
The Role of Limitations and SLAs in the API Industry

Antonio Gamez-Diaz
Universidad de Sevilla

Seville, Spain

antoniogamez@us.es

Pablo Fernandez
Universidad de Sevilla

Seville, Spain

pablofm@us.es

Antonio Ruiz-Cortés
Universidad de Sevilla

Seville, Spain

aruiz@us.es

Pedro J. Molina
Metadev

Seville, Spain

pjmolina@metadev.pro

Nikhil Kolekar
PayPal

San Jose, California, USA

nikhil@openweave.ai

Prithpal Bhogill
Google

Mountain View, California, USA

prithpal@google.com

Madhurranjan Mohaan
Google

Mountain View, California, USA

madhurranjanm@google.com

Francisco Méndez
AsyncAPI Initiative

Barcelona, Spain

fmvilas@gmail.com

ABSTRACT

As software architecture design is evolving to a microservice para-

digm, RESTful APIs are being established as the preferred choice

to build applications. In such a scenario, there is a shift towards

a growing market of APIs where providers ofer diferent service

levels with tailored limitations typically based on the cost.

In this context, while there are well established standards to

describe the functional elements of APIs (such as the OpenAPI

Speciication), having a standard model for Service Level Agree-

ments (SLAs) for APIs may boost an open ecosystem of tools that

would represent an improvement for the industry by automating

certain tasks during the development such as: SLA-aware scafold-

ing, SLA-aware testing, or SLA-aware requesters.

Unfortunately, despite there have been several proposals to de-

scribe SLAs for software in general and web services in particular

during the past decades, there is an actual lack of a widely used

standard due to the complex landscape of concepts surrounding the

notion of SLAs and the multiple perspectives that can be addressed.

In this paper, we aim to analyze the landscape for SLAs for

APIs in two diferent directions: i) Clarifying the SLA-driven API

development lifecycle: its activities and participants; 2) Developing

a catalog of relevant concepts and an ulterior prioritization based

on diferent perspectives from both Industry and Academia. As a

main result, we present a scored list of concepts that paves the way

to establish a concrete road-map for a standard industry-aligned

speciication to describe SLAs in APIs.

CCS CONCEPTS

· Information systems → RESTful web services; · Software

and its engineering → Extra-functional properties; System

description languages.

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The deinitive Version of Record was published in Proceedings of
the 27th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19), August 26ś30, 2019, Tallinn, Estonia,
https://doi.org/10.1145/3338906.3340445.

KEYWORDS

RESTful APIs, SLA, OpenAPI Speciication, SLA-driven APIs, API

Gateways

ACM Reference Format:

Antonio Gamez-Diaz, Pablo Fernandez, Antonio Ruiz-Cortés, Pedro J.Molina,

Nikhil Kolekar, Prithpal Bhogill, Madhurranjan Mohaan, and Francisco

Méndez. 2019. The Role of Limitations and SLAs in the API Industry. In

Proceedings of the 27th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),

August 26ś30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3338906.3340445

1 INTRODUCTION

In the last decade, RESTful APIs are becoming a clear trend as

composable elements that can be used to build and integrate soft-

ware [6, 12]. One of the key beneits this paradigm ofers is a sys-

tematic approach to information modeling leveraged by a growing

set of standardized tooling stack. In this context, the term of API

Economy is being increasingly used to describe the movement of

the industries to share their internal business assets as APIs [22]

not only across internal organizational units but also to external

third parties; in doing so, this trend has the potential of unlocking

additional business value through the creation of new assets [4].

In fact, we can ind a number of examples in the industry that are

deployed solely as APIs (such as Meaningcloud1, Flightstats2 or

Twilio3).

In order to be competitive in this such a growing market of APIs,

at least two key aspects can be identiied: i) ease of use for its po-

tential developers; ii) a lexible usage plan that its their customer’s

demands.

Regarding the ease of use perspective, third-party developers

need to understand how to use the exposed APIs so it becomes

necessary to provide good training material but, unfortunately, sev-

eral API providers do not often write good documentation of their

products [7]. Notwithstanding, during the last years, the OpenAPI

1https://www.meaningcloud.com/products/pricing
2https://developer.lightstats.com/getting-started/pricing
3https://www.twilio.com/sms/pricing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/231997087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3338906.3340445
https://doi.org/10.1145/3338906.3340445
https://www.meaningcloud.com/products/pricing
https://developer.flightstats.com/getting-started/pricing
https://www.twilio.com/sms/pricing

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Gamez-Diaz, P. Fernandez, A. Ruiz-Cortés, P. J. Molina, N. Kolekar, P. Bhogill, M. Mohaan, F. Méndez

Speciication4 (OAS), formerly known as Swagger speciication, has

become the de facto standard to describe RESTful APIs from a func-

tional perspective providing an ecosystem that helps the developer

in several aspects of the API development lifecycle5.

The beneits are twofold: from the API provider’s perspective,

there are tools aimed to automate the server scafolding, an inter-

active documentation portal creation or the generation of unit test

cases; from API consumer’s perspective, there are tools to auto-

mate the creation of API clients, the security coniguration or the

endpoints discovery and usage [1, 19, 21].

Concerning the usage plans perspective, as APIs are deployed

and used in real settings, the need for non-functional aspects is

becoming crucial. In particular, the adoption of Service Level Agree-

ments (SLAs) [17] could be highly valuable to address signiicant

challenges that industry is facing, as they provide an explicit place-

holder to state the guarantees and limitations that a provider ofers

to its consumers. Exemplary, these limitations (such as quotas or

rates) are present in most common industrial APIs [8] and both

API providers and consumers need to handle how they monitor,

enforce or respect them with the consequent impact in the API

deployment/consumption.

