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The abbreviations used are: 

AAL, Aleuria aurantia lectin 

AD, Alzheimer’s disease 

E4-PHA, erythroagglutinating phytohemagglutinin 

ER, endoplasmic reticulum 

Fuc, fucose 

Gal, galactose 

GlcA, glucuronic acid 

GlcNAc, N-acetylglucosamine 

GluA2, AMPA-type glutamate receptor-2 

GGnGGnbi, Gal-terminated biantennary 

GnGnbi, GlcNAc-terminated biantennary 

GnT, N-acetylglucosaminyltransferase 

Hex, hexose 

HNK-1, human natural killer-1 

LacNAc, N-acetyllactosamine 

Le, Lewis 

MD, molecular dynamics 

Man, mannose 

MAM, Maakia amurensis lectin 

NCAM, neural cell adhesion molecule 

PA, pyridylamine 
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PhoSL, Pholiota squarrosa lectin 

RMSF, root mean square fluctuations 

Sia, sialic acid 

SSA, Sambucus sieboldiana lectin 
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ABSTRACT 

 

Glycoproteins are decorated with complex glycans for protein functions. However, regulation 

mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting 

GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of 

terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. 

Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of 

bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. 

Many glycosyltransferases for N-glycan terminals were revealed to prefer a non-bisected N-

glycan as a substrate to its bisected counterpart, whereas no upregulation of their mRNAs was 

found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-

deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular 

dynamics simulations further confirmed that non-bisected glycans were preferentially accepted 

by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-

glycosylation.  
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INTRODUCTION 

Protein glycosylation is the most abundant post-translational modification (1). Glycan structures even 

on a single glycoprotein are diverse, and protein functions are dynamically regulated by their specific 

glycosylation states (2, 3). Indeed, alteration of or dynamic changes to the glycan structures on proteins 

affect various physiological processes, such as protein folding, stability, trafficking and activity (2, 3). 

Furthermore, genetic deletion of particular glycans in mice improved or accelerated the pathology of 

various diseases including cancer, Alzheimer’s disease (AD), diabetes and muscle dystrophy (4-7). For 

example, loss of b1,6-branch of N-glycan improves cancer, where loss of another branch (b1,4-branch) 

of N-glycan causes type-2 diabetes. In human patients, aberrant expression of disease-relevant glycans 

promoted and affected pathogenesis (3, 8, 9), indicating that changes to glycan structures represent a 

direct target for disease diagnosis and therapy. However, there is a paucity of information describing 

the detailed mechanisms of how complex glycan structures are dynamically formed in living cells. 

N-glycans are highly conserved and abundant, and expressed on most proteins that pass through 

the secretory pathway (10). Although the early biosynthetic system of N-glycans that occurs in 

endoplasmic reticulum (ER) is highly conserved among all eukaryotic cells (10), the biosynthesis of 

later phases of N-glycans in the Golgi apparatus is very diverse and is regulated in a protein-selective 

manner, leading to a wide variety of N-glycan structures on glycoproteins. The major structural 

diversity of N-glycans is the presence or absence of various GlcNAc branches synthesized by N-

acetylglucosaminyltransferases (GnTs encoded by MGAT genes) (Supplemental Fig. S1). Each sugar 

branch can be further decorated with various types of terminal modifications such as N-

acetyllactosamine (LacNAc), LacdiNAc, aGal, sialic acid, Lewis (Le)-type fucose and human natural 

killer-1 (HNK-1) (Fig. 1A and 2A) (11). Biochemical studies showed that branch formation basically 

precedes the biosynthesis of terminal modifications (11). Final N-glycan structures on each glycoprotein 

or even a single N-glycosylation site are biosynthesized by concerted and competitive actions of various 

glycosyltransferases in the Golgi, but how the actions of these glycosyltransferases are regulated in the 

Golgi remains to be elucidated. 
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Bisecting GlcNAc, the central branch of N-glycan expressed highly in brain and kidney, is 

biosynthesized by a glycosyltransferase GnT-III (encoded by the MGAT3 gene) (Fig. 1A) (12) and was 

reported to be associated with several diseases. Mgat3-deficient mice showed improved AD pathology 

with reduced amyloid-plaque formation in brain (4, 13, 14). This was found to be caused by relocation 

of a key amyloid-producing enzyme, beta-site APP-cleaving enzyme-1 (BACE1), from early 

endosomes to lysosomes (4). Furthermore, overexpression of GnT-III in B16 melanoma cells resulted 

in the prevention of lung metastasis in mice, probably through regulation of membrane retention of E-

cadherin (15, 16), whereas Mgat3-deficient mice showed rapid growth and early metastasis of breast 

cancer (17). These in vivo studies showed that the presence or absence of bisecting GlcNAc has a 

significant impact on the development of these diseases by regulating the functions of target 

glycoproteins. In addition, bisecting GlcNAc has unique biochemical features when compared with 

other GlcNAc branches. Previous enzymatic studies revealed that glycans with bisecting GlcNAc are 

no longer substrates of other glycosyltransferases (18-20), including GnT-IV (21) and GnT-V (22). In 

addition, bisecting GlcNAc does basically not undergo further elongation by other sugar residues (Gal 

and Sia) (11, 23), whereas other GlcNAc branches are usually linked to other sugar residues. Moreover, 

previous simulation and structural studies indicated that the presence of bisecting GlcNAc substantially 

changed the preferable conformations of whole N-glycans (24-26), suggesting that the presence of a 

bisecting GlcNAc residue itself, but not its elongation, is important for the function of bisecting GlcNAc. 

These results indicate that bisecting GlcNAc uniquely affects the tertiary structure and biosynthesis of 

whole N-glycans, which modulates the function of target glycoproteins. However, it is unclear how 

bisecting GlcNAc affects the biosynthesis of N-glycan structures in vivo. 

In this study, to understand whether bisecting GlcNAc regulates whole N-glycan structures, we 

carried out N-glycomic and biochemical analysis of Mgat3-deficient mouse brain. We found significant 

increases in various terminal modifications of N-glycans, including Le-type fucose, sialic acid and the 

HNK-1 epitope. We also reveal that most glycosyltransferases acting on N-glycan terminals have lower 

preference toward bisected glycans as substrates over non-bisected glycans, which was further 

supported by our docking models and molecular dynamics (MD) simulations. These data indicate that 
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bisecting GlcNAc serves as a general suppressor of various terminal modifications of N-glycans, 

highlighting its importance for fine regulation of glycan structures on proteins.  

