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Abstract. Most statistical models assume linearity and few variable interactions, even though real-world
ecological patterns often result from nonlinear and highly interactive processes. We here introduce a set of
novel empirical modeling techniques which can address this mismatch: statistically reinforced machine
learning. We demonstrate the behaviors of three techniques (conditional inference tree, model-based tree,
and permutation-based random forest) by analyzing an artificially generated example dataset that contains
patterns based on nonlinearity and variable interactions. The results show the potential of statistically rein-
forced machine learning algorithms to detect nonlinear relationships and higher-order interactions. Estima-
tion reliability for any technique, however, depended on sample size. The applications of statistically
reinforced machine learning approaches would be particularly beneficial for investigating (1) novel
patterns for which shapes cannot be assumed a priori, (2) higher-order interactions which are often
overlooked in parametric statistics, (3) context dependency where patterns change depending on other
conditions, (4) significance and effect sizes of variables while taking nonlinearity and variable interactions
into account, and (5) a hypothesis using parametric statistics after identifying patterns using statistically
reinforced machine learning techniques.
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INTRODUCTION

Ecological patterns structured by nonlinear and
interactive processes are ubiquitously found at
any ecological scales from individual to ecosys-
tem in terrestrial, freshwater, and marine systems
(e.g., Dodds et al. 2010, van Nes et al. 2016, Sor-
anno et al. 2014, see also examples in Table 1).
Nonlinearity and interactions among factors driv-
ing an ecological system often cause unexpected
changes in the system’s state (Peters et al. 2007,
Scheffer 2009, Soranno et al. 2014), for example,

as seen in alternative stable states (van Nes et al.
2016). Understanding and modeling such nonlin-
ear interaction dynamics inevitably will make
ecological systems more predictable (Urban et al.
2016, Mayfield and Stouffer 2017).
Yet, analyzing complex patterns with statistical

modeling is not so easy. Statistical models per se
are capable of analyzing nonlinear relationships
and variable interactions. However, the design of
a statistical model is dependent heavily on how
the user views the system. Model designs
directly affect system interpretation (e.g., Gilbert
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and Bennett 2010, Cumming 2016). For practical
convenience, the vast majority of statistical mod-
els rely on linearity, few variable interactions,
and data transformation for normality in ecology.
The subjectivity in statistical model design is per-
haps one of the major obstacles to advance our
understanding of nonlinear interaction dynamics
in ecological systems.

Machine learning, in contrast to statistical mod-
eling, explores the structure of the target system
without pre-assumption on data (Breiman 2001a,
Recknagel 2001). Machine learning algorithms aim

to build an empirical model that maximizes pre-
dictability. Most of them automatically and thor-
oughly examine possible nonlinear relationships
and higher-order interactions (greater than two-
way). They generally explain ecological patterns
more accurately than statistical models (Olden
et al. 2008, Crisci et al. 2012, Thessen 2016).
Applications of machine learning models in

ecology have been emerging since a turning point
around 2006 (Fig. 1). The two most cited articles
applying machine learning in ecology are in
the field of biogeography, papers on species

Table 1. Representative ecological examples of nonlinearity and variable interaction.

Feature Category Ecological context Short description
Type(s) of
ecology

Reference
example

Nonlinearity Threshold No effect concentration
(cf. critical load)

A critical concentration/
magnitude for an external
force’s effect appears

Ecotoxicology,
pollution
ecology

Iwasaki and
Ormerod
(2012)

Triggering cue An external forcing event that
stimulates an organism’s
behavior such as reproduction
and dispersal

Organismal
ecology

Andrade-
Linares
et al. (2016)

Tipping point (cf. regime
shift, alternative stable
state)

A critical level that abruptly
changes a system’s state

Ecosystem
ecology

van Nes et al.
(2016)

Polynomial
(unimodal
or bimodal)

Physiological adjustment A systemic response of an
organism to an external force

Organismal
ecology

Thomas et al.
(2012)

Intermediate disturbance
hypothesis

The hypothesis that local species
diversity is maximized by
disturbances of intermediate
frequency/magnitude

Community
ecology,
ecosystem
ecology

Wilkinson
(1999)

Latitude–species diversity
relationship

A pattern that species diversity
is the highest around the
intermediate latitude range
(either unimodal/bimodal)

Macroecology Chaudhary
et al. (2016)

