f‘fCORE Metadata, citation and similar papers at core

Provided by idUS. Depésito de Investigaciéon Universidad de Sevilla

Open source tools for measuring the Internal Quality of Java software products.
A survey

P. Tomas, M.]. Escalona, M. Mejias

Department of Computer and Systems, ETS Ingenieria Informatica, University of Seville, Av. Reina Mercedes S/N, 41012 Seville,Spain

ABSTRACT

Keywords: Collecting metrics and indicators to assess objectively the different products resulting during the lifecycle
Software product of a software project is a research area that encompasses many different aspects, apart from being highly
Tools demanded by companies and software development teams.

Open source Focusing on software products, one of the most used methods by development teams for measuring Internal

xteetﬁlc:l Qual Quality is the static analysis of the source code. This paper works in this line and presents a study of the state-
Quality of-the-art open source software tools that automate the collection of these metrics, particularly for
Automation
Static analysis developments in Java. These tools have been compared according to certain criteria defined in this study.
Source code
Java
Contents
1. Introduction L L L e e e e e 245
Related Work L L e e e e 246
3. Planning and conducting the TeVIEW L L L L e 246
3.1. Acharacterization schema L L L L L e e e e e e e e e e e 247
3.1.1. Metricsimplemented L L L L L e e e e e e e e e e e e e e e e e 248
3.12. Functional features covered L e e e e e e e e e e e e e e 248
3.1.3. Yearof first version and year of last version L L L L L e e e e e e e 248
4. Characterization of tOOIS L L e e e e e e e 248
41, Jdepend e e e e e e e e 249
42, JCSC . o e e e e e e 249
43, QALaD . . . L e 249
44, CKIM . . . e e 249
45, Panopticode oL L e e e e e e e e e e e 249
46, SAMEo L e e e e e e e e e e e e e e s e e e 249
47, FINdBUZS e e e e e e e 249
48, JavaNCSS . . . e e e e e e e e 249
49. PMDandCPD i e 249
410 Xradaro e e e e e e e e e 250
411, Checkstyle o e e e e e e e e e e e 250
402, SONAT L L e e e e e e e e e e e e e e e 250

https://core.ac.uk/display/231996724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.csi.2013.08.006
mailto:ptibanez@gmail.com
mailto:mjescalona@us.es
mailto:risoto@us.es
http://dx.doi.org/10.1016/j.csi.2013.08.006
http://www.sciencedirect.com/science/journal/09205489
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2013.08.006&domain=pdf

413. Classycle e
414, Jnt . . o. oL
415, SonarPlugins
4.16. Squale (Software QUALity Enhancement)

4.17. Other related tools

5. Analysis e e e
5.1. Implementation of models by tools

5.1.1. Implementation of ISO 9126 model by Sonar
5.1.2. Implementation of SIG model by Sonar Plugins

5.1.3. Implementation of SQUALE model by Squale

6. Conclusions and futurework

Acknowledgments Lo e

References
1. Introduction

Metrics constitute a good way to understand, monitor, control, pre-
dict and test software development and maintenance projects.
Establishing systems for measuring software product quality is a key
issue within the software quality control, especially regarding the cur-
rent trend towards outsourcing developments, which is often
performed by external teams or external software factories. Moreover,
a software product quality measurement system is efficient if it is highly
automated and can be used on a frequent basis without excessive waste
of time [1].

The fact of having tools to automate both the acquisition and presen-
tation of the values of metrics offers some important advantages [2]
such as:

It allows obtaining values from the analyzed metrics doing the least
possible effort. The hardest work will have to be done at the beginning
and it will require the effort of setting the tool used to obtain the
metrics.

It reduces metric calculation errors, achieving greater accuracy in their
values.

It allows focusing on the analysis of measurement results rather than
acquisition results.

It defines minimum and maximum thresholds, beyond which the
values for certain metrics are directly presented as a warning or error.

In the area for measuring the Internal Quality of Software Products,
some relevant standards (ISO and IEC) offer initial frameworks to sup-
port it. Thus, ISO/EC 13598 [3], which is composed of six parts, offers a
suitable framework to value the quality of each kind of software product
and defines requirements that have to be supported by measure
methods and processes.