 

EXPERIMENTAL PROCEDURES 

Antibodies and lectin 

Commercially available antibodies used were as follows: anti-ST6GAL1 (M2, 28047) was from 

Immuno-Biological Laboratories (Japan), anti-VDAC1 (ab14734) from Abcam, anti-actin (A4700) 

from Sigma, anti-GAPDH (MAB374) and anti-myc (4A6, 05-724) from Millipore, anti-polysialic acid 

(12E3, 14-9118-80) from Thermo Fisher Scientific, anti-HNK-1 (559048) from BD Biosciences, anti-

beta-III-tubulin (tuj1, MMS-435P) from Covance and anti-myc (9E10, BML SA-294) from Enzo Life 

Sciences. Biotinylated Aleuria Aurantia Lectin (AAL) (J201-R), erythroagglutinating 

phytohemagglutinin (E4-PHA) lectin (J211), Sambucus sieboldiana (SSA) (J218), Maackia amurensis 

(MAM) (J210) were from J-Chemical. The biotinylated Pholiota squarrosa lectin (PhoSL) was 

provided by J-Chemical. The anti-GnT-III (clone 33A8) was provided by Dr. Eiji Miyoshi (Osaka 

University). The anti-GlcAT-P (GP2) was provided by Dr. Shogo Oka (Kyoto University). The anti-

Sialyl Lex (F2) was provided by Dr. Hiroto Kawashima (Chiba University). 

 

Mutant mice 

The generation of the Mgat3-deficient mice has been described previously (27). All mice were from a 

C57BL/6 genetic background. Mgat3-deficient mice were generously provided by Dr. Jamey D. Marth 

(University of California-Santa Barbara). Mice were housed (three or fewer mice per cage) at 23 ± 3˚C 

and 55 ± 10% humidity. The light condition was 14 h : 10 h (lights on at 7:00). All animal experiments 

were approved by the Animal Experiment Committee of RIKEN and Gifu University. 

 

Plasmids 
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The construction of pcDNA6-mycHisA/mouse FUT1, FUT2, FUT4 and FUT9 to express C-terminally 

myc-tagged full-length fucosyltransferases was described previously (28). Mouse FUT7 cDNA was 

amplified by PCR by using a mouse liver cDNA library and then ligated into pCR-Blunt (ThermoFisher 

Scientific). By using pCR-Blunt/mouse FUT7 as a template, FUT7 cDNA was amplified and subcloned 

into the EcoRI/XhoI site of pcDNA6-mycHisA to express C-terminally myc-tagged FUT7. Human 

GnT-III (MGAT3) cDNA was amplified by using pCXN2/human GnT-III (29) as a template and cloned 

into the EcoRI/XbaI site of pcDNA6-mycHisA to construct a plasmid for C-terminally myc-tagged 

GnT-III. A cDNA encoding the inactive rat GnT-IIID321A mutant was amplified by PCR using 

pCXN2/rat GnT-IIID321A (gift from Dr. Tomoya Isaji, Tohoku Medical and Pharmaceutical University) 

as a template, followed by insertion into the EcoRI/XhoI site of pcDNA6-mycHisA. pcDNA3.1/rat 

ST6GAL1-FLAG was provided by Dr. Shinobu Kitazume (Fukushima Medical University) (30). A 

cDNA encoding human ST3GAL4 was amplified by PCR using pSVL/human ST3GAL4-FLAG (STZ) 

(Dr. Hiroshi Kitagawa, Kobe Pharmaceutical University) as a template and cloned into the EcoRI/XhoI 

site of pcDNA6-mycHisA to construct a plasmid for C-terminally myc-tagged full-length ST3GAL4. 

cDNAs encoding the catalytic domains of human GnT-III (from Glu63 to Val533), human ST3GAL4 

(from Glu43 to Phe332) and ST6GAL1 (from Lys98 to Cys406) were amplified and ligated into the 

EcoRI/EcoRV site (for GnT-III) or EcoRI/XhoI site (for ST3GAL4 and ST6GAL1) of pcDNA-IH (28) 

that contains DNA encoding the Igk signal peptide and 6xHis tag. ProteinA-tagged B4GALT1 (31), 

proteinA-tagged GlcAT-P (32), and full-length GlcAT-P (pIRES/rat GlcAT-P and rat HNK-1ST) (33) 

were kindly provided by Dr. Shogo Oka (Kyoto University). The primers used for construction are 

listed in Supplemental Table S1. 

 

Glycan analysis of mouse brain 

N-Glycans from brain membranes were released (34), labelled with aminoxyTMT6 reagent (Thermo 

Fisher Scientific) and analyzed by LC-ESI MS, according to previous procedures (35, 36) with 

modifications as follows.  
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Mouse brains (30 mg) were crushed in 2 mL of homogenization buffer (50 mM Tris-HCl, pH 7.4, 

0.1 M NaCl, 1 mM EDTA and protease inhibitor cocktail (Roche)) using a Dounce tissue grinder and 

then homogenized using a polytron homogenizer, followed by centrifugation at 760 x g for 20 min at 

4oC to remove nuclei and unbroken cells. The supernatant was diluted with 2 mL of Tris-buffer (50 mM 

Tris-HCl, pH 7.4, 0.1 M NaCl) and then ultracentrifuged at 120,000 x g for 80 min at 4oC. The 

membrane pellet was suspended in 100 µL of the Tris-buffer, followed by addition of 400 µL of the 

Tris-buffer containing 1% Triton X-114 with pipetting. The lysate was incubated on ice for 10 min and 

then at 37 °C for 20 min, followed by phase partitioning by centrifugation at 1,940 x g for 2 min. The 

upper aqueous phase was removed, and the lower detergent phase was mixed with 1 mL of ice-cold 

acetone and kept at -25oC overnight. After centrifugation at 1,940 x g for 2 min, the precipitated 

membrane proteins were dissolved with 11 µL of 8 M Urea and spotted (2.5 µL x 4 times) onto an 

ethanol-pretreated PVDF membrane. After drying at room temperature for > 4 hours, the membrane 

was washed with ethanol for 1 min once and then with water for 1 min three times. The protein on the 

membrane was stained for 5 min with Direct Blue 71 (Sigma Aldrich) (800 µL solution A (0.1% Direct 

Blue 71) in 10 mL solution B (acetic acid:ethanol:water = 1:4:5)). After destaining with solution B for 

1 min, the membrane was dried at room temperature for > 3 h. The protein spots were excised from the 

membrane and placed into a well of a 96-well plate. The spots were covered with 100 µL of 1% (w/v) 

poly(vinylpyrrolidone) 40000 in 50% (v/v) methanol, agitated for 20 min and washed with water (100 

µL x 5 times). PNGase F (2U in 10 µL of 20 mM phosphate buffer, pH 7.3, Roche) was added to the 

well and the spots were incubated at 37 °C for 15 min, followed by the addition of 10 µL of water and 

incubated at 37°C overnight. The samples were sonicated (in the 96-well plate) for 10 min and the 

released N-glycans (20 µL) were transferred to 1.5-mL polypropylene tubes. The well was washed with 

water (50 µL twice), and the washings were combined and evaporated. 

