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Zusammenfassung 

Bei gruppenlebenden Arten wird die Fitness von Individuen stark durch die Wahl der 

Fortpflanzungsgruppe und den sozialen Rang in der Hierarchie der Gruppe beeinflusst. Die 

Ursachen und Folgen von Unterschieden in der Wahl der Fortpflanzungsgruppe und der 

Abwanderungsneigung sowie die Mechanismen, durch die der soziale Rang den Zugang zu 

Paarungspartnern und den Fortpflanzungserfolg beeinflusst, sind weitgehend unbekannt. 

Diese Arbeit hat drei Hauptziele: (i) Ursachen für die Koexistenz von Abwanderung und 

Ortstreue (Philopatrie) bei Männchen der Tüpfelhyäne (Crocuta crocuta), einem großen, 

gruppenlebenden Raubtier, zu identifizieren; (ii) den Einfluss des sozialen Ranges und 

sozialer und physiologischer Eigenschaften auf die Investitionen in die Fortpflanzung und 

den Fortpflanzungserfolg bei Tüpfelhyänen-Männchen zu ermessen; (iii) die Anwendbarkeit 

von nicht-invasiven Hormonkonzentrationsmessungen zu verbessern. Die Arbeit verbindet 

Langzeitdaten über das Verhalten, die Physiologie, das Überleben und den 

Fortpflanzungserfolg von Tüpfelhyänen-Männchen mit demographischen Daten aus allen 

acht Clans einer freilebenden Hyänenpopulation in Tansania. In Kapitel 3 zeige ich, dass 

abgewanderte und philopatrische Tüpfelhyänen-Männchen von ähnlicher phänotypischer 

Qualität sind, die gleichen Prozesse und Regeln anwenden, um eine Fortpflanzungsgruppe 

auszuwählen und sich darin niederzulassen, und ähnliche Überlebenswahrscheinlichkeiten 

und Fortpflanzungserfolge haben. Ich zeige auch, dass der soziale Rang den Zugang zu 

Paarungspartnern und den Fortpflanzungserfolg beeinflusst, dass philopatrische Männchen 

durch ihren hohen sozialen Rang einen hohen Fortpflanzungserfolg haben, und dass die 

Vorteile von Ortstreue die Wahrscheinlichkeit der Männchen erhöht, ihre Geburtsgruppe als 

Fortpflanzungsgruppe auszuwählen. Die Ergebnisse zeigen, dass die Anzahl der 

Paarungspartner in der Geburts- und anderen Gruppen das Abwanderungsverhalten und die 

Abwanderungshäufigkeit bestimmt und die Koexistenz von Abwanderung und Ortstreue bei 

Tüpfelhyänen-Männchen begründet. In Kapitel 4 entwickle ich eine neuartige Methode zur 

Standardisierung der Messung von Hormonmetabolitenkonzentrationen wenn wesentliche 

Änderungen in der Messgenauigkeit eines Immunoassays auftreten. Das Verfahren basiert 

auf der bei jeder Messung wiederholten Analyse einer kleinen Anzahl von Proben und stellt 

die Vergleichbarkeit der Messungen her. Es ist eine effektive und effiziente Alternative zur 

oft undurchführbaren wiederholten Analyse aller Proben. In Kapitel 5 zeige ich, dass 
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Männchen mit einem hohen sozialen Rang mehr Möglichkeiten haben, Dominanz auszuüben 

und von der Pufferwirkung sozialer Bindungen zu profitieren als Männchen mit einem 

niedrigeren Rang. Hochrangige Männchen werden dadurch weniger stark durch 

physiologischen Stress eingeschränkt als tieferrangige Männchen. Dies ermöglicht es 

hochrangigen Männchen, einschließlich philopatrischen Männchen, mehr Zeit in 

fitnessfördernde soziale und sexuelle Aktivitäten zu investieren als tiefer rangige Männchen 

und besonders viel in Weibchen mit hohem Fortpflanzungswert zu investieren. Diese 

Ergebnisse stehen im Einklang mit den Ergebnissen von Kapitel 3 und können erklären, 

warum philopatrische Männchen und hochrangige Einwanderer besonders häufig 

Nachkommen mit Weibchen von hohem Fortpflanzungswert zeugen. Die Arbeit liefert 

Einblicke in (i) die Rolle der demographischen Variabilität und der Verteilung von 

Paarungspartnern für die Evolution von Abwanderung und Philopatrie und die Entstehung 

von Abwanderungsmustern auf Populationsebene, (ii) Merkmale, die Unterschiede in der 

Konkurrenzfähigkeit und der Investition in Fortpflanzung zwischen Männchen 

unterschiedlichen sozialen Ranges verursachen, und (iii) die Rolle des sozialen Ranges und 

sozialer und physiologischer Eigenschaften bei der Entstehung von Unterschieden in der 

Lebensgeschichte und des Fortpflanzungserfolgs zwischen Männchen bei gruppenlebenden 

Arten. 
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Summary 

In group-living species, the choice of the breeding group and the social rank in the hierarchy 

of the group strongly influence an individual’s fitness. Yet the causes and consequences of 

variation in breeding-group choice and dispersal propensity, and the proximate mechanisms 

through which social rank influences an individual’s ability to access mates and reproduce 

remain poorly understood. This thesis has three main aims: (i) identify the drivers of the 

coexistence of dispersal and philopatry among males in the spotted hyena (Crocuta crocuta), 

a large, group-living carnivore; (ii) assess whether and how social rank and social and 

physiological constraints influence reproductive investment and success in male hyenas; (iii) 

improve the applicability of non-invasive hormone concentration measurements. The thesis 

combines long-term data on the behaviour, physiology, survival and reproductive success of 

male spotted hyenas with demographic data from all eight social groups of a free-ranging 

hyena population in Tanzania. In Chapter 3, I show that philopatric male and dispersers are 

of similar phenotypic quality, follow the same process and apply the same rules to choose 

and settle in a breeding group, and have similar survival and reproductive success. I also 

show that social rank is a strong determinant of male access to mates and reproductive 

success in spotted hyenas. Philopatric males gain reproductive benefits associated with their 

high social rank and these benefits increase the propensity of males to choose their natal 

group as a breeding group. The results demonstrate that the distribution of breeding 

females across natal and nonnatal groups is an important determinant of dispersal patterns 

and of the coexistence of philopatry and dispersal in male spotted hyenas. In Chapter 4, I 

develop a novel method to standardise hormone metabolite concentration measurements 

when substantial changes in the accuracy of an immunoassay occur. The method is based on 

repeated assaying of a small number of samples and restores the comparability of the 

measurements. The method constitutes an effective alternative to the often impracticable 

re-assaying of complete sample sets. In Chapter 5, I show that males with a high social rank 

are less constrained by physiological stress than low-ranking males, owing to their greater 

opportunities to express dominance and enjoy the buffering effect of social bonds. This 

allows high-ranking males, including philopatric males, to allocate more time than low-

ranking males to fitness-enhancing social and sexual activities, and to focus their sexual 

investment on females of high reproductive value. These results are consistent with the 



Summary   Eve Davidian 
 

11 
 

results of Chapter 3 and may explain why philopatric males and high-ranking immigrants are 

particularly successful at siring offspring with females of high reproductive value. The thesis 

provides insights into (i) the role of demographic variability and the distribution of breeding 

partners in driving the evolution of dispersal and in shaping dispersal patterns within 

populations; (ii) the traits that underpin differences in competitive ability and reproductive 

performance between males of different social rank; and (iii) the role of social rank and of 

social and physiological constraints in shaping differences in life history and reproductive 

success among males in group-living species. 
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CHAPTER 1 

General introduction 

Passing on genes to the next generation is a key outcome of evolution by natural 

selection in living organisms. Yet life histories and reproductive success of organisms vary 

greatly (Ellis, 1995; Keller and Reeve, 1994). Inter-individual variation in life history and 

reproductive success has broad implications for the genetic diversity, the adaptability to 

environmental change and the viability of populations and species (Caplat et al., 2016; 

Clutton-Brock, 2016). Understanding the causes and consequences of this variation has been 

of particular interest to studies in socio-biology and behavioural and evolutionary ecology to 

gain insights into the evolution of sociality, and the diversity of social and breeding systems 

(Clutton-Brock, 2016; Keller and Reeve, 1994; Kerth, 2008; Markham and Gesquiere, 2017; 

Port and Cant, 2014). 

In group-living species, where multiple males and females form long-lasting spatial 

aggregations, the fitness of individuals is strongly influenced by the social environment. First, 

access to local resources such as food, shelter, breeding sites and breeding partners is 

usually contingent on group membership, that is, the social integration into a social unit 

through biased investment in social and sexual activities with conspecifics that belong to the 

same unit (Akinyi et al., 2017; Clutton-Brock, 2016; Foerster et al., 2016). Individuals should 

thus establish themselves as members of a social group if they intend to breed. Second, the 

fitness prospects and reproductive success of group members are influenced by the 

demographic composition, kin structure, and social organisation of the social unit (Alberts, 

2012; Clutton-Brock and Huchard, 2013; Kappeler, 2017; Markham and Gesquiere, 2017). 

For example, the spatial aggregation of breeding females might give males the possibility to 

monopolise and mate with multiple females (Andersson, 1994; van Noordwijk and van 

Schaik, 2004). However, the concurrent aggregation of males intensifies competition among 

males over access to breeding partners and strengthens selection for traits that enhance the 

ability of males to attract breeding partners or that confer a competitive advantage over 

other males (Clutton-Brock and Huchard, 2013; Lukas and Clutton-Brock, 2014). In many 

species, this leads to dominance hierarchies among males and enables high-ranking males to 

gain a disproportionate share of reproductive success and monopolise the most valuable 

females of the group (Alberts et al., 2003; Ellis, 1995; Keller and Reeve, 1994; Kutsukake and 
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Nunn, 2009; Port and Cant, 2014). Long-term reproductive success of males in group-living 

species is therefore primarily determined by the number of breeding females in the group 

and the reproductive performance of males in terms of their ability to secure breeding 

opportunities by attracting females, complying with the mate preferences of females or 

excluding competitors (Andersson, 1994; East et al., 2003; Höner et al., 2007; Lukas and 

Clutton-Brock, 2014). How males decide in which group to breed, how their prospects to 

access mates and reproduce influence their decisions, and how these decisions impact their 

fitness is still poorly understood. 

1.1 Choosing where to breed 

The biotic, abiotic and social environments of individuals living in social groups are typically 

heterogeneous in time and space. As a result, the quality of social groups – defined as the 

combination of the ecological, social, demographic and genetic characteristics of a group 

that affect the fitness of group members – can vary substantially (Boulinier et al., 2008; 

Bowler and Benton, 2005; Danchin et al., 2004; Doligez et al., 2003). Evolutionary theory 

predicts that individuals should gather information about the quality of potential breeding 

groups and choose the breeding group – defined as the biased investment in social 

relationships with and sexual behaviours towards members of a group – that offers the 

highest breeding prospects (Boulinier et al., 2008; Clobert et al., 2009; Dall et al., 2005). 

Breeding-group or ‘habitat’ selection describes such a behavioural process. Individuals are 

predicted to emigrate from their natal or current group and establish themselves in another 

group when their fitness prospects in the natal or current group are lower than their 

prospects elsewhere (Bonte et al., 2012; Bowler and Benton, 2005). 

1.1.1 Dispersal as an adaptive movement 

Dispersal – as the non-returning movement from the natal or current area (or social 

group) to another area (or social group) to breed (Clobert et al. 2009; Greenwood, 1980) – is 

ubiquitous in natural populations and a key component of the life history of individuals, 

driving a broad range of social, ecological and evolutionary processes (Bonte et al., 2012; 

Clobert et al., 2009). By moving from one area or social group to another, dispersers 

influence their own fitness and shape the genetic structure of populations, population 

dynamics, disease transmission, adaptive potential of populations, and the geographic range 
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of species (Byrne et al., 2018; Caplat et al., 2016; D’Urban Jackson et al., 2017; Ferrière et al., 

2000). In group-living species, dispersal patterns – e.g., the proportion of dispersing and non-

dispersing individuals of each sex, the distance travelled, and whether dispersal is done 

solitarily or collectively – further shape the demographic and kin structure of the social 

groups, and have broad consequences for the social organisation, social competition within 

and between the sexes, and sexual selection (Clutton-Brock and Lukas, 2012; Kappeler, 

2017; Vullioud et al., 2019). Because of its manifold and multiscale implications, dispersal 

has been a central topic of empirical scientists and theoreticians from various disciplines, 

including behavioural ecology, conservation biology, and (meta-)population genetics and 

dynamics (Brom and Massot, 2016; Caplat et al., 2016; Clobert et al., 2009; D’Urban Jackson 

et al., 2017; Danchin and Cam, 2002; Gilroy and Lockwood, 2012; Shaw and Kokko, 2014; 

Travis et al., 2012). 

Dispersal is generally considered to be an adaptive strategy to reduce the potential 

costs of kin competition and inbreeding and to adjust to environmental stochasticity (Bowler 

and Benton, 2005; Johnson and Gaines, 1990). Interestingly, individuals show great variation 

in their propensity to disperse within species. For example, in group-living mammals, 

dispersal is usually male-biased: males are more likely than females to disperse (Greenwood, 

1980). In addition, the majority of males usually disperse from the group in which they were 

born while the remaining small proportion of males either never disperse or only do so after 

a period of philopatry (Bowler and Benton, 2005; Greenwood, 1980; Lawson Handley and 

Perrin, 2007). Despite advances in our understanding of the evolution of dispersal and the 

drivers of sex-biased dispersal, the proximate and ultimate causes of the coexistence of 

dispersers and philopatric individuals within the same sex of a species remain poorly 

understood (Bonte et al., 2012; Clobert et al., 2009; Clutton-Brock and Lukas, 2012; Gilroy 

and Lockwood, 2016, 2012). 

1.1.2 Dispersal and its underlying behavioural processes 

Increasing evidence suggests that a greater understanding of the drivers of dispersal 

patterns and inter-individual variation in dispersal propensity would be gained by 

investigating the behavioural processes underpinning dispersal movements (Bonte et al., 

2012; Boulinier et al., 2008). In line with this, a mechanistic conceptual framework was 

developed. It decomposes dispersal into three behavioural stages: (i) emigration, which 
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designates the permanent departure from the natal group, (ii) transience, which designates 

the movement between groups in the landscape, and (iii) immigration, which designates the 

settlement in a new group and breeding-group choice (Baker, 1978; Bowler and Benton, 

2005; Clobert et al., 2009). By dissociating each stage, the model posits that each stage can 

be driven by different factors and have specific benefits and costs. It also considers that the 

costs arising during one stage can influence an individual’s decision to carry onto the next 

stage (Bonte et al., 2012; Bowler and Benton, 2005; Clobert et al., 2009; Travis et al., 2012). 

For example, gathering information during the transience stage can be costly in terms of 

increased risk of injury or mortality and missed opportunity to reproduce (Bonte et al., 2012; 

Danchin and Cam, 2002; Young and Monfort, 2009). Furthermore, access to high-quality 

groups and mates may be more competed for than access to groups and mates of lower 

quality (Stamps, 2006; Stamps et al., 2005; van der Jeugd, 2001). The propensity of males to 

engage in dispersal, their ability to establish themselves and breed in a new group, and the 

quality of their breeding choice is thus usually predicted to depend on traits that influence 

their prospection efficiency, competitive ability, and social skills (Bonte et al., 2012; Clobert 

et al., 2009; Stamps, 2006; van der Jeugd, 2001). This mechanistic conceptual framework has 

proven useful to explore how the costs associated with each stage of the dispersal 

movement influence individual dispersal decisions and promote the emergence of 

phenotypic differences between philopatric individuals and dispersers (that is, “dispersal 

syndromes”; Bonte et al., 2012; Buoro and Carlson, 2014; Gilroy and Lockwood, 2012; Travis 

et al., 2012). 

1.1.3 Assessing the causes and consequences of dispersal and philopatry 

1.1.3.1 Making inferences from observed dispersal patterns 

Owing to the difficulty to monitor individuals throughout their lifetime and obtain 

information on the origin and/or destination of individuals, many studies focus on the 

emigration movement and make inferences on the adaptive value of dispersal and 

philopatry from observed dispersal biases. For example, the observations that high 

proportions of males disperse in group-living mammals was suggested to reflect a selective 

advantage of dispersal over philopatry (Bowler and Benton, 2005; Frank, 2013; Johnstone, 

2000). As a result, in group-living species with a high proportion of dispersers, dispersal was 

considered to be an adaptive strategy of phenotypically superior males that enhances 
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breeding prospects, whereas male philopatry was either neglected or considered as a “best-

of-a-bad” job pursued by phenotypically inferior males (Bowler and Benton, 2005). 

Recent studies highlighted that using observed dispersal patterns may lead to 

erroneous interpretation of the underlying behavioural process(es) because dispersal 

patterns can emerge from multiple interacting drivers and similar dispersal patterns may 

emerge for different reasons (Boulinier et al., 2008; Danchin and Cam, 2002; Gilroy and 

Lockwood, 2012; Serrano et al., 2008; Vardakis et al., 2015). Other studies showed that 

dispersal may not necessarily reduce kin competition and inbreeding risk, in particular in 

species living in large groups with promiscuous breeding where the genetic structure of the 

population may be weak (Lukas et al., 2005; Quirici et al., 2011). Furthermore, gathering 

information about potential breeding groups may not necessarily incur high costs, as is the 

case in species where individuals can acquire information without prospecting – for 

example, by using cues from individuals that immigrated into their group – or when 

prospection involves short extra-territorial excursions rather than permanent emigration 

(Cote and Clobert, 2007; Soulsbury et al., 2008). Theoretical work showed that variability in 

dispersal decisions can emerge in the absence of movement costs and inter-individual 

phenotypic differences (Gilroy and Lockwood, 2012). Finally, the costs associated with 

dispersal may not only be incurred during the transience and settlement stages; dispersal 

may incur short-term reproductive costs after settlement in the new group because of the 

loss of social bonds and social rank and reduced familiarity with the environment (Danchin 

and Cam, 2002; Debeffe et al., 2015; Günther et al., 2017). These studies concluded that, to 

understand the evolution of dispersal and the coexistence of dispersal and philopatry, it is 

essential to emphasise the process(es) leading to breeding-group choice – that is, integrate 

the study of dispersal within the concept of habitat selection – and assess the fitness 

consequences of the choices made by males. 

1.1.3.2 Characterising breeding-group choice 

Most theoretical and empirical studies that investigate the causes of inter-individual 

variation in decisions about dispersing focus on the costs and benefits of the movement 

associated with dispersal. By doing so, they assume that the dispersal movement (the 

propensity to disperse or the distance travelled) is the trait under selection (Gilroy and 

Lockwood, 2012; Serrano et al., 2008; Vardakis et al., 2015). The distinction between 
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dispersers and philopatric males is based on whether or not they completed the three-stage 

process (departure, transience, and settlement) described by the mechanistic framework 

(Bonte et al., 2012; Bowler and Benton, 2005; Travis et al., 2012). Such binary categorisation 

implicitly assumes that only (successful) dispersers express a breeding-group choice upon 

their settlement in a new group; the possibility that philopatry may also be an informed 

breeding-group choice is rarely considered. In addition, by focusing on the breeding-group 

choices made by dispersers (that is, the dispersal destination), studies usually exclude the 

natal group as a potential breeding group (Serrano et al., 2008; Vardakis et al., 2015). By 

emphasising the movement of males, these studies implicitly assume that philopatric males 

and dispersers undergo different decision processes and adopt two distinct strategies. 

Emphasising male settlement decisions rather than movements may provide a better 

understanding of the processes leading to the coexistence of philopatry and dispersal 

(Boulinier et al., 2008; Danchin and Cam, 2002; Gilroy and Lockwood, 2012; Höner et al., 

2007). Such an approach requires the identification and characterisation of the potential 

breeding groups that males can choose among (Boulinier et al., 2008; Gaillard et al., 2010; 

Selonen et al., 2009; Serrano et al., 2008; Vardakis et al., 2015). Potential breeding groups – 

that is, groups that are both available and accessible – should thus include both the natal 

group and other groups, irrespective of whether males end up being classified as philopatric 

or dispersers. The ability to collect such empirical data may be hampered by (i) an 

inappropriate scale of the study population – when the number of social groups monitored is 

not large enough to capture most dispersal movements and to know the origin and 

destination of dispersers in the population – and (ii) the lack of knowledge of the key 

determinants of male fitness and the factors that determine the quality of the potential 

breeding groups (Gaillard et al., 2010).  

1.1.3.3 Estimating fitness consequences of choice 

Assessing the fitness consequences of dispersal and philopatry requires data on survivorship 

and reproductive success of a representative number of dispersers and philopatric 

individuals. Obtaining unbiased fitness estimates for dispersers and philopatric males in free-

ranging populations is particularly challenging owing to the usually unknown fate of males 

that disperse outside the study population (Doligez and Pärt, 2008; Johnson and Gaines, 

1990; Nevoux et al., 2013). Although efficient analytical tools have been developed to 
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account for the incomplete monitoring of study animals, the reliability of the inferences 

derived from these tools still heavily relies on the ability to evaluate the quality of the 

empirical data (Cayuela et al., 2018; Zimmerman et al., 2007). Besides the issues associated 

with the size of the study population, another overlooked source of bias in fitness estimates 

is the method applied to estimate genetic parentage. Because genetic parentage analyses 

compare the genetic profile of offspring with that of potential fathers, the accuracy and 

reliability of offspring-father assignments depends heavily on the criteria used to define the 

pool of potential fathers, in addition to the quality of genetic data (Marshall et al., 1998). An 

inappropriate criterion for candidate fathers and a low proportion of genetically typed 

potential fathers can impair the validity of paternity assignments and thus estimates of male 

reproductive success (Bercovitch, 1986; Höner et al., 2008). 

Assessing the temporal variation in survivorship and reproductive success is also 

fundamental to investigate potential trade-offs that may lead to differences in life history 

and reproductive tactics between philopatric males and dispersers (Doligez and Pärt, 2008; 

Germain et al., 2017; Nevoux et al., 2013). The time span of data collection should thus be 

adjusted to the lifespan of study animals to cover a representative portion of the 

reproductive career of males after their breeding-group choice.  

Interpreting fitness estimates and making inferences on the consequence of 

philopatry and dispersal may further be hampered by the difficulties to disentangle the 

effects on fitness of male phenotype, sexual maturity, the quality of the chosen breeding 

group and the dispersal movement itself (Debeffe et al., 2015; Doligez and Pärt, 2008; Höner 

et al., 2008; Nevoux et al., 2013; Tarwater and Beissinger, 2012; Vardakis et al., 2015). 

Empirical studies that addressed all these conceptual and methodological issues in free-

ranging group-living animals are currently lacking because of the difficulty to collect detailed 

information on the ecological, social, demographic and genetic characteristics of social 

groups, as well as their dynamics, and on the fitness of individuals over a sufficiently large 

spatial and temporal scale. This is particularly true for studies on long-lived species with slow 

reproductive rates, such as large mammals (Clutton-Brock and Sheldon, 2010; Johnson and 

Gaines, 1990). 
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1.2 Gaining access to mates 

The extent to which a male’s breeding-group choice translates into reproductive success 

largely depends on the male’s performance, that is, his investment in traits and behaviours 

that increase his chances to secure mating opportunities with females (Careau and Garland 

Jr, 2012; Moore and Hopkins, 2009; van Noordwijk and van Schaik, 2004). For example, in 

many species the males who invest in excluding rivals from access to females and/or who 

comply with mate preferences of females by investing in the establishment of social bonds 

and friendly relationships with females usually have a greater chance to sire offspring than 

the males who do not (e.g., Alberts et al., 2003;East et al., 2003; Höner et al. 2007; Setchell 

et al. 2010). 

Intrasexual competition for access to limited resources – the most valuable resource 

for reproduction being breeding females – is an important process in group-living species. In 

species where social groups contain numerous adult males, this often leads to the 

establishment of dominance hierarchies among males. These hierarchies are often 

established based on the relative competitive ability of males as defined by individual 

attributes, such as aggressiveness, body size and age, or by social attributes, such as the 

number of coalitionary partners (Alberts et al., 2003; Clutton-Brock and Huchard, 2013; East 

and Hofer, 2001; Foerster et al., 2016; Vullioud et al., 2019; but see Chase et al., 2002 and 

Franz et al., 2015 for the influence of self-reinforcing processes such as winner-loser effects 

on hierarchy establishment and maintenance). Sexual selection theory predicts that the 

most dominant and competitive males should monopolise access to most breeding females 

and/or females of the highest reproductive value, and sire a large proportion of offspring of 

the group (Alberts et al., 2003; Ellis, 1995; Keller and Reeve, 1994; Kutsukake and Nunn, 

2009; Port and Cant, 2014), leading to unequal portioning of reproduction within a group, 

that is, reproductive skew (Clutton-Brock and Huchard, 2013). 

In most group-living species, male reproductive success is influenced by male social 

rank (Cowlishaw and Dunbar, 1991; Ellis, 1995; Keller and Reeve, 1994). Yet dominant males 

rarely monopolise reproduction in their social group (Alberts et al., 2003; East et al., 2003). 

Furthermore, the strength of the association between male social rank and reproductive 

success can vary greatly within and between species (Alberts et al., 2003; Cowlishaw and 

Dunbar, 1991; Ellis, 1995; Keller and Reeve, 1994) as a result of female reproductive 
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behaviour, such as mate preferences that are independent of male social rank, polyandry 

and post-copulatory cryptic mate choice (East et al., 2003; van Noordwijk and van Schaik, 

2004; Young et al., 2013), the degree of female oestrus synchrony and gregariousness 

(Alberts et al., 2003; Engh et al., 2002; Wroblewski et al., 2009) and the use of alternative 

reproductive tactics by subordinate males (Rubenstein and Nuñez, 2009; Young et al., 2013). 

1.2.1 Rank-related reproductive skew 

The degree of male reproductive skew strongly influences the genetic structure of the social 

group and can influence male breeding-group choice and dispersal decisions through 

complex eco-evolutionary feedbacks (Auld and Rubio de Casas, 2013; Kappeler, 2017; Kokko 

and Johnstone, 1999; Kutsukake and Nunn, 2009; van Noordwijk and van Schaik, 2004). 

Investigating the causes and consequences of intrasexual competition, sexual conflicts and 

reproductive skew is therefore of interest to understand the evolution of group-living and 

the variability of social and breeding systems observed within and among species (Clutton-

Brock and Huchard, 2013; Kappeler et al., 2013; Port and Cant, 2014). 

These questions have stimulated the development of theoretical models of 

reproductive skew that can be categorised into two main groups, each making different 

assumptions about the underlying mechanisms (Clutton-Brock et al., 2001; Keller and Reeve, 

1994). The first group of models are referred to as ‘transactional’ models and focus on the 

constraints imposed by the benefits of maintaining the stability of the social group. They 

posit that dominant males should concede a share of reproduction to subordinates as a 

staying incentive or that the subordinates should restrain reproductive investment to avoid 

eviction from the group (Johnstone, 2000; Port and Kappeler, 2010). The second group of 

models are referred to as ‘tug-of-war’ or ‘limited control’ models. They focus on the costs 

that (selfish) investment in reproductive competition imposes on group productivity, such as 

reduced female fecundity and reduced offspring survival due to reduced paternal or 

cooperative care. They posit that males compete over limited group productivity and that 

dominant males should adjust their investment in conflict and level of aggressiveness in 

ways that maximise their share of group productivity (Johnstone, 2000; Reeve et al., 1998; 

Rubenstein and Shen, 2009). 

Most of these models are based on the premise that the dominant male has an 

advantage over subordinates in terms of greater mate attractiveness and/or competitive 
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ability (Alberts et al., 2003; Cant and Reeve, 2002; Port and Cant, 2014; Reeve et al., 1998). 

They also usually focus on the factors that limit the ability of the dominant male to 

monopolise reproduction within the social group (Alberts et al., 2003; Port and Kappeler, 

2010). Although these models have greatly advanced our understanding of the potential 

proximate and ultimate causes of variation in reproductive skew within and between species 

(Alberts et al., 2003; Kutsukake and Nunn, 2009; Port and Kappeler, 2010), we still know 

little about the nature of rank-related competitive ability and the proximate mechanism 

through which male social rank influences male access to mates and reproductive success 

(Careau and Garland Jr, 2012; Cavigelli and Caruso, 2015; Dantzer et al., 2016; Moore and 

Hopkins, 2009). 

1.2.2 Determinants of male competitive ability and performance 

Understanding how male social rank influences reproductive success is best done by 

investigating the influence of social rank on male performance because the traits and 

behaviours defining male performance are the likely traits under selection (Careau and 

Garland Jr, 2012; Cavigelli and Caruso, 2015; Moore and Hopkins, 2009). 

