
Governify for APIs: SLA-Driven Ecosystem for API Governance

Antonio Gamez-Diaz
Universidad de Sevilla

Seville, Spain

antoniogamez@us.es

Pablo Fernandez
Universidad de Sevilla

Seville, Spain

pablofm@us.es

Antonio Ruiz-Cortés
Universidad de Sevilla

Seville, Spain

aruiz@us.es

ABSTRACT

As software architecture design is evolving to a microservice para-

digm, RESTful APIs are being established as the preferred choice

to build applications. In such a scenario, there is a shift towards

a growing market of APIs where providers ofer diferent service

levels with tailored limitations typically based on the cost. In such

a context, while there are well-established standards to describe the

functional elements of APIs (such as the OpenAPI Speciication),

having a standard model for Service Level Agreements (SLAs) for

APIs may boost an open ecosystem of tools that would represent an

improvement for the industry by automating certain tasks during

the development.

In this paper, we introduce Governify for APIs, an ecosystem of

tools aimed to support the user during the SLA-Driven RESTful

APIs’ development process. Namely, an SLA Editor, an SLA Engine

and an SLA Instrumentation Library. We also present a fully opera-

tional SLA-Driven API Gateway built on the top of our ecosystem of

tools. To evaluate our proposal, we used three sources for gathering

validation feedback: industry, teaching and research.

• Website: links.governify.io/link/GovernifyForAPIs

• Video: links.governify.io/link/GovernifyForAPIsVideo

CCS CONCEPTS

· Information systems → RESTful web services; · Software

and its engineering → Extra-functional properties; System

description languages.

KEYWORDS

RESTful APIs, SLA, OpenAPI Speciication, SLA-driven APIs, API

Gateways

ACM Reference Format:

Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortés. 2019.

Governify for APIs: SLA-Driven Ecosystem for API Governance. In Pro-

ceedings of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),

August 26ś30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3338906.3341176

1 INTRODUCTION

In the last decade, RESTful APIs are becoming a clear trend as

composable elements that can be used to build and integrate soft-

ware [8]. One of the key beneits this paradigm ofers is a systematic

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The deinitive Version of Record was published in Proceedings of
the 27th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19), August 26ś30, 2019, Tallinn, Estonia,
https://doi.org/10.1145/3338906.3341176.

approach to information modeling leveraged by a growing set of

standardized tooling stack. In this context, the term of API Econ-

omy is being increasingly used to describe the movement of the

industries to share their internal business assets as APIs [7, 11]

not only across internal organizational units but also to external

third parties; in doing so, this trend has the potential of unlocking

additional business value through the creation of new assets [1, 7].

In order to be competitive in such a growing market of APIs, at

least two key aspects can be identiied: i) ease of use for its poten-

tial developers; ii) a lexible usage plan that its their customer’s

demands.

Regarding the ease of use perspective, third-party developers

need to understand how to use the exposed APIs so it becomes

necessary to provide good training material but, unfortunately, API

providers do not often write good documentation of their prod-

ucts [2]. Notwithstanding, during the last years, the OpenAPI Spec-

iication1 (OAS), formerly known as Swagger, has become the de

facto standard to describe RESTful APIs from a functional perspec-

tive providing an ecosystem of tools2 that helps the developer in

several aspects of the API development lifecycle.

Concerning the usage plans perspective, as APIs are deployed

and used in real settings, the need for non-functional aspects is

becoming crucial. In particular, the adoption of Service Level Agree-

ments (SLAs) [9] could be highly valuable to address signiicant

challenges that industry is facing, as they provide an explicit place-

holder to state the guarantees and limitations that a provider ofers

to its consumers. Exemplary, these limitations (such as quotas or

rates) are present in most common industrial APIs [3] and both API

providers and consumers need to handle how they monitor, enforce

or respect them with the consequent impact in the API deployment

and consumption.

However, to the best of our knowledge, there is no widely ac-

cepted and open source tool that leverages from the functional

model as well as the non-functional description to create usage

plans including elements such as cost, functionality restrictions or

limits and performing actual API governance in production.