Variable
interaction

Conditional Context dependency The situation that patterns of a
specific relationship vary
according to other variables’
conditions

Ecosystem
ecology,
community
ecology

Tonkin et al.
(2016)

Trait–environmental
relationship

Responses of an organism to an
external force depend on its
traits

Organismal
ecology

Hunter et al.
(2014)

Priming (cf. predictive
response strategy)

An improved reaction of an
organism to an external force
following a preceding event

Organismal
ecology,
community
ecology

Rillig et al.
(2015a)

Mutual Biotic interaction Effects that organisms in a
community have on one
another, including competition,
exploitation, and mutualism

Community
ecology

Bastolla et al.
(2009)

Hierarchical interaction
(cf. cross-scale
interaction)

Patterns and processes that
interact across different scales

Macroecology,
ecosystem
ecology

Soranno
et al. (2014)

Multidimensionality The concept that a combinatory
effect of multiple forces
determines its consequence.

Theoretical
ecology

Pickett and
Cadenasso
(2002)

Notes: For these examples, partial dependence plots with permutation-based random forest models are suitable for detecting
significant nonlinear patterns. Conditional inference and model-based decision tree models are suited for inferring variable
interactions.
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distribution modeling by Elith et al. (2006) and
Phillips et al. (2006). Machine learning algorithms
have demonstrated high accuracy in predicting
ecological patterns, such as for data on species
diversity (e.g., Olden et al. 2008) and distributions
(e.g., Elith and Leathwick 2009). Machine learning
is expected to discover novel patterns which
provide an opportunity to speculate about under-
lying mechanisms in fields where prior knowl-
edge is still minimal and hypotheses have not
been clearly developed (Hochachka et al. 2007):
Examples include aspects of biodiversity science
(Kelling et al. 2009, Rillig et al. 2015b), macrosys-
tem ecology (Heffernan et al. 2014, Levy et al.
2014), and microbial ecology (Baldi and Brunak
2001). Previous studies and reviews on ecological
applications of machine learning have been
instrumental in spreading an appreciation of
machine learning approaches (e.g., Olden et al.
2008, Crisci et al. 2012, Thessen 2016).

A new movement that develops algorithms
merging the two relevant approaches—statistical
modeling and machine learning—has been occur-
ring since the mid-2000s. As there is no widely
accepted term to lump such algorithms together,
we here call them “statistically reinforced machine
learning (SML).” Note that an established similar
term, the so-called statistical learning exists, but
this refers in a much broader sense to any statisti-
cal techniques for understanding data (Hastie

et al. 2009, James et al. 2013). The fundamental
aims of statistical modeling and machine learning
essentially differ from each other as being theory-
driven (hypothesis-testing) and data-driven (infor-
mation-searching), respectively. Statistically rein-
forced machine learning merges both techniques
and assumptions. They, therefore, are highly
attractive because of a high potential to assist
researchers to test hypotheses with the help of
artificial intelligence.
Here, we introduce the concept of SML and

some of the well-established algorithms that fit
to the concept: conditional inference tree, model-
based tree, and permutation-based random for-
est. They share many features because the latter
two algorithms were developed based on the
first one. We show behaviors of these algorithms
together with a linear regression by analyzing an
artificially generated dataset. We also test
whether the performances of the algorithms are
sensitive to sample size. It is important to bear in
mind that we do not intend to rank the perfor-
mances of these three algorithms because they
were developed for different aims with different
benefits. In particular, random forest algorithms
are an advanced form of single tree algorithms to
better solve model over-fitting and therefore
should perform more accurately than the others.

METHODS

Statistically reinforced machine learning
We define “statistically reinforced machine

learning (SML)” as a set of machine learning
algorithms which take nonlinear associations
and higher-order interactions into account auto-
matically, while testing statistical significance
and thereby conducting variable selection. Tech-
nically, SML can include semi-parametric model-
ing approaches that require users to specify both
a finite-dimensional vector of parameters and an
infinite-dimensional vector function. Practical
comparisons of representative features of statisti-
cal modeling, SML, and machine learning are
summarized in Table 2.
The need for reinforcement of machine learning

algorithms by statistics has long been recognized
(e.g., Mingers 1987, Olden and Jackson 2002). This
realization has changed the fundamental premise
of machine learning from the idea that all infor-
mation can be valuable into the idea that variable

Fig. 1. Increasing applications of machine learning
in ecology during the last two decades. Data were
obtained by searching for “machine learning” as topic
in “ecology” category in the Web of Science (Clarivate
Analytics) and for “machine learning” and “ecology”
in Google Scholar in October 2016.
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selection based on statistical significance can
improve prediction accuracy (Hothorn et al.
2006b, Hapfelmeier and Ulm 2013). Conditional
inference tree, developed by Hothorn et al.
(2006b), is seen as the cornerstone work for SML.