Comparisons between groups of the same and different species demonstrated that 

male investment in reproduction and male reproductive success strongly vary with the 

number of male competitors in the group, and that reproductive skew usually decreases 

when the number of competitors increases (Alberts, 2012; Alberts et al., 2003; Cowlishaw 

and Dunbar, 1991; Gogarten and Koenig, 2012; Setchell et al., 2005). These results suggest 

that the intensity of intrasexual competition plays an important role in shaping rank-related 

performance (Cowlishaw and Dunbar, 1991; Gogarten and Koenig, 2012). These studies thus 

suggest that a male’s performance may be primarily determined by its density-dependent 

ability to cope with the costs of competition. They are inconsistent with the hypothesis that 

intrinsic physical attributes such as body size or weaponry drive male performance because 

one prediction from this latter hypothesis should be that the performance and success of a 

male should be independent of the presence of other, lower-ranking males.  

1.2.2.1 Physiological constraints 

Physiological processes may be mediators of rank-related performance and reproductive 

success among males. Intrasexual competition over acquisition and maintenance of social 

rank and over access to mates can be associated with costly changes in physiological traits 
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such as the concentration of glucocorticoids (Creel et al., 2013; Goymann and Wingfield, 

2004), hereafter termed ‘physiological stress’. Glucocorticoids are key physiological 

mediators of the endocrine control mechanisms that regulate essential biological functions 

(McEwen and Wingfield, 2003; Romero et al., 2009), and can influence individual life history 

and fitness (Dantzer et al., 2016; Ricklefs and Wikelski, 2002). While an acute increase in the 

secretion of glucocorticoids constitutes an adaptive physiological response to a brief 

ecological or social challenge, maintaining elevated physiological stress as a result of 

sustained exposure to challenges can disrupt an individual’s endocrine control mechanism, 

its ability to respond adequately to subsequent challenges and impair its fitness (DuRant et 

al., 2016; Koolhaas et al., 2011; MacLeod et al., 2018; McEwen and Wingfield, 2003; Romero 

et al., 2009). 

The social rank of a male typically influences his exposure to social challenge and may 

also influence his ability to cope with the associated physiological demand. By definition, an 

improvement in social rank increases a male’s likelihood to win agonistic interactions and 

the number of competitors (that is, subordinate males) he can dominate. High-ranking males 

also often have more coalition partners and stronger social bonds than low-ranking males 

(Cavigelli and Caruso, 2015; Creel et al., 2013; Goymann and Wingfield, 2004; Sapolsky, 

2005; Sapolsky and Ray, 1989). Empirical studies showed that dominating a social interaction 

can elicit a weaker stress response and lead to a faster recovery to pre-conflict 

concentrations than defeat (Koolhaas et al., 2011; Øverli et al., 1999). Furthermore, being 

able to redirect aggression onto a lower-ranking third party after being defeated and having 

strong social bonds or coalitionary support may serve as stress coping outlets and a social 

buffer that enable individuals to downregulate their physiological stress (Abbott et al., 2003; 

Creel et al., 2013; Sapolsky, 2005; Young et al., 2014). Thus, low-ranking males, which have a 

relatively low dominance potential, may have less of a buffer to cope with socially-induced 

stress – that is, experience stronger physiological constraints – (DuRant et al., 2016; Romero 

et al., 2009). They should therefore be under stronger selective pressure to adjust their 

behaviour in ways that minimise their exposure to conflicts and allow them to downregulate 

their physiological stress (Briffa and Sneddon, 2007; Goymann and Wingfield, 2004; Raulo 

and Dantzer, 2018; Ricklefs and Wikelski, 2002; Romero et al., 2009; Sapolsky, 2005; Stier et 

al., 2012; Teunissen et al., 2018). 
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Quantifying glucocorticoid concentrations as a key component of the physiological 

stress of animals can be done non-invasively using enzyme immunoassays that are 

specifically designed to measure the concentration of hormone fragments (‘metabolites’) in 

faecal or urine samples. Measurements of physiological stress from faeces and urine provide 

an integrated measure of the endocrine activity over a relatively long period of time (that is, 

from hours to days, depending on excretion frequency and food transit; Goymann, 2005). 

They reflect the combination of baseline concentrations, endocrine responses to social 

conflicts (of potentially varying amplitude and frequency), post-conflict recovery (of varying 

latency), and downregulation by use of coping outlets and social buffer and therefore are a 

biomarker for “allostatic load” (Goymann, 2005; Goymann and Wingfield, 2004). Although 

enzyme immunoassays designed for faecal and urine samples are known to have some 

drawbacks, such as their tendency to fluctuate in the accuracy of their measurements (Noble 

et al., 2008; Palme, 2019; Wasser et al., 2010; Watson et al., 2013), they are the most 

appropriate approach to study the social and ecological factors that influence physiological 

stress in free-ranging populations (Hofer and East, 2012). 

A number of socio-endocrine studies compared the physiological stress of high-

ranking and low-ranking males during and outside the breeding season with the objective to 

assess the cost of sexual investment and mate competition for each class of males (Bergman 

et al., 2005; Corlatti et al., 2012; Creel, 2001; Gesquiere et al., 2011; Girard-Buttoz et al., 

2014; Setchell et al., 2010). Most of these studies were conducted in species (primarily 

cooperatively-breeding species and primates) where only the dominant males invested in 

reproduction or where the dominant males engaged in costly sexual behaviours, such as 

mate-guarding, whereas subordinate males adopted alternative reproductive tactics that 

circumvent direct competition. These studies could not disentangle the effects of male social 

rank, sexual investment, and exposure to social conflicts on physiological stress. We 

therefore currently do not know whether and how rank-related dominance potential and 

physiological constraints mediate variations in male reproductive investment, performance, 

and ultimately, reproductive success (Beehner and Bergman, 2017; Careau and Garland Jr, 

2012; Cavigelli and Caruso, 2015; Dantzer et al., 2016; Moore and Hopkins, 2009; Ricklefs 

and Wikelski, 2002). 
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1.2.2.2 Social constraints 

Most studies that investigated the causes of reproductive skew focused on the physiological 

costs of sexual investment and competition over access to mates and how these costs may 

constrain the ability of males to invest in reproduction (Emery Thompson and Georgiev, 

2014; Port and Kappeler, 2010). Although male reproductive investment and performance is 

likely to be the main trait under selection, selection may also act on male investment in 

social activities to establish or re-inforce their social rank (Cant et al., 2006; Port and Cant, 

2014). Social activities are also essential for the development and maintenance of social 

bonds and coalitions, and can strongly influence male current and future reproductive 

success (East and Hofer, 2001; Vullioud et al., 2019; Willisch et al., 2010; Wiszniewski et al., 

2012; Young et al., 2013). The possibility that male reproductive investment may not only be 

influenced by the physiological costs of sexual activities and mate competition but also be 

constrained by the time allocated to – and the physiological costs of – other fitness-

enhancing activities, such as social activities, has not been previously studied (Briffa and 

Sneddon, 2007; Dunbar et al., 2009; Raulo and Dantzer, 2018). 

1.3 Aims and objectives of the thesis 

This thesis aims to identify proximate and ultimate drivers of variation in reproductive 

success among males in a social mammal, the spotted hyena (Crocuta crocuta). The thesis 

focuses on breeding-group choice and social rank, two traits that shape the life history and 

social environment of group-living animals. It combines long-term data on the behaviour, 

physiology, survival and reproductive success of males with demographic data from the 

eight clans composing a free-ranging population of spotted hyenas in the Ngorongoro Crater 

(Tanzania). The thesis focuses on three main aims: 

 Identify the proximate and ultimate drivers of the coexistence of philopatry and 

dispersal in males. To achieve this, I characterise and compare the breeding-group 

choices of philopatric males and dispersers. I further estimate and compare the fitness 

of philopatric males and dispersers – with a particular emphasis on the quantitative 

(number of offspring produced) and qualitative (expected survival and reproductive 

value of the offspring produced) components of male reproductive success – and assess 

the factors that influence male reproductive success. 



Chapter 1 : General introduction   Eve Davidian 
 

26 
 

 Study the proximate mechanism by which male social rank influences reproductive 

success. I investigate whether and how male social rank influence male reproductive 

performance via a mechanistic physiological pathway. I specifically tested whether the 

social correlates of social rank influence the interplay between physiological stress and 

male social and sexual behaviours. I further investigated the role of social and 

physiological constraints in shaping rank-related differences in reproductive investment 

and ultimately, reproductive skew. 

 Improve the applicability of non-invasive assessment of animal physiological state for 

long-term research projects. I study the impact of changes in the accuracy of 

immunoassays on the comparability of hormone metabolite measurements. I develop a 

method to standardise – that is, restore the comparability of – hormone metabolite 

measurements when substantial changes in the accuracy of an immunoassay occur. This 

method constitutes an alternative to the costly, time-consuming, and often 

impracticable re-assaying of complete sample sets. 

The three aims of my thesis were addressed as three chapters: 

Chapter 3 – Why do some males choose to breed at home when most other males 

disperse? 

In this chapter, I investigate the proximate and ultimate causes of the coexistence of 

philopatry and dispersal among male spotted hyenas. I test predictions derived from the two 

main hypotheses proposed to explain the coexistence of philopatry and dispersal within the 

same sex of a species. The first hypothesis originates from the dispersal theory and posits 

that philopatric males and dispersers coexist because high dispersal costs prevent 

phenotypically inferior males from dispersing and achieving high reproductive success. The 

second hypothesis is derived from the habitat selection theory and posits that the 

coexistence of philopatry and dispersal is the result of all males applying the same rules of 

breeding-group choice and choosing philopatry or dispersal depending on whether the natal 

group or a nonnatal group offers the highest fitness prospects. I compare the pattern and 

quality of breeding-group choice made by philopatric males and dispersers and the fitness 

consequences of their choice, in terms of their survival, age and tenure at first reproduction, 

and the number and quality of the offspring they sired. I thereby disentangle the influence of 
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breeding-group quality, male phenotype, social rank, and native origin on male reproductive 

success. I further investigate the influence of the spatial heterogeneity in breeding group 

quality across natal and nonnatal clans, and of male prospects to acquire a high social rank 

on the breeding-group choice by individual males and the dispersal patterns at the level of 

the population. 

Chapter 4 – Determining hormone metabolite concentrations when immunoassay 

accuracy varies over time 

In this chapter, I discuss potential problems associated with non-invasive hormone 

concentration measurements, specifically the effect of variation in the accuracy of 

immunoassays on the comparability of measurements of faecal hormone metabolites. I 

present a novel method that standardises measurements of hormone metabolite 

concentrations, and thereby restores their comparability, based on repeated assaying of a 

small number of samples. To develop the method, I use data on faecal cortisol metabolite 

concentrations which were initially measured in several batches with differing accuracy and 

later re-measured in a single batch with the same accuracy. I adapt statistical concepts and 

tools by implementing intuitive criteria derived from the field of analytical endocrinology. 

The standardisation procedure provides explicit tools and guidelines to (i) detect changes in 

the accuracy of the immunoassay, (ii) identify groups of samples that were assayed with 

different accuracy and thus need to be re-assayed or standardised, (iii) model the 

relationship between initial and re-measured cortisol metabolite concentrations and retrieve 

a standardisation formula, (iv) assess the reliability of the standardisation formula, and (v) 

estimate the minimum number of samples that need to be re-assayed to produce a reliable 

standardisation formula to apply to all other samples. 

Chapter 5 – Physiological stress as a mediator of rank-related differences in male 

reproductive investment in a social mammal 

In this chapter, I investigate the role of physiological stress as a proximate mediator of rank-

related variation in reproductive success. I build on the concept that reproductive 

performance (e.g., investment in sexual behaviours) is a trait under selection and introduce 

the novel concept of dominance potential – the integrative measure of the ratio of 

dominance and coping opportunities to the challenges received by an individual. I test the 
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existence of a mechanistic pathway linking rank-related dominance potential, physiological 

stress, performance, and reproductive success. I first investigate whether males of different 

social rank experience different physiological constraints. I specifically test whether low-

ranking males experience higher physiological stress than high-ranking males in contexts of 

social activities and competition over access to mates. Second, I investigate whether rank-

related physiological constraints are substantial enough to cause differences in reproductive 

investment between low-ranking and high-ranking males. I specifically test whether males of 

different social rank show different behavioural trade-offs between male allocation of time 

and physiological resource to social integration, reproduction, and self-maintenance. I 

further test whether these constraints influence male reproductive tactics in terms of the 

magnitude of their reproductive investment and how they allocate their reproductive effort 

among females of different reproductive value. Finally, building on the results of Chapter 3, I 

investigate whether philopatric males and dispersers experience different social and 

physiological constraints. 
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CHAPTER 2 

General description of the study population and methods 

2.1 The study species: the spotted hyena 

Spotted hyenas are large carnivores that live in multimale, multifemale social groups (‘clans’) 

that contain up to 130 members (Vullioud et al., 2019). Spotted hyena societies are 

characterized by a stable linear hierarchy (East and Hofer, 2001; Frank, 1986), a fission-

fusion system (Smith et al., 2008), and promiscuous breeding with no distinct breeding 

season (East et al., 2003; Engh et al., 2002; Kruuk 1972). Dominance relationships within and 

between the sexes are determined by asymmetries in coalitionary support rather than 

fighting ability (Vullioud et al., 2019). In the hierarchy of the clan, offspring of both sexes 

obtain the social rank just below their mother through postnatal maternal behavioural 

support and social learning – a phenomenon known as “maternal rank inheritance” – (East 

et al., 2009; Holekamp and Smale, 1991). They normally retain this rank until they disperse 

or die (Höner et al., 2010; Smale et al., 1993). 

Dispersal is strongly male-biased; approximately 85% of males leave their natal clan 

and immigrate into another clan to breed (see Chapter 3), whereas females usually are 

philopatric (Höner et al., 2005, 2007). As a result, clans typically consist of females with their 

offspring, immigrant males and a few reproductively active native (“philopatric”) males. 

Dispersal disrupts the social bonds and coalition network and reduces the number of 

supporters (Vullioud et al., 2019). As a result, all native individuals dominate all immigrant 

males and immigrant males queue for social status (East and Hofer, 2001; Vullioud et al., 

2019). 

Male-biased dispersal is mainly driven by female mate-choice preferences that 

evolved to avoid inbreeding (Höner et al., 2007). Breeding-group choice by males and male 

long-term reproductive success are primarily driven by the number of young females in a 

clan (i.e., male compliance to female mate preferences; see Chapter 3), rather than by the 

number of adult male members (i.e., intrasexual competition for mates), the number of 

unrelated females (i.e., direct inbreeding avoidance by males), and the prey density within a 

clan territory (i.e., competition for food; Höner et al., 2007, 2010). 
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2.2 The study population 

This doctoral study was conducted based on the behavioural, demographic, physiological, 

and genetic monitoring of all eight clans of spotted hyenas inhabiting the 250-km² floor of 

the Ngorongoro Crater. The Ngorongoro Crater is a natural caldera located in the north of 

Tanzania (3°11′S, 35°34′E) adjoining the eastern border of the Serengeti National Park. It is 

part of the Ngorongoro Conservation Area, a multiple-use protected area created in 1959. It 

is ecologically well connected to adjacent habitats and animal populations, with individuals 

of many species, including the spotted hyena (Albert, 2002), migrating between the different 

populations. 

Since the beginning of the long-term study on spotted hyenas in the Ngorongoro 

Crater in 1996, between 194 and 580 spotted hyenas inhabited the Crater floor. Clans 

contained between 3 and 130 individuals who defended access to food within their territory. 

Empirical evidence showed that the number of members in a clan does not depend on the 

abundance of prey within the clan territory but on overall prey abundance on the Crater 

floor (Höner et al., 2005). The sizes of hyena territories in the Ngorongoro Crater (between 

15 km² and 40 km²) are smaller than those of clans in the Serengeti National Park in Tanzania 

(55 km²; Hofer and East 1993) and the Masai Mara in Kenya (62 km²; Holekamp and Dloniak, 

2010). Clan territories overlap with territories of neighbouring clans (Figure 1); they also 

change in size and shift over time as a function of the number of clan members (Höner et al., 

2005; Kruuk, 1972) and the intensity with which clan members use particular areas within 

their territory (Kolowski and Holekamp, 2009; Trinkel et al., 2004). 

The study population was highly suitable for the aims of my thesis. The number of 

clans was sufficient to capture most male breeding-group choices (see section 2.4). The 

continuous and detailed long-term monitoring of all eight clans of the population (see 

sections 2.3 and 2.5) allowed me to determine for all philopatric males and dispersers (i) 

their clan of birth, (ii) the demographic and social characteristics of the potential breeding 

clans, (iii) the chosen breeding clan, and (iv) their social status (see Chapter 3 and Chapter 5). 

Access to a large number of habituated individuals also allowed me to closely monitor the 

behaviour and collect samples of many different males and relate their behaviour to 

physiological markers (see section 2.6 and Chapter 5). The collection of samples from a large 

number of offspring and genetic information from almost all reproductively active males 

throughout the 23-year study period further allowed me to determine the fathers of a large 
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number of offspring with very high accuracy (see section 2.5) and estimate the fitness 

consequences of their choices (see Chapter 3). 

 

Figure 1: Distribution of spotted hyena clan territories in the Ngorongoro Crater between 
1996 and 2015. (Credit: Oliver Höner, used with permission of the author) 

 

2.3 Behavioural and demographic monitoring 

Data on the behaviour and life history of the hyenas in the Ngorongoro Crater were 

collected by me between 2010 and 2013 and by colleagues from the Leibniz Institute for Zoo 

and Wildlife Research (Berlin, Germany) between 1996 and 2015 as part of an ongoing long-

term research project. Spotted hyenas were identified by their unique spot pattern and 

other natural marks such as ear notches (Figure 2). Individuals were observed during dawn, 

daytime and dusk (between 0600 and 1900 h) at resting places, communal dens and birth 

dens, and when encountering them incidentally in other areas of the territory. Their age – 

and corresponding birth date – was estimated from pelage characteristics, body size, 

locomotory abilities, behavioural development, and the position, shape and size of the ears 

of cubs (East et al., 1989; Kruuk, 1972; Matthews, 1939; Pournelle, 1965). Mother-cub 

affiliations were primarily assigned based on observations of suckling interactions (East et 

al., 2009). 
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Figure 2: Example of the diversity in spot pattern and ear notches among individual spotted 
hyenas. (Credit: Oliver Höner, used with permission of the author) 

 

2.4 Assessment of male breeding-group choice 

Breeding-clan selection was defined as the behavioural process that results in a biased 

investment (a choice) by a male in social relationships and sexual behaviour, which may 

influence the male’s survival and reproduction (Clobert et al., 2009). A male was defined to 

choose a breeding clan if he expressed sexual behaviour towards females and invested in 

joining the social hierarchy of sexually active males in the natal clan (“philopatric” male) or 

another clan (“disperser” or “immigrant”), respectively, for at least 3 months (Höner et al., 

2007, 2010). The date of clan choice was defined as the date of first observation of such 

behaviour for philopatric males and of first sighting in the new clan territory for dispersers, 

and defined as the start of a male’s (reproductive) tenure. Males who did not show any sign 

of sexual activity or had not met the 3-month criterion before their date of last sighting or 

the end of the study period were excluded from the analysis. Applying these criteria instead 
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of the commonly used age-based categorisation of males – i.e., assigning a dispersal status 

to males upon attainment of an assumed age of reproductive maturity – avoids introducing 

methodological biases in the assessment of the behaviour, reproductive success and 

physiology of philopatric males and dispersers arising from differences in sexual motivation 

and maturity (Akinyi et al., 2017; Bercovitch, 1997; Höner et al., 2008; see Chapter 3 and 

Chapter 5). 

During the study period, 306 males born in one of the eight study clans chose to 

breed in their natal clan or one of the other study clans. This corresponds to more than 80% 

of all study clan males who reached the mean age at clan choice of 3.4 years (see Chapter 3 

and Chapter 5). 

2.5 Paternity assignment and estimation of male reproductive success 

The reproductive success of males was estimated on the basis of large-scale genetic 

parentage analyses. Tissue, hair, and faecal epithelium were collected from a total of 1246 

hyenas using minimally invasive methods and stored in ethanol or dimethyl sulfoxide salt 

solution until DNA extraction (Höner et al., 2007; Wilhelm et al., 2003). Fluorescent primers 

were used to amplify nine microsatellite loci with a mean number of alleles per locus of 11.9 

(range = 7 to 16). The error rate was low (0.44%) and the total exclusionary power was high 

(0.999). 

Paternities were assigned using maximum likelihood methods as implemented in 

CERVUS 3.0 (Kalinowski et al., 2007). All philopatric males and dispersers who were clan 

members at conception – i.e., 110 days before the estimated birth date (Matthews, 1939) – 

were considered as candidate fathers (see Chapter 3). For 1048 offspring (95.2% of sampled 

offspring), all candidate males were genetically typed; the mean proportion of typed 

candidate males was 0.99. Paternities were assigned to 97.2% of the 1101 sampled offspring 

with 95% confidence. 

2.6 Quantification of physiological stress 

Male level of glucocorticoids (i.e., physiological stress) was quantified using faecal samples 

collected immediately after defaecation, thereby ensuring the reliable determination of 

male identity. Such a non-invasive sampling method is particularly useful to monitor the 

natural adrenocortical activity of free-ranging animals because it does not involve potentially 
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stressful procedures (e.g., manipulation and immobilisation of individuals) which may not 

only cause harm to the study animals but also confound measurements (Hofer and East, 

2012). 

Quantifying physiological stress from animal faeces however requires different 

analytical methods than quantifying physiological stress from plasma samples (Palme, 2019). 

This is because the native glucocorticoid hormone of interest that is originally secreted and 

released into the bloodstream is usually absent – or present only as traces – in faeces. The 

molecules that are excreted in faeces are hormone metabolites, products of the 

downstream metabolisation of the native hormone (Goymann, 2005; Palme, 2019). Whereas 

the chemical structure of native hormones is usually known, and hormone-specific 

antibodies can easily be developed to directly measure hormone concentrations in plasma, 

the structure of various hormone metabolites are often not well known unless validation 

experiments have focussed on precisely identifying the metabolites. The common approach 

is to apply indirect analytical methods that apply an antibody specific to a known region of 

the native hormone and that will cross-react with the hormone metabolites that possess the 

same target region (Wild, 2013). 

The analytical method used here is a competitive Enzyme-Linked Immuno-Sorbent 

Assay (cELISA) using an antibody specific to cortisol (cortisol-3-CMO). Cortisol is a prominent 

physiological mediator of the endocrine stress response in mammals and is the main 

circulating glucocorticoid hormone in spotted hyenas (Goymann et al., 2003; Romero, 2004); 

quantifying cortisol metabolites in faeces thus is appropriate to assess male physiological 

stress in spotted hyenas. The cortisol-3-CMO immuno-assay was previously developed for 

spotted hyenas and thoroughly validated physiologically, analytically and biologically; it 

demonstrated a high affinity of the antibody with cortisol metabolites, the ability of the 

antibody to measure natural fluctuation in metabolite concentrations and a high precision of 

measurement (Benhaiem et al., 2012). 

The cELISA was conducted using microtitre plates coated with a polyclonal antibody 

raised in rabbits against cortisol-3-CMO. Faecal extracts containing cortisol metabolites are 

injected into the wells of the microtitre plate together with known amounts of cortisol 

conjugated with a peroxidase enzyme (‘tracer’). During the incubation period, the cortisol 

metabolites from samples and the tracer will compete for the binding sites of the cortisol-3-

CMO antibody. After the incubation period, a reagent is added into the wells to activate the 
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peroxidase enzymes from the fraction of the tracer that bound to the antibody. The 

activated, bound tracer then generates a photometric response (yellow colour) with a colour 

intensity (expressed as absorbance or optical density) proportional to the amount of bound 

tracer; it thus inversely proportional to the amount of bound cortisol metabolites. The 

cortisol metabolite concentration in a sample is then quantified by relating the measured 

optical density to a calibrated dose–response curve generated by standards of known 

concentrations in native cortisol (see Chapter 4). 
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Why do some males choose to breed at home
when most other males disperse?
Eve Davidian,1 Alexandre Courtiol,2 Bettina Wachter,1 Heribert Hofer,1 Oliver P. Höner1*

Dispersal is a key driver of ecological and evolutionary processes. Despite substantial efforts to explain the evolu-
tion of dispersal, we still do not fully understand why individuals of the same sex of a species vary in their propen-
sity to disperse. The dominant hypothesis emphasizes movements and assumes that leaving home (dispersal) and
staying at home (philopatry) are two alternative strategies providing different fitness. It suggests that only individ-
uals of high phenotypic quality can pursue the most beneficial strategy; the others are left to do a “best-of-a-bad”
job. An alternative hypothesis emphasizes settlement decisions and suggests that all individuals pursue a single
strategy of choosing the breeding habitat or group with the highest fitness prospects; choosing the natal group
(philopatry) and choosing a nonnatal group (dispersal) are then outcomes of these decisions. We tested both
hypotheses using a long-term study of a free-ranging population of a group-living carnivore, the spotted hyena.
We combined demographic data with data on dispersal-relevant phenotypic traits, breeding-group choice, survival,
and reproductive success of 254 males. Our results contradict the best-of-a-bad-job hypothesis: philopatric males
and dispersers were of similar phenotypic quality, had similar fitness, and applied similar settlement rules based on
the fitness prospects in groups. Our findings demonstrate that the distribution of breeding partners can be more
important in shaping dispersal patterns than the costs associated with the dispersal movement. The study pro-
vides novel insights into the processes leading to the coexistence of philopatry and dispersal within the same sex
of a species.

INTRODUCTION

Dispersal is one of the most important yet least understood drivers of
ecological and evolutionary processes (1, 2). In almost all sexually re-
producing species, some individuals disperse from the habitat or group
in which they were born and attempt to breed elsewhere, whereas
others either never disperse or only do so after a period of philopatry.
Dispersal patterns in terms of the proportion of dispersing individuals
or the distances traveled, however, vary greatly between species, popu-
lations, and sexes (3–5). Previous theoretical and empirical studies have
advanced our understanding of the evolution of dispersal and the
drivers of sex-biased dispersal (2, 5–8). Yet, we currently know little about
the evolutionary processes leading to the coexistence of dispersers and
philopatric individuals within the same sex of a species (8–10).

The evolutionary theory predicts that individuals should assess the
quality of potential breeding habitats and disperse if the fitness
prospects in the natal or current habitat are lower than those else-
where, after accounting for the costs of between-habitat movements
(8, 11, 12). Dispersal may generally confer fitness advantages by redu-
cing potential costs of kin competition and inbreeding or by leaving a
deteriorating habitat, whereas philopatry may confer advantages
through familiarity with the natal territory and conspecifics, as well
as kin cooperation (2, 4, 7). The dominant hypothesis to explain the
coexistence of philopatry and dispersal suggests that, for a given sex
of a species, one strategy provides higher fitness than the other but
that only individuals of high phenotypic quality can pursue this
strategy and maximize their fitness (4, 10, 13). In line with this hy-
pothesis, the high proportion of male dispersal observed in many
group-living mammals (3) was suggested to reflect a selective advan-
tage of dispersal (4). Because gathering information about breeding

groups [“prospecting” (14)] and settling in a group are usually
considered costly (8, 15), only males of high searching efficiency, high
competitive ability, or high social skills were suggested to succeed in
settling and securing a breeding position in a new group (10, 13, 16, 17).
As a result, male philopatry in group-living species with a high propor-
tion of dispersers has been either neglected or considered as a “best-of-
a-bad” job pursued by phenotypically inferior males (4).

This hypothesis emerged from studies that focused on the costs and
benefits of the movement associated with dispersal (4, 8, 18). It assumes
that moving away from or staying in the natal environment is a trait
that falls under natural selection and that philopatric individuals and
dispersers experience different selection pressures and breed in envi-
ronments of different quality. Although these assumptions may be val-
id for some species, the costs and benefits of the dispersal movement
may only play a minor role in shaping dispersal patterns in many
others (19). For example, in species with large social groups and mod-
erate reproductive skew within sexes, the genetic structure of the pop-
ulation may be weak, and leaving the natal group may not necessarily
reduce the potential costs of kin competition and inbreeding (20–22).
Males may also prospect and disperse at low search and survival costs
if gathering information does not necessitate emigration from the natal
group and dispersal distances are short (23, 24). In such systems, males
that eventually become philopatric may also prospect, follow the same
process of breeding-group selection, apply similar settlement rules, and
have the same fitness prospects as dispersers. This has rarely been
considered by theoretical studies within the dispersal context (19).

To our knowledge, no study has previously investigated whether the
coexistence of philopatric males and dispersers (i) results from high
dispersal costs preventing phenotypically inferior males from dispers-
ing or (ii) is a consequence of all males applying the same rules of
breeding-group choice and choosing philopatry or dispersal depending
on whether the natal group or a nonnatal group offers the highest
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fitness prospects. We tested predictions derived from these two hypo-
theses on a free-ranging population of a group-living mammal, the
spotted hyena (Crocuta crocuta), for which we previously identified fe-
male mate choice as the main driver of male-biased dispersal (25).
We combined long-term demographic data from the entire popula-
tion of the Ngorongoro Crater in Tanzania, comprising eight social
groups (“clans”), with data on breeding-group choice, dispersal-relevant
phenotypic traits, survival, and reproductive success for 41 philopatric
males and 213 dispersers. This comprehensive approach provided the
rare opportunity to assess the causes and fitness consequences of male
philopatry and dispersal in a social mammal in a population still
subjected to the processes of natural and sexual selection.

