2.3 13.4 ± 1.4 <0.001 

 Sex 12M, 7F 16M, 3F 15M, 4F n.s. 

Substance Use     

 Drinks per week 3.2 ± 3.2 6.4 ± 7.5 38.3 ± 16.4 <0.0005 

 Alcohol Dependence 

Scale 
2.7 ± 2.9 3.9 ± 2.8 13.7 ± 5.8 <0.0005 

 Fagerstrom score^ n/a 4.4 ± 1.4 4.1 ± 1.9 n.s. 

Tissue Properties     

 Intracranial volume 

(voxels) 

1434170.05 ± 

166198.82 

1454557.21 ± 

181615.35 

1405396.95 ± 

149484.47 
n.s 

 White matter volume 

(voxels) 
408221.26 ± 

38669.82 

426398.32 ± 

55673.40 

391277.79 ± 

34582.97 
n.s. 
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Figure 13.  Global characteristics and measures of structural network connectivity were 

not related to years of education. CON: nonsmoking controls; SMK: otherwise healthy 

smokers; NTS: smoking nontreatment-seeking alcoholics. 
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SNTS reported greater alcohol consumption in standard drinks per week on the 90-day 

timeline follow-back and scored significantly higher on the Alcohol Dependence Scale.  

 

Global Network Characteristics 

In this sample, ANOVA revealed significant differences in means between groups 

on all investigated connectivity measures. Post-hoc tests showed that compared to CON, 

both SMK and SNTS had lower network density (F(2,54) = 247.72, p < 0.0005; Figure 

14a), mean degree (F(2,54) = 247.72, p < 0.0005; Figure 14b), and mean strength 

(F(2,54) = 197.32, p < 0.0005; Figure 14c). Relative to CON, SMK and SNTS also had 

significantly higher network transitivity (F(2,54) = 24.8, p < 0.0005; Figure 14d) and 

lower global efficiency (F(2,54) = 154.94, p < 0.0005; Figure 14e).  

We also assessed whether differences in network density (Figure 14a) are 

influenced by the relative surface areas available for tractography, or intracranial and 

WM tissue volumes. The three groups did not differ on number of voxels within either 

the intracranial (ANOVA, F(2,54)=0.42, p > 0.05) or the WM volume (ANOVA, F(2,54) 

= 3.04, p > 0.05) masks (Table 4). Figures 15a-c show overlaid, semi-transparent 

histograms of mean streamline length in millimeters for all subjects within each group. 

Within each group, distributions were consistent across subjects. To assess group 

differences in distributions of streamline length, we compared the areas under the curve 

(AUC; Figure 16). Distributions between groups were significantly different (one-way 

ANOVA, F(2,54)=236.16, p < 0.0001). Tukey’s multiple comparison-adjusted post-hoc 

tests showed that both smoking groups had lower AUC of distributions compared to 

CON (p < 0.0001). 
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Figure 14.  Global network characteristics and connectivity measures by group. Both 

otherwise healthy cigarette smokers (SMK) and smoking nontreatment-seeking 

alcoholics (SNTS) had significantly lower (a) network density (number of edges in a 

network), (b) mean degree (average number of edges of all nodes in a network), and (c) 

network strength (average of all weights in a network). Compared to controls (CON), 

SMK and SNTS had higher network segregation as measured by (d) transitivity (ratio of 

triangles to triplets in a network; a measure of clustering) and lower integration, as 

measured by (e) global efficiency (inverse of average shortest path between all node pairs 

in a network). *Comparisons were carried out on log-transformed data with a one-way 

analysis of variance and Bonferroni corrected post-hoc comparisons (p < 0.0005). Data 

are shown as untransformed mean ± standard deviation.  
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Figure 15.  Distributions of streamline lengths (mm). Top: semi-transparent distributions 

of streamline lengths for each subject were overlaid on each other for (a) controls (CON), 

(b) otherwise healthy smokers (SMK), and (c) smoking nontreatment-seeking (SNTS) 

alcoholic groups. Bottom: frequency distributions of streamline lengths of CON (d), 

SMK (e), and SNTS (f) groups.   
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Figure 16.  Area under curve differences between groups. Controls (CON) had 

significantly higher area under curve of mean streamline length distributions compared to 

both otherwise healthy smokers (SMK) and smoking nontreatment-seeking (SNTS) 

alcoholics (one-way analysis of variance with Tukey’s multiple comparisons corrected 

post-hoc tests). SMK and SNTS did not significantly differ from one another. 
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Network Community Structure 