Conditional inference tree.—Conditional inference
tree is a decision tree model (also known as classi-
fication and regression trees; Breiman et al. 1984)
that is among the most frequently used machine
learning algorithms. Decision tree models explain
the variance in a response variable by recursively
splitting the data into more homogeneous groups
using a combination of predictors. At each split,
the data are divided into two groups according to
a threshold value of one of the predictors so that
the variance after the split decreases from the vari-
ance before the split. The splitting procedure is
repeatedly applied for each of the split groups
until it achieves a criterion: One of the most used
criteria is the moment when the model maximizes
predictive performance while conducting the few-
est splits (Breiman et al. 1984).

Conditional inference trees (ctree; Hothorn
et al. 2006a, b) have incorporated a statistical
inference framework to split the data based on
statistical tests instead of maximizing prediction
power. This improvement solved two fundamen-
tal problems of the traditional tree models
(Hothorn et al. 2006b). First, this model decides
whether the data should be divided at each split
or not based on statistical significance to avoid
model over-fitting (Table 3), while traditional
decision tree models can often select predictors
for splitting even though their effects are not
statistically significant and thus can over-fit.
Statistical significance of all predictors is tested

independently using different statistical tests
according to the combination of types of predic-
tor and response variables (Table 3). Second,
ctree model selects a predictor at each split with-
out selection bias, while traditional decision tree
models tend to preferentially select predictors
in the order binary < categorical < numeric as
splitting opportunities simply increase in this
order (Hothorn et al. 2006b). Traditional decision
tree models do not possess these important
features, and these caveats have not been acknowl-
edged in ecological studies since decision tree
models were first introduced by De’ath and
Fabricius (2000). The detailed procedure of ctree
modeling is available in Appendix S1. These
improvements, to avoid model over-fitting and
variable selection bias, are also kept in the fol-
lowing algorithms: model-based tree and permu-
tation-based random forest.
Model-based tree.—Another derived form of deci-

sion tree models, the model-based trees (mobtree;

Table 2. Practical comparison of representative features of statistical modeling, statistically reinforced machine
learning (SML), and machine learning in typical cases.

Parameters Statistical modeling SML Machine learning

Fundamental concept Hypothesis-testing Data-mining and
hypothesis-testing

Data-mining

Variety of methods available Diverse (still) Few Diverse
Interpretability of modeling structure
and procedure

High Moderate Low

Statistical inference on the effect of
a predictor

Capable Capable Incapable

Analyzing nonlinear relationships and
higher-order interactions of variables

Need to be explicitly
designed

Automatically
assumed

Automatically
assumed

Modeling accuracy Often lower than the others Moderate–high Moderate–very high

Note: Note that exceptional cases exist because the features depend also on data and model structure.

Table 3. Statistical tests and test statistics used in con-
ditional inference tree models (Hothorn et al. 2006a).

Response variable

Numerical Categorical

Predictor Numerical Pearson’s
correlation (t)

Kruskal–Wallis
(v2)

Categorical Kruskal–Wallis
(v2)

Cochran–Mantel–
Haenszel (v2)

Notes: Pearson correlation tests whether the correlation coef-
ficient is equal to 0 based on a t-distribution, Kruskal–Wallis
test is to test whether samples that belong to different categories
originate from the same distribution based on a chi-square dis-
tribution, and Cochran–Mantel–Haenszel test is to test whether
the relative proportions of one variable are independent of the
other variables based on a chi-square distribution.
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Zeileis et al. 2008), couples the features of para-
metric statistical models such as generalized linear
models and decision tree models. Mobtree first
requires explicitly specifying how predictor–
response relationships should be modeled
parametrically (e.g., linear model) using a few
predictors. It then automatically searches for
other important predictors, which can significantly
influence the parameter values of the relationships
(more details in Appendix S1) based on the
M-fluctuation test (Zeileis and Hornik 2007). This
method is particularly useful to test a hypothesis
that patterns in a relationship between a response
variable and some of the predictors are altered by
other predictors. For instance, Campetella et al.
(2011) found out that a plant trait–environmental
relationship (more specifically, the parameters of a
linear regression between specific leaf area and
inclination of field site) varies according to the age
of forest succession at a field site.