First, we tested whether philopatric males and dispersers differed in
their phenotypic quality before clan choice. In spotted hyenas, males
are not evicted from their natal clan by other clan members (26).
Before choosing a clan for breeding, both philopatric males and dis-
persers undertake excursions to other clan territories and may thereby
assess their fitness prospects in potential destination clans (25). During
these excursions, males may experience aggression from resident males
(27). A male’s prospecting behavior, his chances to settle in a new clan,
and the period of time required until clan choice may therefore be
influenced by his searching efficiency, his ability to overcome social
challenges, and whether he grew up in the chosen clan (16, 28). Be-
cause, in spotted hyenas, sons of high-ranking females grow faster,
start reproducing earlier, and are more likely to disperse to clans of-
fering higher fitness prospects than lower-born males (29), they may
be of higher phenotypic quality with respect to clan choice (16). Thus,
if prospection and settlement incur high costs and these costs prevent
phenotypically inferior males from dispersing, philopatric males
should comprise a higher proportion of low-born males.

Second, we tested whether philopatric males and dispersers dif-
fered in their fitness in terms of the number and quality of offspring
sired, age at first reproduction, and survival. Spotted hyenas live in
multimale, multifemale social groups, structured by strict linear dom-
inance hierarchies, in which females and their offspring are dominant
over immigrant males (30, 31). A male’s chance to be chosen as a sire
mainly depends on his investment in developing friendly relationships
with females rather than his body size or fighting ability (32, 33). Re-
production within a clan is not monopolized by high-ranking indivi-
duals, and females and males breed promiscuously (33). Male social
rank may nonetheless influence male reproductive success because high-
ranking males have privileged access to food and females, and may
afford to spend more time and energy consorting and developing re-
lationships with females compared to lower-ranking males. Dispersal
and philopatry have different implications for the social rank of males in
hyenas; dispersers join the new clan at the bottom of the male social
hierarchy and only increase in rank with increasing tenure in the clan,
whereas philopatric males dominate all immigrant males (30, 34, and
this study). Male reproductive success may be additionally influenced
by male origin because males that grew up in the chosen breeding clan
(“native males”) are more familiar with the females and have better
knowledge about their quality and preferred whereabouts than males
that grew up in another clan (“foreigners”). If male social rank and
origin do influence male reproductive success, philopatric males should
sire their first offspring earlier and sire more offspring than dispersers.
Similar to top-ranking, long-tenured dispersers (30), philopatric males
may mainly invest in consorting high-ranking females and sire more
offspring of high reproductive value (35) compared to dispersers.

Higher social rank and the associated preferential access to food with-
in the clan territory may additionally cause philopatric males to be in
better physical condition and survive better than dispersers.

Third, we investigated whether philopatric males and dispersers
differed in the rules they apply when choosing their breeding clan. Fe-
male hyenas have complete control over mating (36) and apply mate-
choice rules to avoid incest; they prefer sires that were born into or
immigrated into their clan after they were born (25), and females older
than 5 years additionally prefer males with long tenures (33). The
number of females that comply with these rules on the date a male
chooses a clan defines the pool of females most likely to breed with a
male, that is, clan quality. Previously, males were shown to prefer
high-quality clans (25). In our system with fluctuating numbers of
females in clans, a male’s natal clan may occasionally contain the high-
est number of likely breeding partners. We therefore tested whether,
as predicted by habitat selection models, the quality of male clan
choice and the propensity to choose philopatry resulted from the com-
bination of (i) male preference for high-quality clans, (ii) the relative
availability of high-quality clans among natal clans, and (iii) the pre-
dicted benefits associated with philopatry.

RESULTS

Phenotypic quality of males and age at clan choice
The proportion of philopatric sons of low-ranking (0.21, n = 8),
medium-ranking (0.44, n = 17), and high-ranking (0.36, n = 14)
females did not differ from the proportion of dispersers that were sons
of low-ranking (0.19, n = 36), medium-ranking (0.30, n = 59), and
high-ranking (0.51, n = 99) females [Pearson’s c2 test; c2 = 4.2, degree
of freedom (df) = 2, P = 0.12]. The age at which philopatric males
chose their first breeding clan (3.3 ± 0.9 years, n = 40 males with
known birth date) was similar to that of dispersers (3.5 ± 0.7 years,
n = 177; U = 3130.5, P = 0.25). The age at clan choice was not in-
fluenced by male origin [ordinary least-squares linear model (LM),
likelihood ratio (LR) = 0.07, df = 1, P = 0.79] or by maternal social
rank (LR = 2.48, df = 1, P = 0.12) when we controlled for the iden-
tities of the natal clan (LR = 17.75, df = 7, P = 0.013) and the chosen
clan (LR = 11.86, df = 7, P = 0.11; whole model, LR = 1.43, df = 16, P =
0.009, n = 214 males with known birth date and maternal social rank;
see table S1).

Male social rank
Dispersers started their reproductive career in the new clan at the bot-
tom of the male social hierarchy and increased in rank with increasing
tenure (Fig. 1). In contrast, philopatric males occupied a high social rank
in the male hierarchy from the date of (primary) clan choice until they
dispersed (secondary clan choice) or died (Fig. 1).

Tenure and age at first reproduction
Philopatric males sired their first offspring after a shorter tenure (1.1 ±
1.3 years, n = 25) than dispersers (1.9 ± 1.5 years, n = 128; U = 994.5,
P = 0.003). Philopatric males also sired their first offspring at a youn-
ger age (4.2 ± 1.4 years, n = 24 males with known birth date) than
dispersers (5.3 ± 1.6 years, n = 100; U = 643, P < 0.001). Tenure at
first reproduction was significantly shorter for males that grew up in
the chosen clan than males that grew up in a different clan (LM, LR =
10.41, df = 1, P = 0.001) when controlling for maternal social rank
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(LR = 19.47, df = 1, P < 0.001), the number of likely female breeding
partners at clan choice (LR = 0.59, df = 1, P = 0.44), and the identity
of the chosen clan (LR = 15.32, df = 7, P = 0.032; whole model, LR =
73.33, df = 10, P < 0.001, n = 136 males with known maternal social
rank; see table S2).

Reproductive success
The mean annual reproductive rate of philopatric males with females
of all social ranks (0.53 ± 0.43 offspring per year, n = 28 males with
tenure ≥1 year) was similar to that of dispersers (0.69 ± 0.73, n = 168;
U = 2209.5, P = 0.60; Fig. 2). Philopatric males tended to sire more
offspring per year with high-ranking females (0.43 ± 0.44) than did
dispersers (0.30 ± 0.47; U = 2781.5, P = 0.098), and they sired signif-
icantly fewer offspring with medium- and low-ranking females (0.10 ±
0.28) than did dispersers (0.39 ± 0.45; U = 1284, P < 0.001). Philopatric
males sired 83% and dispersers sired 39% of their offspring with high-
ranking females.

Influence of male origin and social rank on
reproductive success
The annual reproductive rate ofmales native to the chosen clanwas lower
than that of foreigners [generalized linear mixed model (GLMM), com-
bined effect ofmale origin and interaction betweenmale origin and year
of tenure: LR = 18.95, P = 0.003] and increased as male social rank
increased (LR = 14.29, P = 0.003) when controlling for maternal social
rank (LR = 3.62, P = 0.14) and the number of likely breeding partners at

clan choice (LR= 0.03, P= 0.99; wholemodel, LR= 71.52,P= 0.001, n=
181 males with known maternal social rank and tenure ≥1 year; see
table S3). The annual reproductive rate with high-ranking females
was not influenced by male origin (GLMM, combined effect of male
origin and interaction with year of tenure: LR = 9.34, P = 0.16) and
increased as male social rank increased (LR = 15.82, P < 0.001) when
controlling for maternal social rank (LR = 1.46, P = 0.41) and the num-
ber of likely breeding partners at clan choice (LR < 0.01, P = 0.99; whole
model, LR = 56.97, P < 0.001, n = 181; Fig. 3, A and B; see table S4). The
annual reproductive rate with medium- and low-ranking females was
lower for nativemales than foreigners (GLMM, combined effect ofmale
origin and interaction with year of tenure: LR = 39.48, P < 0.001) and
was not influenced by male social rank (LR = 3.24, P = 0.12) when
controlling for maternal social rank (LR = 2.99, P = 0.12) and the number
of likely breeding partners at clan choice (LR = 0.08, P = 0.89; whole
model, LR = 45.89, P < 0.001, n = 181; Fig. 3, C and D; see table S5).

Male survival
The survivorship after the date of first clan choice of philopatric males
(median from Cox proportional hazards model = 7 years, n = 41 males
with tenure ≥1 year) and dispersers was similar [median = 8 years,
n = 210; hazard ratio = 1.4, 95% confidence interval (CI) = 0.79 to
2.46, LR = 1.22, df = 1, P = 0.27].

Quality of clans and male clan choice
To test whether the quality of natal clans differed from that of non-
natal clans and whether this affected male clan choice, we ranked the
eight study clans according to the number of likely female breeding
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Fig. 1. Change in social rank of philopatric males and dispersers with
time spent in the clan (tenure). Data are mean standardized social ranks
(symbols) ± SDs (vertical bars). Standardized ranks were calculated at the
start of each year of tenure by distributing ranks evenly between the high-
est (standardized rank +1) and lowest (standardized rank −1) rank in the
hierarchy of sexually active males of a clan. Males with standardized ranks
within the top, middle, and lower thirds of the total range (delimited by
dashed horizontal lines) were high-ranking, medium-ranking, and low-
ranking, respectively.

Fig. 2. Comparison of the reproductive rate of philopatric males and
dispersers. Reproductive rate is the mean annual number of offspring
sired during the first 6 years of tenure. Boxes indicate the interquartile
range around the median (horizontal bar), vertical bars represent reproduc-
tive rates that lie within 1.5 times the interquartile range, and shaded areas
represent the distribution (kernel density estimate) of the data.
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partners that each clan contained on each date a male chose a clan
(25). The distribution of clan qualities of natal clans differed from that
of nonnatal clans (c2 = 152.4, df = 7, P < 0.001), with natal clans being
less likely to be of the highest quality and more likely to be of the lowest
quality compared to nonnatal clans (Fig. 4A). As a result, philopatric
males chose clans containing fewer likely female breeding partners
(median = 5) compared to dispersers (median = 10; U = 1621.5, P <
0.001). To test whether philopatric males and dispersers applied dif-
ferent rules of clan choice, we compared the observed number of phi-
lopatric males that chose a clan of a given quality with the expected
number under the assumptions that (i) philopatric males, similarly to
dispersers, base their clan choice on the number of likely breeding
partners and (ii) choosing the natal clan does not incur additional
benefits or costs as compared to choosing a nonnatal clan. The ex-
pected number of (philopatric) males choosing their natal clan when
it is of quality i is thereby equal to the product of the proportion of
dispersers that chose a clan of quality i (Fig. 4C) and the proportion of

clans of quality i that are natal clans (Fig. 4B, dark gray), multiplied by
the total number of males observed to choose a clan (n = 254; Fig.
4D). The observed number of philopatric males (n = 41, 16.1% of all
males that chose a clan) was twice as high as expected in all clan
qualities (n = 19.5, 7.7%; Wilcoxon signed-rank test, U = 36, P = 0.008,
n = 8 clan qualities; Fig. 4D). However, the relative distribution of
philopatric males across the eight levels of clan quality did not differ
from expectations (c2 = 0.81, df = 7, P = 0.99; Fig. 4E).

Tenure in clan of first choice
Philopatric males were more likely to disperse from their first breeding
clan (13 of 26 males with a monitoring period ≥6 years) than were
dispersers (27 of 146; Fisher’s exact test, odds ratio = 2.69, 95% CI =
1.12 to 6.26, P = 0.021), and they stayed for a shorter period in their
clan of first choice (median from Kaplan-Meier survival analysis =
2.32 years, n = 41) than did dispersers (median = 6.03 years, n = 213;
log-rank test, c2 = 12.4, df = 1, P < 0.001; Fig. 5).
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DISCUSSION

Our findings are inconsistent with the hypothesis that male philopatry
is the result of high dispersal costs and a best-of-a-bad strategy pur-
sued by phenotypically inferior males. Philopatric males chose clans
containing fewer likely female breeding partners compared to disper-
sers, but they sired as many offspring as did dispersers and had sur-
vival after clan choice similar to dispersers. They also had mothers of
similar social rank, suggesting that dispersal propensity was not influ-
enced by the maternal environment during development and that
philopatric males and dispersers were of similar phenotypic quality
at clan choice. Our finding that philopatric males and dispersers chose
a clan at a similar age further indicates that the process leading to
philopatry or dispersal required a similar amount of time. The search
and survival costs of prospection and settlement may indeed be low in
our population of spotted hyenas and may not differ substantially
between philopatric males and dispersers because both undertake
short excursions to other clan territories before choosing a clan, dispersal
distances are short, and recently settled dispersers frequently return to
their natal clan territory and benefit from resuming their natal rank
when feeding there (25, 29).

Our results, instead, are consistent with the alternative hypothesis
derived from habitat selection theory: The coexistence of philopatric
males and dispersers results from all males applying similar rules of
clan choice. Philopatric males distributed themselves similarly to dis-
persers when considering the quality of clans, indicating that they had
similar preferences for clans of high quality, that is, clans with the
largest number of potential breeding partners. Thus, philopatric males
did not choose clans of lower average quality compared to dispersers
because they were less choosy, but because natal clans were less likely
to be of high quality than were nonnatal clans. The latter is a direct
consequence of the rules female hyenas apply when choosing their
mates (25); these rules imply that, in nonnatal clans, all females be-
tween 1 and 5 years of age on the date of male clan choice are likely
to accept the male as a sire, whereas in natal clans, only females older
than the male and younger than 5 years are likely breeding partners.
Because males choose a clan at a mean age of 3.4 years, the number of
likely breeding partners for a prospective philopatric male is reduced
to females older than 3.4 years and younger than 5 years.

Although philopatric males chose clans containing fewer likely
breeding partners, their fitness prospects were similar to those of

0

2

4

6

8

10

12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8

Nonnatal clans

Natal clans

A

0.0

0.2

0.4

0.6

0.8

1.0
B

0.00

0.05

0.10

0.15

0.20

0.25

0.30
C

D

0.00

0.05

0.10

0.15

0.20

0.25

0.30
E

P
ro

po
rt

io
n 

of
 a

va
ila

bl
e 

cl
an

s

P
ro

po
rt

io
n 

of
 d

is
pe

rs
er

s

Clan quality

1 2 3 4 5 6 7 8
Clan quality

1 2 3 4 5 6 7 8
Clan quality

1 2 3 4 5 6 7 8
Clan quality

1 2 3 4 5 6 7 8
Clan quality

N
um

be
r 

of
 p

hi
lo

pa
tr

ic
 m

al
es

P
ro

po
rt

io
n 

of
 p

hi
lo

pa
tr

ic
 m

al
es

Expected

Observed

P
ro

po
rt

io
n 

of
 a

va
ila

bl
e 

cl
an

s

Fig. 4. Effect of clan quality on male clan choice and propensity of philopatry. (A) Distribution of natal and nonnatal clans across eight clan qualities
as defined by the number of likely female breeding partners on the date a male chose a clan. Clan quality 1 corresponds to the clan with the highest
number of likely breeding partners, and clan quality 8 corresponds to the clan with the lowest number of likely breeding partners. (B) Proportion of natal
and nonnatal clans of each clan quality. (C) Distribution of clan choices by dispersers across the eight clan qualities. (D) Expected and observed number of
philopatric males that chose each clan quality. (E) Expected and observed proportions of philopatric males across the eight clan qualities.

R E S EARCH ART I C L E

Davidian et al. Sci. Adv. 2016; 2 : e1501236 18 March 2016 5 of 10

 on M
arch 18, 2016

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


dispersers. They sired fewer offspring than did dispersers with medium-
ranking and low-ranking females, but because they occupied a high
social rank throughout their tenure and social rank strongly increased
reproductive success, they sired as many offspring as did dispersers.
Moreover, as predicted, they started reproducing earlier than did dis-
persers and sired almost exclusively offspring with high-ranking fe-
males, a tactic that provides them with substantial short- and long-term
fitness benefits because high-born offspring have a higher reproductive
value than medium-born and low-born offspring; they survive better,
benefit from “silver spoon” effects in terms of increased reproductive
success, and contribute more to future generations than low-born off-
spring (29, 37). In our study population, after only eight generations, a
large majority of the living adult population (82% of 340 adults with
known female ancestor) were descendants of high-ranking females
present at the beginning of the study [for a similar result on female
descendants in a single hyena clan in the Maasai Mara in Kenya, see
Holekamp et al. (38)]. We predicted that such fitness benefits should
increase the propensity of males choosing their natal clan as their
breeding group. Consistent with this prediction, twice as many males
chose philopatry as expected if philopatry did not yield additional
benefits compared to dispersal. The shorter tenure of philopatric males
additionally suggests that males regularly assess their fitness prospects
and disperse as a secondary breeding-group choice when the fitness
advantages associated with their high social rank decrease. These find-
ings demonstrate that, in spotted hyenas, the coexistence of philopatric
males and dispersers results from a single, continuous process of
breeding-group selection driven by the distribution of group qualities
across natal and nonnatal groups and the fitness benefits associated

with the natal group. Our results are therefore consistent with a recent
theoretical model that demonstrates that variation in dispersal dis-
tances among individuals of the same sex can emerge solely from
the distribution and density of breeding partners when all individuals
apply similar mate-based settlement rules (19).

Our results provide novel insights into the processes leading to
philopatry and dispersal. By demonstrating that philopatric males can
gain immediate, direct reproductive benefits, our study contrasts with
most empirical studies on group-living mammals characterized by
high dispersal biases. These studies reported that young philopatric
males mainly gain indirect reproductive benefits through cooperative
care of related offspring or delayed direct benefits after queuing for dom-
inant breeder status (39–42). Most of these studies were conducted on
male-dominated systems in which competition for females is high and
access to high social rank and reproduction is correlated with male
phenotypic traits such as age, body size, or fighting ability. We show
here that in a promiscuous mating system, philopatry can provide simi-
lar fitness prospects to dispersal. Similar to systems where males and
females are co-dominant (43), socially dominant hyena females can in-
fluence the competition among males and ensure, through social support
(31), that their philopatric sons obtain a high social rank among sexually
active males and its associated fitness benefits. These findings are
consistent with the idea that fitness consequences of male philopatry
depend on complex eco-evolutionary feedbacks and interactions be-
tween drivers of dispersal and male fitness, and the species’ social and
breeding system (2, 5, 44).

Our findings on male reproductive success differ from those of a
previous study on spotted hyenas in the Maasai Mara in Kenya, which
reported that philopatric males were less successful than dispersers
(32). They further contradict the suggestions that philopatric male
hyenas undergo physiological suppression (45, 46) and are generally
avoided by females as sires (32). These discrepancies may reflect real
differences in hyena behavior and ecology between the two study pop-
ulations, but they may also result from a difference in methodology. In
contrast to our study, these previous studies used an age-based defi-
nition of philopatry, which resulted in the inclusion of males that were
not yet sexually active and had not yet exercised breeding-clan choice
(32, 34). Such a definition will likely bias estimates of male investment
in reproduction and reproductive success in favor of dispersers [as dis-
cussed in Bercovitch (47) and Höner et al. (48)]. Our results highlight
the importance and benefit of treating not only the dispersal move-
ment but also the dispersal destination and philopatry as a choice of
a breeding group or habitat. This implies that dispersal and philopatry
should be carefully defined (9, 49), and the criteria applied should in-
dicate reproductive investment (47, 48). It also requires a considera-
tion of the quality of potential breeding sites, including the natal site
(50, 51), and the identification of the ultimate and proximate factors
driving male fitness. Only then will it be possible to assess whether
differences in fitness and life history between philopatric individuals
and dispersers result from differences in sexual maturity, their pheno-
type, the quality of the chosen breeding group, or the dispersal move-
ment itself, and to understand the underlying processes leading to
observed dispersal patterns (48, 50, 52–55).

Our study suggests that dispersal patterns within a sex may primarily
dependon the likelihood that nonnatal groups providehigher fitness than
the natal group, with the direction and magnitude of the bias depending
on the nature of the drivers of individual fitness. In systems where the
natal group systematically provides lower fitness than nonnatal groups,
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leaving the natal group may be of high adaptive value and males may
even emigrate without prior prospection (56). Thismay drive the emer-
gence of a dichotomous process of breeding-group selection in which
individuals only choose between staying and emigrating, and of distinct
philopatry and dispersal “syndromes” (4, 10, 56). By considering the
quality of potential breeding groups, the choices ofmales, and the fitness
outcome of their choices, we demonstrate that high dispersal biases can
also emerge in systems in which natal groups can provide the highest
fitness. We also demonstrate that philopatric males and dispersers may
not necessarily represent two groups of individuals with distinct pheno-
types and life histories. Our study illustrates the benefit of studying dis-
persal and philopatry within the broader framework of habitat selection
theory to derive predictions on the causes and fitness consequences of
breeding-group choices and dispersal patterns.

MATERIALS AND METHODS

Study design
All hyenas of the eight resident clans inhabiting the 250-km2 floor of
the Ngorongoro Crater (3°11′S, 35°34′E) in Tanzania were individ-
ually known and monitored between April 1996 and December 2014.
Dispersal is strongly male-biased in this population, with approxi-
mately 85% of males leaving their natal clan and immigrating into
another clan to breed, whereas females usually are philopatric (25, 57).
The population is genetically linked to other hyena populations (58),
but most males born in one of the Crater clans choose to breed in a
Crater clan. During the study period, 41 Crater-born males started their
reproductive career in their natal clan, and 213 males dispersed to
another Crater clan. An additional 54 Crater-born males that reached
2.7 years, the mean age at clan choice minus 1 SD (see Results), either
died or emigrated out of the Crater, and 24 males immigrated into Crater
clans from elsewhere. Clans contained a mean number of 53.5 ± 5.5
adult (≥24 months old) members at the end of the study period.

Clan choice and quality of clans
We defined breeding-clan selection as the behavioral processes that
result in a biased investment (a choice) in social relationships and sex-
ual behavior that may influence an individual’s survival and reproduc-
tion [adapted from “habitat selection” (10)]. We defined philopatry
and natal dispersal as the outcome of breeding-clan selection that
led a male to choose and start his reproductive career in his natal clan
or in another clan, respectively. We considered a male to have chosen
a clan when he expressed sexual behavior toward females and invested
in joining the social hierarchy of sexually active males in the natal clan
(“philopatric”male) or another clan (“disperser”) for at least 3 months
(29). The date of clan choice was the date of first observation of such
behavior for philopatric males and of first sighting in the new clan
territory for dispersers, and defined the start of a male’s tenure. We
excluded males from the analyses that did not show any sign of sexual
activity or had not met the 3-month criterion before their date of last
sighting or the end of the study period.

We defined the quality of a breeding group as the social, demo-
graphic, and ecological characteristics of the group that influence
the fitness of males, such as the number of unrelated breeding partners
or competitors and food availability within the group territory [adapted
from “habitat patch quality” (59)]. In spotted hyenas, male long-term
fitness prospects and, thereby, clan quality are strongly influenced by

the number of likely female breeding partners as defined by female mate-
choice rules (25).

Social rank
Social ranks were assigned on the basis of the outcome of dyadic in-
teractions using submissive responses. To compare social rank within
and between clans when clan size differed, adult females and sexually
active males of a clan were assigned a standardized rank by distribut-
ing ranks evenly between the highest (standardized rank +1) and
lowest rank (standardized rank −1) in the hierarchy of adult females
and sexually active males, respectively (30). Individuals with standar-
dized ranks within the top, middle, and lower thirds of the total range
were classified as high-ranking, medium-ranking, and low-ranking, re-
spectively. Maternal social rank was calculated when sons were 2 years
of age. Male social rank was calculated at the start of each year of te-
nure in the chosen clan.

Paternity assignment and reproductive success of males
Female spotted hyenas produce litters of one or two (very rarely three)
cubs with no distinct breeding season (33). We collected tissue, hair,
and fecal epithelium from 1246 hyenas, including 1101 offspring born
during the study period. Samples were stored in ethanol or dimethyl
sulfoxide salt solution until DNA extraction. Fluorescent primers were
used to amplify nine polymorphic microsatellite loci (60). The mean
number of alleles per locus was 11.9 (range, 7 to 16), the mean expected
heterozygosity was 0.83, the total exclusionary power was 0.999, and
the error rate was 0.44% and set at 1.0%.

Paternities were assigned using maximum likelihood methods as
implemented in CERVUS 3.0 (61). Candidate fathers were determined
on the basis of conception dates, which were calculated by subtracting a
gestation period of 110 days from birth dates estimated from pelage
characteristics, body size, locomotory abilities, behavioral develop-
ment and position, and the shape and size of the ears of cubs (62–64).
All philopatric males and dispersers that were clan members when a
litter was conceived were considered to be candidate fathers. For 1048
offspring (95.2% offspring sampled), all candidate males were genet-
ically typed; the mean proportion of typed candidate males was 0.99.
Extra-clan paternity was very rare; 1064 offspring (96.6% sampled off-
spring) were sired by a philopatric or immigrant male of the clan. For
the remaining 37 offspring, we performed a second analysis, which con-
sidered all adult males of the study population alive at conception as
candidate fathers. For seven of these offspring (0.6% of all offspring),
amale fromanotherCrater clanwas assigned paternity; for 30 offspring,
no candidate male was assigned paternity at the 95% confidence level.
To examine the influence of breeding-clan choice onmale reproductive
success, we restricted statistical analyses of reproductive success to off-
spring sired by philopatric males and dispersers with females from the
chosen breeding clan. Male reproductive success was expressed as the
annual number of offspring sired (“reproductive rate”) during each of
the first 6 years of tenure. A period of tenure of 6 years covers a sub-
stantial period of the reproductive career ofmales in a clan (see Results).
Statistical analyses were restricted to paternities assigned at the 95%
confidence level.

Ethical statement
Our study was approved by the scientific advisory board of the Tanzania
Wildlife Research Institute, the Tanzania Commission for Science and
Technology, the Ngorongoro Conservation Area Authority, and the
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Internal Committee for Ethics and Animal Welfare of the Leibniz Insti-
tute for Zoo and Wildlife Research in Berlin, the institute’s equivalent
of the Institutional Animal Care and Use Committee.

Statistical analyses
Statistical analyses were conducted using R software v.3.1.2 and asso-
ciated packages (65). Data are means ± SD unless stated otherwise.
The threshold for significance was set to 5%. We tested predictions
assuming that philopatric males and dispersers represented two groups
of individuals applying distinct strategies in two steps: (i) direct com-
parison of raw data using nonparametric Mann-Whitney U tests to
characterize differences in key traits of hyena life history between
philopatric males and dispersers and (ii) ordinary least-squares LMs
and GLMMs to identify the variables influencing these traits.

Age at clan choice and tenure at first reproduction
We conducted LMs to examine the factors influencing the age at
which male hyenas chose their first breeding clan and the tenure at
which they sired their first offspring. We included the identity of the
natal clan as a categorical covariate (eight levels) to control for clan
specifics that may affect male condition or age at sexual maturity
and thereby influence the timing of male clan choice, such as the
number of clan members and prey abundance. We included the iden-
tity of the chosen clan as a categorical covariate (eight levels) to con-
trol for factors that may influence the date of first observation of social
or sexual behaviors toward members of the clan and first sighting of a
male in the chosen clan’s territory, such as our monitoring effort and
territory size. For the analysis of the age at which males chose their
first breeding clan, we applied a natural logarithm transformation to
the dependent variable “age” (in years).

Annual reproductive rate
We conducted three GLMMs to examine factors influencing male an-
nual reproductive rate.Weused the annual number of offspring sired by
males as the dependent variable (i) with females of all social ranks, (ii)
with high-ranking females, and (iii) with medium- and low-ranking
females. We used the natural logarithm as the link function and the
Poisson distribution as the probability distribution of the dependent
variable [package lme4 v.1.1.7 (66)]. Covariates included male origin
[that is, whether the male had grown up in the chosen breeding clan
(native) or in another clan (foreigner)],male social rank,maternal social
rank, the number of likely female breeding partners at clan choice, the
year of tenure as the categorical variable (six levels), and the interaction
betweenmale origin and year of tenure; male identity was included as a
random factor and assumed to follow a Gaussian distribution. Because
male tenure was categorized in 1-year periods, GLMMs were restricted
to males with complete years of tenure; a male was considered to have
completed a year of tenure when all offspring conceived in the male’s
chosen clan and sampled during that period were genetically typed. The
model onmale annual reproductive rate withmedium- and low-ranking
females failed to fit the interaction between male origin and year of ten-
ure because of very low variation in the reproductive rate of nativemales
over tenure. We therefore recoded, for native males only, the six levels
associated with the factor “year of tenure” as a single level termed
“native_year,” thereby constraining the effect of tenure on the reproductive
rate of native males to be constant over tenure (see Fig. 3, C and D).
Because this factor then corresponded to the combined effect of male
origin, year of tenure, and their interaction, we reran the GLMMdiscard-

ing the covariate “male origin” to avoid redundant covariates. The recod-
ing procedure allowed the model to compute regression coefficients
separately for native males and foreigners; there is a single coefficient
for native males and one coefficient for each of the six levels of years
for foreigners (see table S5).