The dried N-glycans were reacted with aminoxyTMT6 reagent (Thermo Fisher Scientific, 

0.02 mg in 200 µL of 95% methanol, 0.1% acetic acid solution) by continuous shaking for 15 min at 

room temperature. After evaporating the reaction solution, 200 µL of 95% methanol was added to the 

samples, followed by further shaking for 15 min. After evaporating the samples, 100 µL of 10% acetone 
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solution was added to the samples, followed by incubation at room temperature for 15 minutes with 

continuous shaking. The sample was evaporated and excess reagent was removed using Sepharose 

CL4B. The samples were dried,  dissolved with 20 µL of 10 mM ammonium bicarbonate and analyzed 

by LC-ESI MS/MS. N-Glycans labelled with aminoxyTMT6 were separated on a carbon column (5 µm 

HyperCarb, 1 mm I.D. x 100 mm, Thermo Fisher Scientific) using an Accela HPLC pump (flow rate: 

50 µl/min) under the following gradient conditions; a sequence of isocratic and two segmented linear 

gradients: 0–8 min, 10 mM NH4HCO3; 8–38 min, 9–22.5% (v/v) CH3CN in 10 mM NH4HCO3; 38–

73 min, 22.5–51.75% (v/v) CH3CN in 10 mM NH4HCO3; and increasing to 81% (v/v) CH3CN in 

10 mM NH4HCO3 for 7 min and re-equilibrated with 10 mM NH4HCO3 for 15 min. The eluate was 

introduced continuously into an ESI source (LTQ Orbitrap XL, Thermo Fisher Scientific). MS spectra 

were obtained in the positive ion mode using Orbitrap (mass range: m/z 800 to m/z 2000; capillary 

temperature: 300°C; source voltage: 4.5 kV; capillary voltage: 18 V; tube lens voltage: 110 V). For 

MS/MS analysis, the top three precursor ions were fragmented by HCD using a stepped collision energy 

(normalized collision energy: 35.0; the width: 40.0; the steps: 3; minimum signal required: 10000; 

isolation width: 4.00; activation time: 100) using Orbitrap. Monoisotopic masses were assigned with 

possible monosaccharide compositions using the GlycoMod software tool (mass tolerance for precursor 

ions is ± 0.005 Da, https://web.expasy.org/glycomod/) and the proposed glycan structures were further 

verified through annotation using a fragmentation mass matching approach based on the MS/MS data. 

Xcalibur software ver. 2.2. (Thermo Fisher Scientific) was used to show the base peak chromatogram 

(BPC), extracted ion chromatogram (EIC) and to analyze MS and MS/MS data. The relative abundances 

(%) of each glycan structures were calculated by setting the total peak intensities of oligomannose-type 

N-glycans in each EIC as 100%. 

 

Preparation of membrane and soluble fractions from mouse brain 

Mouse brains were homogenized using a Potter-type tissue grinder with seven volumes of TBS 

containing an EDTA-free protease inhibitor cocktail (Roche). Homogenates were ultracentrifuged at 
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105,000 × g for 30 min at 4˚C, and the supernatant and pellet were used as soluble and membrane 

fractions, respectively. 

 

Western and lectin blotting 

These experiments were performed as described previously (35). Signals were detected using 

ImageQuant LAS-4000mini (GE Healthcare) or FUSION SOLO.7S (VILBER). The intensity of the 

protein bands was quantified using ImageQuant TL (GE Healthcare) or ImageJ software.  

 

Immunofluorescence staining 

Twenty-week-old mice were transcardially perfused with PBS containing 1 U/ml heparin sodium 

followed by 4% paraformaldehyde in PBS. Brains were taken and sequentially immersed in the same 

fixative overnight and then in 30% sucrose in PBS for 3 d (with daily renewal of the buffer) at 4°C. 

Brain sections (30 µm thick) were stained using the floating method. Briefly, sections were incubated 

with PBS containing 3% BSA for 20 min at room temperature, followed by incubation with primary 

antibody (1 h at room temperature) and Alexa-labelled secondary antibody (30 min at room 

temperature). Fluorescence was visualized using an Olympus FV-1000 confocal microscope. 

 

Preparation of primary neurons 

Primary cortical were isolated from mouse embryos as described previously (4). At DIV2, Ara-C 

(C6645, Sigma) was added to a final concentration of 5 µM to kill dividing non-neuronal cells. Half the 

amount of medium was replaced with new one every 5 d, and the cells were collected at DIV15. 

 

RNA extraction, reverse-transcription and quantitative PCR 

Total RNA from mouse brain was extracted using the TRI-REAGENT (Molecular Research Center). 

Reverse-transcription and qPCR were performed by using Qiagen reagents and 96 well-based primers 
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of glycosyltransferases as described previously (37). The expression levels of glycosyltransferases 

relative to those of Actb, B2m, Gapdh and Hsp90ab1 were calculated by the ∆Ct method. For 

quantification of the single gene mRNA (Mgat3), reverse-transcription and qPCR were performed using 

Superscript III and TaqMan probes as described previously (38).  

 

Analysis of nucleotide sugars 

Mouse brains (11-week-old) were obtained after the focused microwave irradiation technique to 

eliminate biochemical artefacts resulting from post-mortem degradation of nucleotide sugars. We 

therefore subjected mice to high-energy focused beam microwave irradiation (5 kW, 0.94 s: MMW-05 

Muromachi Kikai, Tokyo). The brains were then taken at room temperature, frozen in liquid nitrogen 

and stored at -80oC (39). 

Nucleotide sugars were prepared and quantified by ion-pair reversed-phase LC-MS as described 

previously (40, 41). The nucleotide sugar levels in brain tissues were normalized by the recovery of 

exogenous GDP-Glc and indicated as pmol/mg protein. 

 

Cell culture and transfection 

Cell lines were maintained and transfected as described previously (35). COS7, HEK293, and Hela 

cells were cultured in DMEM supplemented with 10% FBS. CHO cells were maintained in MEMa 

supplemented with 10% FBS. For knockdown experiments, cells at 20-40% confluency on 6-cm dishes 

were transfected with 80 pmol of control siRNA (AllStars negative control siRNA, QIAGEN) or siRNA 

for MGAT3 (SI00631022) using 8 µl of Lipofectamine 2000.  

 

Expression and purification of recombinant glycosyltransferases 

Expression and purification of recombinant glycosyltransferases were performed basically as described 

previously (28, 31, 35). For preparing FUT1-, FUT2-, FUT4-, or FUT9-myc, COS7 cells were 
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transfected with each plasmid with Polyethyleneimine MAX. After 48 h, cells were lysed with TBS 

containing 1% Nonidet P-40 (NP-40) and protease inhibitors, followed by centrifugation at 20,000 x g. 

The anti-myc antibody (4A6) and Dynabeads Protein G (Invitrogen) were added to the supernatant, 

followed by gentle rotation at 4˚C overnight. The beads were washed with TBS containing 0.1% NP-

40 three times and suspended with TBS containing 0.1% NP-40. The beads suspension was used 

directly for enzyme assays. 

For preparing His-tagged GnT-III, ST6GAL1 and ST3GAL4, and proteinA-tagged GlcAT-P and 

B4GALT1, COS7 cells were transfected with each plasmid and Polyethyleneimine MAX, followed by 

replacement of the medium with Opti-MEM I (GIBCO) at 4-6 h post-transfection. After 3-4 days, 

recombinant enzymes were purified from the media through a Ni2+- or IgG-column. For His-tagged 

enzymes, the bound proteins were eluted from the Ni2+-column with 20 mM phosphate buffer, pH 7.2, 

containing 0.5 M imidazole and 0.5 M NaCl, and then desalted with a NAP-5 column (GE Healthcare) 

equilibrated with 50 mM MES pH 6.2. For proteinA-tagged enzymes, the bound proteins were eluted 

from the IgG-column with 100 mM glycine, pH 2.5, and then immediately neutralized with 1 M Tris-

HCl, pH 8.5. 