Another important reference, ISO/IEC 9126 [4], which is divided into
four parts, defines some specific aspects in software products (part 1)
as well as Internal and External metrics and metrics in use (parts 2, 3
and 4). This standard describes three different types of quality: Internal
and External quality and quality in use.

Currently, the subcommittee SC7 (Software Engineering and System)
of the Technical Committee ISO/IEC JTC1 (Information Technology) is
reviewing both standards to define a new one that may cover both
ISO/IEC 9126 and ISO/IEC 14598. This new approach is called ISO/IEC
25000 [5], frequently known as SQuaRE (Software Quality Require-
ments and Evaluation). It mainly focuses on providing guidelines
on software product development by supporting right specification
and evaluation of quality requirements. Thus, SQuaRE defines a set of
criteria to specify quality requirements for software products as well
as their metrics and evaluation. SQuaRe consists of five divisions and a
set of extensions and technical reports. Thus, ISO/IEC 25000 substitutes
ISO/IEC 9126—Part 1.

This paper does not aim to present a global study on both quality
in use and quality of the product (Internal and External). Thus, it will
be restricted to the Internal Quality of the products and the remaining
will be proposed as future work.

According to 6], the static analysis of the code would be defined as a
set of analysis techniques where the software studied is not executed
(in contrast to the dynamic analysis), but analyzed. For this reason,
this type of analysis will allow obtaining Internal Quality metrics, as it
does not require a software in use to be measured.

This paper focuses on Internal Quality metrics of a Software Product
and software tools of static code analysis that automate measuring
these metrics. Keeping in mind the variety of technologies in the present
software, studying measurement tools for all of them would exceed a
single paper. For this reason and due to its great popularity, this paper
only focuses on source code or compiled programs of Java technology,
thus covering a large part of the market products accounting for
about 20% of software products. This fact is showed in the index
TIOBE [7] of March 2011, in which Java stands as the most used
language with a share of 19.711%. However, while this study focuses
on Java technology, other technologies are proposed in Section 6 for
future work.

The comparative analysis of tools in this paper has been carried
out by means of the proposed guide for Systematic Literature Review
(SLR) included in [8]. This process consists in three main activities:

1. Planning. In this phase, the survey is planned and delimited and a
specific protocol to set it up must be defined. Both the aims of the
survey and the environment and sources to identify the approach
of study must be clearly and completely defined.

2. Conducting the review. In this phase, after the initial constraints have
already been specified, the subject of study must be identified and
reviewed through different sources. Then, the set of relevant ap-
proaches to be analyzed is identified. SEG (Software Engineering
Group) proposes to establish a common characterization criterion
to define each approach before executing the comparative study. It
enables to obtain a uniform definition for each approach that may
facilitate such comparative study.

3. Reporting the review. Finally, once the approaches have been assessed
and the research situation has already been analyzed, the process
concludes with a report on the results of the review. In fact, this
paper represents the result of our review. Previous phases were
executed before writing this paper, as referenced.

Despite that the number of tools found in the revision is not as large
as the number of paper that is frequently included in a SLR, which is
helpful in case of thousands of papers that should be manually analyzed
without an established methodology, it is considered to offer a well-
defined and useful process to compare these tools.

Thus, to present the results, this study is structured as follows:
Section 2 introduces other related studies on static analysis tools for

Java source code while Section 3 defines the scope of the study setting
out the requirements that a tool has to meet to be included in it. To
follow, Section 3.1 introduces a characterization scheme to standardize
the information of each of the approaches found. This section involves
the first and second phases of SEG (Software Engineering Group) [8].
Section 4 offers the state-of-the-art tool analysis, which draws the
information indicated in the characterization scheme obtained in
Section 3 for each tool. Section 5 compares the tools assessed according
to the data obtained in Section 4, and discusses in detail how the tools
cover one of the features present in that scheme (the Internal Quality
model). Concluding the report is Section 6 by summarizing the study
and comparison of tools, and pointing out several lines of research for
future work.