Regression coefficients for LMs and GLMMs were estimated by
maximum likelihood using Laplace approximation (66). Significance
of effects was assessed as the marginal contribution of each covariate
to the full model by subtracting the likelihood of the reduced model
without the specific covariate from the full model; P values were
calculated using asymptotic LR tests [package car v.2.0.24 (67)] for
LMs and parametric bootstrapped LR tests with 1000 simulations
[package pbkrtest v.0.3.8 (68)] for GLMMs. Residuals of all LMs
satisfied the assumptions of normal distribution [Lilliefors tests; pack-
age nortest v.1.0.2 (69)] and homogeneity of variances (residual plots).
None of the GLMMs performed showed signs of overdispersion
(Pearson residuals ratio), thereby conforming to the prerequisite for
Poisson regressions or signs of multicollinearity between fixed effects
(correlation matrices).

Male survival and tenure
Male survival and tenure were analyzed using the R package survival
v. 2.37.7 (70). Differences in survival of philopatric males and dis-
persers after first clan choice were tested using Cox proportional ha-
zards regressions with death or disappearance as the dependent
variable. Individuals were considered to have died or disappeared
when their dead body was found or when they were not sighted
for at least 1 year. We assumed equal probability for both male catego-
ries to (re)disperse out of the Crater population. We used discrete
time-event analysis on 1-year intervals to account for changes in male
category (philopatric male versus disperser) over time and included
males that were still alive at the end of the study (right-censored data).
The assumption of proportional hazards over time was tested and val-
idated using scaled Schoenfeld residuals. We compared male tenures
in their first breeding clan using nonparametric Kaplan-Meier survivor-
ship functions and the nonparametric log-rank test with (re)dispersal,
death, or disappearance as the dependent variable, and tenures of males
that were still alive andwere still amember of their clan at the end of the
study (right-censored data).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/3/e1501236/DC1
Table S1. The age at which male spotted hyenas chose their first breeding clan as a function of
male origin (native or foreigner), maternal social rank, and identities of natal and chosen clans.
Table S2. The tenure at which male spotted hyenas sired their first offspring as a function of
male origin (native or foreigner), maternal social rank, the number of likely breeding partner at
clan choice, and the identity of the chosen clan.
Table S3. The total number of offspring sired each year by male spotted hyenas as a function
of male origin (native or foreigner), male social rank, maternal rank, the number of likely
breeding partners at clan choice, year of tenure, and the interaction between male origin
and year of tenure.
Table S4. The number of offspring of high-ranking females sired each year by male spotted
hyenas as a function of male origin (native or foreigner), male social rank, maternal social rank,
the number of likely breeding partners, year of tenure, and the interaction between male
origin and year of tenure.
Table S5. The number of offspring of medium- and low-ranking females sired each year by
male spotted hyenas as a function of the combined effect of male origin and year of tenure,
male social rank, maternal social rank, and the number of likely breeding partners.
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Table S1. The age at which male spotted hyenas chose their first breeding clan as a 

function of male origin (native or foreigner), maternal social rank, and identities of natal 

and chosen clans. Shown are the regression coefficients and standard errors (SE) in natural 

log units, t ratios and their corresponding P-values for each predictor variable. Regression 

coefficients were estimated by ordinary least squares linear regression (whole model: 

Likelihood Ratio = 1.43, d.f. = 16, P = 0.009, n = 214 males) and indicate the change in age at 

clan choice relative to the intercept and the reference level for the categorical variables (male 

origin: foreigner, natal clan: clan A, chosen clan: clan A). 

 
 

 Variable Coefficient SE t ratio P 
      

 Intercept 1.20 0.06 21.36 < 0.001 

 male origin native -0.01 0.04 -0.26 0.79 

 maternal social rank 0.04 0.03 1.57 0.12 

 natal clan E 0.09 0.07 1.25 0.21 

 natal clan F -0.12 0.07 -1.76 0.08 

 natal clan L 0.05 0.06 0.95 0.34 

 natal clan M -0.01 0.06 -0.13 0.89 

 natal clan N 0.14 0.07 1.96 0.05 

 natal clan S 0.11 0.07 1.57 0.12 

 natal clan T 0.08 0.11 0.75 0.46 

 chosen clan E -0.09 0.06 -1.46 0.15 

 chosen clan F 0.09 0.06 1.41 0.16 

 chosen clan L -0.06 0.05 -1.10 0.27 

 chosen clan M -0.11 0.06 -1.94 0.05 

 chosen clan N -0.01 0.06 -0.13 0.90 

 chosen clan S -0.01 0.05 -0.12 0.91 

 chosen clan T -0.01 0.08 -0.16 0.87 
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Table S2. The tenure at which male spotted hyenas sired their first offspring as a 

function of male origin (native or foreigner), maternal social rank, the number of likely 

breeding partner at clan choice, and the identity of the chosen clan. Shown are the 

regression coefficients and standard errors (SE), t ratios and their corresponding P-values for 

each predictor variable. Regression coefficients were estimated by ordinary least-squares 

linear regression (whole model: Likelihood Ratio = 73.33, d.f. = 10, P < 0.001, n = 136 

males) and indicate the change in tenure at which males sired their first offspring relative to 

the intercept and the reference level for the categorical variables (male origin: foreigner, 

chosen clan: clan A). 
 
 
 

Variable Coefficient SE t ratio P 
     

Intercept 2.68 0.50 5.33 < 0.001 

male origin native -1.21 0.38 -3.23 0.002 

maternal social rank -0.84 0.19 -4.41 < 0.001 

number of likely breeding partners -0.02 0.03 -0.77 0.44 

chosen clan E -0.35 0.45 -0.79 0.43 

chosen clan F -0.58 0.48 -1.21 0.23 

chosen clan L -0.25 0.41 -0.61 0.54 

chosen clan M -0.30 0.42 -0.72 0.47 

chosen clan N 0.38 0.50 0.75 0.45 

chosen clan S -1.44 0.49 -2.93 0.004 

chosen clan T -0.72 0.72 -0.99 0.32 
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Table S3. The total number of offspring sired each year by male spotted hyenas as a 

function of male origin (native or foreigner), male social rank, maternal rank, the number of 

likely breeding partners at clan choice, year of tenure, and the interaction between male 

origin and year of tenure. Shown are the regression coefficients and standard errors (SE) in 

natural log units, z ratios and their corresponding P-values for each predictor variable. Regression 

coefficients were estimated by generalized linear mixed model with the natural logarithm as link 

function and Poisson and Gaussian distributions as the assumed probability distributions for the 

dependent variable and the random effect (male identity, variance = 0.33), respectively (whole 

model: Likelihood Ratio = 71.52, P = 0.001, n = 181 males). Coefficients indicate the change in 

the number of offspring sired each year by males relative to the intercept and the reference level 

for the categorical variables (male origin: foreigner, year of tenure: year 1). 
 

 

Variable Coefficient SE z ratio P 
     

Intercept -0.59 0.20 -2.93 0.003 

male origin native -0.65 0.39 -1.69 0.094 

male social rank 0.62 0.16 3.84 < 0.001 

maternal social rank 0.22 0.11 1.90 0.058 

number of likely breeding partners -0.002 0.01 -0.18 0.86 

year of tenure 2 0.14 0.17 0.86 0.39 

year of tenure 3 0.53 0.17 3.12 0.002 

year of tenure 4 0.27 0.20 1.36 0.18 

year of tenure 5 0.03 0.23 0.11 0.91 

year of tenure 6 0.20 0.25 0.80 0.42 

native * year of tenure 2 -1.38 0.66 -2.09 0.036 

native * year of tenure 3 -0.58 0.50 -1.16 0.25 

native * year of tenure 4 -0.25 0.57 -0.44 0.66 

native * year of tenure 5 0.14 0.59 0.24 0.81 

native * year of tenure 6 0.44 0.61 0.73 0.47 
     

  



Chapter 3 : Breeding-group selection and its fitness consequences  Eve Davidian 
 

64 
 

Table S4. The number of offspring of high-ranking females sired each year by male 

spotted hyenas as a function of male origin (native or foreigner), male social rank, 

maternal social rank, the number of likely breeding partners, year of tenure, and the 

interaction between male origin and year of tenure. Shown are the regression coefficients 

and standard errors (SE) in natural log units, z ratios and their corresponding P-values for 

each predictor variable. Regression coefficients were estimated by generalized linear mixed 

model with the natural logarithm as link function and the Poisson and Gaussian distributions 

as the assumed probability distributions for the dependent variable and the random effect 

(male identity, variance = 0.73), respectively (whole model: Likelihood Ratio = 56.97, P < 

0.001, n = 181 males). Coefficients indicate the change in the number of high-ranking 

offspring sired each year by males relative to the intercept and the reference level for the 

categorical variables (male origin: foreigner, year of tenure: year 1). 
 
 
 

Variable Coefficient SE z ratio P 
     

Intercept -1.60 0.32 -5.03 < 0.001 

male origin native -0.40 0.53 -0.77 0.45 

male social rank 0.95 0.24 3.99 < 0.001 

maternal social rank 0.21 0.17 1.20 0.23 

number of likely breeding partners -0.00007 0.02 -0.003 0.99 

year of tenure 2 0.19 0.26 0.71 0.47 

year of tenure 3 0.64 0.26 2.43 0.015 

year of tenure 4 0.12 0.31 0.38 0.70 

year of tenure 5 0.10 0.33 0.30 0.76 

year of tenure 6 0.11 0.37 0.26 0.78 

native * year of tenure 2 -1.14 0.71 -1.61 0.11 

native * year of tenure 3 -0.57 0.59 -0.97 0.33 

native * year of tenure 4 0.08 0.65 0.13 0.90 

native * year of tenure 5 0.26 0.67 0.40 0.70 

native * year of tenure 6 0.81 0.71 1.15 0.25 
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Table S5. The number of offspring of medium- and low-ranking females sired each year 

by male spotted hyenas as a function of the combined effect of male origin and year of 

tenure, male social rank, maternal social rank, and the number of likely breeding 

partners. Shown are the regression coefficients and standard errors (SE) in natural log units, 

z ratios and their corresponding P-values for each predictor variable. Regression coefficients 

were estimated by generalized linear mixed model with the natural logarithm as link function 

and the Poisson and Gaussian distributions as the assumed probability distributions for the 

dependent variable and the random effect (male identity, variance = 0.33), respectively 

(whole model: Likelihood Ratio = 45.89, P < 0.001, n = 181 males). Coefficients indicate the 

change in the number of medium- and low-ranking offspring sired each year by males relative 

to the intercept and the reference level for the categorical variable (foreigner in year of tenure 

1). 
 
 
 

Variable Coefficient SE z ratio P 
     

Intercept -1.19 0.25 -4.69 < 0.001 

native_year -2.00 0.58 -3.45 < 0.001 

foreigner_year of tenure 2 0.12 0.22 0.53 0.60 

foreigner_year of tenure 3 0.43 0.23 1.93 0.054 

foreigner_year of tenure 4 0.39 0.26 1.53 0.13 

foreigner_year of tenure 5 -0.05 0.31 -0.16 0.87 

foreigner_year of tenure 6 0.30 0.33 0.91 0.36 

male social rank 0.38 0.21 1.82 0.069 

maternal social rank 0.24 0.14 1.72 0.086 

number of likely breeding partners -0.005 0.02 -0.29 0.77 
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ABSTRACT 

1. Enzyme immunoassays (EIAs) are widely used to quantify concentrations of hormone 

metabolites. Modifications in laboratory conditions may affect the accuracy of metabolite 

concentration measurements and lead to misinterpretations when results of different 

accuracy are combined for a statistical analysis. This issue is of great relevance to studies in 

behavioural and evolutionary ecology because these usually aim at understanding how 

hormone concentrations vary between individuals, environments or experimental 

conditions. 

2. We present a method based on re-assaying a subset of samples to standardize hormone 

metabolite concentrations when changes in EIA accuracy occur. We used glucocorticoid 

metabolite concentrations (fGMCs) measured in faeces of spotted hyaenas (Crocuta crocuta) 

between 2011 and 2013 with a previously validated EIA. Changes in accuracy were assessed 

by monitoring the metabolite concentration of faecal control ‘pools’ that were 

systematically assayed with faecal samples. A cluster analysis on these pools identified two 

distinct sample sets with different EIA accuracy; ‘Cluster 1’ and ‘Cluster 2’. We then re-

assayed all samples of Cluster 1 (n = 138) with an EIA accuracy similar to that of Cluster 2 and 

fitted a linear regression to the remeasured fGMCs against the initial fGMCs to predict 

fGMCs in Cluster 2. To determine the minimum number of samples to re-assay that allows 

reliable predictions, we assessed the variation in the quality of model predictions by fitting 

linear regressions on decreasing numbers of re-assayed samples. This revealed that re-

assaying 27 samples would be sufficient to generate reliable predictions considering our data 

set. 

3. To test the robustness of our method, we fitted a new linear regression to 27 randomly 

chosen samples and used its equation to standardize all fGMCs of Cluster 1. The 

standardized fGMCs were similar to the remeasured fGMCs, and the regression on 27 

samples was as effective at standardizing fGMCs as the regression fitted on the complete 

data set. 

4. Our standardization method permits the combination of results of different accuracy. It is 

a simple and reliable alternative to the costly, time-consuming and often impractical re-

assaying of complete sample sets that can be applied to a wide variety of species and sample 

types.  
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INTRODUCTION 

Methods to measure concentrations of steroid hormone metabolites in urine and faeces 

have become an essential part of studies in evolutionary ecology and conservation. They 

have been applied to many taxa to investigate key topics such as the interplay between 

steroid hormones and social or sexual behaviour (Rasmussen et al. 2008; Benhaiem et al. 

2013) and the physiological response of endangered species to disturbance (Rolland et al. 

2012). Because the collection of urine and faeces does not involve potentially stressful 

procedures such as the manipulation or immobilisation of study animals, these methods are 

particularly useful to monitor adrenocortical activity over time and for studies on free-

ranging animals (Hofer & East 1998; Touma & Palme 2005; Landys, Goymann & Slagsvold 

2011; Rolland et al. 2012; Benhaiem et al. 2013). 

Hormone metabolite concentrations are most commonly quantified using enzyme 

immunoassays (EIAs) (Touma & Palme 2005). In indirect, competitive EIAs, the metabolites 

in faecal or urine samples compete with a known amount of tracer (e.g. a steroid hormone 

conjugated with a peroxidase enzyme) for the binding sites of a hormone-specific antibody. 

The proportion of bound tracer generates a ‘response’, which is read photometrically and 

expressed as optical density. The metabolite concentration in a sample is then quantified by 

relating the optical density to a calibrated dose–response curve generated by standards of 

known hormone concentration (Wild 2013). Because the chemical structure of metabolites 

and their binding affinity towards the antibody usually differs from that of their native 

hormone contained in standards and tracer, there often is a bias between measured and 

‘true’ metabolite concentration; this bias defines the ‘accuracy’ of an EIA (Wild 2013). Such a 

bias is negligible if it remains constant for all assayed samples and if, as in most studies in 

behavioural and evolutionary ecology, the main interest lies in relative differences in 

concentrations between individuals, environments or experimental conditions (Lynch et al. 

2003; Brown, Walker & Steinman 2004). If, however, EIA accuracy substantially changes 

during the course of the study, measured metabolite concentrations in samples are not 

directly comparable and combining them in statistical models would lead to 

misinterpretations and erroneous conclusions. 

Changes in EIA accuracy may occur for various reasons. EIAs involve binding reactions 

that are sensitive to laboratory conditions such as room temperature and exposure to light 
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during incubation (responsible for ‘edge’ or ‘well-to-well’ effects; Watson et al. 2013). Other 

potential sources of variation in binding reactions are modifications in protocols such as 

changes in the concentration of antibody and tracer, replacement of the antibody, standards 

or other reagents when they are used up, expire or when commercial kits are discontinued, 

changes of equipment, and switches in laboratory personnel (Shekarchi et al. 1984; Jones et 

al. 1995; Noble et al. 2008; Wasser et al. 2010; Watson et al. 2013). Because the native 

hormone in standards and tracer and metabolites in samples differ in their chemical 

properties, their binding reactions may be affected differently by variation in laboratory 

protocol and conditions, thereby inducing changes in the accuracy of metabolite 

concentrations (Watson et al. 2013). 

To track changes in EIA accuracy and other characteristics of EIA performance, 

control parameters such as the responses in blank wells, the standard concentrations 

associated with relative binding sensitivities (i.e. concentrations at 10, 20, 50, 80 and 90% of 

binding) and metabolite concentrations in urine or faecal control solutions or ‘pools’ are 

routinely monitored (Brown, Walker & Steinman 2004; Wild 2013). Pools are commonly 

used to assess the intra-assay and interassay repeatability or ‘precision’ of measurements of 

metabolite concentrations. Substantial changes in the concentration of pools additionally 

indicate changes in the relationship between measurements of metabolites and standards, 

that is, changes in EIA accuracy (Gill, Hayes & Sluss 2003). One possibility to avoid non-

comparable results due to changes in accuracy is to (re-)assay all samples together and 

within a short period of time. Re-assaying large data sets for each new research question, 

however, is costly in time, manpower, sample material and money and may not always be 

feasible, for example when samples are depleted. 

Here, we present a method to standardize results when changes in EIA accuracy 

occur, based on the re-assaying of a subset of samples. We establish this method using 

glucocorticoid metabolite concentrations measured in faeces (fGMCs) of spotted hyaenas 

(Crocuta crocuta) collected in the Ngorongoro Crater, Tanzania, as part of a long-term 

research project (Höner et al. 2007, 2010). We demonstrate that our method effectively 

standardizes metabolite concentrations and allows comparison of measurements obtained 

when EIA accuracy varies. 
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METHODS AND RESULTS 

Collection and treatment of faecal samples 

We collected 483 faecal samples from 272 free-ranging spotted hyaenas between 2002 and 

2013. Faeces were collected immediately after defaecation, mixed, subsampled and stored 

in liquid nitrogen until transported to Germany on dry ice where they were stored at -80°C 

until further processing. Faecal subsamples were freeze-dried (for 49–70 h) with a Lyovac-

GT2 lyophilisator (Hürth, Germany). Aliquots of 0.1 g were extracted with 0.9 mL of 90% 

methanol for 30 min, centrifuged, and the supernatant (typically 0.7 mL) diluted 1:1 with 

distilled water. Faecal samples and extracts were stored at -80°C between treatments. 

Assay of faecal samples 

Faecal extracts were assayed in three batches by two technicians; one technician assayed 

extracts in July 2011 (n = 71 extracts, 5 plates) and September 2011 (n = 67 extracts, 5 

plates) and the other in July 2013 (n = 345 extracts, 13 plates). We quantified fGMCs using 

an ‘in-house’ cortisol-3-CMO competitive EIA that was validated for spotted hyaenas and 

demonstrated a high affinity of the antibody with cortisol metabolites, the ability of the 

antibody to measure natural fluctuation in metabolite concentrations and a high precision of 

measurement (Benhaiem et al. 2012). We used microtitre plates coated with a polyclonal 

antibody raised in rabbits against cortisol-3-CMO-BSAand cortisol- 3-CMO-peroxidase as 

tracer (for more details on EIA protocol, see Benhaiem et al. 2012). Calibrated standard 

curves were prepared by serial 1:2 dilutions of a cortisol stock solution and ranged from 0.2 

to 100 pg 20 µL-1. Calibration curves were fitted using Akima’s spline interpolation (Akima 

1970). The approximately linear range of the calibration curve (i.e. the section between 20 

and 80%of binding of the tracer or ‘binding sensitivity’) was used to estimate fGMCs in 

samples using Magellan software (version 2.6; Tecan Group Ltd., Männedorf, Switzerland). 

Faecal samples with concentrations exceeding this range (typically > 25 pg 20 µL-1) were 

diluted to provide precise quantification of metabolite concentrations. Final fGMCs were 

obtained by multiplying the measured raw fGMCs by their corresponding factor of dilution 

and expressed as ng g-1 of dry faecal matter. 

We used two faecal control pools with relatively high and low metabolite 

concentrations (hereafter: ‘high pool’ and ‘low pool’) to monitor intra-assay and interassay 
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precision and potential changes in EIA accuracy. Stock solutions of pools and standards were 

renewed several times (but never simultaneously) during the course of the study. 

Coefficients of variation (CV) between old and new stocks never exceeded 10%, thus 

complying with the commonly accepted interassay coefficient of variation (CVinterassay) of 20% 

(for details on this criterion, see the section on EIA performance and for the CV formula, see 

Appendix S1 in Supporting Information), and confirming that renewals of stocks were not 

associated with changes in pool concentrations nor with shifts in EIA binding sensitivity. 

Assay plates were subdivided following a design that was constant throughout the study, 

with specific wells assigned to standard solutions, pools, blank controls, and faecal extracts, 

respectively. All extracts and controls were assayed in duplicate and, as typically 

recommended (Wild 2013), measurements were only accepted when duplicated values did 

not differ by more than 5% from their mean (i.e.CVintra-assay ≤ 5%). The concentrations of 

antibody and tracer were changed during the course of the study, but all other parameters 

of the experimental procedure and equipment were maintained constant. 

Data analysis 

Statistical procedures were performed using R software version 3.1.0 (R Development Core 

Team 2013). Results are quoted as mean ± standard deviation (SD), probabilities are for two-

tailed tests, the threshold for significance was set at 5%, and 95% percentile confidence 

intervals (CI95%) were calculated using a bootstrap method with 100 000 iterations (R 

package ‘boot’; Canty & Ripley 2014). For ordinary least squares (OLS) linear regressions, 

including analyses of covariance (ANCOVA), the distribution of residuals did not significantly 

deviate from normality (Shapiro–Wilk tests) and the variances were homoscedastic 

(Breusch-Pagan tests and residuals plots; R package ‘car’; Fox & Weisberg 2011). 

EIA performance during the study period 

To assess whether the samples assayed during the entire study had comparable fGMCs, we 

calculated the CVinterassay of the fGMCs of the pools across all 23 plates. The CVinterassay of 

pools (mean = 58.4 ± 20.2%) exceeded the commonly applied criterion of 20% (e.g. 

Goymann et al. 1999; Bales et al. 2005; Ganswindt et al. 2005; Behie, Pavelka & Chapman 

2010), indicating substantial variation in the accuracy ofmetabolitemeasurements during the 

study. 
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We then assessed separately for each of the three batches EIA precision, stability of 

the accuracy of measurements, analytical sensitivity, quantitative resolution and binding 

sensitivity. CVintra-assay and CVinterassay of pools did not exceed 5%and 20%, respectively, 

indicating that the precision of the EIA was high and the accuracy remained stable within 

each batch of measurements (see Appendix S1 in Supporting Information). The results also 

indicated that the EIA maintained a high analytical sensitivity and quantitative resolution 

throughout the study. The binding sensitivity of the EIA was similar in July 2011 (range of 

standard concentrations at 10 – 90% of binding: 0.5 – 28.9 pg 20 µL-1) and September 2011 

(range: 0.6 – 30.5 pg 20 µL-1) but lower in July 2013 (range: 0.9 – 40.5 pg 20 µL-1; Fig. 1). 

 

 
Fig. 1. Relationship between the percentage of binding of the tracer and measured cortisol 
concentration in standards. Symbols correspond to the mean SD concentration in cortisol at 
10, 20, 50, 80 and 90% of binding of the tracer, for July 2011 (n = 5 standard curves), 
September 2011 (n = 5 standard curves) and July 2013 (n = 13 standard curves). 

 

We also tested for interference with non-antigenic material in samples because such 

‘matrix effects’ can disrupt the relationship between measurements of metabolites and 

hormone standards when faecal extracts are diluted. We applied two tests of parallelism 

which compared the slope of the calibration curve with that of the displacement curve 

obtained from serial dilutions of faecal extracts (Kemeny & Challacombe 1988). One test was 
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performed in July 2011 using two faecal samples (‘A’ and ‘B’) that were extracted in 2011 

and a second test was performed in July 2013 using two faecal samples (‘C’ and ‘D’) that 

were extracted in 2011 and 2012. Parallelism was validated for all four faecal extracts 

(ANCOVA, P-value for comparison of the slopes: P = 0.08 for extract A; P = 0.86 for B; P = 

0.15 for C and P = 0.51 for D), demonstrating that there were no matrix effects on our 

measurements and that the bias between measurements of metabolites and standards was 

constant throughout the range of dilution of faecal extracts. 

Establishment of the standardization procedure 

The standardization procedure consists of (i) identifying ‘clusters’ of samples assayed with 

similar EIA accuracy and assigning the reference cluster, (ii) choosing and re-assaying a 

subset of samples with the EIA accuracy of the reference cluster, (iii) modelling the 

relationship between initial and remeasured metabolite concentrations, (iv) testing the 

predictive performance of the model and (v) standardizing the metabolite concentrations of 

all samples from the cluster. The following sections detail how we established the method 

using our data set on fGMCs in spotted hyenas. 

Identifying clusters of samples assayed with similar EIA accuracy and assigning the 

reference cluster 

To identify plates that contain pools of similar concentrations (i.e. similar accuracy) and 

determine which and how many faecal samples may need to be re-assayed and 

standardized, we conducted a cluster analysis on all measurements of fGMCs of the high and 

low pools simultaneously. We performed a hierarchical clustering using Ward’s 

agglomeration method on the dissimilarity matrix of Euclidean distances between the fGMCs 

of pools from the 23 plates (R core package ‘stats’;Ward 1963; Murtagh & Legendre 2014). 

This analysis identified two distinct clusters, referred to as Cluster 1 and Cluster 2 (Fig. 2). 

Cluster 1 comprised the 10 plates (n = 138 samples) assayed in July 2011 and September 

2011 and Cluster 2 the 13 plates (n = 345 samples) assayed in July 2013. An alternative 

analysis conducted on the fGMCs of each pool separately revealed similar results. To verify 

that each cluster conformed to the generally accepted interassay variation in precision and 

accuracy of CVinterassay ≤ 20%, we calculated the CVinterassay of the pools in Cluster 1 and 

Cluster 2. The CVinterassay of pools in the two clusters each conformed to the level of 

acceptance, indicating a stable EIA accuracy within each cluster (Fig. 2). We assigned Cluster 
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2 as the reference cluster for the re-assaying of samples and standardization of fGMCs 

because at the time of reassaying EIA accuracy corresponded to that of Cluster 2 (see 

following section). The fGMCs of low and high pools increased by a factor of 7.5 and 2.7, 

respectively, between Cluster 1 and Cluster 2. 

 

Fig. 2. Dendrogram showing the hierarchical clustering of the concentration of faecal pools 
assayed on 23 plates. The two clusters of faecal pools identified by the analysis are referred 
to as Cluster 1 and Cluster 2. CVinterassay (LP) and CVinterassay (HP) correspond to the interassay 
coefficient of variation for the low and high pool, respectively. Numbers (from1 to 23) below 
the dendrogram refer to the code of the plate.  
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Re-assaying samples with the EIA accuracy of the reference cluster 

To establish our method, we re-assayed all 138 faecal samples of Cluster 1 within a few days 

after assaying the 345 samples of Cluster 2, using the same solutions of standards and pools, 

and applying the same EIA protocol as for Cluster 2. Optical densities of standards and 

concentrations of pools run with the re-assayed samples were similar to those of standards 

and pools run in Cluster 2 (CVinterassay < 20%), confirming a stable EIA accuracy and binding 

sensitivity between Cluster 2 and reassaying. To avoid errors associated with different 

extraction procedures and dilutions of sample extracts, all re-assays were performed using 

the same sample extracts and dilutions as in Cluster 1.  

Modelling the relationship between initial and remeasured concentrations using the 

complete data set 

We modelled the relationship between the fGMCs initially measured in Cluster 1 (fGMCinitial, 

as x) and the fGMCs remeasured with the accuracy of Cluster 2 (fGMCremeasured, as y) using an 

OLS linear regression on raw measurements, that is, before multiplying fGMCs by their 

corresponding dilution factor (for a comparison with an alternative linear model, see 

Appendix S1 in Supporting Information). The resulting equation was as follows: 

fGMCremeasured = 4.22 + 1.33 x fGMCinitial     eqn 1 

This model accounted well for the variation in remeasured fGMCs (adjusted r² = 0.72; n = 

138). 

Cross-validating the model using the complete data set 

We assessed the predictive performance of themodel using a cross-validation procedure (R 

package ‘DAAG’; Maindonald & Braun 2014) that divided the data set into three subsets of 

equal size. Alternately, two subsets were grouped and used as ‘training’ sets to fit an OLS 

linear regression while the remaining subset was used as a ‘test’ set to assess the reliability 

of predictions on an independent subset of samples. 

Following our tolerated variation in precision and accuracy of repeated 

measurements of CVinterassay ≤ 20%, we considered model predictions to be reliable if the 

difference between predicted fGMCs and their matched remeasured fGMCs did not exceed 

20% (i.e. CVfit ≤ 20%).We further considered amodel to have a satisfactory predictive 
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performance when at least 70% of samples had a CVfit ≤ 20%. The cross-validation showed 

that 86.2% of samples (120 out of 138 samples) conformed to our criterion of CVfit. 