Consensus partitions of each group were highly similar to one another in the 

number of identified communities at each of the six resolution parameter γ values (Figure 

17a). Figure 18 shows volume renders of group consensus partitions at γ = 2 (partitions 

for other values are presented in Figure 19), which illustrates the overall similarity among 

the groups (although note that the CON group has a partition in the left parietal lobe that 

is not present in SMK or SNTS). High pairwise normalized mutual information (NMI) 

among the group partitions (Figure 17b) provided further evidence that the consensus 

community structure of the three groups was similar for different spatial resolutions. To 

better understand the observed community structure, the edges of group frequency 

distributions in Figures 15d-f were stratified based on whether the nodes they connect 

belonged to the same or different communities from the group consensus partitions at γ = 

2 (Figure 20). Comparison of these distributions with a three factor mixed effects 

ANOVA, showed a significant main effect of group (F(2,54)=237.14, p <0.0005) and a 

significant interaction of group*connection type (within, between community; 

Greenhouse-Geisser F(2)=86.48, p < 0.0005). As compared by post-hoc t-tests with 

Bonferroni correction for multiple comparisons (p < 0.05/18), SMK and SNTS had lower 

AUC of between community mean streamline length compared to CON across all γ 

resolution parameters (all ps < 1x10-10). SMK had significantly lower AUC compared to 

SNTS at γ values of 1 and 2 only (i.e., at coarse spatial resolutions; all ps < 1x10-6), while 

at remaining γ values, corrected significance threshold was not met (all p > 0.0028). 
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Figure 17.  Obtained consensus partitions of all three groups were similar at each γ 

resolution value. (a) Number of communities in the consensus partition of controls 

(CON), otherwise healthy smokers (SMK), and smoking nontreatment-seeking (SNTS) 

alcoholics for different γ resolution values. (b) Pairwise normalized mutual information 

(NMI) between groups. 
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Figure 18.  Group consensus community partitions for resolution parameter γ = 2. Integer 

community indices for consensus group partitions of (a) controls (CON), (b) otherwise 

healthy smokers (SMK), and (c) smoking nontreatment-seeking (SNTS) alcoholics 

allowed us to visualize the community structure by assignment of a random color to each 

integer index value. Volume renders were generated in MRIcroGL software package.  
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Figure 19.  Group consensus community partitions at γ = 1, 3 - 6 resolution values for 

controls (CON; top), otherwise healthy smokers (SMK; middle), and smoking 

nontreatment-seeking (SNTS) alcoholics (bottom). Colors were assigned randomly to 

each community integer index value. Volume renders were generated in MRIcroGL 

software package. 
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Figure 20.  Frequency distributions (data taken from Figure 15) at γ = 2 for each group 

were further subdivided based on classification of edges as “within” or “between” (i.e., 

connecting nodes within- or between- communities). 
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Discussion 

 

In this retrospective analysis, we investigated the structural connectivity and 

community organization of otherwise healthy cigarette smokers, AUD subjects who 

smoke, and a reference sample of nonsmoking controls. Both smoking groups had 

significantly lower mean network density, strength, and degree compared to controls. 

They also displayed higher network segregation and lower integration of their structural 

connectomes. Community structure analysis revealed qualitatively similar group 

consensus structure, however, the spatial boundaries of communities varied between 

groups. Comparison of frequency distributions of streamline length revealed that 

modeled streamline distributions in both smoking groups were altered as compared to 

controls. Based on comparisons of group frequency distributions, both otherwise healthy 

smokers and AUD smokers showed a lower number of modeled streamlines of 

intermediate/long length (those exceeding ~30 mm). These longer connections may play 

a functional role in integration of information from spatially distributed brain regions. In 

support of the foregoing, we showed that when stratified by community structure as 

connecting either within- or between-module regions, the distributions of inter-modular 

connections differed, showing reduced inter-modular connectivity in the smoking groups. 

To our knowledge, this work is the first to apply graph theory analysis to 

structural brain networks in smoking AUD subjects and/or cigarette smokers without an 

AUD or substance use disorder. There have been some investigations of resting-state 

functional MRI networks, but those findings have been inconsistent. One study showed 

differences in local efficiency of nodes in the cingulate cortex and cerebellum (Chanraud 
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et al., 2011), while another found no group differences in global efficiency of functional 

networks in abstinent, in-treatment individuals with AUD (Sjoerds et al., 2017); however, 

these studies did not assess for the potential effects of smoking in the AUD participants. 