2. Related work

There are at least three previous studies related to static analysis
tools of Java code:

A. In [8] Rutar et al. compare five bug detection tools using static anal-
ysis of Java code. The conclusion of this study is that although there
are some overlaps among the types of errors detected, most of them
are different. They also state that using these tools is a difficult task
due to the number of results they generate. The present work exam-
ines three of these tools (FindBugs, PMD and Jlint) as they obtain
the code smells metric. Code smells define certain structures in the
code that suggest the possibility of refactoring because of potential
bugs.

B. In [9] Lamas compares two tools, FindBugs and PMD, which are
also analyzed both in the previous and in the present study. The con-
clusion is that the tools are complementary in terms of the bugs
detected, as there are few overlaps among them. It also concludes
that looking for bugs implies more than one static analysis tool.

C. In [10] Ayewah et al. also analyze the FindBugs tool, the kind of
warnings generated and their classification into false positives
(warnings that aren't really defects), trivial bugs (true defects with
minimal impact) and serious bugs (defects with significant impact).

D. In [11] van Emden et al. present an approach for the automatic de-
tection and visualization of code smells with jCOSMO, and discuss
how this approach can be used in the design of a software inspection
tool.

E. In [12] Artho et al. analyze how incorrect thread synchronization
produces faults that are hard to find in multi-threaded programs.
Jlint1's model is extended to include synchronizations creating a
new version Jlint2.

F. In [13] Hovemeyer et al. describe a static analysis using FindBugs
to find null pointer bugs in Java programs, and some of the simple
analysis techniques used to make it more accurate.

G. In [14] Ruthruff et al. study how to help address two challenges
complicating the adoption of static analysis tools for the detection
of software defects: spurious false positive warnings and legitimate
warnings that are not acted on. Sampling from a base of tens of
thousands of static analysis warnings from Google, they have built
models that predict whether FindBug warnings are false positives
and, if they reveal real defects, whether these defects would be
acted on by developers (“actionable warnings”) or ignored despite
their legitimacy (“trivial warnings”).

H. In[15] Cole et al. also analyze the FindBug tool, which is based on the
concept of bug patterns. A bug pattern is a code idiom that is often an
error.

Previous studies found focus on tools that explore the code from a
single point of view, that is, bugs or code smells. This study extends
the analysis to a total of eight metrics. It also compares the typical
functionality of metric tools and Quality models that they implement.

3. Planning and conducting the review

This section defines the scope of approaches (tools) that are relevant
to this study. One problem is how to present each approach in a homo-
geneous way to compare them. According to 8], the characteristics that
approaches should fulfill must be consistent with the thesis of this sur-
vey: open source software tools that automate the acquisition of Internal
Quality metrics of Software Products using static analysis of Java source
code. Following the terminology described in [12] to concretely plan
and develop our review, the concepts indicated below are defined:

Context: Establishing metrics for measuring software product quality
is a basic piece for controlling software quality. A system for measur-
ing the software product quality is efficient, if it has a high level of
automation and enables its use on a frequent basis without excessive
waste of time. The thesis of this study focuses on automating the
production of Internal Quality metrics by means of software tools
that perform static analysis of Java source code.

According to [2], static analysis tools are those that perform the analysis
without running the software under study. This type of analysis can be
performed on the source code or the bytecode (compiled code).
Objectives: The main objectives of this study are as follows:

 Study the state-of-the-art software tools that can support
Internal Quality metrics.

* Establish a framework to enable a comparison by means of
cataloging these tools.

 Explore whether any of these tools is able to establish a rela-
tionship between models and Internal Quality metrics. It
means, if there are any tools that can implement some of any
Internal Quality models using metrics and, in this case, how
they can carry it out.

 Draw conclusions and propose future work.

Methods: The following sources of information will be used for
searching tools:

* Google Scholar.

 [EEE/ACM digital libraries.

« Java Power Tools book [14]. Compendium of 30 open source
tools designed to improve development practices in Java.