However, to the best of our knowledge, there is no widely ac-

cepted model to describe usage plans including elements such as

cost, functionality restrictions or limits. In this context, a new type

of infrastructure, coined as API Gateway [10], has emerged to sup-

port API developers in the management of multiple non-functional

aspects such as consumer authentication, request throttling or

billing. From a deployment perspective, API Gateways are usu-

ally implemented as virtual appliances, virtual machine images

or reverse proxies that promote a decoupling from the main API

artifact. In contrast, the vendor-speciic approach to non-functional

concerns typically represents a strong dependence with the API

Gateway provider.

In this paper, we aim to analyze the landscape in the SLA and lim-

itations for APIs directly from those participants who have shown

interest on participating in the deinition of an industrial standard

for SLAs in APIs. Speciically, we have started up conversations

with members of the OpenAPI Initiative who belong to the SLA

interest group aiming to gather information about their industrial

perspective of the role of SLAs and limitations in the APIs.

The rest of the paper is structured as follows: in Section 2 we

introduce, briely, the idea of Service Level Agreements (SLA) and

its importance in the API ecosystem. Next, in Section 3, we describe

the related work. Continuing, in Section 4 we describe the SLA-

driven API lifecycle. Further, in Section 5 we present the industrial

insights from diferent participants. Finally, in Section 6, we show

some inal remarks and conclusions.

2 SLAS IN A NUTSHELL

Service Level Agreements (SLAs) consist of a set of terms that

include information about functional features, non-functional guar-

antees, compensation, termination terms and any other terms with

relevant information to the agreement. An agreement signed by

4The latest version of the OpenAPI Speciication is available at https://github.com/
OAI/OpenAPI-Speciication
5https://openapi.tools

all interested parties should be redacted carefully because a fail-

ure to specify their terms could carry penalties to the initiating

or responding party. Therefore, agreement terms should be spec-

iied in a consistent way, avoiding contradictions between them.

However, depending on the complexity of the agreement, this may

become a challenging task. SLAs can, therefore, be used to describe

the rights and obligations of parties involved in the transactions

(typically the service consumer and the service provider); among

other information, SLA could deine guarantees associated with the

idea of Service Level Objectives (SLOs) that normally represent key

performance indicators of either the consumer or the provider. In

case the guarantee is under-fulilled or over-fulilled SLAs could

also deine some compensations (i.e. penalties or rewards). In such

a context, during the last years, there have been important steps

towards the automation of the management of SLAs, however, the

formalization in SLAs still remains an important challenge.

A SLA typically contains these concepts:

Name identiies the agreement and can be used for reference.

Context includes information such as the name of the parties

and their roles as initiator or responder in the agreement.

Additionally, it can include other important information for

the agreement.

Terms the two main types of terms are:

Service terms they provide service information

by means of:

Service description terms which includes information

to instantiate or identify the services and operations

involved in the agreement.

Service properties which includes the measurable prop-

erties that are used in expressing guarantee terms. They

consist of a set of variables whose values can be estab-

lished inside the service description term. These terms

play an key role in the deinition of the service level

which is actually ofered to clients and the price they pay

for. For instance, in APIs, it is common to see quota (e.g.,

30K request/month) and rate (e.g., 1 request/second)

limitations that deine the service.

Guarantee terms they describe the service level objectives

(SLOs) agreed by a speciic obligated party, using Service

Level Indicators (SLIs), a set of carefully deined quantita-

tive measures of some aspect of the level of service that

is provided. It also includes the scope of the term (e.g. if

it applies to a certain operation of a service or the whole

service itself) and a qualifying condition that speciies

the validity condition under which the term is applied.

Guarantee terms often include compensations [17], that is,

penalties (or rewards) applied when the SLO is unfulilled

or overfulilled.

The concept of SLA is, very frequently, misunderstood: some

services claim to have an SLA when they are only deining the

service description terms (e.g., limitations). SLAs are agreements,

that is, an explicit or implicit contract with your users that includes

consequences of the meeting (or missing) the SLOs they contain [3,

20]. In many services, including APIs, there is no SLA: if nothing

happens if the SLOs are not being met, it is not an SLA, but a mere

description of SLOs and service properties.

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://openapi.tools

The Role of Limitations and SLAs in the API Industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

In the industry, the way in which a customer can select and

purchase a certain service level is by using pricing plans. In Figure 1

it is depicted a real plan extracted from FullContact6, a product

which includes an API for managing and organizing contacts in a

collaborative way and it also matches emails addresses looking for

publicly available information on the Internet to enrich the proiles.

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API

Card Reader

Rate Limit

6k + $.006 overage

2.4k + $.006 overage

250

15k each + $.001 overage

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$99
$99/mo Starter Plan

Person API Matches

Company API Matches

Company API Key People Queries

Name/Location/Stats API

Card Reader

Rate Limit

15k + $.006 overage

6k + $.006 overage

250

50k each + $.001 overage

25 cards + $0.15 overage

300 queries/min

Basic Contract Information

Licensed for Business Use

Select Plan

$199
$199/mo Basic Plan

Figure 1: Example of an API plan

This example is composed of two paid plans having a ixed price

that is monthly billed. Regarding the limitations, for each resource,

a quota is being applied; for instance, in the starter plan, only 6000

matches over Person are available. Nevertheless, an overage is

deined, that is, it is possible to overcome the limit by paying a

certain amount of money; in this case, $0.006 per each request.

Regardless of the accessed resources, a common rate of 300 queries

per minute is being applied.