Similarly, in a sample of cigarette smokers there was reduced global efficiency in 

functional networks (Lin et al., 2014), while another study did not find any group 

differences in graph theory measures of efficiency or clustering (Breckel et al., 2013). 

However, interpretations of functional networks are difficult, because an edge weight in 

such a network reflects an association of information, rather than a physical connection 

(Bassett et al., 2018). Alternatively, structural tractography-based networks probe direct 

connections between regions, in which each edge weight can viewed as the strength of 

connectivity, indexed by either the number of streamlines and/or streamline density.  

In this work, we showed that the structural networks of both otherwise healthy 

cigarette smokers and smokers with AUD have fewer modeled streamlines, lower global 

efficiency, and higher transitivity compared to controls. Global network connectivity 

measures did not differ between the two smoking groups. The overall deficiency in 

connectivity is likely due to disrupted microstructural environment of white matter in 

cigarette smokers. Extensive research has shown microstructural deficits within white 

matter in AUD (Pfefferbaum et al., 2006a, Pfefferbaum et al., 2000, Pfefferbaum et al., 

2014, Segobin et al., 2015, Yeh et al., 2009), and cigarette use (Baeza-Loya et al., 2016, 

Savjani et al., 2014, Zou et al., 2017). Interestingly, results from AUD and cigarette 

smoking samples may not generalizable to other substance use disorders, as structural 

networks of heroin-dependent individuals have been shown to have greater efficiency 

compared to controls (Zhang et al., 2001); although see Sun et al. (2015).  
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Similarly, this is likely the first application of analysis of community structure 

(modularity) in AUD and cigarette smoking samples. Group consensus community 

structure did not appreciably differ between groups; however, there was a difference in 

distributions of between-community connections between groups. This suggests that 

long-distance WM connections may be more susceptible to disruptions in the 

microstructural environment due to chronic cigarette and possibly alcohol misuse. With 

exception of coarse modular resolution, there were no other observed differences in 

structural connectivity of otherwise healthy smokers and smoking AUD participants. This 

could be because the SNTS in this study were actively drinking, and may have less severe 

AUD-related brain pathology compared to the more-often studied detoxified and/or in-

treatment AUD individuals. 

The reported findings should be considered within the framework of 

methodological limitations related to the selection of tractography algorithm as well as 

the brain parcellation scheme. Recently, it has been shown that tractography algorithms 

are prone to both false positives and false negatives (Maier-Hein et al., 2017). In 

simulated datasets, deterministic approaches were unable to reconstruct all tracts, while 

probabilistic approaches reconstructed tracts with greater accuracy at the expense of 

higher false positive rates. In this work, we employed a deterministic tractography 

algorithm that accounted for crossing fibers at the voxel-wise level. As such, this 

approach may not capture data from more complex white matter architecture and/or high 

curvature tracts. However, we believe it is an accurate estimation of connectivity of 

major white matter bundles of the brain. Finally, due to the retrospective nature of this 

analysis, we were unable to include a nonsmoking AUD sample. Thus, we could not fully 
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disassociate the effect of chronic alcohol consumption from that of cigarette use. Future 

studies that utilize graph theory with structural networks in AUD and cigarette smoking 

are necessary to better understand the impact of chronic consumption of these substances 

on network structure of the human brain. 

In conclusion, this retrospective analysis study applied a network science 

approach to structural brain networks of otherwise healthy cigarette smokers and 

smoking AUD individuals. The results revealed that chronic cigarette as well as cigarette 

and alcohol use are associated with lower regional connectivity and community structure 

compared to nonsmoking control subjects. These apparent deficits are likely the result of 

a disrupted white matter microstructural environment that negatively impacts structural 

connectivity as evaluated by diffusion imaging. This combination of advanced diffusion 

imaging and graph theoretical analyses offered unique insights into the potential impact 

of substance use disorders on the brain. Further studies applying these novel analytical 

approaches are needed to better elucidate structural and functional substrates of substance 

use disorders.  
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Chapter 4: Differential Relationship of White Matter Integrity and Striatal 

Dopamine in Alcohol Use Disorder and Social Drinking Individuals 

 

This chapter describes preliminary multimodal analysis of diffusion weighted 

imaging (DWI) and [11C]raclopride (RAC) positron emission tomography (PET) data in a 

sample of seventeen Alcohol Use Disorder (AUD) individuals and twenty-four social 

drinking controls. Subjects underwent magnetic resonance imaging (MRI) to obtain a 

high-resolution anatomical T1-weigted scan as well as a DWI scan with either 48 or 60 

diffusion directions. Additionally, PET imaging was done with the dopamine (DA) D2/D3 

receptor antagonist tracer [11C]raclopride. DWI were preprocessed and transformed into 

standard space via the Tract-Based Spatial Statistics (TBSS) framework. After 

preprocessing, PET data were input into the Multilinear Reference Tissue Model 

(MRTM) to obtain regional estimates of striatal dopamine tone.  