 

 

Fig. 3. Variation in the predictive performance of OLS linear regressions with decreasing size 
of the data set. Results indicate the mean (solid lines) and 95% confidence interval (dotted 
lines) percentage of faecal samples with a coefficient of variation (CVfit) within the 
boundaries of CVfit ≤20% and CVfit ≤10%, calculated with 10 000 simulations. The red line 
with arrow indicates the smallest number of samples to re-assay (here, n = 27) to obtain at 
least 70% of samples with a CVfit ≤20%. The x-axis is displayed on a logarithmic scale. 

 

Estimating the minimum number of samples to re-assay 

To estimate the minimum number of samples required to obtain reliable predictions, we 

generated data sets of decreasing size (i.e. from 138 to 10 samples) by choosing randomly, 

without replacement, a given number of faecal samples among the complete data set of 138 

samples. We fitted and cross-validated OLS linear regressions on these data sets. The 

random sampling, model fitting and cross-validation procedures were reiterated 10 000 

times for each data set. Results of the cross-validation of these models are illustrated in Fig. 

3 for two different criteria of prediction reliability (i.e. CVfit ≤ 20% and CVfit ≤ 10%; see also 

Table S2 in Appendix S1 in Supporting Information). The smallest data set to reach our 

threshold formodel acceptance (i.e. 70% of CVfit ≤.20%) was 27 samples (Fig. 3). 



Chapter 4 : Standardisation of hormones metabolite measurements  Eve Davidian 
 

78 
 

 

 

Fig. 4. Relationship between initial and remeasured faecal glucocorticoid metabolite 
concentrations (fGMC) for a subset of 27 faecal samples. The black line is the OLS linear 
regression fitted to predict fGMCs in Cluster 2 (eqn 2: fGMCremeasured = 4.88 + 1.21 x 
fGMCinitial, adjusted r² = 0.65). The area shaded in green represents the 95% confidence 
interval of the fit. 

 

Applying and validating the standardization procedure with a subset of 27 samples 

To test the effectiveness of the standardization based on a subset of samples, we randomly 

chose 27 samples from our complete data set of 138 samples and fitted an OLS linear 

regression to their initial and remeasured fGMCs (adjusted r² = 0.65; n = 27; Fig. 4). The 

resulting equation was as follows: 

fGMCremeasured = 4.88 + 1.21 x fGMCinitial    eqn 2 

The cross-validation of the model indicated that 88.9% of samples (24 out of 27 

samples) had a CVfit ≤20%, confirming that our subset was large enough to perform reliable 

standardization. Moreover, the Pearson product–moment correlation coefficient between 

predicted and remeasured fGMCs for the model based on the subset of samples was high 

(eqn 2, r = 0.81, n = 27) and did not differ from the correlation obtained for the model based 
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on the complete data set (eqn 1, r = 0.85, n = 138; Fisher’s r to Z transformation; Z = 0.58, P = 

0.56). 

 

Fig. 5. Faecal glucocorticoid metabolite concentrations (fGMC) initially measured in Cluster 
1, remeasured with the accuracy of Cluster 2 and standardized on Cluster 2 (n = 138). Boxes 
encompass interquartile ranges (first to third quartiles around the median), horizontal lines 
inside boxes represent medians, and whiskers are at 1.5 times the interquartile ranges. The 
y-axis is displayed on a logarithmic scale. 

 

We standardized the fGMCs of all 138 samples of Cluster 1 using eqn 2 and rescaled 

the raw standardized concentrations into final concentrations by multiplying them by their 

dilution factor. To test the effect of the variation in EIA accuracy on the quantification of 

fGMCs, assess the potential risk of misinterpreting results when fGMCs of different accuracy 

are combined, and verify that our standardization procedure effectively reduced such risk, 

we compared the fGMCs of the 138 samples that were remeasured with the accuracy of 

Cluster 2 to (i) their matched fGMCs initially measured in Cluster 1 and (ii) their matched 

fGMCs after standardization on Cluster 2.As expected by the observed increase in pool 

concentrations, the fGMCs remeasured with the accuracy of Cluster 2 (median = 16.7 ng g-1) 

were significantly higher than their matched fGMCs measured in Cluster 1 (median = 8.8 ng 

g-1; Wilcoxon’s signed-rank test, V = 9591, P < 0.0001; median of between-group differences 

= 7.44 ng g-1, CI95% = 6.76–8.33 ng g-1; Fig. 5), but did not significantly differ from their 
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matched standardized fGMCs (median = 15.6 ng g 1; V = 4494, P = 0.52; median of between-

group differences = 0.30 ng g-1, CI95% = 0.84 to 0.42 ng g-1; Fig. 5).  

DISCUSSION 

Our results confirm that changes in EIA accuracy can bias measurements of metabolite 

concentrations. Measurements of varying accuracy should therefore be standardized before 

being combined for statistical analysis. We showed that our method reduced the differences 

in fGMCs caused by the change in EIA accuracy between two clusters to a non-significant 

value, rendering all measurements of the study comparable with each other. We further 

demonstrate the reliability of the standardization procedure when only a small subset of 

samples is re-assayed. To our knowledge, this is the first method to standardize metabolite 

concentrations when changes in accuracy occur within a given EIA. 

The method involves simple statistical procedures, applies relevant and widely 

accepted criteria in endocrinology and can be generalized to cases when two or more 

clusters require standardization (see Box 1 for a summary of the procedure). Appropriate 

consideration should be given to the number of samples to re-assay and the regression 

method applied to model the relationship between initial and remeasured metabolite 

concentrations. The minimum number of samples to reassay is study specific and depends 

on various factors such as the maximum intra-assay and interassay variation in precision and 

accuracy that is tolerated (here, 5% and 20%, respectively), the threshold for model 

acceptance and the dispersion of sample metabolite concentrations (Linnet 1999; Brown, 

Walker & Steinman 2004). Here, we proposed a threshold for model acceptance of 70%of 

samples complying with our criterion of prediction reliability, and this indicated a minimum 

subset of 27 samples to be re-assayed. The model fitted to 27 samples was as effective at 

standardizing fGMCs as the model for the complete data set, confirming that this threshold 

was sufficient in our case. A different threshold may be better suited to other data sets and 

scientific questions. Note, however, that even when fitted to the complete data set, the 

mean predictive performance of our model never exceeded 87. 5% (see Table S2, Appendix 

S1 in Supporting Information). We suggest starting with a subset of approximately 27 

samples and cross-validating the fitted model to assess a posteriori whether predictions are 

reliable or whether additional samples need to be re-assayed. The approximate number of 

additional samples required to reach the chosen threshold can be estimated with the help of 
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Table S2 (Appendix S1 in Supporting Information) for two different criteria of prediction 

reliability. 

Whether the samples in the subset should be chosen in a random manner from the 

complete data set or randomly within some stratification may depend on the scientific 

question and the distribution of metabolite concentrations in the cluster. If measurements 

reflect different treatments or categories of individuals (e.g. diet, age, sex, social status), 

samples should be randomly chosen within each treatment or category of individuals 

(Pocock & Simon 1975). To avoid introducing errors owing to different dilution factors, we 

further recommend fitting a model on measured raw metabolite concentrations, that is, not 

corrected for their dilution. The chosen subset should therefore be restricted to samples 

that can be re-assayed at the same dilution as their initial measurement. The factor of 

change in concentration of the high and low pools between two clusters can be used to 

estimate the highest and lowest initial raw metabolite concentration in samples that is likely 

to fall within the linear range of the calibration curve if remeasured at the same dilution. 

The relationship between initial and remeasured concentrations may in most cases 

be best described by a linear regression, but other methods (e.g. polynomial) may give a 

better fit depending on how concentrations changed along with the change in EIA accuracy. 

Alternatively, nonparametric regression techniques such as splines (Green & Silverman 

1993) may be applied. In our study, we only accepted measurements when their duplicated 

values differed by <5%. Applying a simple OLS linear regression was as effective at 

standardizing metabolite concentrations as a more complex model that explicitly 

incorporated measurement errors (see Appendix S1 in Supporting Information). If a larger 

discrepancy between duplicated measurements is tolerated, OLS linear models may have a 

lower predictive power than models that incorporate measurement errors on both axes. 

The standardization relies on the ability to track changes in EIA accuracy using the 

metabolite concentration of pools. It is thus important to be able to dismiss the effect of 

erroneous preparation of hormone standard and pool solutions on metabolite 

measurements. To facilitate this, we highly recommend preparing new stock solutions of 

pools and standards before the old stocks are depleted and assaying them together on a 

transition plate to ensure that new solutions give similar results to the old ones (Brown, 

Walker & Steinman 2004). When old and new stock solutions of pools are prepared based on 

different faecal or urinary samples, for example when the original samples are depleted, 
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such a procedure allows to adjust the dilution of new solutions to match the concentration 

of old pools or, alternatively, to calculate a factor of change between old and new pools. The 

evaluation of the performance of our EIA indicated that the EIA remained highly precise and 

sensitive throughout the study. The validation of parallelism at the beginning and end of the 

study confirmed the absence of matrix effects that could have been associated with the 

extraction procedure, denaturation of the antibody or changes in the structure of 

metabolites in faecal extracts over time. Renewal of stock solutions of standards and faecal 

pools did not coincide with changes in the optical densities of standards or with changes in 

the metabolite concentration of pools. Finally, the switch in laboratory personnel that 

occurred between the two clusters is unlikely to be the cause of the change in EIA accuracy 

because several technicians used the same EIA during our study and all experienced a similar 

change in binding sensitivity and accuracy. The observed change in accuracy and binding 

sensitivity between the two clusters thus most probably resulted from adjustments in the 

concentration of antibody and tracer and potential (uncontrolled) fluctuations in 

environmental conditions (e.g. room temperature). 

Our assessment of the standardization procedure was based on re-assaying a subset 

of samples after some time had elapsed (18 months and more). Ageing of faecal samples, 

that is, the latencies between sample collection, storage, extraction and assaying, may alter 

metabolite concentration owing to naturally occurring faecal bacteria that may decompose 

steroid metabolites after defaecation (Möstl & Palme 2002). Applying appropriate 

treatment, storage and extraction procedures can stabilise hormone metabolites for long 

periods of time, possibly for many years. Here, we applied the recommended treatment and 

storage procedures for faecal steroids (Khan et al. 2002; Terio et al. 2002; Hunt & Wasser 

2003; Lynch et al. 2003; Millspaugh&Washburn 2004;Kalbitzer&Heistermann 2013) and 

found that the increase in fGMC of sample extracts was consistent with that of pools, 

suggesting that the age of extracts had no or only a minor influence on the measurements. 

Quantifying the absolute accuracy of metabolite measurements is difficult because 

the chemical structure and binding affinity of metabolites are usually unknown. We 

therefore cannot determine whether the initial or the remeasured metabolite 

concentrations are more accurate. This is usually of little relevance in studies in ecology and 

evolution where a similar level of EIA accuracy and comparable measurements are more 

important than a high EIA accuracy in absolute terms (Lynch et al. 2003). Methods have been 
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developed within the context of clinical studies and studies in conservation medicine to 

compare and harmonise measurements of plasma hormones obtained with different EIAs 

(Bidlingmaier & Freda 2010). However, the global application of such harmonisation 

methods may be limited because they are often based on the systematic re-assaying of 

complete sets of samples, are not aimed at predicting standardized concentrations and 

rarely consider intra-EIA changes in accuracy, sensitivity or precision that would affect the 

harmonisation procedure over time (Müller et al. 2011). 

Our standardization method may be particularly useful for collaborative projects that 

share the laboratory workload between different facilities and are likely to experience 

variation in EIA performance and accuracy, and for long-term and longitudinal studies that 

typically deal with large data sets and may not be able to re-assay all samples whenever new 

samples are collected or a new research question is investigated. Moreover, because this 

method only requires the re-assaying of a subset of samples, it allows the standardization of 

the initial measurements of samples that are no longer available. This can significantly 

increase sample sizes, enhance the power of statistical analyses and allow the inclusion of a 

larger number of covariates in statistical models, which may be important for a better 

understanding of complex processes.  
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Box 1. Procedure to standardize sample metabolite concentrations measured by EIAs. 

Step 1: Identify clusters of samples assayed with similar EIA accuracy 

● Define the EIA accuracy at the time of standardisation as the reference accuracy. If 

unknown, run a plate with standards and pools to determine it. 

● Conduct a hierarchical cluster analysis on the concentration of pools of all plates and 

assign clusters based on the resulting dendrogram. 

● Calculate the inter-assay coefficient of variation (CV) of pools for each cluster; subdivide 

clusters with CVs exceeding the criterion for similar EIA accuracy (here, 20%). Repeat until all 

clusters have CVs that satisfy the criterion. 

● Define the cluster of samples assayed with the reference accuracy as the reference cluster 

and standardise samples from all other clusters on this cluster. 

Note: The following steps describe the procedure to standardise one cluster. If Step 1 

indicates that more clusters should be standardised, repeat Step 2 to Step 5 for each cluster. 

Step 2: Choose and re-assay a subset of samples 

● Choose a subset of samples that is representative of all samples of the cluster and that can 

be re-assayed at the same dilution as when initially assayed. 

● Re-assay the subset within a few days after the cluster analysis to ensure that the EIA 

accuracy of the subset and reference cluster are similar. 

Step 3: Model the relationship between initial and re-measured metabolite concentrations  

● Model the relationship between initial (x) and re-measured (y) concentrations of the 

subset of samples using raw measurements, i.e. before multiplying them by their dilution 

factor, and retrieve the resulting equation (i.e. intercept and slope). 

Step 4: Test the predictive performance of the model 

● Cross-validate the model and retrieve the predicted metabolite concentrations of the 

samples in the subset. 

● Set a criterion for prediction reliability that corresponds to the criterion for similar EIA 

accuracy (here, 20%) and compute the CVs of the predicted and re-measured metabolite 

concentrations for each sample in the subset. 
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● Set a threshold for satisfying model predictive performance (here, 70%) and calculate the 

percentage of samples that conform to the criterion for prediction reliability. If this 

threshold is not reached, re-assay more samples (i.e. restart from Step 2). 

Step 5: Standardise the metabolite concentrations 

● Standardise the concentrations of all other samples of the cluster using the equation 

obtained in Step 3. 

● Rescale the standardised raw concentrations into final concentrations by multiplying them 

by their dilution factor. 

Note: R programing codes for each step of the standardisation procedure are provided as 

Supporting Information in Appendix S2. 
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SUPPORTING INFORMATION (APPENDIX S1) 

 

This document contains: 

1. EIA performance in each batch of measurements (Table S1) 

2. Alternative regression method that considers measurement errors 

3. Variation in model predictive performance with decreasing size of data set (Table S2) 

 

 

 

1. EIA performance in each batch of measurements 

To assess the performance of our enzyme immunoassay (EIA) during each of the three 

batches of measurements (July 2011, September 2011 and July 2013), we quantified the 

following parameters: 

Precision: refers to the repeatability of measurements of metabolite concentrations of 

(faecal or urinary) control pools and is divided into two components: (1) the intra-assay 

precision which corresponds to the within-plate difference in duplicated measurements of 

pools, and (2) the interassay precision which corresponds to the between-plate difference in 

repeated measurements of pools. Intra- and interassay precision are traditionally expressed 

as the coefficient of variation (CV) of repeated measurements. As a rule of thumb, results 

were considered precise when the CVintra-assay and CVinterassay did not exceed 5% and 20%, 

respectively. In concordance with the criterion for high interassay precision, EIA accuracy 

was considered stable across plates when CVinterassay did not exceed 20%. The formula of the 

CV that was applied to calculate the CVintra-assay, CVinterassay and CVfit (see main document) 

was: 

CV = SD / mean × 100 

where SD and mean correspond to the standard deviation and the mean of a given set of 

measurements, respectively. Note that we computed all SDs using the denominator (n-1), 

with n being the number of measurements considered. Results are presented in Table S1. 
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Analytical sensitivity (S): refers to the ability of an EIA to respond, in terms of optical 

densities (ODs), to small variations in concentration (i.e. ‘slope’ definition of sensitivity, 

Pardue 1997). It corresponds to the slope Si of the tangent at a given point i of the 

calibration curve as follows: 

Si = ΔOD[i,i+h] / ΔConc[i,i+h] 

where ΔOD[i,i+h] is the difference in OD between two points within a small interval [i,i+h] 

and ΔConc[i,i+h] is the difference between the corresponding concentrations of the two 

points. We used the mean calibration curve for each batch of analyses to calculate the EIA 

sensitivity and quantitative resolution (see below) for three standard values (1.56 ng/g; 6.25 

ng/g; 25 ng/g; Table S1). 

Quantitative resolution (QR): although it is rarely considered, the QR is a useful parameter 

to evaluate the quality of the estimation of concentrations at a given point i of the 

calibration curve and is calculated as follows: 

QRi = SD(OD)i / Si 

where SD(OD)i is the standard deviation of the ODs of standard duplicates of a point i and Si 

is the analytical sensitivity (Pardue 1997) at i. Small values of quantitative resolution indicate 

a fine-tuned quantification of sample concentrations (Table S1).  
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Table S1: EIA performance in terms of precision, stability of EIA accuracy, analytical 
sensitivity and quantitative resolution in July 2011, September 2011 and July 2013. Stability 
of EIA accuracy and intra- and interassay precision were quantified through the coefficient of 
variation (CV) of repeated measurements of faecal pools with relatively low (‘low pool’) and 
high (‘high pool’) metabolite concentration. ‘n’ refers to the number of plates run within 
each batch of analyses. 

 

  
Jul-11 Sep-11 Jul-13 

  
(n = 5) (n = 5) (n = 13) 

CVintra-assay (%) 
low pool 2 3 2 

high pool 2 2 1 

CVinterassay (%) 
low pool 8 20 15 

high pool 15 3 8 

Analytical 

sensitivity 

1.56 ng/g 0.049 0.137 0.11 

6.25 ng/g 0.012 0.021 0.059 

25 ng/g 0.001 0.003 0.005 

Quantitative 

resolution 

1.56 ng/g 0.17 0.08 0.16 

6.25 ng/g 0.46 0.19 0.09 

25 ng/g 1.13 0.59 1.31 

 

2. Alternative regression method that considers measurement errors 

Directly applying an ordinary least-squares (OLS) linear regression to model the relationship 

between repeated measurements of concentrations typically violates the assumption of 

exogeneity because the independent variable (here: fGMCinitial) was measured with error. 

This may lead to biased regression estimates. Here, we present a linear regression method 

that takes into account these measurement errors when fitting a model, and compare its 

resulting regression coefficients and predictive power to that of the simple OLS linear 

regression applied in the main document. 

Repeated ordinary least-squares (OLS) linear regressions on simulated values of x and 

y: The measurement error of the concentration of a given sample can be estimated using the 

standard error of sample duplicates. To consider this source of variation in our model, we 
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simulated data by randomly drawing a value of x (fGMCinitial) and y (fGMCremeasured) for each 

sample from a normal distribution based on the corresponding mean and standard error of 

sample duplicates and fitted an OLS linear regression. We repeated the simulation and 

fitting procedures one thousand times and used the means of the regression coefficients (i.e. 

mean slope and mean intercept) generated from the 1000 OLS linear regressions to 

determine a unique equation to predict fGMCs in Cluster 2 (mean adjusted r² = 0.73; n = 

138):  

fGMCremeasured = 4.29 + 1.32 × fGMCinitial       (eqn S1) 

The predictive power (i.e. adjusted r²) and mean regression coefficients of this model were 

very similar (ANOVA, comparison of the regression slopes; F = 0.01, d.f. = 2, P = 0.99) to that 

of the OLS linear regression presented in the main document (adjusted r² = 0.72; n = 138): 

fGMCremeasured = 4.22 + 1.33 × fGMCinitial       (eqn S2) 

This indicates that considering measurement errors in our model did not significantly 

improve the reliability of the model predictions. We thus only presented the simplest linear 

regression approach in the main document.  

Note that we considered using ‘error-in-variables’ models such as a Major Axis linear 

regression and other similar methods such as the weighted Deming linear regression and the 

Maximum-Likelihood regression (MLFR) which are recommended to describe the functional 

relationship between two variables when both the dependent and independent variables 

are associated with measurements errors. In contrast to OLS linear regressions, such models 

fit an equation that minimises the sum of squared Euclidean distances between each data 

point and the regression line (Legendre & Legendre 1998). Such models are commonly used 

to compare results from different immunoassays (e.g. Cornbleet & Gochman 1979, Ripley & 

Thompson 1987; Linnet 1990; Wild 2013). ‘Error-in-variables’ models are particularly useful 

to make inferences on a model’s parameters. However, their application within a predictive 

context has been questioned because of their potential to create biased predictions (e.g. 

Sokal & Rohlf 1987; Legendre & Legendre 1998; Smith 2009). To avoid this risk we chose to 

present the results from the OLS linear regression in the main document. 

  



Chapter 4 : Standardisation of hormones metabolite measurements  Eve Davidian 
 

93 
 

3. Variation in model predictive performance with decreasing size of data set 

Table S2: Predictive performance of ordinary least squares (OLS) linear regressions fitted on 
data sets of decreasing size (from n = 138 to n = 10 faecal samples). The random selection of 
faecal samples and OLS fitting procedures were reiterated 10 000 times for each data set. 
Results indicate the mean, upper and lower confidence limits at 95% of the percentage of 
faecal samples in each data set for which the coefficient of variation (CVfit) between 
predicted and remeasured metabolite concentrations did not exceed 20% and 10%. 

 

 
CVfit ≤ 20 % CVfit ≤ 10 % 

Size of data set mean upper CI95% lower CI95% mean upper CI95% lower CI95% 

138 87.5 89.1 86.2 51.3 54.4 47.8 

137 87.5 89.1 86.1 51.4 54.7 48.2 

136 87.5 89.0 86.0 51.3 54.4 47.8 

135 87.5 88.9 85.9 51.3 54.8 48.1 

134 87.5 89.6 85.8 51.3 54.5 47.8 

133 87.5 89.5 85.7 51.3 54.9 47.4 

132 87.5 89.4 85.6 51.4 55.3 47.7 

131 87.5 89.3 85.5 51.4 55.0 47.3 

130 87.5 90.0 85.4 51.3 55.4 46.9 

129 87.5 89.9 85.3 51.4 55.0 47.3 

128 87.5 89.8 85.2 51.3 55.5 47.7 

127 87.5 89.8 85.0 51.4 55.1 47.2 

126 87.5 89.7 84.9 51.3 55.6 46.8 

125 87.5 90.4 84.8 51.3 56.0 47.2 

124 87.5 90.3 84.7 51.3 55.7 46.8 

123 87.5 90.2 85.4 51.3 56.1 47.2 

122 87.5 90.2 85.3 51.4 55.7 46.7 

121 87.5 90.1 85.1 51.4 56.2 46.3 

120 87.4 90.0 85.0 51.4 55.8 46.7 

119 87.5 90.8 84.9 51.4 56.3 46.2 

118 87.5 90.7 84.8 51.3 55.9 46.6 

117 87.5 90.6 84.6 51.4 56.4 46.2 

116 87.5 90.5 84.5 51.4 56.0 46.6 

115 87.5 90.4 84.4 51.4 56.5 46.1 

114 87.4 90.4 84.2 51.4 56.1 46.5 

113 87.5 91.2 84.1 51.4 56.6 46.0 

112 87.5 91.1 83.9 51.4 56.3 46.4 

111 87.4 91.0 83.8 51.4 56.8 46.0 

110 87.5 90.9 83.6 51.3 57.3 45.5 

109 87.5 90.8 84.4 51.4 56.9 45.9 

108 87.4 90.7 84.3 51.4 57.4 45.4 

107 87.4 90.7 84.1 51.4 57.0 45.8 
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106 87.5 91.5 84.0 51.3 57.6 45.3 

105 87.5 91.4 83.8 51.4 57.1 45.7 

104 87.5 91.4 83.7 51.5 57.7 45.2 

103 87.4 91.3 83.5 51.4 57.3 45.6 

102 87.4 91.2 83.3 51.4 57.8 45.1 

101 87.4 91.1 83.2 51.4 57.4 45.5 

100 87.4 92.0 83.0 51.4 58.0 45.0 

99 87.4 91.9 82.8 51.4 57.6 45.5 

98 87.4 91.8 83.7 51.4 58.2 44.9 

97 87.4 91.8 83.5 51.5 57.8 44.3 

96 87.4 91.7 83.3 51.4 58.3 44.8 

95 87.4 91.6 83.2 51.4 57.9 44.2 

94 87.3 91.5 83.0 51.4 58.5 44.7 

93 87.4 91.4 82.8 51.5 58.1 44.1 

92 87.4 92.4 82.6 51.4 58.7 44.6 

91 87.4 92.3 82.4 51.5 59.3 44.0 

90 87.4 92.2 82.2 51.4 58.9 44.4 

89 87.4 92.1 82.0 51.5 58.4 43.8 

88 87.3 92.1 81.8 51.4 59.1 43.2 

87 87.4 92.0 82.8 51.5 58.6 43.7 

86 87.3 91.9 82.6 51.5 59.3 44.2 

85 87.3 91.8 82.4 51.5 58.8 43.5 

84 87.3 92.9 82.1 51.5 59.5 44.1 

83 87.3 92.8 81.9 51.5 59.0 43.4 

82 87.3 92.7 81.7 51.5 59.8 43.9 

81 87.3 92.6 81.5 51.5 59.3 43.2 

80 87.3 92.5 81.3 51.6 60.0 43.8 

79 87.3 92.4 81.0 51.6 59.5 43.0 

78 87.2 92.3 82.1 51.5 60.3 43.6 

77 87.2 92.2 81.8 51.5 59.7 42.9 

76 87.2 93.4 81.6 51.5 60.5 43.4 

75 87.2 93.3 81.3 51.6 60.0 42.7 

74 87.2 93.2 81.1 51.6 60.8 41.9 

73 87.2 93.2 80.8 51.5 60.3 42.5 

72 87.1 93.1 80.6 51.5 61.1 41.7 

71 87.1 93.0 80.3 51.5 60.6 42.3 

70 87.2 92.9 81.4 51.5 61.4 41.4 

69 87.0 92.8 79.7 51.7 60.9 42.0 

68 87.1 92.7 80.9 51.6 61.8 42.7 

67 87.1 92.5 80.6 51.6 61.2 41.8 

66 87.0 93.9 80.3 51.7 62.1 40.9 

65 87.0 93.9 80.0 51.7 61.5 41.5 

64 87.0 93.8 79.7 51.6 62.5 40.6 

63 87.0 93.7 79.4 51.7 61.9 41.3 

62 87.0 93.6 79.0 51.6 62.9 40.3 
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61 86.9 93.4 78.7 51.6 62.3 41.0 

60 86.9 93.3 80.0 51.7 61.7 41.7 

59 86.8 93.2 79.7 51.7 62.7 40.7 

58 86.8 93.1 79.3 51.6 62.1 41.4 

57 86.8 94.7 79.0 51.6 63.2 40.4 

56 86.8 94.6 78.6 51.7 62.5 39.3 

55 86.8 94.6 78.2 51.6 63.6 40.0 

54 86.8 94.4 77.8 51.7 63.0 40.7 

53 86.6 94.3 77.4 51.8 64.2 39.6 

52 86.6 94.2 78.9 51.7 63.5 40.4 

51 86.6 94.1 78.4 51.7 64.7 39.2 

50 86.5 94.0 78.0 51.8 64.0 40.0 

49 86.6 93.9 77.6 51.8 63.3 38.8 

48 86.5 95.8 77.1 51.7 64.6 39.6 

47 86.5 95.7 76.6 51.8 63.8 38.3 

46 86.4 95.7 76.1 51.8 65.2 39.1 

45 86.4 95.6 75.6 51.7 64.4 37.8 

44 86.3 95.5 75.0 51.6 65.9 38.6 

43 86.2 95.4 76.7 51.6 65.1 37.2 

42 86.2 95.2 76.2 51.8 66.7 38.1 

41 86.1 95.1 75.6 51.7 65.9 36.6 

40 86.1 95.0 75.0 51.6 67.5 37.5 

39 86.0 94.9 74.4 51.7 66.7 35.9 

38 85.8 94.7 73.7 51.7 65.8 36.8 

37 85.9 94.6 73.0 51.8 67.6 35.1 

36 85.8 94.4 75.0 51.5 66.7 36.1 

35 85.7 97.1 74.3 51.6 68.6 34.3 

34 85.6 97.1 73.5 51.7 67.7 35.3 

33 85.6 97.0 72.7 51.6 66.7 36.4 

32 85.5 96.9 71.9 51.6 68.8 34.4 

31 85.3 96.8 71.0 51.6 67.7 35.5 

30 85.2 96.7 70.0 51.5 70.0 33.3 

29 85.2 96.6 72.4 51.4 69.0 34.5 

28 85.0 96.4 71.4 51.3 71.4 32.1 

27 84.9 96.3 70.4 51.3 70.4 33.3 

26 84.8 96.2 69.2 51.3 69.2 30.8 

25 84.6 96.0 68.0 50.9 72.0 32.0 

24 84.5 95.8 66.7 51.1 70.8 29.2 

23 84.2 95.7 65.2 51.2 73.9 30.4 

22 84.1 100.0 68.2 51.2 72.7 31.8 

21 83.9 100.0 66.7 51.1 71.4 28.6 

20 83.8 100.0 65.0 50.9 75.0 30.0 

19 83.5 100.0 63.2 50.6 73.7 26.3 

18 83.1 100.0 61.1 50.3 72.2 27.8 

17 82.9 100.0 58.8 50.2 76.5 23.5 
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16 82.6 100.0 62.5 50.1 75.0 25.0 

15 82.2 100.0 60.0 49.5 73.3 20.0 

14 82.0 100.0 57.1 49.3 78.6 21.4 

13 81.3 100.0 53.9 48.9 76.9 23.1 

12 80.9 100.0 50.0 48.7 75.0 16.7 

11 80.1 100.0 45.5 48.4 81.8 18.2 

10 79.1 100.0 50.0 47.3 80.0 10.0 
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SUPPORTING INFORMATION (APPENDIX S2) 

This document contains the R software programming codes to standardise sample 

metabolite concentrations when the accuracy of an enzyme immunoassay (EIA) varies. The 

procedure, divided in 5 Steps, is described in the main document (Methods & Results 

section) and summarised in Box 1. These codes can be run using our exemplary data sets, 

archived as text files on figshare. 