In this example, there is neither guarantee term nor SLOs. All

these elements belong to the set of service properties, particularly,

the limitations, which are, actually, deining the service level (e.g.,

free, starter or basic)

3 RELATED WORK

The software industry has embraced integration as a key challenge

that should be addressed in multiple scenarios. In such a context,

the proliferation of APIs is a reality that has been formally analyzed:

in [18], authors performed an analysis of more than 500 publicly-

available APIs to identify the diferent trends in current industrial

landscape with the following key results: in terms of paradigm they

conclude that 500 out of 522 analyzed APIs provide an API based on

REST; regarding the format, the authors identiied that nearly two

thirds of the APIs support JSON without supporting XML. Concern-

ing the access control, authors showed that most APIs require some

form of service registration for developers to start using the API.

Regarding the documentation, they showed that generated docu-

mentation is being used in about a half of the APIs, with documents

6https://www.fullcontact.com/developer

Table 1: Analysis of SLA Models

Name F1 F2 F3 F4 F5 F6 F7

SLAC [24] DSL ✓ ✓

CSLA [14] XML ✓ ✓

L-USDL Ag. [11] RDF ✓ ✓ ✝ ✓

rSLA [23] Ruby ✓ ✓ ✓ ✓

SLAng [15] XML ✓

WSLA [16] XML ✓ ✓ ✓

SLA* [13] XML ✓ ✓ ✓

WS-Ag. [2] XML ✓ ✓ ✓ ✝

✝ Supported with minor enhancements or modiications.

generated by SwaggerUI (from an OpenAPI Speciication) taking

the lead, suggesting some tendency to make the API documentation

machine-readable and understandable as well. Speciically, from

a functional point of view, there is a clear trend with respect to

the functional description of the service: during the last years, the

OpenAPI Speciication has consolidated as a de-facto standard to

deine the diferent functional properties an API provides. One of

the reasons behind this success has been a growing ecosystem of

tools that leverages from the API development life-cycle based on

the information included in OAS: from automated code generators

that create an initial scafolding of the API to dynamic documenta-

tion portals that allow developers to understand and test the API

usage.

In such a consolidated market of APIs, non-functional aspects

are also becoming a key element in the current landscape. In [8],

authors analyze a set of the 69 real APIs in the industry to charac-

terize the variability in its oferings, obtaining a number of valuable

conclusions about real-world APIs, such as: (i) Most APIs provide

diferent capabilities depending on the tier or plan of the API con-

sumer is willing to pay. (ii) Usage limitations are a common aspect

all APIs describe in their oferings. (iii) Limitations over API re-

quests are the most common including quotas over static periods

of times (e.g., 1.000 request each natural day) and rates for dynamic

periods of times (3 request per second). (iv) Oferings can include

a wide number of metrics over other aspects of the API that can

be domain-independent (such as the number of returned results

or the size in bytes of the request) or domain-dependent (such as

the CPU/RAM consumption during the request processing or the

number of diferent resource types). Based on these conclusions,

we identify the need for non-functional support in the API devel-

opment life-cycle and the high level of expressiveness present in

the API oferings.

Furthermore, as monitoring is a key aspect, a number of works

have been presented aiming to analyze diferent approaches for

runtimemonitoring. In [20], authors developed a comparison frame-

work for runtimemonitoring approaches and validate it by applying

it to 32 existing approaches and by comparing 3 selected approaches

in the light of diferent monitoring scenarios.

Furthermore, during the last decade, a number of SLA models

have been presented. We have analyzed the most prominent aca-

demic and industrial proposals aimed to the deinition of SLAs in

both traditional web services and cloud scenarios.

https://www.fullcontact.com/developer

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Gamez-Diaz, P. Fernandez, A. Ruiz-Cortés, P. J. Molina, N. Kolekar, P. Bhogill, M. Mohaan, F. Méndez

Speciically, in Table 1, we have considered 7 aspects to analyze in

each SLA proposal, namely: F1 determines the format in which the

document is written syntax; F2 shows whether the target domain

is web services; F3 indicates if it can model more than one ofering

(i.e., diferent operations of a web service); F4 determines if it allows

modeling hierarchical models or overriding properties and metrics;

F5 shows whether temporal concerns can be model (e.g., in metrics);

F6 indicates if there exists a tool for assisting users to model using

this proposal; F7 determines if there exists a tool/framework for

enacting the SLA.

Based on the comparison of the diferent SLA models (summa-

rized in Table 1), we highlight the following conclusions: (i) None of

the speciications provides any support or alignment with the Ope-

nAPI Speciication; (ii) Most of the approaches provide a concrete

syntax on XML, RDF (some of them they even lack concrete syntax)

and there is no explicit support to YAML or JSON serializations.

(iii) An important number of proposals are complete, but others

leave some parts open to being implemented by practitioners. (iv)

Besides the fact that a number of proposals are aimed to model

web services, they are focused on traditional SOAP web services

rather than RESTful APIs. In this context, they do not address the

modeling standardization of the RESTful approach: i.e., the concept

of a resource is well uniied (a URL), and the amount of operations

is limited (to the HTTP methods, such as GET, POST, PUT and

DELETE). This lack of support of the RESTful modeling prevents

the approaches to have a concise and compact binding between

functional and non-functional aspects. (v) They do not have enough

expressiveness to model limitations such as quotas and rates, for

each resource and method and with complete management of tem-

porally (static/sliding time windows and periodicity) present in the

typical industrial API SLAs. (vi) Most proposals are designed to

model a single ofering and they mostly lack support to modeling

hierarchical models or overriding properties and metrics (F4); in

such a context, they cannot model a set of tiers or plans that yield

a complex ofering that maintains the coherence by model and

instead they rely on a manual process that is typically error-prone.

(vii) inally, the ecosystem of tools proposed in each approach (in

the case of its existence) is extremely limited and aimed to be solely

as a prototype; moreover, they apparently are not integrated into a

developer community nor there is evidence of this usage by practi-

tioners in the industry.