Permutation-based random forest.—Random for-
est models (Breiman 2001b) construct a predictive
model and estimate the relative importance of
predictors; they are acknowledged as one of the
most accurate machine learning algorithms to
date (Douglas et al. 2011, Crisci et al. 2012). This
algorithm first generates a large number of deci-
sion tree models that use diverse combinations of
predictors and thresholds to explain datasets
which are generated for the individual trees by
sampling from the original data with replace-
ment. Then, it takes an overall average of these
tree models’ outputs as a prediction (so-called
ensemble/consensus modeling). The relative
importance of predictors is usually measured by
evaluating how much each predictor contributes
to increasing model accuracy.

Recently proposed SML random forest algo-
rithms can evaluate statistical significance of the
predictors based on a permutation approach. The
permutation approach generates a large number
of random forest models to obtain the probability
distributions of the relative importance measures
of the predictors. Then, it quantifies how rarely
the original relative importance measure of each
predictor is obtained by chance (more details in
Appendix S1). This permutation technique dem-
ands high computational performance unachiev-
able using a typical laptop about a decade ago.
Although we do not show this here, building a
random forest model using only statistically

significant predictors chosen with the permuta-
tion-based random forest approach generally
improves accuracy (Hapfelmeier and Ulm 2013).
This is another advantage of this method. An ear-
lier work to employ a permutation approach to
another machine learning algorithm within the
context of SML is seen in Olden and Jackson
(2002).

Generating an artificial dataset
As one of our primary aims is to assess reliabil-

ity of the SML algorithms, we analyze an artifi-
cially generated dataset for which we know
which and how predictors are correlated to the
response variable, instead of studying an actual
ecological dataset. We herein assume an ecologi-
cal pattern that is structured by multiple influ-
ences, in which factors nonlinearly affect another
factor and where there are factor interactions (in
relevance to Table 2). Mimicking a field monitor-
ing record, we also add considerable random
noise to blur the associations. Samples are inde-
pendent and identically distributed without spa-
tial and temporal autocorrelation. The pattern
can be placed in any ecological context including
species distribution and abundance, species rich-
ness, community composition, and ecosystem
function after de-trending autocorrelation.
Let us imagine this scenario where the goal is

to understand primary production: Primary pro-
duction initially increases after a disturbance and
then gradually decreases during the successional
period (i.e., unimodal pattern; e.g., Campbell
et al. 2004), increases with an increased carbon
dioxide concentration only when it is the limiting
factor (i.e., positive linearity with a threshold),
and such patterns may be context-dependent
given a combination of climate and soil classifica-
tions (e.g., Cleveland et al. 2011). Note that we
are not going to discuss results from this view-
point. Rather, this is just an example to help
readers imagine how the data structure can be
considered in an ecological context.
We generated an artificial dataset of a numeric

response variable Y and 16 predictors: three bin-
ary ones (x1–x3); three categorical ones (x4–x6);
and 10 numeric ones (x7–x16). Binary predictors
(x1–x3) were generated by random sampling from
binomial distributions whose probabilities are 0.5.
Categorical predictors (x4–x6) were randomly
sampled from 3, 4, and 5 categories, respectively.
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For each numeric predictor (x7–x16), random
sampling was conducted from one of the proba-
bility distributions: a uniform distribution (rang-
ing from 0 to 10), a normal distribution (mean =
10, standard deviation [SD] = 3), and a Poisson
distribution (k = 5).

Relevant to the above example of primary pro-
duction, Y was generated in association with the
predictors of x7, x8, and x1�x4�x9 (� interaction;
Fig. 2). The predictor x7 structured a unimodal
relationship with Y using a cosine curve function
having a peak of 5. The predictor x8 affected Y
positively linearly with a slope of 0.6 until
exceeding a threshold (x8 = 10). The predictor x9
affected Y negatively linearly with a slope of
�0.5 when x1 = 1 and x4 6¼ “low” (x4 e {low,
moderate, high}}) as a three-way interaction.

Finally, random noise following the Gaussian
distribution (mean = 0 and SD = 3) was added
to Y, which contributed to approximately 50% of
the total variance of Y. The remaining 11 predic-
tors were not associated with Y.