In this paper, we introduce the Governify for APIs ecosystem, a

set of tools which, starting from an OAS description, assist the user

during the RESTful APIs’ development process for the creation of

usage plans (or SLAs) and performing seamlessly SLA-Driven API

governance. Ultimately, we have evaluated our proposal in three

diferent scenarios: teaching, research and industry.

The rest of the paper is structured as follows: Section 2 analyzes

diferent alternatives to our proposal, Section 3 presents the Gov-

ernify for APIs ecosystem and Section 4 outlines the evaluation that

1The latest version of the OpenAPI Speciication is available at https://github.com/
OAI/OpenAPI-Speciication
2https://openapi.tools

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/232001804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://links.governify.io/link/GovernifyForAPIs
https://links.governify.io/link/GovernifyForAPIsVideo
https://doi.org/10.1145/3338906.3341176
https://doi.org/10.1145/3338906.3341176
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://openapi.tools

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Antonio Gamez-Diaz, Pablo Fernandez and Antonio Ruiz-Cortés

we performed. Finally, in Section 5, shows some inal remarks and

conclusions.

2 RELATED TOOLS

Despite ad-hoc solutions for regulating APIs have emerged, we

focus on the so-called API Gateways [5], which have emerged to

support API developers in the management of aspects such as con-

sumer authentication, request throttling or billing. The increasing

growth of APIs has resulted in a proliferation of API Gateways

platforms that provide diferent levels of support for functional and

non-functional aspects.

In order to spot these diferences, we have considered3 the pub-

licly available information of 18 API Gateways. The conclusions:

1) Regarding the functional point of view: (i) Almost every API

Gateway do allow the usage of the OAS for the functional deinition

of the API. (ii) Almost a half have an explicit (vendor-speciic)

model to deine some parts of the coniguration of the platform

(e.g. endpoints, limitations, general information), but only one third

allow importing/exporting. (iii) As stated by the authors in [10],

the importance of OAS made it a key feature widely supported by

the API Gateway provider.

Concerning the non-functional point of view: (i) Most API Gate-

ways support quotas, against two thirds supporting rates. (ii) All

API Gateways allow request as a metric, a third allows other pre-

deined metric and only two API Gateways allow deining custom

metrics. (iii) As pointed out in [3], API providers typically support

limitations (quotas and/or rates) and they are usually deined over

the number of requests with a minimal frequency supported that

starts from minutely in the case of quotas, and secondly in the case

of rates.

Based on these indings, we observe that, in spite all API Gate-

ways spot similar features, the underlying model and concepts are

diferent and each platform describes the coniguration in a speciic

format, hindering, thus, the interoperability among providers. Con-

sequently, organizations that face the transition from a certain API

Gateway to a diferent one, they are required to perform a manual

migration process and complex evaluation of the behavioral and

vocabulary diferences between the vendor-speciic models of each

API Gateway.

3 GOVERNIFY FOR APIS

3.1 Motivating Example

We will guide the explanation of the Governify for APIs ecosystem

by means of a real-world RESTful API which needs to be governed;

namely, the DBLP API, a service for retrieving bibliometric infor-

mation in the Computer Science research area. It is a quite simple

API that ofers three GET endpoints for searching authors, publi-

cations and venues by introducing parameters in the query (e.g.,

http://dblp.org/search/author/api?q=gamez+diaz).

This API does not ofer any explicit information of the non-

functional properties or limitations besides of an entry in the FAQ4

in natural language (sic. you should always be ine when waiting for

at least one or two seconds between two consecutive requests). This

lack hinders the creation of limitations-aware API clients because of

3Avaliable at https://isa-group.github.io/2019-05-sla4oai-demo/iles/api_gw.html
4https://dblp.org/faq/1474706

the need for a prior human progressing of the aforementioned FAQ.

Nevertheless, from the functional perspective, this API could be eas-

ily described by means of the OpenAPI Speciication (c.f., resources

on the website5). For the non-functional modeling, SLA4OAI6 will

be used. It is a vendor-neutral open-source proposal for describing

APIs’ aspects such as quotas and rates. It enables users to model

the typical limitations that can be usually found in an API [3]. Note

SLA4OAI is able to model a subset of terms that usually appear in

an SLA; nevertheless, SLA can compliant with other SLA speciica-

tions, such as iAgree [6], including support for other metrics (e.g.,

availability) and concepts (e.g., penalties and rewards).