########################## Standardisation procedure ########################### 

# Step 1: Identify clusters of samples assayed with similar EIA accuracy  

data.cluster <- read.table(file="data_for_cluster.txt", header=TRUE) # Imports the file 

containing the concentrations of low pool ("Low.Pool") and high pool ("High.Pool") assayed 

on each plate(here, n = 23). 

head(data.cluster) # Displays the first 6 rows of data.cluster (to check that the file was 

imported properly). 

dissimilarity.matrix <- dist(x=data.cluster, method="euclidean") # Creates a dissimilarity 

matrix based on Euclidean distances. 

hierarchical.clustering <- hclust(d=dissimilarity.matrix, method="ward.D2") # Performs a 

hierarchical clustering. 

plot(hierarchical.clustering) # Plots the resulting dendrogram. 

# Step 2: Choose and re-assay a subset of samples  

# If a subset should be chosen randomly from the complete data set, the following codes can 

be applied:  

Ntotal <- 138 # Sets the total number of samples (here 138). 

Nsubset <- 27 # Sets the size of the subset (here 27). 

subset <- sort(x=sample(x=1:Ntotal)[1:Nsubset]) # Choses a random subset of size Nsubset 

from the entire data set of size Ntotal. Note that the result will always be different as it is 

random. 

subset # Displays the randomly chosen samples to re-assay. 
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# Step 3: Model the relationship between initial and remeasured metabolite 

concentrations  

data.subset <- read.table(file="data_for_fit.txt", header=TRUE) # Imports the file containing 

the initial raw concentrations in Cluster 1 ("x.raw") and the remeasured raw  

concentrations in Cluster 2 ("y.raw") for the chosen subset (here 27 samples). 

head(data.subset) # Displays the first 6 rows of data.subset (to check that the file was 

imported properly). 

 fit.subset <- lm(formula=y.raw~x.raw, data=data.subset) # Fits an OLS linear regression on 

the subset.  

summary(fit.subset) # Displays model equation and adjusted r squared. 

# Step 4: Test the predictive performance of the model  

install.packages("DAAG") # Installs DAAG package.  

library(DAAG) # Loads DAAG package. 

CV <- function(x) 100*sd(x=x)/mean(x=x) # Defines the function to compute the coefficient 

of variation. 

CVfit <- function(CVlm) apply(cbind(CVlm$cvpred, CVlm$y.raw), 1, CV) # Defines the function 

to compute "CVfit", i.e. the coefficient of variation between predicted ("CVlm$cvpred") and 

remeasured concentrations ("CVlm$y.raw"), for each sample in the subset. Note that the 

"CV" in the name of the function (CVlm) from the DAAG package stands for Cross-Validation 

and not for coefficient of variation. 

CrossValidation <- CVlm(df=data.subset, form.lm=y.raw~x.raw) # Performs the cross-

validation on the subset. 

CVfit.values <- CVfit(CVlm=CrossValidation) # Runs the CVfit function as defined above on 

the cross-validation results. 

CVfit.values # Displays the coefficient of variation between predicted and remeasured 

concentrations for each sample in the subset. 

criterion <- 20 # Sets the cut-off value for coefficients of variation (here 20%). 
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Predictive_performance <- mean(x=CVfit.values <= criterion)*100 # Calculates the model’s 

predictive performance, i.e. the percentage of samples for which CVfit ≤ criterion. 

Predictive_performance # Displays the resulting model’s predictive performance. 

# Step 5: Standardise the metabolite concentrations 

data.std <- read.table(file="data_for_standardisation.txt", header=TRUE) # Imports the file 

containing all 138 initial raw concentrations measured in Cluster 1 ("x.raw"), the remeasured 

raw concentrations in Cluster 2 ("y.raw"),the associated dilution factor ("dilution") and 

corresponding final concentrations in Cluster 1 ("x.final") and Cluster 2 ("y.final").The last 

column to the right indicates whether or not the sample was part of the chosen subset of 27 

samples to fit the model.  

head(data.std) # Displays the first 6 rows of data.std (to check that the file was imported 

properly). 

data.std$y.raw.standardised <- predict(object=fit.subset, 

newdata=list(x.raw=data.std$x.raw)) # Computes the predicted (i.e. standardised) raw 

concentrations in Cluster 2 ("y.raw.standardised") using the OLS linear regression equation 

fitted on the subset, for all samples from Cluster 1 ("data.std$x.raw"). 

data.std$y.final.standardised <- data.std$y.raw.standardised*data.std$dilution # Calculates 

the final standardised concentrations in Cluster 2 (in ng/g) by multiplying the standardised 

concentrations ("data.std$y.raw.standardised") by their dilution factor in Cluster 1 

("data.std$dilution"). 

data.std$y.final.standardised # Displays the final table. 
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Abstract 

In many animal societies, socially dominant males sire more offspring and/or offspring of 

higher quality than subordinate males. The proximate mechanisms by which social rank 

influences reproductive success are poorly understood. Here, we investigated the influence 

of rank-related dominance potential and socially-induced physiological stress on male 

sociality and courtship behaviour in free-ranging spotted hyenas (Crocuta crocuta). 

Physiological stress was similar in all males when they courted females and competitors 

were absent or when they were resting alone. In contrast, when males engaged in social 

activities or courted females when competitors were present, low-ranking males, who have 

a low dominance potential, had higher physiological stress than high-ranking males. Low-

ranking males adjusted their behaviour to their stronger physiological constraints by 

minimising intrasexual competition; they spent more time alone, less time engaging in social 

and sexual activities, and they invested less in the most attractive and most contested 

females than did high-ranking males. These behavioural adjustments allowed low-ranking 

males to downregulate their physiological stress but also reduced their chances to be chosen 

as sire, explaining why their reproductive success is both quantitatively and qualitatively 

lower than that of high-ranking males. Our results demonstrate that male dominance 

potential mediates the physiological costs of intrasexual competition and shapes behavioural 

trade-offs between the allocation of time and physiological resources to social integration, 

reproduction, and self-maintenance. Our study shows that physiological constraints can play 

a pivotal role in the emergence of rank-related male reproductive investment and 

reproductive skew in group-living species. 

 

Keywords: Physiological constraints; Social status; Performance; Faecal glucocorticoids; 

Stress coping outlets; Reproductive tactics; Activity budget; Trade-off; Natal dispersal  
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Introduction 

Understanding the causes and consequences of inter-individual variation in reproductive 

success is one of the main goals of studies in behavioural ecology and evolutionary biology. 

In most group-living species in which societies are structured by social hierarchies, social 

rank is a primary determinant of reproductive success, with individuals of high rank typically 

producing more offspring and/or offspring of higher quality than those of lower rank 

(Cowlishaw and Dunbar, 1991; Ellis, 1995; Keller and Reeve, 1994). Extensive effort has been 

made to investigate how natural and sexual selection act on rank-related traits (Andersson, 

1994; Clutton-Brock, 2007; Clutton-Brock and Huchard, 2013) and to identify the causes of 

variation in reproductive skew within and between species (Alberts, 2012; Ellis, 1995; 

Gogarten and Koenig, 2012; Keller and Reeve, 1994; van Noordwijk and van Schaik, 2004). 

Yet the proximate mechanism by which social rank influences reproductive success remains 

largely unknown (Cavigelli and Caruso, 2015; Dantzer et al., 2016; Moore and Hopkins, 

2009). 

Sexual selection theory predicts that, in males, reproductive success is primarily 

determined by the number of receptive females and male reproductive performance in 

terms of their ability to access mates and create breeding opportunities (Andersson, 1994). 

In multimale, multifemale societies, top-ranking males are predicted to have a competitive 

advantage over subordinate males, benefit from preferential access to mating partners, and 

sire the largest number of offspring of their group (Alberts et al., 2003; Ellis, 1995; Kutsukake 

and Nunn, 2009; Port and Cant, 2014; Reeve et al., 1998). However, dominant males rarely 

monopolise reproduction and their reproductive investment and success usually decreases 

when the number of male competitors increases (Alberts, 2012; Alberts et al., 2003; 

Cowlishaw and Dunbar, 1991; Gogarten and Koenig, 2012; Setchell et al., 2005). This 

suggests that the intensity of intrasexual competition plays an important role in shaping 

rank-related performance (Cowlishaw and Dunbar, 1991; Gogarten and Koenig, 2012). It also 

suggests that a male’s reproductive performance may be determined by his density-

dependent ability to cope with the costs of competition, rather than his intrinsic or social 

attributes (e.g., body size, aggressiveness, sperm quality, age or number of coalitionary 

partners) which may be associated with his social rank. 

Intrasexual competition over acquisition and maintenance of social rank and over 

access to mates can cause costly changes in physiological traits such as the concentration of 
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glucocorticoids (Creel et al., 2013; Goymann and Wingfield, 2004), termed hereafter, 

‘physiological stress’. Glucocorticoids are key physiological mediators of the endocrine 

control mechanisms that regulate essential biological functions (McEwen and Wingfield, 

2003; Romero et al., 2009), and influence individual life history and fitness (Dantzer et al., 

2016; Ricklefs and Wikelski, 2002). Whereas an acute increase in physiological stress usually 

constitutes an adaptive physiological response to a brief challenge, maintaining elevated 

physiological stress as a result of sustained exposure to challenges can disrupt an individual’s 

endocrine control mechanism, its ability to respond adequately to subsequent challenges, 

and impair its fitness (DuRant et al., 2016; MacLeod et al., 2018; McEwen and Wingfield, 

2003; Romero et al., 2009). Males occupying a rank within the top third of the hierarchy 

(hereafter, ‘high-ranking’ males) and males occupying a rank within the lowest third 

(hereafter, ‘low-ranking’ males) usually differ in their exposure to and ability to cope with 

social conflicts (hereafter, ‘dominance potential’). High-ranking males typically are less likely 

to lose an agonistic interaction or be the target of dominance acts, have relatively more 

targets they can dominate, and have more coalition partners and stronger social bonds than 

low-ranking males (Cavigelli and Caruso, 2015; Creel et al., 2013; Goymann and Wingfield, 

2004; Sapolsky, 2005; Sapolsky and Ray, 1989). Dominating a social interaction may elicit a 

weaker stress response and lead to a faster recovery to pre-conflict concentrations than 

being defeated (Koolhaas et al., 2011; Øverli et al., 1999). Being able to redirect aggression 

towards a lower-ranking third party after being defeated and having strong social bonds or 

coalitionary support may further serve as stress coping outlets and social buffer that enable 

individuals to downregulate physiological stress (Abbott et al., 2003; Creel et al., 2013; 

Sapolsky, 2005; Young et al., 2014). Low-ranking males, with relatively low dominance 

potential, may thus have less of a buffer to cope with socially-induced stress (DuRant et al., 

2016; Romero et al., 2009), i.e., experience stronger physiological constraints. They should 

therefore be under selection pressure to adjust both their social and sexual behaviour in 

ways that minimise their exposure to conflicts and allow them to downregulate their 

physiological stress (Briffa and Sneddon, 2007; Goymann and Wingfield, 2004; Raulo and 

Dantzer, 2018; Ricklefs and Wikelski, 2002; Romero et al., 2009; Sapolsky, 2005; Stier et al., 

2012; Teunissen et al., 2018). Whether and how rank-related asymmetries in dominance 

potential and physiological stress mediate rank-related variations in male reproductive 

investment, performance, and ultimately, reproductive success is currently unknown 
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(Beehner and Bergman, 2017; Cavigelli and Caruso, 2015; Dantzer et al., 2016; Moore and 

Hopkins, 2009; Ricklefs and Wikelski, 2002). 

Most socio-endocrine studies that investigated the physiological costs of 

reproductive investment and mate competition were conducted on species where males 

adopt alternative reproductive tactics as a function of their social rank. For example, in many 

species, top-ranking males engage in mate-guarding – a tactic by which a male consorts with 

a receptive female and aggressively disrupts attempts by lower-ranking males to access or 

mate with the female – whereas lower-ranking males adopt tactics that avoid direct mate 

competition (Bergman et al., 2005; Corlatti et al., 2012; Gesquiere et al., 2011; Girard-Buttoz 

et al., 2014; Setchell et al., 2010). These studies emphasised the physiological costs borne by 

high-ranking, actively competing males and how these costs may constrain their 

performance and reproductive share within the social group (Emery Thompson and 

Georgiev, 2014; Port and Kappeler, 2010). Yet these studies provided limited insight into 

why subordinates usually invest less than dominant males in reproduction and adopt 

alternative reproductive tactics. In addition, the possibility that male reproductive 

investment may not only depend on the physiological costs of sexual activities and mate 

competition but also be constrained by the time allocated to – and the physiological costs of 

– other fitness-enhancing activities, such as social activities, has rarely been considered 

(Raulo and Dantzer, 2018; Rimbach et al., 2016). 

Here, we investigated the influence of male dominance potential on the interplay 

between physiological stress and male investment in social and sexual activities in the 

spotted hyena (Crocuta crocuta). Spotted hyenas live in large clans characterised by a stable 

linear hierarchy (East and Hofer, 2001), fission-fusion system (Smith et al., 2008), and 

promiscuous breeding with no distinct breeding season (East et al., 2003; Engh et al., 2002). 

Males do not adopt alternative reproductive tactics depending on their social rank but do 

differ in the extent to which they maintain associations with females (East and Hofer, 2001; 

Szykman et al., 2001). Females have control over copulation (East et al., 1993; Szykman et 

al., 2007) and a male’s chance to be chosen as a sire primarily depends on whether he was a 

member of the clan when the female was born (Davidian et al., 2016; Höner et al., 2007), 

and on his investment in associating and fostering a relationship with the female (East et al., 

2003; Szykman et al., 2001). Male reproductive success is strongly and positively correlated 

with male social rank (Davidian et al., 2016). Social rank and access to females is not 
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determined by physical aggression (Curren et al., 2015; East et al., 2003; East and Hofer, 

2001) but by asymmetries in the number of coalitionary supporters within a clan (Vullioud et 

al., 2019). Dominance relationships are reinforced through ritualised greetings (East et al., 

1993; Smith et al., 2010a), low-intensity agonistic behaviours, and dominance displays 

between pairs of individuals or coalitions (Curren et al., 2015; Smith et al., 2010b). 

Dispersing males acquire the lowest social rank in the new clan upon immigration and 

increase in social rank with increasing tenure, when a male occupying a rank above them 

dies or (re)disperses (East and Hofer, 2001). These males remain subordinate to native 

females and reproductively active native (hereafter ‘philopatric males’) males (Holekamp 

and Smale, 1998; Vullioud et al., 2019). Because of the asymmetries in social bonds and 

coalition partners between males, and the rigidity of the linear social hierarchy, high-ranking 

males have more opportunities to dominate other males and have more stress coping 

outlets than low-ranking males; high-ranking males therefore have a higher dominance 

potential than low-ranking males (Curren et al., 2015; East and Hofer, 2001; Goymann and 

Wingfield, 2004; Smith et al., 2010b; Vullioud et al., 2019). 

We approximated a male’s dominance potential by his standardised social rank, i.e., 

his position in the hierarchy relative to that of the other reproductively active males in the 

clan. The standardised rank is an integrated measure of the challenges a male receives and 

the coping opportunities he has (see methods for more details). We combined 

measurements of faecal glucocorticoid metabolite concentrations (fGMC) as a proxy of 

physiological stress with behavioural data from males living in eight social groups (‘clans’) of 

a free-ranging population. We tested whether (1) social and sexual interactions influence 

male physiological stress, (2) male dominance potential influences physiological stress in 

these contexts, and (3) rank-related differences in physiological stress in turn affect male 

sociality, reproductive investment and how males allocate their reproductive effort among 

females of different reproductive value. 

We predicted that physiological stress should decrease with increasing male 

standardised social rank and associated dominance potential when males were socially 

active and when they sexually invested in females and concurrently interacted with male 

competitors. We further predicted that physiological stress should not vary with male 

standardised social rank when males did not interact with other males (e.g., when alone and 

when sexually investing in females in the absence of male competitors), and that 
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physiological stress should be lowest when males spent time alone. If so, low-ranking males 

should experience stronger physiological constraints than high-ranking males and adjust 

their behaviour accordingly: they should spend relatively more time alone, conversely invest 

less in social and sexual activities, and focus their reproductive investment on females of low 

reproductive value (Hofer and East, 2003), for which there is less competition for access 

(East and Hofer, 2001; East et al., 2003; Szykman et al., 2007). Finally, we predicted that 

philopatric males should benefit from their relatively high dominance potential (Davidian et 

al., 2016) i.e., weaker physiological constraints and native origin, i.e., pre-established social 

bonds with relatives and high level social integration (Vullioud et al., 2019) in terms of higher 

investment in sexual activities than immigrant males. 

Methods 

Study area and population 

All hyenas of the eight resident clans inhabiting the 250-km2 floor of the Ngorongoro Crater 

(3°11′S, 35°34′E) in Tanzania were monitored between April 1996 and November 2015. The 

hyenas were individually recognised by their unique spot pattern and ear notches. Their age 

was estimated based on pelage characteristics, body size, locomotory abilities, and 

behavioral development (Höner et al., 2010). Dispersal is strongly male-biased; 

approximately 85% of males leave their natal clan and immigrate into another Crater clan to 

breed (Davidian et al., 2016; Höner et al., 2007), whereas virtually all females remain in their 

natal clan throughout their life (Höner et al., 2005). Male breeding group choice and 

dispersal decision are driven by the distribution of breeding partners (i.e., young females) 

across natal and nonnatal clans, rather than the number of competitors, the number of 

unrelated females, or the prey abundance in the clan territory (Davidian et al., 2016; Höner 

et al., 2007). Because extra-clan paternity is extremely rare (Davidian et al., 2016), male 

breeding prospects are influenced by their clan membership and the number of young 

females in the clan (Höner et al., 2010, 2007). The number of adult (≥ 24 months old) clan 

members and reproductively active males increased during the study period from 15.5 ± 3.4 

to 42.9 ± 5.9 and from 4.0 ± 1.1 to 13.1 ± 2.2, respectively. 
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Male dispersal status 

We defined philopatry and dispersal as the outcome of breeding-clan selection that led a 

male to choose and start his reproductive career in his natal clan or in another clan, 

respectively (Davidian et al., 2016). We considered a male to have chosen a clan when he 

expressed sexual behaviour toward females and/or invested in joining the social hierarchy of 

sexually active males in the natal clan (‘philopatric’ male) or another clan (‘immigrant’ male) 

for at least 3 months (Davidian et al., 2016). The date of clan choice was the date of first 

observation of such behaviour for philopatric males and of first sighting in the new clan 

territory for dispersers, and defined the start of a male’s tenure. Males who did not show 

any sign of sexual activity or had not met the 3-month criterion before their date of last 

sighting or the end of the study period were excluded from the analyses. By applying these 

criteria instead of an age-based categorisation of males, we avoided potential biases in male 

behaviour and physiology between philopatric and immigrant males that could arise from 

differences in sexual motivation and maturity (Akinyi et al., 2017; Bercovitch, 1986; Davidian 

et al., 2016; Höner et al., 2008). During the study period, 264 males dispersed to another 

Crater clan, 42 Crater-born males started their reproductive career in their natal clan, and 28 

males immigrated into Crater clans from elsewhere. We considered both first-time selectors 

and males who engaged in breeding dispersal, that is, males who (re)dispersed from their 

clan of first choice and immigrated into another Crater clan (secondary clan choice) 

(Davidian et al., 2016). As a consequence, philopatric males can become immigrants and the 

social rank of immigrant males does not strongly correlate with their age. 

Social rank and dominance potential 

Individual social rank was determined on the day of collection of faecal and behavioural 

data. We determined individual social rank in two steps. First, we constructed the social 

hierarchy of each clan by assigning ordinal ranks to clan members based on the outcome of 

dyadic agonistic interactions (Goymann et al., 2003b; Vullioud et al., 2019). The individual 

with the highest proportion of wins was assigned the ordinal rank 1 and the one with the 

lowest proportion of wins was assigned the ordinal rank equal to the number of clan 

members (e.g., ordinal rank = 20 if N = 20 clan members). Second, we scaled (‘standardised’) 

these ordinal ranks to the number of clan members, using the formula: Standardised ranki = 

([# of clan members – ordinal ranki]/([# of clan members – 1]/2)) – 1. Male standardised rank 
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was calculated considering as clan members all philopatric and immigrant male members of 

the focal clan. Female standardised rank – here, used as a proxy for female relative 

reproductive value (Davidian et al., 2016; Hofer and East, 2003) – was calculated considering 

as clan members all sub-adult (≥12 months old) and adult clan members of both sexes born 

in the focal clan. Standardised rank ranges from −1 (lowest rank) to +1 (highest rank). 

Individuals with standardised rank within the top, middle, and lowest third of the total range 

were classified as high-ranking, medium-ranking, and low-ranking, respectively. Using 

standardised ranks instead of ordinal ranks has several advantages regarding our study 

system and questions. In contrast to ordinal ranks which remain unchanged when new 

immigrants join the clan at the bottom of the hierarchy, standardised ranks account for all 

demographic changes within a clan and for differences in the number of clan members 

between clans. Standardised rank reflects the proportion of clan members ranked above and 

below a focal individual; for example, a medium-ranking male with a standardised rank of 0 

will dominate ca. 50% and submit to ca. 50% of males of his clan. Standardised rank can thus 

be used as an integrated measure of the ratio of dominance and coping opportunities (i.e., 

display dominance, employ scapegoating, enjoy coalitionary support and social buffer) to the 

challenges received by an individual, that is, male dominance potential. Furthermore, using 

standardised rank circumvents the main conceptual pitfall for interpretation – namely the 

“direction of causality” – associated with the use of ordinal ranks, that is, that physiological 

and behavioural patterns obtained by correlational studies can be interpreted either as a 

cause or a consequence of a given ordinal rank and associated physiological, energetic, or 

nutritional states (Beehner and Bergman, 2017). Because standardised rank is a relational 

measure that depends on other group members, it is unlikely to be caused by an individual’s 

physiological and behavioural traits. 

Faeces collection and hormone analysis 

We measured fGMCs in 451 faecal samples from 147 males, including 60 samples from 15 

philopatric and 391 samples from 132 immigrant males (median = 3 samples per male, range 

= 1 − 17). Faeces were collected immediately after defaecation, mixed, subsampled, and 

stored in liquid nitrogen until transported to Berlin (Germany) on dry ice where they were 

stored at −80°C until further processing. Faecal subsamples were freeze-dried prior to 

steroid extraction and fGMCs quantified using an ‘in-house’ competitive enzyme-linked 
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immunosorbent assay (ELISA) based on an antibody generated against cortisol-3-CMO that 

was previously validated analytically and physiologically for spotted hyenas (Benhaiem et al., 

2012). Aliquots were extracted and assayed in a single batch; measurements were 

performed in duplicates and results were accepted only when their coefficient of variation 

(CV) was ≤5%. Intra-assay and inter-assay CVs were 2% and 15% for the low faecal control 

pool, and 1% and 8% for the high control pool, respectively (for more details on extraction 

and assay protocol, see (Davidian et al., 2015). Measurements are expressed as nanogram 

per gram (ng/g) of dry faecal matter. Concentrations of hormone metabolites in faeces 

provide an integrated measure of the endocrine activity over a period of hours to days 

(Goymann, 2005), that is, they reflect the combination of baseline concentrations, endocrine 

response to social conflict (of potentially varying amplitude and degree of repetition), post-

conflict recovery (of varying latency), and downregulation by use of coping outlets and social 

buffer (see also “allostatic load”; Goymann and Wingfield, 2004). For analyses of factors 

influencing physiological stress, we matched each faecal sample and associated fGMC to the 

behavior the male was observed to express during a minimum of 2 hours between 36 hours 

and 10 hours prior to defaecation. This period was defined based on the period during which 

the physiological response to a challenge induced experimentally is detected in faeces of 

spotted hyenas (Benhaiem et al., 2012). If a male had been monitored for ≤2 hours during 

that period, his activity was considered unknown, and the faecal sample was excluded from 

the model (N = 85 faeces with unknown male activity). 

Behavioural and proximity data 

We conducted behavioural observations throughout the day (between 0600 and 1900 h) at 

resting places, communal and birth dens, and other areas of clan territories. We collected 

behavioural and proximity (presence and number of other clan members) data for 334 males 

using all-occurrence and focal animal sampling, as well as hourly scans. Living in fluid fission-

fusion societies, males and females spend time alone or in subgroups of varying size and 

composition (Aureli et al., 2008; Smith et al., 2008). 

We categorised male activity as ‘alone’, ‘social’, or ‘sexual’ using definitions adjusted 

to the two main analyses; both sets of definitions were conservative with respect to our 

predictions. In the analysis of the relationship between activity and physiological stress, 

males were considered alone when they were resting, travelling, hunting or feeding more 
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than 50m away from other males – a distance at which males are unlikely to be the target of 

agonistic behaviours (East and Hofer, 2001) – or when they were within 50m from male clan 

members but not engaging in any social or sexual activity. Males were considered socially 

active when they were involved in affiliative and/or agonistic interactions with other males 

such as greeting, social sniffing, scapegoating, coalition (as emitter or target), and 

dominance displays in the context of feeding (East et al., 1993; Smith et al., 2010b), and 

when they did not engage in any sexual activity. Scapegoating refers to a frequent, 

conspicuous behaviour whereby the target of a dominant act immediately redirects 

dominance (e.g., approaches with its tail up) onto a bystander of lower social rank. 

Scapegoating often takes the form of a ‘cascade’ where successive targets redirect 

dominance onto a lower-ranking third party. When no lower-ranking individual is present, 

the lowest-ranking individual involved in such cascades may occasionally redirect dominance 

towards a smaller carnivore, bird, rock or even the research vehicle. Sexual activities 

comprised repeated intersexual investigatory behaviours, repeated short bouts of approach-

retreat courtship displays, prolonged following of a female (‘shadowing’), harassment, and 

mating (Holekamp and Smale, 1998; Szykman et al., 2007). We considered two contexts of 

sexual activity; (i) ‘sexually active with others’, whenever the focal male exhibited sexual 

behaviours towards a female and concurrently interacted with other males in close 

proximity – typically within the context of intrasexual competition over access or most 

proximate position to a female (East and Hofer, 2001; Goymann et al., 2003a) – and (ii) 

‘sexually active alone’, when the focal male engaged in sexual activities but did not 

concurrently interact with other males or when no other male was present within 50m. To 

assess whether different types of sexual behaviour are associated with different 

physiological stress – e.g., due to differential level of male sexual arousal (Koolhaas et al., 

2011) – we compared the fGMCs of males who displayed the two main types of sexual 

behaviour, namely, approach-retreat courtship displays and shadowing. We found that both 

types of sexual behaviour were associated with similar fGMCs when males were sexually 

active alone – a context that allows to discard potentially confounding effects of intrasexual 

competition – and when fGMCs were matched by male identity and social rank (Wilcoxon 

signed-rank test; V = 26, P = 0.73, N = 9; median of between-group differences = 0.76 ng/g, 

CI95% = –7.89 – 22.19 ng/g). We therefore did not distinguish between the types of male 

sexual behaviour in our analyses. 
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For the analysis investigating the determinants of male activity budget and their 

exposure to mate competition, we categorised male activity based on their proximity to 

other clan members (males and females); a focal male was considered ‘alone’ when no other 

clan member was present within 50m, ‘socially active’ when at least one other clan member 

was present within 50m but the focal male did not engage in sexual activities, ‘sexually 

active alone’ when the male engaged in sexual activities but no other male was present 

within 50m, and ‘sexually active with others’ when the male engaged in sexual activities and 

at least one other male was present within 50m. These data were converted into hourly 

scans (‘sightings’) of activity and proximity data (median = 47 sightings per male, range = 6 – 

349) for the analyses. Previous studies showed that male spotted hyenas most frequently 

associate and socially interact with other males and that social interactions between males 

and females are comparatively rare (East et al., 1993; Ilany et al., 2015). Males are also as 

likely to associate with males that occupy a rank immediately above them as they are to 

associate with a male ranked immediately below (Smith et al., 2007). Thus, when males 

interact with other males, the type and direction of behaviours they engage in should 

generally match those predicted by their dominance potential. 