Model performance assessment
We tested whether the above-described SML

algorithms changed the detectability of statistical
significance of the associated predictors and the
interactions (x1�x4�x9, x7, and x8) as a function
of different sample sizes (n = 100, 200, and 300).
For mobtree, we focused on whether the inter-

active effect of x1 and x4 on the Y–x9 relationship
is detected when an association of x9 and Y is
presumed. For permutation-based random forest,
we qualitatively assessed whether the designed

Fig. 2. Artificially generated data structure (n = 300 and 16 predictors, x1–x16). Only predictors that were
designed to associate with the response Y are shown. The modeled relationships between predictors (x7–x9) and
the response Y are depicted with the curves and denoted in red color.
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patterns of x7, x8, and x1�x4�x9 are found, using
partial dependence plots. Partial dependence
plots are a technique used to visualize specified
predictor–response relationships that are empiri-
cally modeled (not limited to SML). Partial
dependence plots visualize the dependence of
response variable on predictors while taking the
effects of the other predictors into account (Has-
tie et al. 2009). This technique is especially useful
for visually assessing the shapes of some interest-
ing relationships but not for quantifying the
effect sizes (values in y-axis do not indicate the
effect size).

We also applied a linear regression model to
compare with the SML models. A model
includes the unimodal curve as a second-degree
polynomial term, the three-way interactions (also
the nested two-way interactions), and the other
predictors: Y ~ f (x7 + x72 + x1�x4�x9 + x2 +
x3 + x5 + ��� + x16) + e. A stepwise best-model
selection was conducted for both models based
on Akaike’s information criterion. Akaike’s infor-
mation criterion aims to select the best model in
terms of maximizing predictability, which is
equivalent to the objective of machine learning.

The R script for the entire process including
data generation and analysis is available at
github (see https://github.com/masahiroryo/R_
Statistically-reinforced-machine-learning). We run
ctree and mobtree models with R package party
(Strobl et al. 2007, 2008) and permutation-based
random forest models with the R script modified
from Hapfelmeier et al. (2014) in R Statistical
Computing (R Development Core Team 2016).
For partial dependence plots, we used the R pack-
age mlr (Bischl et al. 2016). Note that we used
Bonferroni correction for all the SML models, fol-
lowing the convention of these methods. For sim-
plicity, no data transformation was performed.
We structured the random forest algorithm with
300 tree models after confirming this number is
sufficient to stabilize the results and with 2000
permutations for estimating statistical signifi-
cance of predictors.

RESULTS

The number of branches in ctree models
increased along with enhancing detectability of
the designed three-way interactions (x1�x4�x9
with negative linear x9–Y pattern) by increasing

sample sizes of the dataset from 100 to 200 and
300 (Fig. 3). x1 appeared at the first nodes in the
models regardless of sample size. x4 appeared
under the path of x1 = 0, and x9 appeared under
the path of x4 being either high or moderate when
n = 200 and 300. The model structures were iden-
tical between n = 200 and 300, differing margin-
ally in the threshold values for x9. Significance of
the designed associations of unimodal and thresh-
old-linear patterns (x7 and x8, respectively) was
not inferred in any sample sizes.
The mobtree models inferred that negative

x9–Y relationships were significant only in specific
conditions of x1, x4 (as designed interactions),
and x7 (designed unimodal pattern) when n =
200 and 300 (Fig. 4). This means that the three-
way interactions of x1�x4�x9 were incorporated as
a part of the model structure. Similar to ctree
models, the model structures were identical
between n = 200 and 300, differing marginally in
the threshold values for x7. In the case of n = 300,
the model inferred the significant negative x9–Y
relationship conditional only to x7, which was not
designed (i.e., false detection; node 9 in Fig. 4c).
When n = 100, the model did not indicate any
predictors that influence the parameters of the
negative x9–Y relationship (Fig. 4a).
The permutation-based random forest models

enhanced detectability of predictors associated
with the response variable by increasing sample
size (Fig. 5). As in the ctree models, a part of the
three-way interaction, x1, was consistently sel-
ected regardless of sample size. The significances
of another interaction factor (x4) and the uni-
modal pattern (x7) were detected when n = 200
and 300. The last part of the three-way interac-
tion (x9) was detected only when n = 300. By
increasing sample size, these signals became
stronger: The values of the relative importance of
these predictors increased and became more
distinct from the values of the other predictors
which stayed near 0.
Partial dependence plots depicted associations