Results from multiple regression models in the Statistical Parametric Mapping 

(SPM) software package revealed a significant group interaction of bilateral anterior 

corona radiata fractional anisotropy (FA; a measure of white matter (WM) integrity) and 

right ventral striatum nondisplaceable binding potential (BPND; a measure of DA tone). In 

the AUD group, higher WM integrity was associated with lower BPND (higher DA tone), 

while in controls, higher FA was associated with higher BPND. These findings suggest a 

disruption in the relationship between frontostriatal WM integrity and striatal DA tone in 

AUD.   
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Introduction 

  

 In 2015, an estimated 15 million people had an alcohol use disorder (AUD) 

(Department of Health and Human Services, 2015b), with ~88,000 alcohol related deaths 

annually (CDC, 2013). Chronic alcohol misuse has been linked to detrimental structural 

and functional changes in the brain. Diffusion weighted imaging (DWI) studies in 

detoxified and in-treatment AUD samples have shown reductions in diffusion tensor 

metrics, suggestive of demyelination of white matter (WM) (Pfefferbaum et al., 2009, 

Pfefferbaum and Sullivan, 2002, Zahr and Pfefferbaum, 2017). Additionally, positon 

emission tomography (PET) has been employed to show altered function of 

dopaminergic (DAergic) (Martinez et al., 2005), glutamatergic (GLUergic) (Akkus et al., 

2018), and other neurotransmitter systems (Weerts et al., 2011, Hillmer et al., 2014, 

Ceccarini et al., 2014). Yet while these methodological lines of research have 

independently demonstrated negative consequences of AUD, no multimodal 

investigations that relate them have been carried out in AUD samples.  

 In healthy individuals, Tziortzi et al. (2014) have shown that a connectivity-based 

parcellation of the striatum is more representative of patterns of striatal dopamine (DA) 

release compared to anatomical subdivisions. WM tractography was performed with 

seeds placed in the cortex and their streamline terminations were mapped onto the 

striatum. Frontal lobe input mapped onto the majority of striatal volume, with limbic 

frontal region (orbitofrontal cortex and anterior cingulate cortex) connections terminating 

within the ventral striatum (VST). Homogeneity of DA release in [11C]raclopride (RAC) 

PET post d-amphetamine challenge then showed the greatest change in limbic striatum, 
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with higher homogeneity of DA release in connectivity-based subdivision, compared to 

anatomical subdivision of the striatum (Tziortzi et al., 2014). We therefore hypothesized 

that a relationship may exist between metrics of WM integrity of frontostriatal tracts and 

DA tone in the striatum and that this relationship is disrupted in chronic AUD. To test 

this hypothesis multiple regression models were used to probe for relationships between 

voxelwise fractional anisotropy (FA) in frontal WM and RAC PET baseline binding 

potential (BPND; a ratio of specific binding relative nondisplaceable binding in the tissue).  

  

Materials and Methods 

  

Subjects 

 Written informed consent was obtained from all participants and all study 

procedures were approved by the Indiana University Institutional Review Board in 

accordance with the Belmont Report. Subjects were recruited via advertisement in the 

local paper, were 21-55 years old, and were able to read, understand, and complete all 

study procedures in English. Exclusion criteria were: history or presence of any 

psychiatric, neurological, or other medical disorder, current use of any psychotropic 

medication, positive urine pregnancy test, positive urine toxicology screen for illicit 

substances, and contraindications for safety in the magnetic resonance imaging (MRI) 

scanner. The Semi-Structured Assessment for the Genetics of Alcoholism was 

administered to confirm presence or absence of AUD. The following questionnaires were 

also administered: a medical history and demographics questionnaire, the 90-day 

Timeline Follow-Back for alcohol use (TLFB), Alcohol Dependence Scale (ADS), 
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Fagerstrom Test for Nicotine Dependence (Pomerleau et al., 1994), Edinburgh 

Handedness Inventory, and an internally-developed substance use questionnaire. 