* ISO/IEC 25000 portal [2]. Portal of ISO/IEC 25000 (evolution of
the ISO/IEC 9126) which contains a small but significant section
of measurement tools.

* Ohloh.net portal [15]. Social network of developers, projects
and forums of open source software, which references more
than 500,000 projects.

These criteria for inclusion, exclusion and grouping tools have been
applied when searching in these sources of information:

= Open source tools that perform automatic static analysis of Java code
have been included, in the form of either source code or compiled
code (bytecode), which allows measuring, analyzing or presenting
Internal Quality.

In other words, dynamic analysis tools, tools that analyze code in lan-
guages other than Java, tools that are not open source (proprietary),
tools for manual code review or tools that do not measure, analyze
or present Internal Quality, have been excluded.

Those tools that, in spite of being documented or referenced in the liter-
ature, are not available for download as they do not meet the open
source software requirement of free redistribution have been excluded.
Tools whose operation could not be tested with a sample project have
been excluded.

Tools that only differ in their execution, like those that can be run from
the command line or as a plugin of an integrated development environ-
ment (IDE), have been grouped.

A specific search has been conducted for each source of information:

Manual searches

* Tools in the book Java Power Tools, chapter “Quality metrics

tools”.
* Tools in ISO/IEC 25000 portal, section “Open Source Measure-
ment Tools”.

Automatic searches

» Google Scholar was previously consulted to find out related
work following these criteria: quality metrics, “static analysis”,
“open source” tools Java. Among the most relevant results,
four articles directly associated with the tools assessed in this
study have been found [16-19].
The search tool in Ohloh.net has been used to find projects
dealing with these criteria: tag:java tag:code_analysis-tag:
coverage.-tag:coverage indicates that the results exclude
the code coverage tools, a very common type of dynamic
analysis tools: code coverage points out the amount of
code that is subject to unit tests.
Results: To select the tools that will be studied, the search process for
each source has been applied taking into account inclusion, exclusion
and clustering criteria. The result of the selection process is available
in Table 1. In this table, the column “Year” refers to the year of the
latest version of the main tool, “Group of tools” refers to the tools
that have been grouped under the name of the main tool, indicating
with a “4” each of the other tools that have been grouped with the
main tool. “Reference” refers to the URL where the main tool is
available.

Table 1 includes 3 tools (shaded) that do not fulfill the characteristics
of this study. They appear at the end of Section 3 together with the rea-
sons why they are not included in this study.

3.1. A characterization schema

According to the characterization schema definition, the next step
consists in identifying a common template to describe each approach.
This scheme allows storing the information of the approaches in a
common template in order to more easily compare them. The character-
ization scheme must answer questions about the characteristics of the
tools that are consistent with the thesis of the study: open source
software tools that automate the acquisition of Internal Quality metrics of

Table 1
Selection of tools.
Year Group of tools Reference
2002 jCosmo [20]
2005 Jdepend (+]JDepend plugin for Eclipse) [21]
2005 Jcsc [22]
2006 QALab [23]
2007 CKIM [24]
2007 Panopticode [25]
2007 Same [26]
2009 FindBugs [27]
2009 JavaNCSS [28]
2009 PMD/CPD [29]
2009 Xradar [30]
2010 Jccp [31]
2011 Checkstyle (+Eclipse Checkstyle Plugin) [32]
2011 Sonar (+ Sonar IDE) [33]
2011 Classycle [34]
2011 CodeCrawler/Moose [35]
2011 Jlint [36]
2011 Sonar Plugins [37]

2011 Squale (Software QUALIity Enhancement) [38]

Software Products using static analysis of Java source code. These ques-
tions are:

* Q1. Which are the Internal Quality models implemented by the tools?
Software product conceptual models of Internal Quality detail which
are the intrinsic characteristics from which such quality can be mea-
sured. These models can be research reports, norms and standards
that enable defining a common vocabulary that supports the industry
and represents a reference framework.

Q2. Which are the Internal Quality metrics measured by the tools?
Standards are conceptual and abstract models that cannot be tied to
specific technologies, so tools calculate specific Internal Quality met-
rics of Java code. From these metrics, tools raise the level of abstraction
up to the conceptual model by using intrinsic characteristics as inter-
mediate level, thus following a hierarchical structure.