4 INTRODUCING SLAS IN THE API
LIFECYCLE

In spite of the fact that each organization could address the API

lifecycle with slightly diferent approaches, we identify a minimal

set of general stages and activities. The irst activity corresponds

with the actual Functional Development of the API implementing

and testing the logic; next a Deployment activity where the devel-

oped artifact is conigured to be executed in a given infrastructure;

inally, once the API is up and running, an Operation activity starts

where the requests from consumers can be accepted. This process

is a simpliication that can be evolved to add intermediate steps

(such as testing) or to include an evolutionary cycle where diferent

versions are deployed progressively. In order to incorporate SLAs

in this process, we expand to this basic lifecycle where both API

Provider and API Consumer interact (as depicted in Figure 2).

Speciically, from the provider’s perspective, the Functional De-

velopment can be developed in parallel with a SLA modeling where

the actual SLA ofering is written and stored in a given SLA Registry.

Once both the functional development and the SLA modeling has

concluded, the SLA instrumentation must be carried out, where

the tools and/or developed artifacts are parameterized, so they can

adjust their behavior depending on a concrete SLA and provide

the appropriate metrics to analyze the SLA status. Next, while the

deployment of the API takes place, a parallel activity of SLA enact-

ment is developed where the deployment infrastructure should be

conigured in order to be able to enforce the SLA before the API

reaches the operation activity.

Complementary, from consumer’s perspective, once the provider

has published the SLA ofering (i.e., Plans) in the SLA Registry,

it starts the ofer analysis to select the most appropriate option

(ofer selection activity) and to create and register its actual SLA;

inally, the API Consumption is carried out as long as the API is the

Operation activity and its regulated based on the terms (such as

quotas or rates) deined in the SLA.

In order to implement this lifecycle, it is important to highlight

that the SLA instrumentation, SLA enactment and Operation activi-

ties should be supported by an SLA enforcement protocol aimed

to deine the interactions for checking if the consumption of the

API for a given consumer is allowed (e.g., it meets the limitations

speciied in its SLA) and to gather the actual values of the metrics

from the diferent deployed artifacts that implement the API.

From an industrial perspective and regarding the implication

across the entire development lifecycle of APIs, diferent roles or

stakeholders appear, as discussed below. The mapping role-activity

is also depicted in Figure 2 by using the RALPH notation [5].

Developer This role is composed by the team responsible for the

development of a certain API and making it available for

other teams. Their use cases are related to the deinition of

Service Level Objectives (SLOs) since they are the role most

aware of the internal functioning of the API. Namely:

• a better understanding of what SLOs can they reasonably

target so that they can ofer an SLO for the API.

• a better understanding of the performance of their down-

stream dependencies (e.g., back-ends) so that they can

determine their efect on the SLOs.

• a better understanding of the performance of policies in

the proxy so that they can determine their efect on the

SLOs.

Productmanager This role is composed of business people, aligned

with the company’s objectives. Their use cases aim to satisfy

customer’s needs and be aware of the overall picture of the

dependencies between services. Namely, knowing the SLOs

of the downstream dependencies so that they can create

products which meet the customers’ needs.

Product operator This role is composed of system administration

people, who are responsible for monitoring and reporting

the service performance in SLOs. Their use cases aim to be

notiied of any alert or incident and take remedial actions.

Namely:

The Role of Limitations and SLAs in the API Industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Developer Product

manager

Product

operator

API

provider

Functional

development

SLA

modeling

Operation

SLA

enactment

Deployment

SLA registry

Offer

analysis

Offer

selection
Consumption

SLA instance

SLA

instrumentation

P
ro

v
id

e
r

S
L
A

-D
ri
v
e
n
 A

P
I
D

e
v
e
lo

p
m

e
n
t
L
if
e
c
y
c
le

C
o
n
s
u
m

e
r

API

consumer
Consumer

Figure 2: SLA-Driven API development lifecycle

• having alerts automatically set based on SLOs to alert

them of the risk of missing the objective so that they can

take remedial action.

• receiving regular reports detailingAPI performance against

SLOs, so that they can report to the business owners.

• watching both the internal and external SLO commitments

for various APIs or Products so that they can quickly cate-

gorize and prioritize the operational eforts.

Consumer This role is composed of the set of API clients. Their

use cases aim to be informed of the diferent service levels

and claim if the SLOs are not being met. Namely:

• knowing what service level is ofered so that they can

make an informed decision about adopting the API.

• understanding the historical actual performance of an API

so that they can know how reliable they might expect

them to be.

• assuring that they are getting the service level that they

are paying for so that they can claim remedies if SLOs are

not met.

5 INDUSTRIAL DISCUSSION

5.1 The Discussion Process

We opened a call for interest on participating in a research paper

open to the OAI members belonging to the SLA4OAI group7, as part

of the OpenAPI Initiative. Our main goal is to gather information

about their industrial perspective of the role of SLAs in the APIs.

In order to present general vision, we have classiied the partici-

pants in diferent groups regarding their role in the API industry,

namely: i)API infrastructure manager : are the creator of middleware

solutions such as API Gateways or proxies, they do not develop any

particular API, but they enhance and enrich third-party ones with

other features; ii) API providers: are the developers of one or many

APIs and also responsible for setting the proper service level and

limitations values; iii) Others: represent a diferent set of participant

not included before, for instance, API enthusiasts and people who

have been involved in the creation of other speciications.

7More information at sla@openapi.groups.io

sla@openapi.groups.io

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Gamez-Diaz, P. Fernandez, A. Ruiz-Cortés, P. J. Molina, N. Kolekar, P. Bhogill, M. Mohaan, F. Méndez

As for an API infrastructure manager, we have Google Apigee.

As for an API provider, we have PayPal. Finally, other participants

include Async API and Metadev.