 

Imaging 

 Imaging was performed across two MRI scanners, a Siemens 3T SKYRA (10 

controls and 8 AUD) and a Siemens 3T PRISMA (14 controls and 9 AUD). A high 

resolution T1-weighted anatomical image first was acquired, followed by DWI 

acquisition. For the PRISMA scanner, T1-weighted data were obtained with a whole-

brain magnetization prepared rapid gradient echo (MP-RAGE) sequence at a 1.05 x 1.05 

x 1.2 mm voxel resolution and 176 sagittal slices. DWI data were acquired using 

monopolar Stejskal-Tanner diffusion weighting, single shell (b-value = 1000 s/mm2), and 

60 distinct diffusion gradients (three b = 0 images acquired first). Other parameters were 

64.8 ms echo time (TE), multiband factor of 3, scan duration 2:56min, anterior to 

posterior phase-encoding, 69 axial slices, and 2 x 2 x 2 mm isotropic voxels. Data 

acquisition on the SKYRA was similar to that of PRISMA with the exception that DWI 

data were collected with 48 diffusion gradients and one b = 0 image, 68 axial slices, but 

using a product sequence (GRAPPA acceleration = 2), with a longer (7:43min) duration. 

 RAC PET data were acquired on a Siemens Biograph mCT scanner. PET scans 

were initiated with a single bolus injection of 14.37±0.9 mCi of the D2/D3 antagonist 

[11C]raclopride. Dynamic acquisitions were 50 minutes (10 x 30 s, 45 x 60 s frames). 

Data were reconstructed with Siemens software using the filtered backprojection 

algorithm (5 mm Hanning filter) with corrections for random coincidences, attenuation, 

and scattering.  
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Image Processing 

 For T1-anatomical and DWI data preprocessing refer to the Materials and 

Methods section in Chapter 1.   

 

PET preprocessing 

 RAC PET data preprocessing was done in the Statistical Parametric Mapping 

software version 12 (SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). For 

each subject, dynamic data were first coregistered to an early mean PET image to correct 

for motion, then coregistered to the anatomical MRI. Regions of interest (ROI; left and 

right precommissural caudate, precommissural putamen, and ventral striatum (VST) 

(Mawlawi et al., 2001)) were delineated on a Montreal Neurological Institute (MNI) 

standard space template, then spatially transformed into each subjects’ T1-space with a 

combination of nonlinear (FNIRT) and linear (FLIRT) transformations, part of the FSL 

software package (Jenkinson et al., 2012). An additional cerebellar gray matter (with the 

vermis excluded) reference region (a region with little or no D2/D3 binding) was defined 

in each subject’s T1 space. Time activity curves for each region were generated in Matlab 

(R2018b), and for each striatal ROI, DA tone was defined as D2/D3 receptor availability 

(binding potential (BPND); ratio of specific to nondisplaceable bindning) of RAC (Innis et 

al., 2007). Regional BPND was estimated with the Multilinear Reference Tissue Model 

(MRTM; Ichise et al. (2003)). 
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Statistical Analyses 

 Demographic comparisons were carried out in SPSS (version 24) with 

independent samples t-test or χ2-test where appropriate. Relationships of fractional 

anisotropy (FA; index of white matter integrity) and regional BPND were investigated 

with a multilinear regression model in SPM12, with scanner, years of education, sex, and 

cigarette use as nuisance covariates. 

 

Results 

 

Subjects 

 Subject characteristics and PET tracer dose information are presented in Table 5. 

AUD and controls were matched on age, but did differ with respect to years of education, 

sex, and cigarette use. AUD participants reported higher quantities of alcohol 

consumption as well as scored higher on the ADS scale. PET injected dose, mass, and 

activity did not differ between groups. There were no voxelwise group differences in FA. 

Of the six striatal regions, only the left precommissural caudate showed a difference in 

BPND between groups (p = 0.049). 

 

SPM12: Multilinear Regression 

 Of the six statistical models for voxelwise FA (one for each striatal regions of 

interest) only the right VST BPND was found to have a significant group interaction with 

FA in the left (peak pFWE = 0.006, k = 1074 voxels) and right (peak pFWE = 0.02, k = 316 

voxels) anterior corona radiata (Figure 21).   
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Table 5.  Subject Characteristics. Data are mean (standard deviation). CON:  controls.  