Starting from an API functionally deined with OAS, our goal

will be to use Governify for APIs to regulate that API accordingly to

its quota and rate limitations using a vendor-neutral speciication.

3.2 Architecture

We have developed a Node.js set of tools, inspired in the microser-

vice architectural style, packed as Docker public images7 and de-

ployed for a publicly online access. An overview of all the com-

ponents is depicted in Figure 1. The source code and technical

information are available at the supplementary website5. Specii-

cally, we introduce the SLA Editor for hiding the complexity of the

language to the end user. Next, we support two diferent enforces:

gateway and standalone. The former, see Figure 3, is intended to

be developers who want to regulate an API without modifying the

source code. The latter is supposed to serve to developers who need

a more ine-grained control by modifying the API code. We provide

a SLA-Driven API Gateway for the irst enforce and an SLA Instru-

mentation Library as part of a Node.js module for the latter. Both

enforces are instrumented by the SLA Engine. Next, we describe in

detail each tool.

SLA-Driven API Gateway

SLA Engine

Monitor Supervisor

sla4oai-tools library for

Node.js
SLA

Supporting tools

OAS

SLA Editor

defines

* Actual interaction flows depends
on the chosen enforce type

used

 in

*

*

Figure 1: Governify for APIs’ simpliied architecture

3.3 SLA Editor

Governify for APIs provides an SLA editor8, a user-friendly web-

based text editor speciically developed for assisting the user during

the modeling tasks, including auto-completion, syntax checking,

and automatic binding (i.e., the changes in the UI are synchronized

with the underlying SLA4OAI textual model). Precisely, Figure 2

depicts this textual-visual binding. It is possible to create diferent

plans (e.g., free and pro) with quotas and rates over speciic metrics.

5https://links.governify.io/link/GovernifyForAPIs
6https://sla4oai.specs.governify.io
7https://hub.docker.com/u/isagroup
8https://designer.governify.io

https://isa-group.github.io/2019-05-sla4oai-demo/files/api_gw.html
https://dblp.org/faq/1474706
https://links.governify.io/link/GovernifyForAPIs
https://sla4oai.specs.governify.io
https://hub.docker.com/u/isagroup
https://designer.governify.io

Governify for APIs: SLA-Driven Ecosystem for API Governance ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Clicking in the + sign, the user is able to select the path and method

(previously deined in the OAS document) for entering the value

of the limitation. Note that other custom metrics besides requests

can also be deined. Precisely, in the case of the DBLP API, after

having modeled the functional part with OAS, the plan can be easily

created. We added a made up professional plan just to show the

modeling capabilities.

Over resource: /search/publ/api

60 GETs / requests / minutely

Over resource: /search/author/api

60 GETs / requests / minutely

Over resource: /search/venue/api

1 add

Quotas

GET requests select...

Over resource: /search/publ/api

1 GETs / requests / secondly

Over resource: /search/author/api

1 GETs / requests / secondly

Over resource: /search/venue/api

1 add

Rates

GET requests select...

secondly minutely hourly daily secondly minutely hourly daily

Figure 2: Editing DBLP plans in the SLA Editor tool

3.4 SLA Engine

The SLA4OAI speciication outlines the Basic SLA Management

Service9 (BSMS) deining the interaction lows and the endpoints

/check and /metrics. In Figure 3 we focus on the Gateway enforce as

it is a more complete scenario.

SLA Check SLA Metrics

Request
workload

API

API Gateway

APIAPI

1

2

3

4 5

6

Figure 3: Gateway enforce deined in the SLA4OAI BSMS

First, requests will pass through the API Gateway until they are

directed to the node that will serve it (step 1). Next, the API Gateway

query the SLA Check API to determine if the request is authorized

to develop the actual operation based on the appropriate SLA (step

2). Afterward, if it is authorized, the actual API is invoked and the

response is returned (step 3). If it is not, a status code and a summary

of the reason (as generated by the SLA check API) is returned (step

3). After the consumption ends (step 4), the metrics are sent to the

SLA Metrics API (step 5), which is in charge of updating the status

of the agreement with the new metrics introduced (step 6).