 

Preparation of PA-labelled sugars 

GnGnbi-PA was prepared as described previously from egg yolk sialylglycopeptide (Fushimi 

Pharmaceutical) by releasing N-glycans with PNGase F, labelling with 2-aminopyridine, and treating 

with sialidase and galactosidase (42). To prepare GGnGGnbi-PA (type-2 galactosylated form of 

GnGnbi-PA), GnGnbi-PA was incubated with purified proteinA-B4GALT1 in 125 mM MES pH 6.2, 

10 mM MnCl2, 10 mM UDP-Gal at 37˚C overnight. To prepare bisected type GGnGGnbi-PA 

(bisectGGnGGnbi-PA), GnGnbi-PA was first incubated with purified His-GnT-III in 125 mM MES pH 

6.2, 10 mM MnCl2, and 20 mM UDP-GlcNAc, at 37˚C for 1 h, and then the reaction products were 

further galactosylated by adding purified proteinA-B4GALT1 and UDP-Gal (10 mM at final 

concentration) at 37˚C overnight. The products were separated and purified through reverse-phased 

HPLC equipped with a TSK-gel ODS-80TM (4.6 x 150) column (TOSOH), and the retention times of 
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the products were confirmed to be the same as standards (TAKARA BIO). The purity and mass number 

of the purified products were confirmed by MALDI-TOF MS (Ultraflex, Bruker Daltonics). 

 

Glycosyltransferase assays 

Glycosyltransferase activity was measured as described previously (42) with modifications. Activity 

assays were performed using myc-tagged full length FUT1, FUT2, FUT4, FUT9, or His-tagged soluble 

ST6GAL1, ST3GAL4, or proteinA-tagged soluble GlcAT-P. These enzymes were expressed in COS7 

cells, affinity purified, and incubated with acceptor substrates (GGnGGnbi-PA or bisectGGnGGnbi-

PA) in 125 mM MES pH 6.2, 10 mM MnCl2, 0.2 M GlcNAc, 0.5% Triton X-100, 1 mg/ml BSA and 

donor substrates. As donor substrates, 1 mM GDP-Fuc, 1 mM CMP-NeuAc, and 2 mM UDP-GlcA 

were used for fucosyltransferase, sialyltransferase, and glucuronyltransferase, respectively. The 

reaction products were analyzed by reversed-phase HPLC equipped with a TSK-gel ODS-80TM (4.6 x 

150) column (TOSOH). Isocratic mobile phase (A, 20 mM ammonium acetate pH 4.0; B, 20 mM 

ammonium acetate pH 4.0 containing 1% 1-butanol) was used, and the appropriate buffer B contents 

were adjusted for each enzyme assay.  

 

Modelling of N-glycans with GlcAT-P and ST6GAL1 

We modelled the binding modes of biantennary (GGnGGnbi) and bisected biantennary 

(bisectGGnGGnbi) glycans using computational modelling. We extracted the starting structure of 

GGnGGnbi from the N-glycosylation site of human ST6GAL1 crystal structure (PDB ID: 4js1) (43). 

bisectGGnGGnbi structure was created manually by adding bisecting GlcNAc to GGnGGnbi. 

Structures of the human GlcAT-P (PDB ID: 1v82) (44) and ST6GAL1 (PDD ID: 4js1) (43) were taken 

from the Protein Data Bank. The GlcAT-P/N-Glycan complexes were created by pair fitting 

Galβ1,4GlcNAc from the a1,3-branch over the Galβ1,4GlcNAc fragment in the crystal structure of the 

human GlcAT-P (a1,3-binding mode). Molecular docking was performed because the glycan fragment 

in the ST6GAL1 active site was absent in the crystal structure. Docking of full N-glycans to ST6GAL1 
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resulted in very unreasonable binding conformations because of its large size and unusual flexibility 

along the glycosidic linkages. Thus, we performed molecular docking of the N-glycan branch alone 

(Galβ1,4GlcNAcβ1,2Mana) in ST6GAL1 using Vina-Carb software (45). A total of 100 binding modes 

were generated. The top scoring pose displayed a reasonable binding conformation where the O6 

hydroxyl of the terminal galactose is accessible to cytidine-5' monophosphate (CMP) in the ST6GAL1 

crystal structure (PDB ID: 4s02). The ST6GAL1/N-Glycan complex structures were then created by 

pair fitting Galβ1,4GlcNAc of the a1,3-branch over the docked Galβ1,4GlcNAc fragment. The 

modelled complex looked similar to that shown in Fig. 2C of Kuhn et al. (43). 

These complexes were further subjected to classical MD simulations. All four complexes were 

solvated in an octahedral TIP3P water box extending 12 Å from each side of the complex. Amber force 

field ff14SB31 was used to treat the protein, whereas GLYCAM06 (version j-1) was used for glycans. 

The Li/Merz ion parameters were used for the Mn2+ ion in the GlcAT-P active site (46). Complexes 

were first equilibrated using a multi-step biomolecular equilibration protocol (47). A production run 

(200 ns in each case) under an NPT ensemble was performed using the pmemd (cuda version) module 

of Amber14 (48). Other MD settings (2 fs time step; 300 K constant temperature control using the weak 

coupling algorithm) were similar to that of a previous study (47). All MD trajectories were analyzed 

using AmberTools18 (http://ambermd.org). N-glycan binding conformations were clustered into three 

clusters using the K-means clustering approach implemented in cpptraj. A representative conformation 

from the most populated cluster was used in further analysis and figures. The N-glycan conformations 

in MD were also analyzed by calculating free-energy plots of the orientation of the a1,6-glycosidic 

linkage in spherical coordinates as reported by Nishima et al. (49) (Supplemental Fig. S7B-F). The 

distribution of essential conformers of the biantennary glycans are named as back-fold, tight back-fold, 

extended A and parallel. The parallel conformation is the one where the a1,6-branch is arranged parallel 

to the a1,3-branch. 

 

Experimental Design and Statistical Rationale 
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For all MS and blotting experiments, at least 3 independent pairs of Mgat3+/+ and Mgat3-/- littermates 

were used, and the representative data are shown in Figures. All data are shown as means ± SEM. For 

comparison of the means between two groups, statistical analysis was performed by applying an 

unpaired one-sided Student’s t-test or  Mann-Whitney U-test. p values less than 0.05 were considered 

to be significant. 