AUD:  Alcohol Use Disorder.  S:  SKYRA.  P:  PRISMA.  M:  Male.  F:  Female.  R:  

right.  L:  left.  CC:  Caucasian.  AA:  African American.  AS:  Asian.  Mx:  Mixed.  HL:  

Hispanic-Latino.  ADS:  Alcohol Dependence Scale.  cm:  centimeters.  kg:  kilograms.  

mCi:  millicuries.  nmol:  nanomolar.  n.s.:  not significant. 

 CON AUD p-value 

n 24 17  

Scanner (S/P) 10/14 8/9 n.s. 

Age mean(std) 40.7(10.7) 43.0(10.1) n.s. 

Education mean(std) 15.5(2.0) 13.5(2.2) .003 

Sex (M/F) 12/12 14/3 .03 

Handedness (R/L/RL) 20/4/0 15/1/1 n.s. 

Race (CC/AA/AS/Mx) 13/9/1/1 10/7/0/0 n.s. 

Ethnicity (#HL) 2 0 n.s. 

Cigarette Use (#) 4 10 .005 

Drinks/week mean(std) 9.0(5.7) 30.3(23.7) .006 

ADS mean(std) 3.8(3.2) 9.6(5.8) .007 

Height cm mean(std) 171.5(9.2) 174.4(15.4) n.s. 

Weight kg mean(std) 87.3(22.2) 93.0(21.8) n.s. 

mCi_injected 14.1(1) 14.7(.7) n.s. 

Mass does nmol/kg .144(.084) .125(.058) n.s. 

Dose volume mL 6.6(1.6) 7.3(1.2) n.s. 

Specific Activity (mCi) 18.2(7.4) 17.0(6.5) n.s. 
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Figure 21.  Interaction of right ventral striatum binding potential (BPND) with fractional 

anisotropy (FA) in the left and right anterior corona radiata between alcohol use disorder 

(AUD) and control (CON) groups. Images are Montreal Neurological Institute (MNI) 

standard space T1 templates, with t-statistic results overlaid on top with red-yellow 

colormap. Data were visualized at p < 0.001, k > 300 voxels). Bottom are mean FA 

values extracted from significant clusters and plotted against right ventral striatum BPND 

by group.   
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Discussion 

 

 In this chapter, a multimodal analysis was carried out that combined structural 

information about WM integrity and molecular information of striatal DA tone in order to 

investigate possible relationships between frontostriatal connectivity and striatal DA 

function in alcoholism. The results showed that right VST BPND, an index of DA tone, 

was related to WM integrity (FA) in clusters located bilaterally in the anterior corona 

radiata. Additionally, this relationship differed as a function of group, such that a positive 

association was observed in controls, while a negative relationship was found in AUD. 

 BPND is an outcome metric that captures the state of the DAergic system at a 

particular window in time. It combined information about quantity of unoccupied 

receptors and levels of synaptic and extrasynaptic DA. Higher BPND values correspond to 

lower DAergic tone, as a result of higher retention of tracer in the tissue due to less 

extracellular DA and/or higher receptor availability. Likewise, lower BPND values mean 

the tracer is less likely to bind (higher DAergic tone) and is being cleared from the area 

via venous blood. In this analysis we observed a positive relationship of BPND and 

anterior corona radiata FA in our social drinking controls, which suggests that higher 

frontal WM integrity is associated with lower VST DA tone. Both cortical GLUergic and 

midbrain DAergic inputs terminate onto medium spiny neurons in the striatum, however, 

they do not make direct synaptic connections to each other (Gonzales et al., 2004). 

Therefore, the observed relationship may be due to one or several feedback loop 

mechanisms within the cortico-basal ganglia circuitry (Haber (2014); also see below). 

Additionally, FA is a metric of WM integrity that is sensitive to disruption in myelination 
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and is not a direct metric of neurotransmitter function. It is likely that FA provides 

indirect information in regard to action potential propagation and/or neurotransmission 

speed (Barron et al., 2018, Waxman, 1980), which in turn, mat alter DA release via 

feedback loops.  

 As hypothesized, the opposite relationship was observed in AUD compared to 

controls, in which higher FA was associated with lower BPND (higher DA tone). 