Since we stick to the SLA4OAI speciication and it left open the

implementation, our tooling for theSLA Engine, provides a concrete

implementation of the BSMS, including also a particular way to

handle SLA and users saving/retrieving tasks (SLA Registry and

9https://sla4oai.specs.governify.io/operationalServices.html

Tenants). Speciically,Monitor10 is an implementation of theMetrics

BSMS service and Supervisor11, of the Check service.

TheMonitor service exposes a POST operation in the route /met-

rics for gathering the metrics collected from other diferent services.

It can collect a set of basic metrics and send them to a data store for

aggregation and later consumption. The metrics can be grouped

in batches or sent one by one to ine-tune performance versus

real-time SLA tracking.

The Supervisor service has a POST /check endpoint for the veri-

ication of the current state of the SLA for a given operation in a

certain scope. For each request, this service will evaluate the state

of the SLA and will respond with a positive or negative response

depending on whether a limitation has been overcome. In addi-

tion, this service also implements (outside the scope of the BSMS)

these additional endpoints: GET/POST /tenants, GET/POST /slas

and PUT/DELETE slas/<id> for managing both users (tenants and

accounts) and SLA4OAI documents themselves.

3.5 SLA Instrumentation Library

Despite the fact that the BSMS deines the interaction lows between

the endpoints, the concrete implementation of these interactions is

left open. That is the way our aims to cover this lack. Speciically,

we present an SLA Instrumentation Library for Node.js12, which

is a middleware (i.e., a ilter that intercepts the HTTP requests

and perform transformation if necessary) written for Express, the

most used Node.js web application framework. This middleware

intercepts all the inbound/outbound traic to perform the BSMS

low. Throughout the Listing 1 we observe that it is necessary to

import the library (line 3), to conigure the endpoints of the services

(lines 8 and 9) and inally register the middleware (line 12).

1 // Imports

2 const express = require (" express ");

3 const slaInstrumentationLib = require (" sla4oai ");

4
5 const app = express (); // Express init

6
7 // SLA4OAI init

8 const supervisorURL = {url: "supervisor.oai.governify.io"};

9 const monitorURL = {url: "monitor.oai.governify.io"};

10
11 // Express middleware registration

12 slaInstrumentationLib.register(app ,supervisorURL ,monitorURL);

Listing 1: Excerpt of the coniguration of the SLA

Instrumentation Library

3.6 SLA-Driven API Gateway

Amore transparent way to implement the interaction lows deined

is the BSMS is achieved by using a Gateway SLA enforce. Our tool,

the SLA-Driven API Gateway is an open-source implementation

to be deployed using any SLA Engine. Particularly, we provide

an online preconigured instance13 using the aforementioned SLA

Instrumentation Library. As depicted in Figure 4, API providers are

only required to enter: (i) The real endpoint of their API; (ii) An

URL pointing to the SLA4OAI document. Once an API is registered,

the SLA-Driven API Gateway exposes a public and SLA-regulated

10https://monitor.oai.governify.io/api/v1/docs
11https://supervisor.oai.governify.io/api/v1/docs
12https://www.npmjs.com/package/sla4oai-tools
13https://gateway.oai.governify.io

https://sla4oai.specs.governify.io/operationalServices.html
https://monitor.oai.governify.io/api/v1/docs
https://supervisor.oai.governify.io/api/v1/docs
https://www.npmjs.com/package/sla4oai-tools
https://gateway.oai.governify.io

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Antonio Gamez-Diaz, Pablo Fernandez and Antonio Ruiz-Cortés

endpoint, as well as a /plans endpoint for a provisioning portal. It

enables customers to purchase a plan, after that, this customer will

get an API-key, acting as a bearer token for HTTP authentication

to consume the SLA-regulated API.