5.2 Describing some API Concepts

In order to have a common vocabulary prior discussion, some con-

siderations about the concepts and terminology took place:

5.2.1 SLA General Concepts.

Context describes aspects such as the version, stakeholders or the

validity period.

Metrics are the elements that are being gathered and computed.

Service Level Indicator (SLI) is a particular case of metric which

is used to assess one key aspect of the system. They are typ-

ically implemented as a time series and may involve some

level of sophistication (e.g., sliding windows) in its calcula-

tion.

Service Level Objective (SLO) is a precise numerical target (of-

ten a ratio) for one or more SLIs, describing the minimum

acceptable reliability or performance of a system. A given

system may have diferent SLOs for diferent users, e.g., an

internal objective and an external one.

Guarantee terms describe the commitments over certain SLI.

They also should describe the consequences of not meet-

ing this commitment in terms of compensations.

Service Level Agreement (SLA) is, therefore, a contract signed

with a user. Notably, SLIs and SLOs are technical constructs

whereas SLAs are business constructs.

Service properties (or coniguration) are the attributes constraints

that are being used to drive the API behavior.

5.2.2 API Constraints.

Quotas describe the limitations of use for a ixed/static period

of time. It is an entitlement to API usage over a (usually

relatively long) time period, e.g., 100000 calls per month.

Rates describe the limitations of use for a dynamic period of time.

It is an entitlement to API usage over a (usually short) time

period, e.g., 10 calls per second per consumer.

Time constraint someAPIs can ofer a set of limitations regarding

the time in which it is being requested. For instance, some

calls could be thought to be cheaper during of-peak hours.

Authentication is the veriication of the credentials of the request.

This process is based on sending the credentials from the

remote client to the server by using an authentication proto-

col. Likewise, the authorization is the process of veriication

that the connection attempt is allowed. These mechanisms

are required for the API monetization.

5.2.3 API Monetization.

Pricing is the way in which APIs are monetized. Typically, some

pricing models are: ixed (with or without overage) and pay-

as-you-go. The irst allows a developer to purchase ixed

values for a set of metrics (e.g., number of calls) within a

period (e.g., per month), but they cannot exceed the estab-

lished limitations; when overage is allowed, a small fee is

charged if the developer exceeds the values of the metrics

(e.g., number of calls).

Plans is an approach to it a wide range of business needs by

organizing the pricing in a set of tiers of plans.

Metering is the recording of the API usage in suicient detail to

perform rating.

Rating is the conversion of records of API usage into an owed

amount of money. This conversion may involve simply a

ixed charge per API call, or considerably more complex

schemes.

Billing is the presentation to an API user of a report of amounts

owed, taking into account any discounts, service credits,

taxes, and revenue sharing.

Collection is the way of receiving and recording payments of

amounts owed by users of APIs.

Enforcement is preventing a user from using an API once they

have exhausted their pre-paid service credit, or reached a

credit limit.

5.3 API Provider’s Vision

For some API providers, the inclusion of SLAs is something rela-

tively new (less than ive years ago), but the main issue is the SLA

ield is the set of activities surrounding the SLOs to improve the

customer experience; for instance, the deinitions of metrics and

SLIs and the monitoring process.

They believe that, in general, SLOs are drivers for customer

experience and digital businesses. As applications and experiences

are composed of business capabilities and they are realized as APIs

which may use other APIs to achieve their business function, the

customer experience is fueled by complex tiered orchestration of

APIs and, therefore, performance and availability of experiences is

a function of those underlying services.

SLOs for APIs dictate suitability and choice of utilization and,

hence, having the ability to accurately measure and monitor SLOs

is a fundamental requirement. SLOs, also, dictate performance and

availability proiles for the application and provide individual ac-

countability for performance and availability across enabling ser-

vices. The common thread is the correlation and tracking of the

call-chain for service invocation, the identiication of the API sub-

scription for applications, monitoring aggregated and apportioned

performance proiles for applications and, inally, a common set of

performance metrics need to be deined, logged, monitored, ana-

lyzed and reported.

As API providers, they use to consider the following set of met-

rics/SLIs in their APIs:

• Call volume: number of API operations invocations irre-

spective of response.

• Response time: the total amount of time, in milliseconds,

it takes the service to respond to an API operation request

aggregated as the 95th percentile, 90th, and 50th.

• Availability: percentage of API calls completed without

causing a Failed Customer Interaction.

• Business Error Rate: percentage of API calls with business

error responses. A business error is an error that is not a

system error and could be caused by invalid input, user error,

business rules, policy constraints, or lack of authorization.

• System Error Rate: percentage of API calls with system

error responses. A system error is an error that is caused by

The Role of Limitations and SLAs in the API Industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

a code defect, timeouts for underlying services, or a frame-

work failure, including a hardware network or environment

failure.

Regarding the SLI, these metrics need to be measured at the indi-

vidual API operation level. For REST APIs, the URI for the resource

and the HTTP method need to be used as identiiers for API opera-

tion. The method identiier from the API speciication must be used

for correlation. The API operation metrics need to be correlated to

the API product and its major and minor version. This correlation

will provide insights into capability and ownership attribution form

the observed quality of service with respect to published SLAs. The

application identity of the originating application, along with that

of the immediate application invoking the API operations must be

tracked. The identity of Remote Availability Zone (RAZ) for the

service application must be tracked to help understand the quality

of service across RAZs.

Concerning the monitoring, the published SLOs for API oper-

ations must be monitored for compliance. Since there could be

variance in API metrics for diverse application use-cases, compli-

ance must be computed using 95th, 90th percentiles, and average

aggregations initially, before being base-lined for a longer term.

As a daily basis, developer and operation teams are responsible

for checking the service status and monitoring the key metrics.