Spotted hyenas most often hunt alone and feed in groups (Holekamp et al., 1997; 

Smith et al., 2008) at night (Kruuk, 1972). During daytime, hunting and feeding make up less 

than 5% of all sightings (Smith et al., 2008) and males of all social ranks hunt at similar rates 

(Holekamp et al., 1997). Our behavioural data, in particular the proportions of time spent 

alone and with other clan members, are therefore unlikely to be driven by (i) hunting and 

feeding patterns or (ii) differential patterns of hunting and feeding across social ranks. 

Furthermore, differences in physiological stress between low-ranking and high-ranking male 

hyenas are unlikely to arise from rank-related nutritional status. Previous studies found that 

food deprivation can either induce prolonged, elevated physiological stress or an increased 

amplitude of the stress response in socially challenging contexts, and thereby reveal or 

amplify differences between high-ranking and low-ranking individuals when nutritional 

status is correlated with social rank (Killen et al., 2013). In spotted hyenas, however, there is 

currently no empirical evidence that low-ranking males suffer from food deprivation; low-

ranking and high-ranking males have similar body size and body mass (East and Hofer, 2001; 

Engh et al., 2002), and engage in similar hunting rates (Holekamp et al., 1997). 
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Statistical analyses 

Statistical analyses were conducted using R software v.3.4.3 and associated packages (R Core 

Team, 2017). Data are presented as means ± SD unless stated otherwise. The threshold for 

significance (P-value) was set to 5% for deterministic statistical analyses. 

Influence of male dominance potential and activity on physiological stress 

We assessed the factors that influence fGMC using a general linear mixed-effects model 

(GLMM; function lmer() in package lme4; Bates et al., 2015). fGMCs were normalised using 

natural-logarithmic transformation prior to analyses. Covariates included male standardised 

rank, the type of activity (four categories: ‘alone’, ‘social’, ‘sexual (alone)’ and ‘sexual (with 

others)’), the interaction between male standardised rank and activity, and male origin, that 

is, whether the male had grown up in the focal clan (‘native’, for philopatric males) or 

another clan (‘foreign’, for immigrant males). We additionally controlled for male age and 

the amount of faeces in a sample (four categories; ‘small’ [≤150 g], ‘medium’ [150 g  ̶  300 g], 

‘large’ [>300 g] and ‘unknown’). Faeces amount was considered as a covariate to control for 

potential “dilution effects” on fGMC (Goymann, 2012). We included male identity as an 

individual-level random factor. Regression coefficients were estimated by maximum 

likelihood using Laplace approximation. Significance of effects was assessed as the marginal 

contribution of each covariate to the full model by subtracting the likelihood of the reduced 

model without the specific covariate from the full model; P-values were calculated using 

parametric bootstrapped likelihood ratio tests with 1000 simulations (package pbkrtest) 

(Halekoh and Højsgaard, 2014). Model residuals satisfied the assumptions of normal 

distribution and homogeneity of variances (residual plots), and did not show signs of multi-

collinearity between fixed effects (correlation matrix and squared generalised variance 

inflation ratios) (Fox and Monette, 1992). We further assessed the significance of the 

relationship between male standardised social rank and fGMC for each type of activity (slope 

comparison to zero) and compared the slopes (contrast analysis) when males were alone vs. 

socially active and when sexually active (alone) vs. sexually active (with others), using the 

function emtrend() in package emmeans (Lenth, 2018); P-values for the contrast analysis 

were adjusted for multiple comparisons using Bonferroni corrections. 
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Influence of rank-related physiological stress on activity budget 

We investigated the factors influencing male activity budget using a Bayesian multinomial 

logistic mixed-effects model based on Hamiltonian Monte Carlo algorithms. We used the 

packages rstan (Stan Development Team, 2017) and rethinking (McElreath, 2016) following 

the procedure as previously implemented (see Koster and McElreath, 2017) for detailed 

procedure and R script). This model recognises time as a limited resource and that the time a 

male allocates to a given activity inherently reduces the time it can allocate to other 

activities, enabling the investigation of time-based behavioural trade-offs (Koster and 

McElreath, 2017). Here, we considered that at each hourly sighting (N = 21970), a focal male 

could express one of three categorical behavioural responses: be alone, be sexually active, 

or be socially active. Fixed effects were male standardised social rank (as a proxy for 

dominance potential and associated physiological constraints), age, and origin; male identity 

(N = 334) was included as a random factor. The multinomial model contrasted the odds of 

expressing a given behaviour relative to the reference behaviour (here, ‘alone’). The 

coefficients estimated by the model were log(odds) and were converted into odd ratios, 

using the formula: exp[coefficient]. Odd ratios >1 and odd ratios <1 indicate a relative 

increase and decrease, respectively, in the likelihood to express the behaviour. We 

considered a fixed effect significant if the credible interval (CrI95%) of its estimated coefficient 

did not include 1. The model also has the advantage of providing information on the 

variance of individual-level random effects for each behavioural response as well as their 

correlation across responses, thereby potentially revealing if individuals who regularly 

engage in one activity also invests relatively more or less in another activity (Koster and 

McElreath, 2017). Because the multinomial model examines the proportional allocation of 

time to social and sexual activities relative to the reference behaviour, the total time 

considered for each fit corresponds to a subset of all possible behavioural responses and of 

the activity budget; model estimates thus do not provide information on the effect of the 

covariates on the overall proportion of total time males allocated to each activity (i.e., 

relative to the combined time allocated to all other activities). We therefore investigated the 

extent to which male standardised rank and origin influenced male probability to allocate 

time to each activity, using the model predicted probabilities and their 95% percentile 

intervals, as calculated from the posterior samples of the Bayesian, multinomial logistic 

mixed-effect model (Koster and McElreath, 2017). 
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Male exposure to intrasexual competition and quality of male sexual investment 

We investigated the factors that influenced male exposure to intrasexual competition when 

sexually active using hourly counts of the number of males in proximity to a focal male and 

his target female. Because the data were both overdispersed and zero-inflated, we 

conducted a hurdle model using the function glmmadmb() in package glmmADMB (Fournier 

et al., 2012). Such a procedure allows to analyse overdispersed, zero-inflated count data in 

two steps, each step specifying a distinct underlying process: (i) a binomial process to 

investigate the factors influencing the presence (‘sexual (with others)’ coded as ‘1’) vs. 

absence (‘sexual (alone)’ coded as ‘0’) of males in proximity to a focal male (2034 sightings of 

218 males) and (ii) a truncated count process – here, a truncated negative binomial model to 

circumvent the overdispersion of residuals – restricted to counts with value ≥1, to assess the 

factors that influenced the number of proximate males when focal males were sighted in the 

context ‘sexual (with others)’ (1399 sightings of 197 males). Covariates included male 

standardised rank and origin as well as the standardised rank of the courted female; male 

identity was considered as a random factor. Finally, we performed a logistic GLMM to assess 

the effects of male standardised social rank and origin on male likelihood to sexually invest 

in females of high standardised social rank, that is, of high reproductive value, as opposed to 

females of low and medium rank. 

Results 

Relationship between male fGMC, social rank and activity 

There was a significant effect of the interaction between male standardised rank and the 

type of activity males engaged in on their fGMC (LR = 14.70, P = 0.006; whole model: LR = 

128.74, P < 0.001, N = 366 faeces with matched activity from 121 males; see Table S1 for 

detailed model estimates). fGMC decreased with increasing standardised rank when males 

were socially active (‘social’; slope coefficient = −0.51, CI95% = −0.78 to −0.24, P < 0.001; 

contrast slope alone – social = 0.39, t-ratio = 2.41, P = 0.033; Figure 1; Table 1) and when 

males were sexually active and concurrently interacting with other males (‘sexual with 

others’; slope coefficient: −0.29, CI95% = −0.55 to −0.02, P = 0.037; contrast slope sexualalone - 

sexualwith others = 0.53, t-ratio = 2.54, P = 0.023). In contrast, male standardised rank did not 

influence fGMC when males did not interact with clan members (‘alone’; slope coefficient = 
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−0.12, CI95% = −0.37 − 0.14, P = 0.37) and when males were sexually active without 

interacting with other males (‘sexual alone’; slope coefficient = 0.25, CI95% = −0.12 − 0.61, P = 

0.19). Male origin had a significant effect on fGMC, with native males having higher fGMC 

than foreigners (LR = 4.55, P = 0.046; Table 1). 

 

 

Figure 1 | The influence of male activity and standardised rank on physiological stress. 
Purple lines depict the relationship between social rank and faecal glucocorticoid metabolite 
concentrations (fGMC) in natural log units. Shaded areas indicate 95% confidence intervals 
as predicted by a general linear mixed-effects model when other covariates were held 
constant (age: population mean = 6.69 years, origin: foreigner, faeces amount: medium) and 
without accounting for individual-level random effects. Grey dots correspond to raw data (in 
log [ng/g]). Standardised rank is used as a proxy for male dominance potential and ranges 
from −1 (lowest rank) to +1 (highest rank). 
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Table 1. Predicted and observed (raw) physiological stress as a function of male social rank 
and origin. Values correspond to mean faecal glucocorticoid metabolite concentrations in 
ng/g. Predicted means (CI95%) are back-transformed predictions for the combined influence 
of male social rank and origin as derived from a general linear mixed-effects model when 
other covariates were held constant (age: population mean = 6.69 years, faeces amount: 
medium) and without accounting for individual-level random effects. Low-ranking and high-
ranking immigrants are foreigners with standardised rank between −1 and −0.33 and 
between 0.33 and 1, respectively. Philopatric males are native males with high social rank. 
Predicted means were computed using the mean standardised social rank of each male 
category (low-ranking immigrant: mean = −0.74; high-ranking immigrant: mean = 0.64; 
philopatric male: mean = 0.79). 

 

Low-ranking immigrant High-ranking immigrant Philopatric male 

Male activity  Predicted Raw Predicted Raw Predicted Raw 

Alone 20.9 (17.2 - 25.3) 25.2 ± 17.9 17.9 (14.2 - 21.9) 31.4 ± 27.7 25.2 (19.2 - 33.8) 33.2 ± 25.2 

Social 54.1 (44.3 - 65.9) 61.8 ± 52.3 27.8 (21.2 - 34.8) 37.0 ± 28.5 35.1 (27.7 - 46.5) 48.9 ± 32.1 

Sexual (alone) 22.6 (15.7 - 34.4) 23.8 ± 16.9 32.0 (22.7 - 41.5) 46.9 ± 20.3 45.8 (35.6 - 60.8) 83.4 ± 54.8 

Sexual (with others) 62.6 (48.1 - 78.2) 69.9 ± 26.5 43.1 (31.8 - 54.5) 59.6 ± 43.3 54.6 (41.1 - 74.3) 104.4 ± 124.3 

 

Rank-related investment in social and sexual activities 

As male standardised rank increased, the odds improved that males allocated time to social 

activities (Bayesian multinomial mixed-effects logistic model; odd ratio = 1.49; CrI95% = 1.40 – 

1.57) and to sexual activities (odds ratio = 1.86; CrI95% = 1.65 – 2.06) relative to being alone, 

and that the relative increase in sexual investment was higher than the increase in social 

activities. Male origin also influenced male behaviour: native males were less likely to 

engage in social activities (odds ratio = 0.60; CrI95% = 0.48 – 0.76) but were more likely to be 

sexually active (odds ratio = 1.74; CrI95% = 1.17 – 2.57) than to be alone, as compared to 

foreigners (Table S2). Investigation of individual-level random effects further revealed (i) a 

relatively low variance for social activities (exp(estimate) = 1.40) in comparison to sexual 

activities (exp(estimate) = 2.29), and (ii) a significant positive correlation between male 

investment in social and sexual activities (0.30; CrI95% = 0.11 – 0.50), when controlling for the 

fixed effects. The heterogeneity of random variance indicates that all males had similar 

propensities to allocate time to social activities but differed greatly in their propensity to 

allocate time to sexual activities. The positive correlation between social and sexual 

investment indicates that males with a relatively high propensity to invest in social activities 

also had a high propensity to invest in sexual activities. Inspection of the probabilities 

predicted by the model revealed that male social rank and origin both are strong 
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determinants of male activity budget (Figure 2 and Figure 3a). As males increased in social 

rank, they spent less time alone and more time with social and sexual activities. Native males 

spent more time alone, less time in proximity to clan members, but invested more time in 

sexual activities than foreigners (Figure 2 and Figure 3a). Overall, males spent most of their 

time in proximity to other clan members (‘social’; mean percentage out of total sightings: 

73% ± 15%, N = 334 males), less time alone (20% ± 15%), and least of their time sexually 

active (7% ± 8%; Figure 3a). 

 

 

Figure 2 | The probability of males to engage in three activities as a function of their 
standardised rank (a) and origin (b). Probabilities are predicted means (purple lines and 
dots) with 95% percentile intervals (shaded areas and vertical bars) as calculated from the 
posterior samples of a Bayesian multinomial logistic mixed-effects model. Predictions were 
computed by holding covariates at their sample mean and without accounting for random 
effects (here, male identity). In (a), predictions were computed for males of foreign origin. 
Grey dots correspond to observations, averaged at each 0.05 interval of standardised social 
rank for visibility. The scale on the y-axis was adjusted to the range of observations and 
differs between activities. 
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Figure 3 | The allocation of time to different activities and the social rank of the courted 
females as a function of male social rank and origin. (a) Observed mean proportion of time 
allocated to each activity. (b) Social rank of the females that were courted by males. Social 
rank was standardised and ranges from −1 (lowest rank) to +1 (highest rank). Dashed 
horizontal lines delimitate the range of standardised ranks within the top, middle, and lower 
thirds of the total range; these ranges comprise high-ranking, medium-ranking, and low-
ranking females, respectively. Boxes indicate the interquartile range around the median 
(black dot), vertical bars represent female social ranks that lie within 1.5 times the 
interquartile range, and grey shaded areas represent the distribution (kernel density 
estimate) of the data. 

 

Female quality and male exposure to intrasexual competition 

Previous studies showed that high-ranking female hyenas were courted by males at higher 

rates than low-ranking females (East and Hofer, 2001; Szykman et al., 2007), suggesting that 

male-male competition for access to females may increase with increasing female social rank 

and associated reproductive value. We therefore tested whether female social rank and 
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male characteristics influenced the presence and number of male competitors in close 

proximity to a male courting a female. When a male was sexually active, the likelihood that 

competitors were present (‘Presence model’) and the number of competitors (‘Count 

model’) that were present strongly increased with increasing social rank of the courted 

female (Table 2). Male social rank did not have a significant influence on either the presence 

or the number of competitors in close proximity (Table 2). Male origin had a significant 

effect on the presence of competitors, with native males being more likely than foreigners to 

be sexually active in the presence of competitors (Table 2). 

When a male was sexually active, the likelihood that he courted a high-quality, high-

ranking female was strongly influenced by male standardised rank (logistic GLMM: LR = 7.39, 

P = 0.007) and origin (LR = 8.97, P = 0.003; whole model: LR = 25.82, P < 0.0001, N = 2034 

sightings from 218 males; see Table S3 for detailed coefficients). Low-ranking immigrants 

invested in females of lower quality (mean female standardised rank = 0.17 ± 0.59, N = 76; 

Figure 3b) than did high-ranking immigrants (0.44 ± 0.37, N = 78; Mann-Whitney U test; U = 

2228.5, P = 0.008), and high-ranking immigrant males overall invested in lower-ranking 

females than did philopatric males (0.55 ± 0.41, N = 36; U =1055, P = 0.034). 

Discussion 

Our findings are consistent with the predictions of the hypothesis that rank-related 

physiological stress, arising from differences in social challenge and availability of coping 

outlets, is a key proximate mediator of variation in reproductive investment and success in 

male spotted hyenas. 

Consistent with our predictions, physiological stress was similar for males of all social 

ranks when they were on their own or when they showed sexual interest in a female in the 

absence of male competitors. Furthermore, when males engaged in social interactions and 

when they competed with other males over access to a female, low-ranking males 

experienced higher physiological stress than when alone or sexually active alone, and their 

physiological stress was higher than that of high-ranking males. These results indicate that 

differences in physiological stress across male social ranks are contingent on interactions 

with other males and thus most likely arise from rank-related differences in male dominance 

potential. 
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Table 2 | Factors influencing the presence and number of competitors when males were 
sexually active. Shown are the regression coefficients and standard errors (s.e.) in log units, 
back-transformed coefficients as exp(coeff), and the corresponding likelihood ratio (LR) and 
P-values for each predictor variable. Regression coefficients were estimated by a hurdle 
model in two steps; a binomial mixed-effect model (whole Presence model: LR = 46.19, P < 
0.001; individual-level random effect variance = 0.18; N = 2034 sightings from 218 males) 
and a zero-truncated negative binomial mixed-effect model (whole Count model: LR = 13.76, 
P = 0.003; individual-level random effect variance = 0.14; N = 1399 sightings from 197 
males). For the Presence model, exp(coeff) correspond to odd ratios and indicate the factor 
of change in the likelihood to be sexually active with competitors relative to that of being 
sexually active without competitors present, with a one-unit increase in the predictor and 
when other covariates are held constant. For the Count model, exp(coeff) indicates the 
increase or decrease in the absolute number of competitors present with a one-unit increase 
in the predictor. 

Fixed effect coefficient s.e. z value exp(coeff) LR P 

Presence model           

Intercept 0.55 0.08 6.94 1.73 
  

Female social rank 0.54 0.09 5.95 1.72 35.10  < 0.001 

Male social rank -0.09 0.12 -0.80 0.91 0.64 0.425 

Male origin (native) 0.56 0.20 2.88 1.75 8.20 0.004 

Count model 

Intercept 1.06 0.04 24.49 2.89 
  

Female social rank 0.13 0.04 3.38 1.14 11.76  < 0.001 

Male social rank -0.09 0.05 -1.68 0.91 2.78 0.095 

Male origin (native) 0.07 0.10 0.73 1.07 0.52 0.471 

 

 

Previous studies predicted that rank-related physiological stress should mainly emerge in 

systems where dominance relationships are established and maintained through intense 

aggression and physical contest (Creel et al., 2013; Goymann and Wingfield, 2004). Our 

results demonstrate that intrasexual interactions can also elicit rank-related physiological 

stress in systems where dominance relationships are mostly determined by social 

conventions and where competition over social dominance and access to mates involves low 

levels of aggression. 

Our findings further indicate that rank-related physiological stress can be substantial 

enough to induce costly disparities in sociality and reproductive investment between low-

ranking and high-ranking males. Low-ranking spotted hyena males spent more time alone 
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than did high-ranking males, at the expense of social and sexual activities. Furthermore, low-

ranking males sexually invested in females of lower social rank – i.e., of lower reproductive 

value – than did high-ranking males. These tactics constitute an effective behavioural 

response by low-ranking males to avoid physiologically costly intrasexual competition and 

downregulate their physiological stress to levels similar to those of high-ranking males (as 

indicated by the lack of an overall correlation between physiological stress and male social 

rank; Figure S1, see also (Goymann et al., 2003b)). Reducing reproductive investment and 

focusing the investment on females of lower social rank however also reduce their 

opportunities to be chosen as mates and lowers their chance to mate with females of high 

reproductive value (East et al., 2003; Szykman et al., 2001). This may explain why low-

ranking males have lower reproductive success than high-ranking males both in terms of the 

number and the reproductive value of the offspring they sire (Davidian et al., 2016). 

Our results are consistent with the idea that male allocation of time to different 

activities is shaped by trade-offs between the benefits of these activities and the 

physiological and missed-opportunity costs associated with them (Briffa and Sneddon, 2007; 

Dunbar et al., 2009; Ricklefs and Wikelski, 2002). We found that all males spent most of their 

time in proximity to clan members, even low-ranking males for which social interactions 

elicited comparatively high physiological stress. This suggests that prominent investment in 

social interactions is compulsory for all males and may reflect the direct and indirect fitness 

benefits of these activities. In spotted hyenas, as in other group-living species, maintaining 

proximity to (and interacting with) clan members is essential for the social integration of 

males – that  is, the establishment and maintenance of clan membership, social bonds, 

coalitions, and social rank – and can strongly influence male current and future reproductive 

success (Berghänel et al., 2011; East and Hofer, 2001; Gilby et al., 2013; Ryder et al., 2009; 

Smith et al., 2010a; Vullioud et al., 2019; Willisch et al., 2010; Wiszniewski et al., 2012; Young 

et al., 2013). Spending time with clan members may further help males locate females, 

provide males with opportunities to engage in sexual activities, and thereby increase their 

chances to be chosen as sires. 

Two findings of our study strongly suggest that investment in reproduction by males 

is not only constrained by the physiological costs of sexual activities but also by the time and 

physiological resources they allocate to social activities. First, immigrant males spent more 

time in proximity to clan members but invested less in sexual activities than did philopatric 



Chapter 5 : Physiological stress and rank-related male performance  Eve Davidian 
 

123 
 

males. These differences may stem from inherent differences in the level of social 

integration between philopatric and immigrant males. Philopatric males benefit from their 

native status in terms of stronger social bonds and greater social support than immigrant 

males (Vullioud et al., 2019). Philopatric males thus are better socially integrated in their 

clan than immigrants and may in turn afford to invest less in social activities in favour of an 

accrued investment in sexual activities (see also Günther et al., 2017; Ilany et al., 2015). The 

higher quantitative and qualitative reproductive investment by philopatric male spotted 

hyenas may explain why philopatric males start breeding at a younger age and sire a higher 

proportion of their offspring with females of high reproductive value than do immigrants 

(Davidian et al., 2016). Second, among immigrant males, an increase in social rank and 

dominance potential is associated with a decrease in physiological stress during social 

interactions and competition over access to mates. This reduces their need to spend time 

alone – to downregulate their physiological stress – and enables them to use this spare time 

and physiological resources to increase their investment in fitness-enhancing social and 

sexual activities (Dunbar et al., 2009; Pollard and Blumstein, 2008; Zera and Harshman, 

2001). Furthermore, high-ranking males allocated most of their spare time and physiological 

resources to increasing their investment in sexual activities and focus on females of higher 

reproductive value. 

Our findings highlight the importance of considering the time allocated to activities 

other than sexual activities and their associated physiological costs when studying the 

proximate causes of variation in reproductive investment and reproductive success across 

social ranks (see also Alonzo, 2010; Dunbar et al., 2009; Rimbach et al., 2016; van Noordwijk 

and van Schaik, 2004; Zera and Harshman, 2001). Patterns of rank-related physiological 

stress and reproductive investment are likely to vary depending on (i) factors that influence 

the nature and intensity of intrasexual competition – such as the seasonality of breeding and 

the availability of uncontested mates (Cant et al., 2006; Port and Cant, 2014), the nature of 

the contested resource, and whether males gain immediate or delayed fitness benefits (Cant 

et al., 2006; East and Hofer, 2001; Port and Cant, 2014; van Noordwijk and van Schaik, 2004) 

– and (ii) factors that influence the availability of stress coping outlets – such as the degree 

of cohesiveness of group members (Abbott et al., 2003; Aureli et al., 2008; Goymann and 

Wingfield, 2004; Sapolsky, 2005; Wroblewski et al., 2009). The ability of low-ranking male 

spotted hyenas to adjust their behaviour (i.e., stay alone, invest in uncontested, lower-
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quality mating partners) to their physiological constraints in ways that effectively balance 

their physiological stress mainly stems from the fluid fission-fusion dynamics of social groups 

in this species (Aureli et al., 2008; Smith et al., 2008). This and the fact that males compete 

over opportunities to foster relationships with females – a non-transferrable resource which 

provides delayed benefits (East et al., 1993; East and Hofer, 2001) – may explain the absence 

of rank-related alternative reproductive tactics among males in this species. In species where 

males engage in overt contest competition over rank and access to monopolisable oestrus 

females, social and sexual activities may incur high physiological costs (Cant et al., 2006; van 

Noordwijk and van Schaik, 2004). These costs may be particularly prohibitive for low-ranking 

males in spatially-cohesive species where opportunities to avoid or recover from social 

challenges and to access uncontested mates are scarce (Abbott et al., 2003; Goymann and 

Wingfield, 2004; Port and Cant, 2014; Sapolsky, 2005). This may drive the emergence of 

rank-related male alternative reproductive tactics in which low-ranking males either forgo 

reproduction, or adopt reproductive behaviours that circumvent or reduce the cost of 

intrasexual competition and reproductive investment within the group (e.g., opportunistic 

sneaky copulation, male-male coalition, or extra-group copulation; Isvaran and Clutton-

Brock, 2007; Taborsky et al., 2008; Young et al., 2007). 

Our study demonstrates that physiological stress plays a pivotal role in shaping male 

reproductive investment and reproductive skew. We show that male social rank, through 

dominance potential, mediates the physiological costs of social activities and competition 

over mates. This causes rank-related physiological constraints and behavioural trade-offs 

between the allocation of time and physiological resources to social integration, 

reproduction, and self-maintenance (Figure 4). With increasing dominance potential and 

level of social integration, males experience lower socially-induced physiological stress and 

increase their reproductive effort both quantitatively and qualitatively. They thereby create 

more opportunities to foster relationships with females, be in proximity to females when 

females reach estrus (i.e., higher ‘performance’; Figure 4), and increase their chances to be 

chosen as mates (i.e., higher reproductive success) (Langergraber et al., 2013; Szykman et 

al., 2001). 
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Figure 4 | The influence of social rank on the interplay between physiological stress and 
behaviour, and its consequences for male performance and reproductive success in the 
spotted hyena. 

 

Our findings further provide insights into the social and physiological costs of 

dispersal – arising from loss of familiarity, social bonds and social rank upon immigration – 

and how these costs may contribute to the reduced reproductive success among recent 

immigrants, as reported in social and colonial mammals (spotted hyena: Davidian et al., 

2016; feral horse: Debeffe et al., 2015; proboscis bat Rhynchonycteris naso: Günther et al., 

2017; bighorn sheep Ovis canadensis: Poirier and Festa-Bianchet, 2018) and birds (barnacle 

goose Branta leucopsis: van der Jeugd, 2001; collared flycatcher Ficedula albicollis: Pärt, 

1994). They may also explain why males of numerous mammals disperse in groups of socially 

bonded males or join groups containing familiar males, as a strategy to reduce these costs 

(Cozzi et al., 2018; Leimberger and Lewis, 2017; Schoof et al., 2009). 
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Supplementary materials 

 

 

 

Figure S1| Relationship between male social rank and faecal cortisol metabolite 

concentrations in spotted hyaenas. Grey circles correspond to raw data for faecal cortisol 

metabolite concentration (fGMC) and corresponding male standardised social rank at 

defaecation (N = 451 faeces from 147 males). Purple circles correspond to the median fGMCs 

calculated at 0.05 standardised rank intervals (N = 39) which were used to perform a Pearson 

product-moment correlation (R = 0.18, df = 37, P = 0.28). Male standardised social rank 

ranges from −1 (lowest rank) to +1 (highest rank). Dashed vertical lines delimitate the range 

of standardised ranks within the top, middle, and lower thirds of the total range which were 

used to categorise males as high-ranking, medium-ranking, and low-ranking, respectively. 
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Table S1| The factors influencing male physiological stress. Shown are the regression 

coefficients and standard errors (s.e.) in natural logarithmic units, the corresponding 

percentage of change, t values, and corresponding likelihood ratios (LR) and P-values for 

each predictor variable. Coefficients indicate the change in faecal glucocorticoid metabolite 

concentrations (fGMC) relative to the intercept and the reference level for the categorical 

variables (activity: alone, origin: foreigner, faeces amount: medium). Regression coefficients 

were estimated by linear mixed model (whole model: LR = 128.74, P < 0.001; individual-

level random effect variance = 0.02, N = 366 faeces from 121 males). %Change corresponds 

to the percentage of increase or decrease in the absolute value of fGMC (i.e., in ng∙g
-1

) with a 

one-unit change in the value of the covariate compared to the reference, as calculated by 

[exp(coefficient)−1]×100. A one-unit increase in male standardised social rank encompasses a 

shift from low to medium and from medium to high rank categories. 

 

Fixed effect coefficient s.e. t value %change LR P 

Intercept 2.67 0.15 17.28 
 

  Social rank -0.12 0.13 -0.93 -11.3 0.86 0.680 

Activity (Social) 0.66 0.11 6.05 93.5 76.08 0.009 

Activity (Sexual alone) 0.34 0.13 2.62 40.5 

  Activity (Sexual with others) 0.96 0.11 8.89 161.2 

  Social rank * Activity (Social) -0.39 0.16 -2.46 -32.3 14.70 0.006 

Social rank * Activity (Sexual alone) 0.36 0.20 1.78 43.3 

  Social rank * Activity (Sexual with 
others) 

-0.17 0.16 -1.05 -15.6 

  Origin (native) 0.32 0.14 2.24 37.7 4.55 0.046 

Age 0.04 0.02 2.57 4.1 6.47 0.012 

Faeces amount (Small) 0.19 0.11 1.83 20.9 7.50 0.068 

Faeces amount (Large) -0.20 0.13 -1.52 -18.1 

  Faeces amount (Unknown) -0.06 0.09 -0.59 -5.8     
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Table S2| The effect of male social rank, origin and age on male investment in social and 

sexual activities. Shown are posterior mean as predicted by a Bayesian multinomial logistic 

mixed-effect model based on 21970 hourly sightings for 334 males. Results are presented as 

odd ratios, that is, exp(estimates), and indicate the effect of one-unit increase in standardised 

social rank and in age, and the effect of being native as compared to a foreigner on the time 

allocated to social or sexual activities relative to the reference category (here, being ‘alone’). 