 

 

RESULTS 

Increases in terminal modifications of N-glycans in Mgat3-/- brain 

To determine whether bisecting GlcNAc affects the biosynthesis of other parts of N-glycans, N-glycan 

structures of Mgat3+/+ and Mgat3-/- mouse brains were analyzed by liquid chromatography (LC)-mass 

spectrometry (MS)/MS (Fig. 1B and Supplemental Fig. S2). Reducing ends of N-glycans were labeled 

with TMT6, and analyzed by LC-MS/MS in positive ion mode, which allows various glycans to be 

detected with high sensitivity in MS. We first found that N-glycans with bisecting GlcNAc and deduced 

to have bisecting GlcNAc disappeared in Mgat3-/- brain (Fig. 1B and Supplemental Fig. S2, indicated 

in blue). Glycan structures with bisecting GlcNAc were assigned based on the diagnostic ions for 

bisecting GlcNAc (Supplemental Fig. S2D) which were confirmed to be completely absent in Mgat3-/- 

brain (Supplemental Fig. S2F). These results indicate that GnT-III is the sole biosynthetic enzyme of 

bisecting GlcNAc in mammals, which is consistent with a previous report (50). We also found that the 

levels of many glycans were increased in Mgat3-/- brain (Fig. 1B and Supplemental Fig. S2, indicated 

in red), and surprisingly, the number of fucose and sialic acid residues in these increased glycans were 

higher than those found in the N-glycans that had decreased in Mgat3-/- brain. Here, the sum of signal 

intensity of multi-fucosylated glycans in MS analysis was greatly higher in Mgat3-/- than in Mgat3+/+, 

whereas that of mono-fucosylated glycans was reduced in Mgat3-/- brain to less than 50% of that in 

Mgat3+/+ (Fig. 1C, left). Similar increases in mono- and multi-sialylated glycans in Mgat3-/- was clearly 

observed (Fig. 1C, right). Moreover, extracted ion chromatogram (EIC) analysis of diagnostic ions for 
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LeY or LeA (658.256) and sialyl Le (803.294) showed that glycans having these epitopes were observed 

only in Mgat3-/- samples. These data suggest that fucosylation and sialylation in N-glycans are enhanced 

in Mgat3-/- brain. Consistent with the MS results, lectin blotting showed that proteins from Mgat3-/- 

brains were stained more strongly with Aleuria aurantia lectin (AAL), which recognizes all fucose 

residues (51), than those from Mgat3+/+ brain (Fig. 1D, 1st panel). Although mammalian N-glycans are 

potentially fucosylated at both core and terminal positions (Fig. 1A), unaltered staining between 

Mgat3+/+ and Mgat3-/- brains with core-fucose-specific Pholiota squarrosa lectin (PhoSL) (52) (Fig. 

1D, 2nd panel) suggests that Le-type fucosylation but not core fucosylation is enhanced in Mgat3-/- 

brain. We also observed that a2,6-sialylation and a2,3-sialylation were increased slightly in Mgat3-/- 

brain in lectin blots with Sambucus sieboldiana lectin (SSA) and Maakia amurensis lectin (MAM), 

respectively (Fig. 1E, left and middle panels). The absence of bisecting GlcNAc in Mgat3-/- brain was 

also confirmed by the loss of signals with bisecting GlcNAc-reactive lectin, erythroagglutinating 

phytohemagglutinin (E4-PHA) (Fig. 1E, right panel). Collectively, the MS and lectin blotting data 

showed that terminal fucosylation and sialylation increased in Mgat3-/-, suggesting that bisecting 

GlcNAc has a negative impact on the biosynthesis of these terminal structures in N-glycans. 

We next examined the levels of other terminal modifications of N-glycans, which cannot be 

detected by conventional MS analysis, such as HNK-1 and polysialic acid (polySia) (Fig. 2A and 

Supplemental Fig. S1B). These glycan epitopes are expressed at N-glycan terminals specifically in brain 

and play key roles in neural functions, including learning, synaptic formation and neurological disorders 

(53-55). Western blotting and immunostaining of adult mouse brains with HNK-1 mAb showed that 

the levels of the HNK-1 epitope increased in Mgat3-/- brain (Fig. 2B, C). The expression levels of neural 

cell adhesion molecule (NCAM) and AMPA-type glutamate receptor-2 (GluA2), the major carrier 

proteins of HNK-1 glycan (53), were comparable in Mgat3+/+ and Mgat3-/- mice (Fig. 2B), indicating 

that the levels of HNK-1 glycan but not its carrier proteins were upregulated in Mgat3-/- brain. PolySia 

is highly expressed in nascent brain (55), and its expression is downregulated with age and persists in 

very restricted areas of adult brain, such as the hippocampus. Western blotting of neonatal (P0) mouse 

brains and primary cerebral neurons (DIV15 isolated from E18 embryos) with anti-polySia mAb (12E3) 
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showed almost the same levels of polySia expression between Mgat3+/+ and Mgat3-/- mice (Fig. 2D). 

Immunostaining of adult brain sections with the anti-polySia mAb also confirmed the equivalent 

expression of polySia between adult Mgat3+/+ and Mgat3-/- mice (Fig. 2E). These data reveal that the 

HNK-1 epitope but not polySia is upregulated in Mgat3-/- brain.  

 

Sia and Fuc contents were also increased in Mgat3-/- kidney 

To examine whether the above results found in brain are general or more brain-specific, we also 

analyzed N-glycans in kidney by LC-MS (Fig. 3, Supplemental Fig. S3, and Table S2). The number of 

glycan structures observed was higher in kidney than in brain, and the diagnostic ions for bisecting 

GlcNAc were again completely disappeared in Mgat3-/- kidney (Fig. S3). The sum of signal intensity 

of fucosylated glycans in MS analysis showed that the number of tetra and penta-fucosylated N-glycans 

was higher in Mgat3-/- than in Mgat3+/+, whereas that of di- and tri-fucosylated glycans was reduced in 

Mgat3-/- kidney (Fig. 3A). Similarly, non-sialylated glycans were reduced in Mgat3-/- kidney, while 

sialylated glycans were increased (Fig. 3B). These findings are consistent with the results in brain and 

suggest that loss of bisecting GlcNAc generally leads to increases in terminal modifications of N-

glycans. 

 

Preferred glycosylation of various glycosyltransferases toward non-bisected N-glycan 

The above data revealed that the loss of bisecting GlcNAc causes upregulation of various kinds 

of terminal modifications of N-glycans. To explore the mechanisms behind these observations, the 

mRNA levels of glycosyltransferases responsible for these terminal modifications were measured. Fig. 

3A shows that fucosyltransferases (Fut1-11), sialyltransferases (St3gal1-6, St6gal1,2), HNK-1-

synthesizing enzymes (B3gat1,2), and polySia-synthesizing enzymes (St8sia2,4) were not upregulated 

in Mgat3-/- brain (Fig. 4A). We also measured the levels of donor substrates for those enzymes in mouse 

brain and observed comparable levels for all donor substrates tested, including GDP-Fuc and UDP-

GlcA, in Mgat3+/+ and Mgat3-/- mice (Fig. 4B). These data exclude the possibility that the increased 
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expression of terminal N-glycan modifications in Mgat3-/- was caused by upregulation of biosynthetic 

enzymes or their donor substrates. 