Transition to habitual/dependent alcohol use patterns in marked by the adaptation of the 

GLUergic system to maintain excitatory/inhibitory neurotransmission balance in the 

brain. The mesolimbic circuitry contains GLUergic projections from the prefrontal cortex 

to the ventral tegmental area DAergic neurons (Alasmari et al., 2018) and increasing 

GLUergic action through that pathway may alter the relationship to that seen in the AUD 

group compared to controls. Chronic alcohol use is also suggested to show increased 

involvement of amygdala, hippocampal, and thalamic circuity, which may alter the 

frontostriatal structure/VST DA function in AUD (Alasmari et al., 2018, Haber, 2014, 

Haber and Behrens, 2014, Goldstein and Volkow, 2002). It is possible measures of 

myelination such as FA, are related to neurotransmitter action by capturing the efficiency 

with which neurotransmission occurs. As such, higher WM integrity in tracts that contain 

GLUergic projections may be indirectly related to DA tone through its relationship to 

efficiency of neurotransmission.  

 This analysis was a novel and preliminary investigation of relationships between 

frontostriatal WM integrity and striatal DAergic function. We found that right VST DA 

tone was related to WM integrity in the bilateral anterior corona radiata and that this 

relationship differed between social drinking controls and AUD individuals. Future work 
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that employs tractography-based structural connectivity is needed to better characterize 

tract-dependent relationships among frontal, striatal, midbrain, and other region of the 

cortico-basal ganglia circuitry that have been implicated in addiction and 

habitual/dependent alcohol use.  
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Summary 

 

 Here, microstructural alterations were reported in relatively understudied alcohol 

dependent samples of actively drinking nontreatment-seeking alcoholics and college-age 

early onset alcohol use disorder (AUD) individuals. Additionally, network science 

methodology was utilized to better understand the relationship between alcohol misuse 

and structural connectivity of the brain. Chapter one compared fractional anisotropy 

(FA), a measure of white matter (WM) integrity, between active AUD community 

dwelling individuals and social drinking controls. All participants were cigarette users, 

which addressed a possible confound of high cigarette use comorbidity of AUD samples 

in neuroimaging literature. The results are in agreement with the body of work in 

detoxified/in-treatment AUD samples, showing a reduction in WM integrity in alcoholics 

compared to controls. There was also a negative relationship between self-reported 

number of drinks per week in the 90-days prior enrollment and average FA from core 

cerebral WM across the full sample. Finally, a novel WM tractography method was 

utilized in order to approximate the GM termination areas of WM projections through 

regions of group difference. The results from Chapter 1 show that community dwelling 

active AUD individuals, which may represent a distinct and less severe population 

compared to treatment-seeking AUD, display similar WM integrity disruptions, although 

the differences reported here were observed primarily in the left hemisphere. These 

differences could be interpreted as demyelination of axons or axonal loss as a 

consequence of chronic alcohol misuse. It is likely demyelination is the primary 

contributor, as follow-up studies in individuals who cease alcohol use and remain 
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abstinent have reported a recovery in their WM integrity (Durazzo et al., 2014b), 

suggesting remyelination. However, additional research is necessary to disentangle 

demyelination and neuronal loss contributions to observed differences in FA in 

alcoholism. 

 Chapter 2 of this report was a retrospective analysis of diffusion weighted 

imaging (DWI) data in a sample of emerging adulthood AUD individuals and social 

drinking controls. Alcohol dependent individuals met criteria for lifetime AUD diagnosis, 

with an approximate age of onset of ~18 years. Voxelwise comparisons of diffusivity 

metrics showed a spatially extensive increase in FA and reductions in mean, axial, and 

radial diffusivity (MD, AD, and RD, respectively). The increased FA has been reported 

previously in younger samples (Bava et al., 2009, Tapert and Schweinsburg, 2005); 

however, this finding is inconsistent with the DTI literature in chronic AUD. It is possible 

that hyper-connectivity of certain brain regions is a predisposing factor to substance 

abuse. In this sample, the increased FA seems to be driven by reductions in RD. As 

increases in myelination as a result of alcohol use are unlikely, it is possible this 

represents disruptions in crossing fibers in the WM (Winston, 2012). Such alterations in 

connectivity may be captured via application of network science. When the brain is 

represented as a network, one of its properties is the interconnectivity of groups of brain 

regions to achieve a specialized function. This property can be estimated via modularity 

to obtain a community structure partition of the brain. Here, we employed a novel 

modularity procedure in order to obtain a connectivity matrix that quantifies the 

probability that any two brain regions will be classified to the same community across the 

full range of modularity resolution spectrum. These co-classification matrices were then 
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compared between groups to assess for differences in association strength. The results 

found alterations in association strength among brain regions that are related to attention 

and default mode function. This altered attention and default mode modularity 

association could be indicative of a predisposition to substance use in the AUD group via 

the function of attentional networks orienting to salient stimuli. Further work is necessary 

to validate these findings in larger samples as well as in other populations where 

predisposition to substance abuse if of interest, such as those with positive family history 

for AUD. 