Speciically, the SLIs are expected to be in an acceptable range, as

deined in the SLOs. For instance, the SLIs availability and latency

are measured to meet the target metrics in the SLOs.

Regarding the SLAs, they see SLAs as part of a wider contract,

which includes other legal aspects. In such a context, the SLA is just

a part of the service contract. At some organizational levels, the

value of the SLAs is concentrated in the fulillment of the guarantee

terms when negotiating contractual agreements and invoicing, that

is, the SLA reporting. At this point, the SLA of the API services

should be considered to be reportable, that is, showing, at a glance,

the overall picture of the SLA state in each moment.

In service-based applications (SBAs) the fruitful composition of

diferent services and APIs play a crucial role. There is a strong

dependency between diferent components and, therefore, they are

expected to be as reliable as possible (and agreed in the SLA). As

an SBA provider, it is strictly necessary to know in advance all the

values of the limitations and the agreed SLA terms. Otherwise, the

provider is not able to set its own SLOs

5.4 API Infrastructure Manager’s Vision

As API infrastructure manager, such as an API Gateway, their plat-

forms aim to deine API concerns such as diferent service levels,

API limitations (or entitlement) and pricing. They also lay out their

position on extending the OpenAPI speciication in this area.

Regarding the pricing, their platform provides support for: ixed

fee per API call, ixed fee per time period, volume-based tiers of fees

per API call, volume-based bundles of API calls, revenue sharing

schemes, charging variable amounts based on arbitrary runtime

attributes (parameters in the request, elements of the response,

time, geography, current load on the API, etc).

They consider two diferent types of API limitations: quotas and

rate limits: i) Quotas are the business level construct of enforcing

how much access does one client have to an API based on their tier.

For instance: a gold tier customer may have access to invoking a

set of APIs 1000 per day, whereas a bronze tier customer may only

able to invoke 100 per day. 2) Rate limiting, on the other hand, has

a system-centric connotation. For instance: if the infrastructure is

only expected to work for loads under 100 transactions per second,

the proper level of rate limiting policy would be irrespective of the

kind of customer invoking it.

Regarding the roles, they consider API producers as a team re-

sponsible for API development and making the APIs available for

every other team. Additionally, they identify the role of an API

Product Manager as the one that has business ownership of a port-

folio of APIs also known as an API Product. Their main focus is to

manage these products and look into ways of monetizing them via

partners and external developers. As API infrastructure managers,

they use to consider the following set of metrics/SLIs in their APIs:

• Availability: percentage of API calls completed without

errors.

• Error rates: percentage of API calls with error responses

• Latency: the total amount of time that takes the service to

respond to an API operation request aggregated as a per-

centile.

Concerning the modeling issues, their current priority would be

to codify SLIs and SLOs for APIs in a formal description language by

extending the OpenAPI Speciication. Based on such a codiication

their tooling could then ofer richer native support for the user

stories. Nevertheless, they recommend focusing irst on deining

an extension to describe technical concerns (e.g., SLIs and SLOs)

and keep SLAs (as a business contract) out of the scope for a later

extension. They believe that SLAs, as well as not being readily

amenable to such a codiication, probably don’t belong in OpenAPI

Speciication in any case.

They also suggest thatmonetization and pricing deinition should

be part of a separate initiative. In the real world, there is signii-

cant complexity in rating API usage, likely deserving of its own

OpenAPI extension.

5.5 Discussion’s Results

In this section, we show some inal remarks aiming to be able to

deine a roadmap in the standardization of the SLA and limitations

in an API context.

The relevance of each concept described in Section 5 is difer-

ent for each provider. After asking them for scoring each one, we

gathered and aggregated the responses, as stated in Table 2.

The most important concepts are metrics/SLIs, quotas and rates.

The importance of the deinition of SLOs for both API producers

and infrastructure manager is notorious. As also stated by other

participants, it is important to keep separate concerns and diferent

aspects (i.e., SLOs, plans, metrics); they can be always be referenced

externally if needed. The granularity of deinitionswhen deining an

SLA model is a problem: there exists the dichotomy between a ine-

grained approach (i.e., a fully comprehensive model description)

and a coarse-grained one (i.e., a description the most common

elements and paving the way for custom extensions).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia A. Gamez-Diaz, P. Fernandez, A. Ruiz-Cortés, P. J. Molina, N. Kolekar, P. Bhogill, M. Mohaan, F. Méndez

Table 2: Relevance of concepts for industrial participants

Items Score

General concepts

Context #

Metrics

SLIs

SLOs #

Guarantees #

SLAs ##

Coniguration ###

API constraints

Quotas

Rates

Time constraints ##

Authorization ##

API monetization

Pricing ##

Plans ##

Metering #

Rating #

Billing ##

Collection ##

Enforcement #

Symbol denotes the relevance for the industrial participants.

In general terms, the participants belonging to the SLA4OAI

group, as part of the OpenAPI Initiative, tend to agree in a manifesto

during the standardization tasks:

Motivation fostering the importance of the SLA inside the API

development lifecycle is that SLAs are already present in

most commercial APIs. Since OAI is becoming the de facto

standard for the deinition of APIs, natural evolution to de-

scribe SLAs into OpenAPI Speciication would expand the

OAI beneits.

Goals Three are identiied:

• Be as aligned as possible with the OpenAPI principles.

• Describe the most common elements in SLAs (e.g., plans,

metrics, quotas, rates).

• Be integrated with the main OpenAPI Speciication.

Non-goals There are two:

• Deine a particular way to enforce SLAs.

• Be fully comprehensive including a wide set of elements

found in diferent industrial APIs.

Design principles They are two:

• Pragmatism to spot the most common elements;

• Promote tooling to take advantage of the SLA4OAI Speci-

ication.