Based on these findings, we hypothesized that the presence of bisecting GlcNAc in N-glycans 

interferes with the catalytic activity of the various enzymes for terminal modifications of N-glycans and 

that the loss of bisecting GlcNAc makes N-glycans better substrates for those enzymes. To test this 

possibility, in vitro activity assays of those enzymes were performed using two acceptor substrates 

(galactosylated biantennary N-glycans) with or without bisecting GlcNAc (Fig. 4C, D). To prepare a 

non-bisected substrate, pyridylamine (PA)-labelled N-glycan (GnGnbi-PA) derived from the egg yolk 

glycopeptide (42) was galactosylated by recombinant B4GALT1 (31) (Supplemental Fig. S4A, C) to 

produce GGnGGnbi-PA. For preparing a bisected substrate, GnGnbi-PA was first incubated with 

recombinant GnT-III (Supplemental Fig. S4B) and then with B4GALT1 to obtain the bisected 

GGnGGnbi-PA (bisectGGnGGnbi-PA) (Supplemental Fig. S4C). These two acceptor substrates 

showed the same retention times as the commercially available glycan standards in reversed-phase 

HPLC (Supplemental Fig. S4C) and the expected mass by MALDI-MS analysis (Supplemental Fig. 

S4D). For activity assays toward the prepared substrates, we expressed and purified representative 

glycosyltransferases responsible for the biosynthesis of the increased terminal modifications in Mgat3-

/- brain, including FUT1, 2, 4, 9, ST6GAL1, ST3GAL4 and GlcAT-P (major glucuronyltransferase for 

HNK-1 biosynthesis) (Supplemental Fig. S5). These enzymes were incubated with GGnGGnbi-PA or 

bisectGGnGGnbi-PA, and the reaction products were separated and detected by reversed-phase HPLC. 

Their enzymatic activity was measured based on the peak areas of the products (Fig. 4C, D), and we 

found that all tested enzymes except FUT1 showed lower activity toward the bisected type substrate 

than toward the non-bisected type substrate. This strongly suggests that the loss of bisecting GlcNAc 

converts N-glycans from non-preferable to preferable substrates of the enzymes for terminal 

modifications of N-glycans, leading to the higher expression levels of Le-fucose, sialic acid and the 

HNK-1 epitope in Mgat3-/- brain.  
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Intracellular activity of Le-fucosylation enzymes, ST3GAL4 and GlcAT-P, is suppressed by GnT-III 

overexpression 

To verify this possibility, the glycosyltransferases for the terminal modifications of N-glycans 

were overexpressed with or without GnT-III in cultured cells. Overexpression of Le-type fucosylation 

enzymes, FUT2, FUT4 and FUT9, in Hela cells resulted in dramatic increases in AAL reactivity (Fig. 

5A), indicating that the expressed fucosyltransferases actively fucosylated the protein glycans in cells. 

Such effects of FUT overexpression on AAL reactivity were clearly suppressed by co-expression of 

GnT-III (Fig. 5A), but not by the inactive GnT-III mutant (D321A) (56) (Supplemental Fig. S6A). 

These findings are consistent with the MS and lectin blotting results of Mgat3-/- brain and confirmed 

that the presence of bisecting GlcNAc suppresses Le-type fucosylation in cells. In addition, the sialyl 

Lex epitope, which can be detected by the specific antibody F2 (57), was synthesized by overexpression 

of the biosynthetic enzyme, FUT4 or FUT7 (Supplemental Fig. S6B), and the biosynthesis of sialyl Lex 

was also suppressed by GnT-III overexpression. These results further confirmed that Le-type 

fucosylation is negatively regulated by bisecting GlcNAc.  

Similar results were observed for ST3GAL4 and GlcAT-P. Overexpression of ST3GAL4 in CHO 

cells increased slightly MAM reactivity of cellular proteins, and such an effect was reduced by GnT-III 

overexpression (Fig. 5B). The HNK-1 epitope is not endogenously expressed in most cell lines, 

including Hela, and overexpression of one of the two glucuronyltransferases (GlcAT-P and GlcAT-S, 

encoded by B3GAT1 and B3GAT2, respectively) and the sulfotransferase (HNK-1ST encoded by 

CHST10) causes cells to express this epitope (33). The production of HNK-1 in Hela cells was clearly 

suppressed by GnT-III overexpression (Fig. 5C), again confirming that the presence of bisecting 

GlcNAc suppresses the action of GlcAT-P in cells. We also knocked down GnT-III expression by 

siRNA (Supplemental Fig. S7A, B), and confirmed that the effects of overexpression of a 

fucosyltransferase (FUT2) and GlcAT-P on the production of terminal glycan epitopes were enhanced 

by GnT-III silencing (Supplemental Fig. S7C, D). These data support our conclusion that the presence 

of bisecting GlcNAc suppresses the expression of various terminal epitopes of N-glycans.  
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N-glycan with bisecting GlcNAc adopts back-fold conformation and is poorly recognized by 

glycosyltransferases 

To gain insights into the preference of non-bisected glycans over bisected glycans for enzymes 

acting on N-glycan terminals, we conducted a molecular modelling study and examined how these 

glycans are recognized by glycosyltransferases. Two enzymes, GlcAT-P and ST6GAL1, whose crystal 

structures are available, were selected (43, 44). The models of the glycan-enzyme complexes were 

constructed by fitting Galβ1,4GlcNAc of the a1,3-branch over the Galβ1,4GlcNAc glycan fragment 

present in the human GlcAT-P crystal structure and this complex underwent MD simulations 

(Supplemental Fig. S8A-F). GlcAT-P complexes with the non-bisected biantennary N-glycan 

(GGnGGnbi) showed binding of the a1,3-branch to the GlcAT-P acceptor binding site, whereas Gal-6’ 

of the a1,6-branch formed favorable electrostatic interactions with R162 (Fig. 6A). This suggests that 

GlcAT-P prefers the a1,3-branch as an acceptor substrate, which is consistent with the previous enzyme 

assay showing that GlcAT-P transferred a glucuronic acid to the a1,3-branch more efficiently than to 

the a1,6-branch (60:40 for a1,3 to a1,6) (58). In contrast, the a1,6-branch of the bisected biantennary 

N-glycan (bisectGGnGGnbi) in GlcAT-P complex occupied an extended conformation and the 

interaction with GlcAT-P was lost (Fig. 6B). In both cases, the side-chain of F245 is involved in 

stacking interactions with the GlcNAc-5, which is in agreement with a previous study showing that the 

F245A mutant has no activity (44). Furthermore, high root mean square fluctuations (RMSF) were 

observed for the remaining residues during the MD simulation (Supplemental Fig. S7G, GlcNAc-1,2, 

Man-3,4,4’), suggesting higher atomic fluctuations of these residues. This is consistent with the weak 

electron density of Man-4/Man-4’ and no electron density for the remaining core residues in the 

complex crystal structure (44). Furthermore, as described below, the bisected glycan adopts a back-fold 

conformation predominantly in which the a1,6-branch is located distal from the enzyme. These findings 

indicate that the bisected glycan is weakly recognized by GlcAT-P. 