Odd ratios < 1 reflect a relative decrease and odd ratios > 1 a relative increase in the time 

allocated to an activity. A one-unit increase in male standardised social rank encompasses a 

shift from low to medium rank categories and from medium to high rank categories. Results 

for which credible intervals CrI95% do not encompass 1 and were deemed significant.  

Parameter Behavioural response 

  social sexual 

Intercept 7.89 (6.14 – 10.27) 0.20 (0.13 – 0.32) 

Social rank 1.49 (1.40 – 1.57) 1.86 (1.65 – 2.06) 

Origin (native) 0.60 (0.48 – 0.76) 1.74 (1.17 – 2.57) 

Age 1.04 (0.99 – 1.10) 1.64 (1.51 – 1.80) 
 

 

 

Table S3| Variation in male probability to court a high-ranking female as a function of 

standardised rank and origin. Shown are the regression coefficients and standard errors 

(s.e.) in log units, odd-ratios, and the corresponding likelihood ratio (LR) and P-values for 

each predictor variable. Regression coefficients were estimated by a logistic mixed-effects 

model (whole model: LR = 25.82, P < 0.0001; individual-level random effect variance = 1.35; 

N = 2034 sightings from 218 males). Odd ratios indicate the factor of change in the likelihood 

to be sexually active with competitors relative to that of being sexually active without 

competitors present, with a one-unit increase in the predictor and when other covariates are 

held constant.  

Fixed effect coefficient s.e. z value odd ratio LR P 

Intercept 0.56 0.12 4.78 1.75 
  

Male social rank 0.43 0.16 3.02 1.54 7.89 0.007 

Male origin (native) 1.03 0.34 2.70 2.80 8.97 0.003 
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CHAPTER 6 

General discussion 

The aim of this thesis was to identify proximate and ultimate drivers of variation in fitness 

among males in a social mammal, the spotted hyena, with particular emphasis on breeding-

group choice and social rank, two traits that strongly influence the life history and social 

environment of group-living animals. To achieve this, I combined two decades of data on the 

social and sexual behaviour, physiology, survival and reproductive success of male spotted 

hyenas with demographic data from a population of eight free-ranging hyena clans. 

6.1 Why do male philopatry and dispersal often coexist within a population? 

Dispersal is one of the most important yet least understood drivers of ecological and 

evolutionary processes (Bowler and Benton, 2005; Ronce, 2007). In most group-living 

mammals, including the spotted hyena, most males disperse from their natal group and 

attempt to breed in another group; the remaining males either never disperse or only do so 

after a period of philopatry (Clutton-Brock, 2016; Greenwood, 1980; Höner et al., 2007). The 

evolutionary, ecological, and behavioural processes that lead to inter-individual variation in 

breeding-group choice, influence dispersal propensity and shape dispersal patterns at the 

level of the population are poorly understood (Bonte et al., 2012; Clobert et al., 2009; 

Clutton-Brock and Lukas, 2012). 

In Chapter 3, I investigated the proximate and ultimate drivers of the coexistence of 

philopatry and dispersal in male spotted hyenas. I tested the two main hypotheses proposed 

to explain inter-individual variation in breeding-group choice and dispersal propensity within 

a sex. The first hypothesis is derived from dispersal theory and emphasises the costs of 

dispersal movements. It posits that only individuals of high phenotypic quality can pursue 

the most beneficial strategy; the others are left to do a “best-of-a-bad” job (Bonte et al., 

2012; Bowler and Benton, 2005). The second hypothesis is derived from habitat selection 

theory and emphasises settlement decisions. It suggests that dispersers and philopatric 

males pursue the same strategy and choose the breeding habitat or group with the highest 

fitness prospects; philopatry and dispersal are then outcomes of these decisions (Boulinier et 

al., 2008). 
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My findings were consistent with the hypothesis that the coexistence of philopatry 

and dispersal is the result of a single process of breeding-group selection. Philopatric males 

and dispersers (i) were of similar phenotypic quality, (ii) applied the same criterion to choose 

and settle in a breeding clan and (iii) had similar survival and reproductive success after clan 

choice. I found no evidence to suggest that philopatric males and dispersers are two distinct 

male phenotypes that apply different strategies. The findings therefore were inconsistent 

with the hypothesis that philopatry is a “best-of-a-bad” strategy pursued by phenotypically 

inferior males. 

6.1.1 The role of the distribution of breeding partners 

In Chapter 3, I showed that philopatric males and dispersers both preferably joined clans 

with the largest number of potential breeding partners. Despite similar settlement 

preferences, philopatric males chose clans that contained on average half as many potential 

breeding partners as the clans chosen by dispersers. This apparent discrepancy is a 

consequence of the strong bias in clan quality in favour of nonnatal clans; males who chose a 

clan of low quality were simply more likely to have chosen their natal clan and established 

themselves as philopatric members than to have chosen a nonnatal clan and established 

themselves as immigrants. 

The results in Chapter 3 demonstrated that the distribution of potential breeding 

females across natal and nonnatal clans is the main driver of dispersal patterns and of the 

coexistence of philopatry and dispersal among male spotted hyenas. The rules that females 

apply to choose their sires play a central role in shaping the observed patterns of breeding-

clan choice by males. In contrast to females of other group-living species (Clarke and 

Faulkes, 1999; Clutton-Brock, 2016; Keane, 1990), the mate preferences of female spotted 

hyenas do not involve inbreeding avoidance via kin discrimination or discrimination based on 

the origin of males (East et al., 2003; Höner et al., 2007, 2008). This has two main 

implications for males: (i) males can breed in their natal clan and (ii) natal clans can 

occasionally contain the highest number of potential breeding partners in the population 

and philopatry can thus provide the highest fitness prospects. Furthermore, because female 

mate-choice rules are more restrictive for prospective philopatric males than for prospective 

dispersers, natal clans are less likely than any nonnatal clan to contain the highest number of 

potential breeding females in the population. The observed high proportion of dispersers 
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(85% of males) in the Ngorongoro Crater population was consistent with the strong bias in 

clan quality in favour of nonnatal clans (see also Höner et al., 2007). 

6.1.2 The role of male social rank 

In Chapter 3, I found that male social rank was a strong determinant of male reproductive 

success in spotted hyenas; males of high social rank had a higher annual reproductive rate 

and sired more offspring with females of high reproductive value. Previous studies had 

suggested that male reproductive success in hyenas is influenced by social rank and tenure 

(Engh et al., 2002; Holekamp and Smale, 1998). These studies, however, could not 

disentangle the effects of social rank and tenure because they only considered dispersers, 

for whom social rank and tenure are strongly correlated (East and Hofer, 2001). By 

combining data from philopatric males and dispersers in Chapter 3, I disentangled the effects 

of social rank and tenure. My study therefore represents the first robust assessment of the 

effect of social rank on male reproductive success in the spotted hyena. It further confirms 

previous evidence from the primate literature that social rank can be an important 

determinant of male reproductive success – and high-ranking males can exert considerable 

control over mating opportunities – even in species in which male contest competition for 

access to females is low, females exercise strong mate choice, and male ability to coerce 

females into mating with them is limited (Barbary macaques Macaca sylvanus: Young et al., 

2013; rhesus macaques Macaca mulatta: Dubuc et al., 2011; Japanese macaque Macaca 

fuscata: Soltis et al., 2001; Verreaux’s sifaka Propithecus verreauxi: Mass et al., 2009). 

I further found that philopatric males gained reproductive benefits from their high 

social rank compared to immigrants: philopatric males sired their first offspring nearly one 

year earlier than did immigrants and they sired most (83% for philopatric males versus 39% 

for dispersers) of their offspring with females of high reproductive value. These findings 

strongly contrast with most empirical studies conducted thus far on group-living mammals 

where young philopatric males mainly gained indirect reproductive benefits through 

cooperative care of related offspring or delayed, direct benefits after queuing for dominant 

breeder status (Clutton-Brock et al., 2001; Creel and Waser, 1994; Doolan and Macdonald, 

1996; Robbins and Robbins, 2005; Schradin and Lindholm, 2011). My study thus constitutes 

the first empirical evidence that philopatric males can reproduce as successfully as 

dispersers in a group-living mammal characterised by a strong dispersal bias. It further 
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demonstrated that the reproductive benefits of philopatry increased the propensity of males 

to choose their natal group as breeding group, with nearly twice as many philopatric males 

as expected if choosing the natal clan did not yield any additional benefits compared to 

dispersal. Interestingly, philopatric males were more likely than dispersers to undertake 

secondary clan choice and did so after a shorter tenure than did dispersers. These results 

indicate that philopatric males may adjust the length of their tenure to the lower number of 

potential mates in the natal clan. 

6.1.3 Consequences of breeding-group choices on lifetime reproductive success 

The study presented in Chapter 3 focused on the reproductive consequences of philopatry 

and dispersal and provided estimates of male reproductive success during their tenure in 

their clan of first choice. As shown in Chapter 3 (see also Höner et al., 2007), a non-negligible 

proportion of males, i.e., approximately 18% of dispersers and 50% of philopatric males in 

the Ngorongoro Crater, undertake secondary clan choice (also termed ‘breeding dispersal’) 

during their lifetime. The causes and fitness consequences of secondary clan choice by male 

spotted hyenas, as well as males of other mammals, including primates (Jack and Fedigan, 

2004; Wikberg et al., 2018), remain largely unknown. In spotted hyenas, males who (re-

)disperse join their new clan at the very bottom of the social hierarchy; their reproductive 

trajectory may thus be very similar to that of first-time dispersers. Further studies 

investigating the reproductive output of secondary clan selectors would provide valuable 

insights into potential trade-offs and differences in lifetime reproductive success between 

philopatric males and dispersers who remained all their life in their clan of first choice, and 

males who undertook secondary clan choice. 

6.1.4 Implications for studies on the evolution of dispersal and dispersal patterns 

The study in Chapter 3 illustrates the benefit and relevance of studying dispersal and 

philopatry within the broader framework of habitat selection theory – that is, to emphasise 

the characteristics of available breeding groups and settlement choices – in order to derive 

predictions on the causes and fitness consequences of breeding-group choices and dispersal 

patterns. The study demonstrates that the coexistence of philopatry and dispersal among 

males within a population can be driven by the distribution of group qualities across natal 

and nonnatal groups of the population and by the reproductive benefits associated with 



Chapter 6 : General discussion   Eve Davidian 
 

143 
 

philopatry, rather than high costs of dispersal preventing phenotypically inferior males to 

disperse. This study constitutes the first empirical demonstration that inter-individual 

variation in breeding-group choice and strong dispersal biases can emerge solely from the 

distribution and density of breeding partners when all individuals apply similar mate-based 

settlement rules (see Gilroy and Lockwood, 2016, 2012 for recent theoretical work). The 

study thereby demonstrates that high dispersal biases within a population or species do not 

necessarily result from a strong selective advantage of dispersal over philopatry. 

Similar processes may explain the coexistence of male philopatry and dispersal in 

other group-living species. This is particularly likely to be the case in multimale, multifemale 

societies such as those of many primates, where social groups are large, reproductive skew 

is moderate and where dispersal distances by males are short. Recent empirical evidence 

demonstrated that, in such species, the genetic structure of the population is likely to be 

weak (Lukas et al., 2005; Quirici et al., 2011; Ross, 2001). This suggests that direct inbreeding 

avoidance by males and avoidance of kin competition are unlikely to be important drivers of 

male breeding-group choice and dispersal patterns in these systems. 

6.2 By which mechanism does male social rank influence reproductive 

performance and success? 

Understanding the causes and consequences of unequal partitioning of reproduction among 

members of a group is of major interest to gain insights into the evolution of group-living 

and the variability of social and breeding systems within and between species (Clutton-Brock 

and Huchard, 2013; Kappeler et al., 2013; Port and Cant, 2014). Physiological stress is a likely 

mediator of rank-related performance and reproductive success among males (Breuner et 

al., 2008; Dantzer et al., 2016; Moore and Hopkins, 2009). While there is substantial 

empirical evidence to demonstrate that male social rank and physiological stress can 

influence male reproductive success (Bonier et al., 2009; Breuner et al., 2008; Clutton-Brock, 

2016; Cowlishaw and Dunbar, 1991), studies that investigated the proximate mechanisms by 

which male social rank and physiological stress are responsible for inter-individual variation 

in reproductive success are currently lacking (Breuner et al., 2008; Cavigelli and Caruso, 

2015; Dantzer et al., 2016; Moore and Hopkins, 2009). 
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Studies in behavioural ecology and socio-endocrinology that aim to investigate the 

causes and consequences of variation in physiological stress typically assess relative 

differences in hormone concentrations between individuals, environments, and life-history 

stages (see Chapter 5; see also Akinyi et al., 2017; Goymann et al., 2001; Markham et al., 

2014; Seltmann et al., 2017). Such studies require large sample sizes to allow the inclusion of 

numerous covariates in statistical models and to reach sufficient statistical power. They 

further rely on enzyme immunoassays that detect small differences in hormones 

concentrations (that is, immunoassays of high analytical sensitivity) and that provide 

comparable measurements (that is, immunoassays with a stable accuracy; Wild, 2013). 

6.2.1 Ensuring measurement comparability for non-invasive studies of physiological 

stress 

The accuracy of enzyme immunoassays designed for the quantification of hormone 

metabolite concentrations in faecal and urine samples is known to be prone to fluctuation as 

a result of modifications in the analytical protocol and variation in environmental conditions 

in the laboratory (Noble et al., 2008; Palme, 2019; Wasser et al., 2010; Watson et al., 2013). 

In Chapter 4, I presented a concrete case of dramatic variation in the accuracy of an enzyme 

immunoassay designed to quantify cortisol metabolite concentrations in faeces of spotted 

hyenas. I illustrated how differences in the accuracy of the enzyme immunoassay between 

batches of laboratory analyses can affect the comparability of measurements and impair the 

validity of the interpretations. 

When analytical control parameters indicate significant changes in accuracy, common 

practice to ensure the comparability of measurements is to (re-)assay all samples together 

and within a short period of time (Wild, 2013). Such an approach, however, is costly in time, 

manpower, and finances, and is not applicable when samples have been depleted. In 

Chapter 4, I developed a novel method to improve the applicability of enzyme 

immunoassays for research projects dealing with large data sets, as is typically the case for 

long-term and longitudinal studies. The method restores the comparability of measurements 

for all samples by using a standardisation formula fitted on a small subset – less than a 

quarter of the complete sample set – of re-assayed samples. To determine the size of the 

required subset and retrieve the standardisation formula, I used over four hundred faecal 

samples to model the relationship between their concentrations as initially measured and 
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their matched re-measured concentrations. I performed simulations on decreasing numbers 

of samples to determine the smallest subset that provided a reliable standardisation formula 

(that is, a formula that generated standardised concentrations that differed from their re-

measured concentrations by a coefficient of variation ≤ 20%). 

The method developed in Chapter 4 constitutes an effective and reliable alternative 

to the re-assaying of complete sample sets. Because the method incorporates concepts and 

criteria from the field of analytical endocrinology (for example, coefficient of variation ≤20%; 

Behie et al., 2010; Goymann et al., 1999; Wild, 2013) into statistical procedures, it provides a 

set of intuitive and flexible tools. The method thereby can easily be applied by scientists 

working with other immunoassays, sample matrices, hormones or model species. The 

method is particularly useful for collaborative projects that share the laboratory workload 

between different facilities and are likely to experience variation in assay performance and 

accuracy. It is also valuable for long-term and longitudinal studies that typically deal with 

large data sets and may not be able to re-assay all samples whenever new samples are 

collected or a new research question is investigated. Moreover, it can be applied to 

standardise measurements of samples that are no longer available. This can significantly 

increase sample sizes, enhance the power of statistical analyses and allow the inclusion of a 

larger number of covariates in statistical models, which may be important for a better 

understanding of complex ecological and social processes. 

6.2.2 Physiological stress as mediator of rank-related reproductive skew 

In Chapter 5, I investigated the role of physiological stress and physiological constraints as 

proximate mediators of rank-related variation in reproductive performance and success 

among males. I specifically tested whether (i) social and sexual activities involving 

interactions between males influenced male physiological stress, (ii) male rank-related 

dominance potential influenced physiological stress in these contexts, and (iii) rank-related 

differences in physiological stress impacted male sociality, reproductive investment and how 

males allocated their reproductive effort among females of different reproductive value. The 

findings were consistent with the hypothesis that rank-related physiological stress arising 

from differences in dominance potential is a key proximate mediator of variation in 

reproductive investment and hence reproductive success in male spotted hyenas. 
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6.2.2.1 Male dominance potential influences physiological stress 

I found that male physiological stress differed between high-ranking and low-ranking males 

only in contexts where males could exploit their dominance potential and where differences 

in dominance potential mattered. Low-ranking males, with relatively low dominance 

potential, had higher physiological stress than high-ranking males when they engaged in 

social activities with other males and when courting a female and concurrently competing 

with other males. In contrast, physiological stress was similar for males of all social ranks 

when they did not interact with other males, that is, when alone and when courting a female 

in the absence of male competitors. These results show that intrasexual interactions incur 

higher physiological costs for low-ranking males and suggest that low-ranking males may 

experience stronger physiological constraints than high-ranking males. 

6.2.2.2 Rank-related physiological stress influences male performance 

The study in Chapter 5 demonstrated that high-ranking and low-ranking males differed in 

their allocation of time to social activities, sexual activities and self-maintenance. I found 

that low-ranking males invested less than high-ranking males in activities that elicited 

comparatively high physiological stress; they spent more time alone, less time engaging in 

social and sexual activities and they invested less in the most attractive and most contested 

females – that is, females of high social rank – than did high-ranking males. I further found 

that male physiological stress was lowest when they spent time alone, demonstrating that 

staying away from clan members is an effective strategy in fission-fusion societies to 

downregulate physiological stress (Aureli et al., 2008; Smith et al., 2008). These tactics 

constitute an effective behavioural response by low-ranking males to avoid physiologically 

costly intrasexual competition and downregulate their physiological stress to levels similar to 

those of high-ranking males – as indicated by the lack of an overall correlation between 

physiological stress and male social rank – (see also Goymann et al., 2003). Reducing 

reproductive investment and focusing the investment on females of lower social rank also 

reduces their chance to be chosen as mates and to mate with females of high reproductive 

value (East et al., 2003; Szykman et al., 2001). Consistent with these findings, the study in 

Chapter 3 showed that the reproductive success of low-ranking males is both quantitatively 

and qualitatively lower than that of high-ranking males. The studies of Chapter 3 and 

Chapter 5 thereby provide strong support for the hypothesis that rank-related physiological 
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constraints play a key role in shaping patterns of reproductive skew among male spotted 

hyenas. 

6.2.2.3 Social constraints influence male performance 

The findings in Chapter 5 further suggested that differences in male performance and 

reproductive success were the result of behavioural trade-offs shaped by the combination of 

physiological and social constraints. In spotted hyenas and most other group-living 

mammals, investment in social activities is essential for the social integration and 

reproductive prospects of males (Berghänel et al., 2011; East and Hofer, 2001; Gilby et al., 

2013; Ryder et al., 2009; Smith et al., 2010; Vullioud et al., 2019; Willisch et al., 2010; 

Wiszniewski et al., 2012; Young et al., 2013). The time and physiological resources that males 

allocate to social activities are predicted to reduce their ability to invest in sexual activities. 

The study in Chapter 5 revealed that all males allocated most of their time to social 

activities, including low-ranking males for which social interactions incurred comparatively 

high physiological costs. In line with the prediction, male investment in reproduction was 

constrained by the time and physiological resources that males allocated to social activities. 

Philopatric males who are socially well integrated (Ilany et al., 2015; Vullioud et al., 2019) 

spent less time engaging in social activities and more time engaging in sexual activities than 

immigrant males. Similarly, high-ranking immigrant males who have become well integrated 

in the clan, experienced lower physiological stress when engaging in social activities, spent 

less time alone and more time engaging in sexual activities than low-ranking males. Thus, as 

predicted by studies about the importance of social and physiological constraints and trade-

offs (Dunbar et al., 2009; Pollard and Blumstein, 2008; Zera and Harshman, 2001), the 

comparatively low physiological and social constraints experienced by high-ranking 

immigrant males and philopatric males enabled them to allocate more time and 

physiological resources to fitness-enhancing social and sexual activities. 

6.2.2.4 Possible influence of seasonal energetic constraints 

Glucocorticoids are involved in the regulation of, and in trade-offs with, a broad range of 

metabolic, physiological, and immunological functions (Hau et al., 2016; Ricklefs and 

Wikelski, 2002; Romero et al., 2009). Free-ranging individuals should be able to adaptively 

adjust their physiology and behaviour to a range of predictable environmental and social 
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contexts. However, if superimposed, unpredictable challenges occur, such as a disease 

outbreak or a dramatic food shortage, the capacity of the individual to respond adaptively, 

through physiological and behavioural adjustments, may be limited and insufficient 

(Goymann and Wingfield, 2004; Koolhaas et al., 2011; MacLarnon et al., 2015; Romero et al., 

2009). The physiological mechanism proposed in Chapter 5 to explain the relationship 

between male rank-related dominance potential and physiological constraints, could explain 

deferential allocation of resources to immunity by individuals of different social rank, and 

why low-ranking individuals often are more likely than high-ranking individuals to show 

external signs of infection or die during a disease outbreak even if they have a lower contact 

rate to pathogen sources than high-ranking animals (East et al., 2001; Höner et al., 2012; 

Marescot et al., 2018). 

Seasonal variation in local food abundance can also impose additional constraints on 

the physiology and behaviour of animal (MacLarnon et al., 2015). In ecosystems such as the 

Serengeti, large herbivores undertake large-scale migrations and local prey density can drop 

dramatically and remain low over extended periods of time. In this ecosystem, spotted 

hyenas undertake long-distance, extra-territorial excursions or “commuting trips” of up to 

100 km away from their clan territory to forage on herds of migratory prey (Hofer and East, 

1993a). In addition to being energetically costly, these excursions are likely to incur 

substantial physiological costs owing to increased risks of being the target of aggression by 

unfamiliar resident clan members (Goymann et al., 2001; Hofer and East, 1993b). Investing 

in sexual activities while undertaking these excursions may be energetically and 

physiologically costly to males. Based on the findings in Chapter 5, I would predict that male 

spotted hyenas in the Serengeti ecosystem adjust their behaviour during periods of local 

prey scarcity to reduce these costs; they should invest less in sexual activities and/or chiefly 

focus their reproductive investment on high-ranking females – who are least likely to 

undertake long-distance excursions (Hofer and East, 2003) – or on females with older cubs 

not stationed at the communal den any more – who are less likely to undertake frequent 

commuting trips (Hofer and East, 1993a). Although there is currently no published 

physiological data on males, movement patterns recorded from radio-collared individuals 

are consistent with these predictions: clan members usually travel alone, and the 

commuting pattern of males is similar to that of ‘non-denning’ females, suggesting that 

males may reduce their reproductive investment during excursions and may not sexually 
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invest in courting females that are likely to do frequent and costly commuting trips back to 

the clan territory (Hofer and East, 1993a, 1993b). 

6.2.2.5 The importance of context-dependent physiological stress and 

behavioural adjustments 

A previous study formalised the relationship between physiological stress and the 

competitive regime and availability of coping outlets in group-living species, and built a 

framework to derive predictions on the physiological costs borne by dominant and 

subordinate individuals of a social group (Goymann and Wingfield, 2004). This framework 

predicts that in societies such as that of the spotted hyena where dominance relationships 

are formalised by social conventions (East and Hofer, 2001; Foerster et al., 2016; Holekamp 

and Smale, 1991), high-ranking and low-ranking individuals should experience similar 

physiological costs and constraints and have similar overall physiological stress. This 

prediction was derived from the hypothesis that in convention-based societies, dominance 

relationships are stable and thus predictable, and acquiring and maintaining a social rank 

usually does not involve high rates of aggression and should thereby incur relatively low 

physiological costs for both dominant and subordinate males (Goymann and Wingfield, 

2004; Sapolsky, 2005). Only during times of social instability would physiological stress be 

expected to be increased, as was the case in female Serengeti hyenas during times of social 

instability (Goymann et al., 2001). The lack of a significant association between male social 

rank and overall physiological stress found in Chapter 5 appears consistent with this 

prediction and suggests that high-ranking and low-ranking males bear similar physiological 

costs (or “allostatic load”). 

In Chapter 5 I demonstrated that high-ranking and low-ranking males experienced 

different physiological costs when engaging in social and sexual activities and that the lack of 

an association between rank and physiological stress resulted from behavioural adjustments 

by the males to their different physiological constraints rather than the males having similar 

physiological constraints in all contexts. I further showed that the behavioural adjustments 

by low-ranking males incur substantial reproductive costs in terms of reduced reproductive 

rates and quality of offspring sired (see Chapter 3). These findings thereby highlight the 

importance of considering the social and sexual context and the dominance potential of 

males in these contexts (see also Markham et al., 2014; Sapolsky and Ray, 1989; Setchell et 
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al., 2010; Wolf et al., 2018), when investigating rank-related physiological stress and its 

consequences on the performance and reproductive success of individuals. 

6.2.2.6 Implications for studies on reproductive skew 

The study in Chapter 5 provides strong evidence that male dominance potential mediates 

the physiological costs of intrasexual competition and influences the male’s ability to 

socialise, invest in reproduction and have access to mates of high reproductive value. The 

study thereby shows that physiological constraints play a pivotal role in the emergence of 

rank-related male reproductive investment and reproductive skew in group-living species. 

The study also demonstrates that rank-related dominance potential and physiological 

constraints underpin differences in competitive ability and reproductive performance among 

males of different social rank. The study thereby provides an alternative mechanism to the 

conventional idea which posits that differences in fighting ability and physical attributes 

among males are responsible for differences in reproductive success, and has the potential 

to explain the emergence of rank-related reproductive skew in group-living species 

independent of the competitive regime among males.  

The study also provides insights into the influence of variation in the social 

organisation, breeding system, and fission-fusion dynamics of group members in shaping 

rank-related physiological constraints and social constraints, and how these may account for 

the different patterns of reproductive skew within and between species. The study further 

provides insights into the emergence of alternative reproductive tactics (Taborsky et al., 

2008) among males of different social rank whereby dominant males invest in successful, 

physiologically potentially costly sexual behaviours (for example, mate-guarding) whereas 

subordinates either forgo reproduction, or adopt reproductive behaviours that circumvent 

the physiological costs of intrasexual competition within the group, such as opportunistic 

sneaky copulation, male-male coalitions, or extra-group copulation (Corlatti et al., 2012; 

Gesquiere et al., 2011; Isvaran and Clutton-Brock, 2007; Young et al., 2007). 

6.3 General conclusion 

By showing that the distribution of potential breeding females across natal and nonnatal 

clans is the main driver of dispersal patterns in male spotted hyenas, the thesis provides 

novel insights into the processes leading to the coexistence of philopatry and dispersal 
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within the same sex of a species. The thesis also increases our understanding of the 

evolution of dispersal by showing that philopatry and dispersal can be the result of a single 

process of breeding-group selection and by demonstrating that philopatric males and 

dispersers can have similar reproductive success. 

By showing that social rank is a strong determinant of reproductive success in male 

spotted hyenas, the thesis demonstrates that high-ranking males can influence the sexual 

investment and reproductive performance of lower-ranking males even in species in which 

male contest competition for access to females is low, females exercise strong mate choice, 

and male ability to coerce females into mating is limited. Because social status in hyena 

society is driven by the amount of social support for each group member, the results expand 

our understanding of the importance of social integration and alliances in group-living 

species. 

The thesis provides a novel method to improve the applicability of enzyme 

immunoassays for research projects dealing with large, longitudinal data sets. The method 

restores the comparability of measurements for all samples when assay accuracy varies by 

using a standardisation formula fitted on a small subset of re-assayed samples. It can easily 

be applied to other immunoassays, sample matrices, hormones, and species. 

The thesis also increases our understanding of the role of physiological and social 

constraints and an individual’s dominance potential for reproductive investment and 

reproductive skew in group-living species. It shows that physiological and social constraints 

arising from differences in dominance potential can shape behavioural trade-offs between 

the allocation of time and physiological resources to social integration, reproduction, and 

self-maintenance and that these trade-offs cause differences in male performance and 

reproductive success 

Overall, the findings should substantially contribute to the development of more 

realistic theoretical models on dispersal and reproductive skew, in particular for mammals 

living in multimale, multifemale social groups. 
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