6 CONCLUSIONS

From the Academia’s point of view, the fact of having a standard

model for the deinition of SLAs in APIs could foster the devel-

opment of novel techniques aiming to deal with the information

contained in the SLAs. There is already a number of works in the

SLA ield, as pointed out in Section 3, so aligning that with the API

ecosystem would pave the way for new challenges.

As an example, this SLA model could enable SLA-aware moni-

toring and testing techniques: including non-functional and QoS

requirements into the test cases. Moreover, a formal analysis on the

SLA model could unveil inconsistencies in the set of API limitations.

Furthermore, SLA-aware model-driven development would experi-

ence an improvement, since taking into account the SLA could be

helpful when deciding among diferent architectures. A irst step

in this direction, in [9], we presented Governify for APIs, an initial

set of tools aimed to settle down our idea of SLA-driven APIs.

Finally, this work is intended to collect the industrial perspective

on the challenge of standardizing the modeling of SLAs and limi-

tations in the API context, under the umbrella of a well-assented

speciication for APIs as it is the OpenAPI Speciication. The con-

tribution presented herein just lay the irst stone on the roadmap

that is the modeling efort in conjunction with relevant industrial

players.

ACKNOWLEDGMENTS

This work is partially supported by the European Commission

(FEDER), the Spanish Government under projects BELI (TIN2015-

70560-R) and HORATIO (RTI2018-101204-B-C21), and the FPU

scholarship program, granted by the Spanish Ministry of Education,

Culture and Sports (FPU15/02980).

The authors would also like to thank for their time and their

valuable contributions to all the members of the OpenAPI Technical

Steering Committee and, specially, to the rest of the Technical

Committee behind the SLA4OAI Speciication: Isaac Hepworth

(Google), Jefrey ErnstFriedman (The Linux Foundation), Kin Lane

(API Evangelist), Mike Ralphson (The Linux Foundation) and Scott

Ganyo (Google).

REFERENCES
[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. 2007. Mining API patterns as

partial orders from source code. In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering - ESEC-FSE ’07. ACM Press, New York,
New York, USA, 25. https://doi.org/10.1145/1287624.1287630

[2] Alain Andrieux, Karl Czajkowski, Kate Keahey, A. Dan, Kate Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. 2004. Web
Services Agreement Speciication (WS-Agreement). (2004), 80 pages.
http://forgc.gridforum.org/Public_Comment_Docs/Documents/Oct-2006/WS-
AgreementSpeciicationDraftFinal_sp_tn_jpver_v2.pdf

[3] Betsy Beyer, Chris Jones, Jennifer Petof, and Niall Richard Murphy. 2016. Site
Reliability Engineering: How Google Runs Production Systems (1st ed.). O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, USA.

[4] Michele Bonardi, Maurizio Brioschi, Alfonso Fuggetta, Emiliano Sergio Verga,
and Maurilio Zuccalà. 2016. Fostering Collaboration Through API Economy:
The E015 Digital Ecosystem. In Proceedings of the 3rd International Workshop on
Software Engineering Research and Industrial Practice (SER&IP ’16). ACM, New
York, NY, USA, 32ś38. https://doi.org/10.1145/2897022.2897026

[5] Cristina Cabanillas, David Knuplesch, Manuel Resinas, Manfred Reichert, Jan
Mendling, and Antonio Ruiz-Cortés. 2015. RALph: A Graphical Notation for
Resource Assignments in Business Processes. In Advanced Information Systems
Engineering, Jelena Zdravkovic, Marite Kirikova, and Paul Johannesson (Eds.).
Springer International Publishing, Cham, 53ś68.

[6] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Building 54 (2000), 162. https://doi.org/10.1.1.91.2433

[7] Forrester. 2015. API Management Solutions , Q3 2014. Technical Report. Forrester.
[8] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes. 2017. An

Analysis of RESTful APIs Oferings in the Industry. In Service-Oriented Computing,
Michael Maximilien, Antonio Vallecillo, Jianmin Wang, and Marc Oriol (Eds.).
Springer International Publishing, Cham, 589ś604.

[9] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes. 2019. Governify
for APIs: SLA-Driven ecosystem for API governance. In Proceedings of the 27th
ACM Joint European Software Engineering Conference and Symposium on the

https://doi.org/10.1145/1287624.1287630
http://forgc.gridforum.org/Public_Comment_Docs/Documents/Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.pdf
http://forgc.gridforum.org/Public_Comment_Docs/Documents/Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.pdf
https://doi.org/10.1145/2897022.2897026
https://doi.org/10.1.1.91.2433

The Role of Limitations and SLAs in the API Industry ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Foundations of Software Engineering (ESEC/FSE 2019). ACM, Tallin, Estonia. https:
//doi.org/10.1145/3338906.3341176

[10] Antonio Gámez-Díaz, Pablo Fernández-Montes, and Antonio Ruiz-Cortés. 2015.
Towards SLA-Driven API Gateways. In Actas de las XI Jornadas de Ingeniería
de Ciencia e Ingeniería de Servicios, Juan Manuel Murillo (Ed.), Vol. 201232273.
Sistedes, Santander, 9. https://doi.org/10.13140/RG.2.1.4111.5609

[11] José María García, Pablo Fernández, Carlos Pedrinaci, Manuel Resinas, Jorge
Cardoso, and Antonio Ruiz-Cortés. 2017. Modeling Service Level Agreements
with Linked USDL Agreement. IEEE Transactions on Services Computing 10, 1 (1
2017), 52ś65. https://doi.org/10.1109/TSC.2016.2593925