The modelled ST6GAL1/GGnGGnbi complex adopts a conformation similar to that seen in the 

glycosylation site of its crystal structure (43). The terminal Gal-6 moiety of the a1,3-branch bound to 

the acceptor site and formed a stacking interaction with W257 (Fig. 6C). From structural and volume 
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considerations (both branches are identical); either of the two branches can bind to ST6GAL1, but the 

a1,3-branch is likely to be preferred because of favorable polar interactions between Gal-6 and R242 

in this binding mode. This is in agreement with a previous report that ST6GAL1 has a preference for 

the a1,3-branch (59). In the presence of bisecting GlcNAc, the a1,6-branch attains a back-fold 

conformation (Supplemental Fig. S8F) and interacts mainly with the chitobiose core (Fig. 6D). In this 

case, loss of the polar interaction between Gal-6’ and R242 is partially compensated by the polar 

interaction between Man-4’ and R108, but this interaction is likely to be very weak due to the orientation 

of the O2 hydroxyl away from R108. Thus, the loss of this polar interaction between Gal-6’ and the 

enzyme leads to poor recognition of the substrate. 

The back-fold conformation of bisected glycans observed in MD simulations is in line with 

previous NMR (60), crystallographic (25), and MD simulation studies (49) where bisected N-glycans 

in the unbound state adopt predominantly a back-fold conformation when compared with that of non-

bisected N-glycans in solution. Because the a1,6-branch in the back-fold conformation interacts poorly 

with the enzyme, the dominant back-fold conformation of the bisected glycans is likely to be the major 

reason for the lower activity of these enzymes toward the bisected glycan. In conclusion, our modelling 

and MD results indicate that the presence of bisecting GlcNAc converts the N-glycan to a poorer 

substrate by varying the dominant conformation of the glycan and by losing favorable interactions 

between a non-acceptor branch and an enzyme.  

 

 

DISCUSSION 

In this study, we found that bisecting GlcNAc suppressed the biosynthesis of Le-type fucose, sialic acid 

and the HNK-1 epitope at N-glycan terminals. As terminal modifications, such as fucose, sialic acid 

and others, were found to be expressed even in bisected N-glycans in our analysis and reports from 

other groups (61, 62),  the suppressive effects of bisecting GlcNAc are probably not exclusive. However, 

such broad suppressive effects have not been found previously for other sugar residues in N-glycan, 
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this is a unique physiological function of bisecting GlcNAc. Furthermore, based on the enzyme assays 

and MD simulations, we conclude that the suppression of these terminal modifications is attributed to 

the substrate specificity of the responsible glycosyltransferases, which were found to prefer non-

bisected glycans as acceptor substrates. Although the number of available enzyme structures is currently 

limited, future structural studies and detailed activity assays of the enzymes acting on N-glycan 

terminals would further reveal how these enzymes accept non-bisected and bisected acceptor substrates. 

Previous study reported that N-glycan structures in Mgat3-/- kidneys were almost comparable to 

those of Mgat3+/+ kidney (50). The pattern of signal intensity of the detected glycans in the paper was 

very similar to our present results. However, the number of detected glycans in these two studies was 

largely different (approx. 20 vs. 100), and sialylated glycans were not analyzed in the paper. In addition, 

we used LC-MS, while MALDI was used in the previous paper. In general, MALDI lowers sensitivity 

for sialylated glycans, and LC-MS shows better performance in relative quantification of glycans 

including sialylated forms. We think that the results in the two studies are basically consistent but reach 

the different conclusions because of the different methods and sensitivity for glycan analysis. 

Our glycomic and lectin blotting results showed that Le-type but not core fucosylation is enhanced 

in Mgat3-/- brain. This seems to be inconsistent with the previous in vitro enzymatic assays showing 

that the core-fucosylation enzyme FUT8 does not prefer bisected N-glycan as a substrate (63). 

Considering that N-glycan is generally biosynthesized by step-wise actions of Golgi enzymes, FUT8 

action might precede GnT-III in the Golgi and not be affected by GnT-III in an in vivo situation. In 

addition to FUT8, other GlcNAc-branching enzymes, GnT-IV and -V, were also reported to show little 

or no activity toward bisected N-glycans (21, 22), leading to the possibility that the products of these 

enzymes were also upregulated in Mgat3-/- tissues. In our glycomic analysis using mouse brain, however, 

the expression levels and the number of glycans identified to have a GlcNAc product of GnT-IV or -V 

were very low, and we cannot conclude whether these branches were increased in Mgat3-/- brain. This 

issue should be solved by more extensive glycomic studies using various knockout mice and cells of 

Mgat genes. 
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As compared with Le-fucosylation and HNK-1 biosynthesis, the effects of bisecting GlcNAc on 

sialylation in lectin blots were moderate (Fig. 1E). Moreover, although enzymatic assays and MD 

simulations clearly showed that ST6GAL1 prefers the non-bisected substrate (Fig. 4D, 6C, D), 

overexpression of GnT-III did not suppress the action of ST6GAL1 in Hela cells (Supplemental Fig. 

S9A). This is consistent with previous reports showing that overexpression of GnT-III downregulates 

a2,3-sialylation but not a2,6-sialylation in cancer cell lines (64, 65). Although this could be explained 

by the action of ST6GAL1 on O-glycans, the suppressive effects of GnT-III overexpression on SSA 

reactivity was not observed even in the presence of the O-glycosylation inhibitor, benzyl-GalNAc 

(Supplemental Fig. S9B). Overexpressed ST6GAL1 in cells might bypass or precede the action of GnT-

III to actively sialylate glycoproteins.  

Our MD results of a1,3-binding modes showed that the interaction of ST6GAL1 and GlcAT-P 

with non-bisected glycans was stronger than with bisected glycans. Consistently, these two enzymes 

were reported to show stronger activity toward the a1,3-branch (58, 59); although, the a1,6-branch is 

also accepted as a substrate with lower affinity. Thus, we also modelled GGnGGnbi and 

bisectGGnGGnbi with the two enzymes in the a1,6-binding modes (not shown). Both enzymes bound 

the a1,6-branch of the two glycans, but as the a1,6-branch tends to flip back in the bisected glycan, this 

arm will be less accessible to the acceptor site when compared with the a1,3-branch. The higher activity 

toward the a1,3-branch can be therefore attributed to the initial conformation of both branches and how 

well they are orienting outward in their unbound form to interact with proteins. Overall, our MD 

simulations suggest that the binding preference of GlcAT-P and ST6GAL1 for non-bisected N-glycans 

is because of a complex entropic and enthalpic interplay contributed by varying conformations of both 

branches. 

Bisecting GlcNAc has been reported to be involved in various physiological phenomena and 

diseases. In particular, the relevance in AD and cancer was shown using Mgat3-/- mice (4, 17), and the 

absence of GnT-III results in various functional alterations of target proteins in vivo. Furthermore, in 

some cancer cells, aberrant upregulation of the MGAT3 gene and bisecting GlcNAc was reported (66, 

67), which is suggested to cause poor clinical outcomes. Currently, these bisecting GlcNAc-related 
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phenotypes have been mainly considered as the direct consequences of the presence or absence of the 

bisecting GlcNAc residue itself, but some of these phenotypes could be caused by secondary effects on 

other parts of N-glycans, such as Le-fucosylation, sialylation and synthesis of other terminal epitopes. 