LIST OF SERVICES

•
•
•

Name

[petstore __ ___,

SCOPUS API

(docs) II SCOPUS

API (plans)

DBLP API (docs) II

DBLP API (plans)

BUS SERVICE API

(docs) II BUS

SERVICE API

(plans)

API endpoint

https://example

Go to the service

URL

Go to the service

URL

Go to the service

URL

SLA-Driven OAS

https://example

View OAS file

View OAS file

View OAS file

Action

+add

••
•

••

Figure 4: Coniguration UI of the SLA-Driven API Gateway

4 EVALUATION

We have performed a threefold qualitative evaluation in industry,

teaching and research contexts.

Concerning the industrial evaluation, some OpenAPI Initiative

members have expressed its interest in SLA4OAI, the SLA modeling

proposal, and in promoting a working group for evolving and ex-

tending it. Indeed, in [4], we collaborated with people from Google,

Paypal, AsyncAPI Initiative and Metadev for analyzing, starting

from SLA4OAI, the status of SLAs and limitations in the industry.

Furthermore, in spite of the fact the SLA4OAI extension and tools

have not been widely announced nor promoted, we have disclosed

the tooling ecosystem into the main public Node.js artifact reposi-

tory (i.e., NPM) and this platform provides a set of analytics of usage

since their publishing. Speciically, based on its data we observe that

SLA Instrumentation Library has been downloaded and installed

more than 600 times14 while the SLA Engine was downloaded more

installed than 1900 times.

Regarding the use of Governify for APIs in teaching, it has been

extensively used in, at least, two undergraduate service-oriented

related subjects. As students were required to create their own

APIs15, they also had to set the rate and quota limitations using

Governify for APIs. Whereas we do not have any speciic usage

report, we collected useful information, issues and bugs derived

from running in production.

As of the research context, we are validating our proposal (lan-

guage and tools) in a national research network. Several members

are exposing their research results by creating an API and applying

limitations using Governify for APIs and SLA4OAI. Then, all these

artifacts are being deployed in a central publicly available catalog16.

5 CONCLUSIONS

In this work, we have presented the Governify for APIs ecosystem,

a set of tools integrated aimed to support the user during the SLA-

Driven RESTful APIs’ lifecycle. Speciically, an SLA Editor and an

14https://npm-stat.com/charts.html?package=sla4oai-tools
15https://github.com/gti-sos
16https://services.rcis.governify.io

SLA-Driven API Gateway on the top of an SLA Engine composed by

an SLA Monitor and an SLA Check APIs.

We have evaluated our proposal in three diferent scenarios:

teaching, research and industry, getting, therefore, a highly valuable

source of information that will be used in the upcoming improve-

ments. With Governify for APIs we prove that, with state-of-the-art

tools, it is possible to improve lifecycle of SLA-Driven RESTful APIs,

especially those problems derived from design and operation.

Speciically, (i) Complex usage plans with quota and rate lim-

itations can be modeled with an OAS-compliant vendor-neutral

format; (ii) The support of vendor-neutral initiatives paves the way

for the interoperability between API Gateway providers; (iii) Gov-

ernify for APIs left a publicly available ecosystem of open-source

tools supporting the SLA-Driven RESTful APIs’ lifecycle.

ACKNOWLEDGMENTS

This work is partially supported by the European Commission

(FEDER), the Spanish Government under projects BELI (TIN2015-

70560-R) and HORATIO (RTI2018-101204-B-C21), and the FPU

scholarship program, granted by the Spanish Ministry of Education,

Culture and Sports (FPU15/02980). The authors would like to thank

for their valuable technical contributions to Daniel Arteaga and

Felipe Vieira da Cunha.

REFERENCES
[1] Michele Bonardi, Maurizio Brioschi, Alfonso Fuggetta, Emiliano Sergio Verga,

and Maurilio Zuccalà. 2016. Fostering Collaboration Through API Economy:
The E015 Digital Ecosystem. In Proceedings of the 3rd International Workshop on
Software Engineering Research and Industrial Practice (SER&IP ’16). ACM, New
York, NY, USA, 32ś38. https://doi.org/10.1145/2897022.2897026

[2] Forrester. 2015. API Management Solutions , Q3 2014. Technical Report. Forrester.
[3] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes. 2017. An

Analysis of RESTful APIs Oferings in the Industry. In Service-Oriented Computing,
Michael Maximilien, Antonio Vallecillo, Jianmin Wang, and Marc Oriol (Eds.).
Springer International Publishing, Cham, 589ś604.