of predictors (x7 as unimodal, x8 as linear-thresh-
old, x9 as negative linear conditional to x1 and x4)
with the response variable modeled with the per-
mutation-based random forest models (Fig. 6).
The unimodal curve of the x7–Y relationship with
the peak at x7 = 5 (Fig. 2) was adequately mod-
eled when n = 200 and 300 (Fig. 6b, c). The con-
ditional positive linear x8–Y relationship was
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Fig. 3. Conditional inference trees indicated the designed interactions among x1, x4, and x9 (n = 200, 300).
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Fig. 4. Model-based trees that presumed x9–Y linear relationships indicated the designed interactions among x1, x4,
and x9 togetherwith the effect of x7 (n = 200, 300). Lines colored in red indicate significant relationships (P < 0.05).
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most closely captured when n = 100, although
the models did not support the significance for
any sample size (Figs. 5, 6). The negative linear
x9–Y relationship was most closely resembled by

the gradual slope when n = 300 (Fig. 6c), while a
sudden shift around x9 = 10 was estimated
when n = 100 and 200 (Fig. 6a, b). The three-way
interactions of x1�x4�x9 were seemingly sug-
gested when n = 200 and 300 (Fig. 6e, f), while
two-way interactions of x1 and x9 were inferred
when n = 100 (Fig. 6d).
The SML models selected only a subset of pre-

dictors which were designed to associate with the
response variable (x1, x4, x7, x8, and x9), while the
linear regression model selected predictors that
were not designed to influence the dependent vari-
able when n = 100 and 200 (i.e., Type I error). The
linear regression models did not infer the three-
way interactions (x1�x4�x9) for any sample size,
although two-way interactions within parts of the
three-way interactions (i.e., x1�x4 and x4�x9) were
found only when n = 200. The second-degree
polynomial curve of x7 was consistently signifi-
cant. X8 was significant when n = 300.

DISCUSSION

We here introduced the concept of and a practi-
cal guide to SML approaches in ecological studies
(Table 2) and demonstrated their usefulness for
analyzing nonlinearity and higher-order interac-
tions (Table 1) by analyzing an artificially gener-
ated dataset. Statistically reinforced machine
learning approaches can be used for classification
problems, while we demonstrated a regression
problem. Moreover, this article introduced only a
small fraction of machine learning algorithms,
while many more algorithms have been progres-
sively developed (Domingos 2012). This means
that other algorithms can be more appropriate for
specific ecological studies than the examples we
introduced here.
Although machine learning techniques them-

selves are attractive as a possible alternative to
statistical modeling in terms of high accuracy
and the abilities of pattern-mining and variable
selection, they cannot infer statistical signifi-
cance. This may discourage ecologists from using
them in hypothesis-testing studies. Cutler et al.
(2007), who first introduced the original random
forest (Breiman 2001b) to ecology, also argued
this point as follows: “Random forest is not a tool
for traditional statistical inference. It is not suit-
able for ANOVA or hypothesis testing. It does
not compute P values. . . (page 2792).” This is,

Fig. 5. Relative importance of predictors estimated
with permutation-based random forest models. By
increasing the sample size, the models detectedmore pre-
dictors thatwere designed to associatewith the response.
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however, not true for the permutation-based ran-
dom forest (Hapfelmeier and Ulm 2013).

We found that the SML approach requires an
adequate sample size to guarantee both statisti-
cal significance and pattern detection. The per-
formances of the linear regression and SML
approaches depend on sample size, but they
showed different dependencies on sample size.
Statistically reinforced machine learning appro-
aches detected more patterns and obtained
more statistical significance with increasing
sample size, while the linear regression models

did not follow this trend but reduced Type I
error (Table 4).
The partial dependence plots (Fig. 6) demon-

strated that the unimodal curve with the peak
value and the conditional negative linear effect
of x9 can be adequately captured when the
sample size is satisfactory (n = 300 in this
study). The trend of x8, at least its positive lin-
ear effect, was somewhat captured, but this
was not significant. This is probably because of
the large random noise compared to the x8
influence.

Fig. 6. Partial dependence plots of Y in association with x7, x8, and x9 estimated with permutation-based ran-
dom forests (a–c). For x9–Y relationships, the three-way interactions of x9 with x1 and x4 are further investigated,
and the negative x9–Y relationship conditional to x1 and x4 became apparent (d–f).