Because no other sugar residues in N-glycan have been found to have such a broad impact on the 

biosynthesis of other parts of N-glycan, the inhibition of terminal modifications may be a major 

physiological function of bisecting GlcNAc. A large switch of preferable conformations of whole N-

glycan by the presence of bisecting GlcNAc observed in NMR, crystal and our MD studies (25, 26, 49) 

further supports this possibility. In conclusion, the findings in this study will help fully understand the 

functions of bisecting GlcNAc in cells, which we believe will lead to the elucidation of how mammalian 

cells regulate the biosynthesis of complex glycoconjugates. 
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Fig. 1. Enhanced sialylation and Le-fucosylation of N-glycans in Mgat3-/- brain.  (A) A schematic 
model of GnT-III action, sialylation and fucosylation of N-glycans. Presence of bisecting GlcNAc 
suppresses biosynthesis of sialic acid and Lewis fucose. (B) LC-MS signal intensities of major N-
glycans derived from adult Mgat3+/+ and Mgat3-/- brains. Green, control oligomannose glycans; pink, 
glycans increased in Mgat3-/-; blue, glycans that disappeared in Mgat3-/-; and grey, glycans unchanged 
between Mgat3+/+ and Mgat3-/-. Fuc, whose position was either core or Lewis, is depicted as + Fuc. 3 
independent pairs of Mgat3+/+ and Mgat3-/- brains were analyzed, and we reproducibly found the 
increases in fucosylated and sialylated glycans in Mgat3-/- brain. (C) Sum of signal intensities of mono- 
and multi-fucosylated (left) and -sialylated (right) glycans in LC-MS analysis. (D) Brain membrane and 
soluble proteins from 18-week-old Mgat3+/+ and Mgat3-/- mice were stained with lectin (AAL or 
PhoSL), anti-GAPDH, or anti-VDAC1 Ab. (E) Proteins of brain homogenates from 15-week-old 
Mgat3+/+ and Mgat3-/- mice were stained with SSA, MAM, or the E4-PHA lectin. The representative 
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data of two mice for each genotype are shown. Arrows indicate the bands whose signal intensity was 
prominently increased in Mgat3-/- brain. Asterisks indicate non-specific bands reactive with only avidin. 

 

 

 

 
 

Fig. 2. Increase in the HNK-1 glycan level in Mgat3-/- brain. (A) A schematic model describing the 
biosynthesis of bisecting GlcNAc, HNK-1 and polySia in N-glycans. (B) Proteins of brain membranes 
from 7-week-old Mgat3+/+ and Mgat3-/- mice were stained with the anti-HNK-1, anti-NCAM, anti-
GluA2 and anti-VDAC1 Ab. The data of two representative mice for each genotype are shown. (C) 
Brain sections from 20-week-old Mgat3+/+ and Mgat3-/- mice were immunostained with the anti-HNK-
1 mAb. Hippocampus area is shown. Bar, 300 µm. (D) Proteins of brain homogenates from P0 Mgat3+/+ 
and Mgat3-/- mice (left) or of DIV15 cultured cerebral neurons from Mgat3+/+ and Mgat3-/- embryos 
(right) were stained with the anti-polySia, anti-actin, or anti-bIII-tubulin (neuron marker) Ab. (E) Brain 
sections from 20-week-old Mgat3+/+ and Mgat3-/- mice were immunostained with the anti-polySia mAb. 
Hippocampus area is shown. Bar, 300 µm. 
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Fig. 3. Enhanced sialylation and Le-fucosylation of N-glycans in Mgat3-/- kidney. LC-MS signal 
intensities of N-glycans derived from adult Mgat3+/+ and Mgat3-/- kidneys. Sum of signal intensities of 
non-, mono- and multi-fucosylated (A) and -sialylated (B) glycans in LC-MS analysis is shown. 
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Fig. 4. Preferred glycosylation of various glycosyltransferases toward non-bisected N-glycan. (A) 
The mRNA levels of various glycosyltransferases normalized by house keeping genes in brains from 
6-week-old Mgat3+/+ and Mgat3-/- mice were quantified by qPCR (n = 2). (B) The levels of various 
nucleotide sugars in Mgat3+/+ and Mgat3-/- mouse brains were quantified by LC-MS (n = 1). (C) In 
vitro enzymatic activity of recombinant FUT1, FUT2, FUT4 and FUT9 toward GGnGGni-PA and 
bisectGGnGGnbi-PA were measured (n = 3). (D) Enzymatic activity of recombinant ST6GAL1, 
ST3GAL4, and GlcAT-P toward GGnGGni-PA and bisectGGnGGnbi-PA were measured (n = 3). 
Arrows indicate the products of glycosyltransferase reactions. All graphs show means ± SEM, and all 
measurements were taken from distinct samples  (*p < 0.05, **p <0.01, Student’s t-test) 
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Fig. 5. Intracellular activity of Le-fucosylation enzymes, ST3GAL4 and GlcAT-P, is suppressed 
by GnT-III overexpression. (A) Hela cells were transfected with the FUT2-myc, FUT4-myc, or 
FUT9-myc expression plasmid or the empty vector (mock) with or without the GnT-III expression 
plasmid. Cellular proteins were stained with the AAL lectin, anti-myc, anti-GnT-III, or anti-GAPDH 
Ab. A highly exposed myc-blot is also presented to show clearly the expression levels of FUT9. (B) 
CHO cells were transfected with the ST3GAL4 expression plasmid or the empty vector (mock) with or 
without the GnT-III expression plasmid. Cellular proteins were stained with the MAM lectin, anti-myc, 
or anti-GAPDH Ab. (C) Hela cells were transfected with the expression plasmid for GlcAT-P and 
HNK-1ST (P + ST) or the empty vector (mock) with or without the GnT-III expression plasmid. 
Cellular proteins were stained with the anti-HNK-1, anti-GlAT-P, anti-GnT-III, or anti-GAPDH Ab. 
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Fig. 6. Binding conformations of bisected and non-bisected N-glycans with GlcAT-P and 
ST6GAL1. Images were taken from the cluster analysis of MD poses and representatives for the most 
populated clusters are shown. N-glycan binding complexes are shown for GlcAT-P (A,B) and 
ST6GAL1 (C,D) where the chitobiose core (purple), a1,3-branch (green), a1,6-branch (yellow) and 
bisecting GlcNAc (cyan) and relevant side chains (brown) are shown in stick representation. The UDP 
and CMP molecules in the figure were taken after superimposing the MD structure over the crystal 
structure. (A) The a1,6-branch of the biantennary N-glycan interacts with GlcAT-P. (B) In the presence 
of bisecting GlcNAc, the a1,6-branch cannot interact with GlcAT-P. (C) In ST6GAL1 complex, the 
a1,6-branch interacts with the enzyme by forming a hydrogen bond with R242. (D) In the presence of 
bisecting GlcNAc, the a1,6-branch obtains a back-fold conformation and interacts with the chitobiose 
core, lacking favorable interactions between the a1,6-branch and enzyme. 
 

 