[4] Antonio Gamez-Diaz, Pablo Fernandez, Antonio Ruiz-Cortes, Pedro J. Molina,
Nikhil Kolekar, Prithpal Bhogill, Madhuranjan Mohaan, and Francisco Méndez.
2019. The role of limitations and SLAs in the API industry. In Proceedings of the
27th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2019). ACM, Tallin, Estonia.
https://doi.org/10.1145/3338906.3340445

[5] Antonio Gámez-Díaz, Pablo Fernández-Montes, and Antonio Ruiz-Cortés. 2015.
Towards SLA-Driven API Gateways. In Actas de las XI Jornadas de Ingeniería
de Ciencia e Ingeniería de Servicios, Juan Manuel Murillo (Ed.), Vol. 201232273.
Sistedes, Santander, 9. https://doi.org/10.13140/RG.2.1.4111.5609

[6] Antonio Gámez-Díaz, Pablo Fernández-Montes, and Antonio Ruiz-Cortés. 2018.
Fostering SLA-Driven API Speciications. In Actas de las XIV Jornadas de Inge-
niería de Ciencia e Ingeniería de Servicios, Manuel Lama (Ed.). Sistedes, Sevilla.
https://doi.org/10.13140/RG.2.2.35748.53128

[7] Jose Maria Garcia, Pablo Fernandez, Antonio Ruiz-Cortes, Schahram Dustdar,
and Miguel Toro. 2017. Edge and cloud pricing for the sharing economy. IEEE
Internet Computing 21, 2 (3 2017), 78ś84. https://doi.org/10.1109/MIC.2017.24

[8] Holger Harms, Collin Rogowski, and Luigi Lo Iacono. 2017. Guidelines for
Adopting Frontend Architectures and Patterns in Microservices-based Systems.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering
(ESEC/FSE 2017). ACM, New York, NY, USA, 902ś907. https://doi.org/10.1145/
3106237.3117775

[9] C. Muller, A. Gutierrez Fernandez, P. Fernandez, O. Martin-Diaz, M. Resinas,
and A. Ruiz-Cortes. 2018. Automated Validation of Compensable SLAs. IEEE
Transactions on Services Computing (jan 2018), 1ś1. https://doi.org/10.1109/TSC.
2018.2885766

[10] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. 2018. An Analysis of
Public REST Web Service APIs. IEEE Transactions on Services Computing (2018).
https://doi.org/10.1109/TSC.2018.2847344

[11] W. Tan, Y. Fan, A. Ghoneim,M. A. Hossain, and S. Dustdar. 2016. From the Service-
Oriented Architecture to the Web API Economy. IEEE Internet Computing 20, 4
(July 2016), 64ś68. https://doi.org/10.1109/MIC.2016.74

https://npm-stat.com/charts.html?package=sla4oai-tools
https://github.com/gti-sos
https://services.rcis.governify.io
https://doi.org/10.1145/2897022.2897026
https://doi.org/10.1145/3338906.3340445
https://doi.org/10.13140/RG.2.1.4111.5609
https://doi.org/10.13140/RG.2.2.35748.53128
https://doi.org/10.1109/MIC.2017.24
https://doi.org/10.1145/3106237.3117775
https://doi.org/10.1145/3106237.3117775
https://doi.org/10.1109/TSC.2018.2885766
https://doi.org/10.1109/TSC.2018.2885766
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1109/MIC.2016.74

	Abstract
	1 Introduction
	2 Related tools
	3 Governify for APIs
	3.1 Motivating Example
	3.2 Architecture
	3.3 SLA Editor
	3.4 SLA Engine
	3.5 SLA Instrumentation Library
	3.6 SLA-Driven API Gateway

	4 Evaluation
	5 Conclusions
	Acknowledgments
	References