 ❖ www.esajournals.org 11 November 2017 ❖ Volume 8(11) ❖ Article e01976

EMERGING TECHNOLOGIES RYO AND RILLIG



As the result suggested, SML algorithms may
perform better than linear regressions to find
higher-order interactions. The linear regression
models, even though they included the higher-
order interactions in their model structure, did
not capture them (Table 4). By contrast, ctrees
and mobtrees visually suggested these interac-
tions without explicitly designing any variable
interactions (Figs. 3, 4). Partial dependence plots
with random forests can indicate higher-order
interactions of nonlinear relationships (Fig. 6d–
f). However, such interactions cannot be seen
unless they are specified in partial dependence
plots. We may have a risk to just interpret the
relationships by only confirming the x9–Y rela-
tionship (Fig. 6a–c). While currently lacking the
ability to quantify statistical significance of
higher-order interactions using random forests,
recently such techniques are emerging (see Basu
et al. 2017, a technique that might be able to indi-
cate more than five-way interactions).

Caution is required when interpreting the struc-
ture of tree models. Because of the rule of recur-
sive dichotomous separation, ctree and mobtree
algorithms are not ideal tools to represent contin-
uous gradual patterns such as curve. For the ctree
models, the dichotomous separation of x9 (node 4
in Fig. 3b, c) should not be interpreted as the x9–
Y relationship changing discontinuously. The
mobtree models separated x7 into three value
ranges (nodes 1 and 2 in Fig. 4b, c), although x7

was designed as a unimodal peak. Another caveat
for interpretation is that connected nodes do not
necessarily represent variable interactions (Win-
ham et al. 2012). For example, x7 does not actu-
ally interact with the others, although the x7 node
is apparently connected to some others (Fig. 4b,
c). A solution for this is to cope with knowledge
about x7: If the independence of the x7 effect from
the x1�x4�x9 is known, we can also build a multi-
ple regression that better represents the designed
relationships (Fig. 7).
The most important caveat is that SMLs are

not the tools that automatically reveal what the
user wants, but artificial intelligence algorithms
that assist the user to interpret how the data are
structured in a nonlinear and interactive man-
ner. Together with SML approaches, ecological
knowledge and theory are surely required.
Further applications are needed to better clarify
in which circumstances SMLs are more appro-
priate than machine learning and statistics, and
we already present an initial comparison among
these (Table 2). These approaches should be
used complementarily, depending on study aim
and dataset characteristics (Breiman 2001a).
Even so, we believe that SML tools offer a
unique and attractive empirical modeling oppor-
tunity for ecological studies. Aiming to further
stimulate applications of SML approaches, we
introduce five applications in ecological contexts
as follows:

Table 4. Model performances in detectability of the designed X–Y associations based on P-value.

Sample size

Conditional
inference tree Model-based tree

Permutation-based
random forest

Linear model
with AIC

100 200 300 100 200 300 100 200 300 100 200 300

x1 * *** *** *** *** *** *** *** ***
x4 *** *** *** *** *** *** ***
x7 *** *** * *** **
x8 **
x9 ** * (presumed) *** ** **
(x7)2 n n n n y/n y/n n y y *** *** ***
x1�x4 n y y n y y n y/n y/n **
x1�x9 n y y n y y n y/n y/n
x4�x9 n y y n y y n y/n y/n **
x1�x4�x9 n y y n y y n y/n y/n
False 0 0 0 0 1 0 1 1 0 4 1 0

Notes: AIC, Akaike’s information criterion. Qualitative assessment was also done for some cases based on Figs. 3–6, whether
a model indicates the unimodal curve (x7)2 and the variable interactions among x1, x4, and x9 (y as inferable; n as not inferable;
y/n as inferable if the association is presumed or interaction detection algorithm is used). The number of predictors falsely
selected with statistical significance (P < 0.05) is counted (“False” as false positive).

�P < 0.05; ��P < 0.01; ���P < 0.001.
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Novel patterns
Statistical designs and assumptions based on

ecological knowledge can bias our ways of inter-
preting observed patterns. For example, using a
Kernel density estimation (i.e., a nonlinear non-
parametric approach), Chaudhary et al. (2016)
showed that the latitudinal gradient in species
richness is “bimodal” with a dip near the equator
for marine species, while it has been generally
believed to be unimodal. The authors also men-
tioned that the pattern may further change due
to climate change. Another concern is seen in the
emergence of novel ecosystems that drive pat-
terns and processes which have never occurred
previously within a given biome (Hobbs et al.
2006). In a changing climate and with increasing
anthropogenic stressors, we may need to reshape
classical knowledge and theory on patterns.