[12] Holger Harms, Collin Rogowski, and Luigi Lo Iacono. 2017. Guidelines for
Adopting Frontend Architectures and Patterns in Microservices-based Systems.
In Proceedings of the 2017 11th JointMeeting on Foundations of Software Engineering
(ESEC/FSE 2017). ACM, New York, NY, USA, 902ś907. https://doi.org/10.1145/
3106237.3117775

[13] Keven T. Kearney, Francesco Torelli, and Constantinos Kotsokalis. 2010. SLA * An
abstract syntax for Service Level Agreements. In 2010 11th IEEE/ACM International
Conference on Grid Computing. IEEE, Brussels, Belgium, 217ś224. https://doi.org/
10.1109/GRID.2010.5697973

[14] Yousri Kouki, Frederico Alvares de Oliveira, Simon Dupont, and Thomas Ledoux.
2014. A language support for cloud elasticity management. In Proceedings -
14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 2014. IEEE, Chicago, IL, USA, 206ś215. https://doi.org/10.1109/CCGrid.
2014.17

[15] D. D. Lamanna, J. Skene, and W. Emmerich. 2003. SLAng: A language for deining
service level agreements. In FTDCS, Vol. 2003-Janua. IEEE, San Juan, Puerto Rico,
USA, USA, 100ś106. https://doi.org/10.1109/FTDCS.2003.1204317

[16] H. Ludwig, A. Keller, A. Dan, and R. King. 2002. A service level agreement
language for dynamic electronic services. InWECWIS 2002. IEEE Comput. Soc,
Newport Beach, CA, USA, USA, 25ś32. https://doi.org/10.1109/WECWIS.2002.
1021238

[17] C. Muller, A. Gutierrez Fernandez, P. Fernandez, O. Martin-Diaz, M. Resinas,
and A. Ruiz-Cortes. 2018. Automated Validation of Compensable SLAs. IEEE

Transactions on Services Computing (jan 2018), 1ś1. https://doi.org/10.1109/TSC.
2018.2885766

[18] Andy Neumann, Nuno Laranjeiro, and Jorge Bernardino. 2018. An Analysis of
Public REST Web Service APIs. IEEE Transactions on Services Computing (2018).
https://doi.org/10.1109/TSC.2018.2847344

[19] Tien N. Nguyen, Anh Tuan Nguyen, Trong Nguyen, Thanh Nguyen, Hoan Anh
Nguyen, Ngoc Tran, Hung Phan, and Linh Truong. 2018. Complementing global
and local contexts in representing API descriptions to improve API retrieval
tasks. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
- ESEC/FSE 2018. ACM Press, New York, New York, USA, 551ś562. https://doi.
org/10.1145/3236024.3236036

[20] Rick Rabiser, Sam Guinea, Michael Vierhauser, Luciano Baresi, and Paul Grün-
bacher. 2017. A comparison framework for runtime monitoring approaches.
Journal of Systems and Software 125 (3 2017), 309ś321. https://doi.org/10.1016/j.
jss.2016.12.034

[21] Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim. 2018. Aug-
menting Stack Overlow with API Usage Patterns Mined from GitHub. In Proceed-
ings of the 2018 26th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018).
ACM, New York, NY, USA, 880ś883. https://doi.org/10.1145/3236024.3264585

[22] W. Tan, Y. Fan, A. Ghoneim,M. A. Hossain, and S. Dustdar. 2016. From the Service-
Oriented Architecture to the Web API Economy. IEEE Internet Computing 20, 4
(July 2016), 64ś68. https://doi.org/10.1109/MIC.2016.74

[23] S. Tata, M. Mohamed, T. Sakairi, N. Mandagere, O. Anya, and H. Ludwig. 2016.
rSLA: A Service Level Agreement Language for Cloud Services. In 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD). IEEE, San Francisco, CA,
USA, 415ś422. https://doi.org/10.1109/CLOUD.2016.0062

[24] Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola. 2014. SLAC: A
Formal Service-Level-Agreement Language for Cloud Computing. In Proceedings
of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing
(UCC ’14). IEEE Computer Society, Washington, DC, USA, 419ś426. https://doi.
org/10.1109/UCC.2014.53

https://doi.org/10.1145/3338906.3341176
https://doi.org/10.1145/3338906.3341176
https://doi.org/10.13140/RG.2.1.4111.5609
https://doi.org/10.1109/TSC.2016.2593925
https://doi.org/10.1145/3106237.3117775
https://doi.org/10.1145/3106237.3117775
https://doi.org/10.1109/GRID.2010.5697973
https://doi.org/10.1109/GRID.2010.5697973
https://doi.org/10.1109/CCGrid.2014.17
https://doi.org/10.1109/CCGrid.2014.17
https://doi.org/10.1109/FTDCS.2003.1204317
https://doi.org/10.1109/WECWIS.2002.1021238
https://doi.org/10.1109/WECWIS.2002.1021238
https://doi.org/10.1109/TSC.2018.2885766
https://doi.org/10.1109/TSC.2018.2885766
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1145/3236024.3236036
https://doi.org/10.1145/3236024.3236036
https://doi.org/10.1016/j.jss.2016.12.034
https://doi.org/10.1016/j.jss.2016.12.034
https://doi.org/10.1145/3236024.3264585
https://doi.org/10.1109/MIC.2016.74
https://doi.org/10.1109/CLOUD.2016.0062
https://doi.org/10.1109/UCC.2014.53
https://doi.org/10.1109/UCC.2014.53

	Abstract
	1 Introduction
	2 SLAs in a Nutshell
	3 Related Work
	4 Introducing SLAs in the API Lifecycle
	5 Industrial Discussion
	5.1 The Discussion Process
	5.2 Describing some API Concepts
	5.3 API Provider's Vision
	5.4 API Infrastructure Manager's Vision
	5.5 Discussion's Results

	6 Conclusions
	Acknowledgments
	References