 The third chapter of this report describes a secondary analysis of a subsample 

obtained from the subjects in Chapter 1, with an addition of a third group of nonsmoking 

social drinking controls. Three groups of nineteen participants (nonsmoking controls 

(CON), cigarette smoking controls (SMK), and smoking nontreatment-seeking AUD 

(NTS) individuals) underwent DWI. Structural connectomes were generated for all 

subjects and data were tested for differences in group consensus community structure. 

Group consensus community structure partitions were highly similar among the three 

groups, yet they differed in their underlying distributions of mean streamline length, 

when the network edges were stratified as either within- or between-communities. 

Cigarette use, with or without comorbid AUD, was shown to be associated with altered 

graph theory global network metrics and reduced between-community mean streamline 

length, as assessed by area under the curve. Qualitatively, this difference was due to a 

reduction of intermediate/long streamline length edges in the networks of smoking 

groups. Due to methodological concerns (i.e. tractography algorithm and parameter 

selection variation) and their effects on the connectivity metrics, these findings should be 
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interpreted carefully. It is likely that cigarette use negatively affects WM microstructure, 

thus leading to observed reduction in connectivity. The absence of differences between 

the smoking controls and smoking NTS should not be interpreted as the absence of 

effects of alcohol. In order to fully understand the impact of AUD, further work with 

larger samples and nonsmoking AUD groups is necessary. Unfortunately, due to the high 

comorbidity of AUD and cigarette use, recruitment of such individuals is difficult.  

 The final chapter described a novel preliminary analysis that combines structural 

WM integrity information from DWI data with a PET-derived index of DA tone (BPND) 

from. Seventeen active alcohol-dependent individuals and twenty-four age matched 

controls were included in the analysis. DWI data were preprocessed as described in 

Chapter 1 to obtain voxelwise FA images, and motion-corrected PET data were analyzed 

with the Multilinear Reference Tissue Model (MRTM) to obtain regional BPND estimates 

for precommissural caudate and putamen and ventral striatum (VST). Multiple regression 

models revealed a group interaction of bilateral anterior corona radiata FA and BPND 

from the right VST, after accounting for scanner, education, sex, and cigarette use. 

Higher WM integrity was associated with lower DA tone in controls, but higher tone in 

AUD participants. The altered relationship observed in AUD may be an indirect indicator 

(via degree of myelination) of altered neurotransmission of frontostriatal connections. 

This neurotransmitter action is likely excitatory in nature, as glutamatergic adaptation has 

been suggested as one of the contributors to habitual/dependent alcohol use in AUD.  

 In summary, this document detailed investigations into the structural connectivity 

of understudied populations of AUD individuals. This report also showed that comorbid 

cigarette use is a serious confound in AUD research. In the first two chapters, we used 
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DWI to report microstructural and structural connectivity disruptions in active NTS AUD 

and in early onset college-age AUD populations. NTS represent a less severe phenotype 

of AUD; however, they still meet several of the disorder criteria and clearly show signs 

of dependence. Chapter 1 results show that that NTS, similar to detoxified alcoholics, 

show a reduction in cortical WM integrity that is correlated with self-reported alcohol 

use. However, contrary to adult AUD, in a college-age sample of individuals with early 

onset AUD, WM integrity increased. This may serve as a predisposition to alcohol or 

substance abuse in general. Further work in larger sample with follow-up visit is needed 

to validate these findings and to determine whether those that continue on to chronic 

AUD post-college demonstrate the reduction in WM integrity that has been so widely 

reported. Results from Chapter 3 emphasize the need for proper control of cigarette use 

status as well as severity/frequency. Our results show that graph theory-based measures 

of structural connectivity as well as tractography-dependent community structure are 

greatly influenced by cigarette use status. Finally, Chapter 4 examined structure/function 

relationships in AUD with a multimodal neuroimaging analysis. The methodology 

utilized in this report to investigate connectivity alteration in structural connectomes can 

be applied to other AUD and substance use populations. Consensus in methodological 

application is an essential and arguably necessary condition for reproducibility and 

generalizability of findings across studies and will lead to significant leaps forward in our 

understanding of the neurobiology of alcoholism and addiction.  
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