Statistically reinforced machine learning is also
a promising approach in fields where prior
knowledge is still minimal and hypotheses have
not been clearly developed (Hochachka et al.
2007) such as biodiversity science (Kelling et al.

2009, Rillig et al. 2015b), macrosystem ecology
(Heffernan et al. 2014, Levy et al. 2014), and
microbial ecology (Baldi and Brunak 2001). Pat-
tern-mining approaches such as using permuta-
tion-based random forests in combination with
partial dependence plots (Fig. 6) provide an
opportunity to objectively see patterns in
observed data without subjective constraints by
statistical assumptions, knowledge, and theories
(e.g., Bergmann et al. 2017).

Higher-order variable interactions
The presence of higher-order variable interac-

tions in ecological communities causes unpre-
dictable nonlinear dynamics (Billick and Case
1994). Assuming linearity and additivity in sta-
tistical models implicitly means that more com-
plex non-additive higher-order interactions are
assumed to be negligible or absent. The validity
of this assumption, however, is rarely known.
Mayfield and Stouffer (2017) revealed that the
consideration of higher-order interactions is
inevitable to better predict species’ performances
in communities. Macroecology recognizes that
an interplay among factors at multiple hierarchi-
cal scales significantly contributes to structuring
complex nonlinear patterns, which are often
unexpected and unpredictable (cross-scale inter-
action; Peters et al. 2007, Soranno et al. 2014).

Context dependency
Some ecological patterns as well as processes

emerge only in particular conditions or vary along
an environmental gradient (e.g., Tonkin et al.
2016). For example, latitude–richness relation-
ships can be either positive, negative, or there can
be no trend, depending on, for example, length of
the latitudinal gradient examined and regions
(e.g., Heino 2011). Burkepile and Hay (2006)
suggested that the effects of human alteration of
food webs and nutrient availability on primary
producers vary among latitudes and primary
producers, and with the inherent productivity of
ecosystems. A response of an organism to an
external forcing may depend on the surrounding
environmental condition (Hunter et al. 2014) and
its past experience (priming; Rillig et al. 2015a,
Andrade-Linares et al. 2016, Ryo et al. 2017).
Searching variable interactions with the mobtree
algorithm can identify such context dependencies
(Fig. 4). Furthermore, these approaches can be

Fig. 7. Model-based tree that presumed linear
relationships of x9–Y and x7–Y (n = 300) indicated the
unimodal curve of the x7–Y relationship (see Fig. 4c
for comparison). This indicates that adequate a priori
variable selection by expert knowledge enhances the
ability of machine learning.
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used to integrate seemingly contradictory pat-
terns (e.g., Heino 2011) in a merged dataset by
exploring factors which differentiate patterns.

Prediction power as an alternative to statistical
significance and effect size

Statistical models can evaluate statistical sig-
nificance and effect size of predictors based on a
pre-defined assumption on data. Therefore, they
might miss important associations that appar-
ently do not exist. In addition, assuming linearity
on nonlinear relationships often estimates effect
size inappropriately (Gilbert and Bennett 2010).
Therefore, the structure of a statistical model can
be inappropriately assumed when patterns and
underlying mechanisms are not well-known,
which, in turn, SML can contribute to investigat-
ing such fields with non-manipulative data. Per-
mutation-based random forests can directly
evaluate the significance and importance of each
predictor in terms of prediction power, which is
a more honest indicator to assess variable impor-
tance than parametric statistical significance and
effect size (Hapfelmeier and Ulm 2013; Fig. 5).
The algorithm can evaluate importance of predic-
tors, while automatically taking nonlinearity and
variable interactions into account.

Statistically reinforced machine learning + statistical
modeling.—Statistically reinforced machine learn-
ing approaches are used for confirming patterns
(e.g., if linear assumption is valid or not and
interactions) and variable selection before
designing statistical models. Delgado-Baquerizo
et al. (2016) used a permutation-based random
forest as a priori variable selection and then
applied a structural equation model to confirm
their hypotheses. We consider that generalized
additive models can help evaluate statistical
significance of higher-order interactions that are
suggested by SML models.
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