Q3. Which are the functional features covered by the tools? The tools
under study, like any software, are designed and built to meet func-
tional requirements.

Q4. Which is the degree of maturity of these tools? When comparing
these tools, the models implemented, the metrics measured or the
functions covered are not only relevant, but also their evolution
level as a symptom of more reliable and efficient software.

Q5. Is the maintenance of these tools still alive? As in any software, we
would like to check that these tools are still being developed and
maintained since they are tools that have been accepted in the devel-
oper community and have not been discontinued.

The information extraction template for cataloging and comparing
tools, which answers the questions raised above, is provided in Table 2
and subsequent paragraphs. Selecting this specific characterization sche-
ma was not an easy task. It focused on answering the research questions
previously formulated. Possibilities, such as being aligned with stan-
dards, such as ISO 25000, should be also considered to develop this
scheme. However, as we aimed to get a specific answer to our questions
we decided to define our own table.

Internal Quality models supported. This attribute will allow us to
investigate the possible relationship between metrics and Quality
models. It is used to answer Q1. After performing a preliminary study
of the models implemented in tools in Table 1, these below have been
obtained:

* ISO/IEC 9126-1:2001 “Part 1: Quality model” [13]. It is based on McCall
[39] and Boehm [40] models. Like them, it has a hierarchical structure
of quality characteristics. In the present study the External and
Internal Quality model of the two models of ISO 9126-1 are only
considered (External and Internal Quality, and quality in use). The Ex-
ternal and Internal Quality model structures software quality attri-
butes in 6 characteristics or factors: functionality, reliability, usability,
efficiency, maintainability and portability, which in turn are divided
into 27 sub-characteristics or criteria. Although sub-characteristics
can be measured by Internal and External metrics, this study only con-
siders internal metrics.

ISO/IEC 25010 “System and software Quality models” [41]. It is an
updating of ISO/IEC 9126-1 that combines the Internal and External
Quality to define the quality of a product. The quality of a product

Table 2
Characterization scheme for the description of tools.

Dominion

{1SO 9126, ISO 25010, SQUALE, SIG}
{Complexity, CK, code size, comment size,
coding convention violations, code smells,
duplicated code, dependencies}

{Data acquisition, analysis of measures,
data presentation}

Year of first version Year

Year of last version Year

Attributes

Internal Quality models supported
Metrics implemented

Functional features covered

structures the quality properties of software systems and products in 8

characteristics: functional suitability, performance efficiency, compatibili-

ty, usability, reliability, security, maintainability and portability. Similarly
to ISO/IEC 9126-1, each characteristic is divided into sub-characteristics.

SQUALE (Software QUALity Enhancement) [42]. In the same way of that of

ISO 9126 model, this model is based on McCall model [39]. However,

ISO 9126 uses a 3-tier model, whereas SQUALE adds a new level of

practices between metrics and criteria, which is obtained by applying

formulas based on the metrics for each element of the code. The three
upper levels of SQUALE (factors, criteria and practices) are evaluated
according to a 0-3 range: between 0 and 1, it represents a goal not
achieved; between 1 and 2, it represents a goal achieved, but with
reservations, and between 2 and 3, it represents a goal achieved. The
criteria and factors of SQUALE are adaptations of ISO 9126 levels. It
defines 15 criteria and 6 factors, being the factors: functionality,
architecture, maintainability, evolutivity, reuse capacity and reliability.

Practices are evaluated through code metrics, UML model metrics,

rule checking metrics, dynamic analysis metrics and human analysis

metrics, both manual and automatic, where applicable. The present
study only takes into account the metrics that can be obtained auto-
matically from static code analysis.

* SIG Maintainability Model [43]: It is a model that maps source proper-
ties in the four sub-characteristics of maintainability of 1SO 9126:
analyzability, changeability, stability and testability. It uses the follow-
ing properties for this mapping: volume (total), complexity per unit
(method), duplication (total), unit size (method) and unit testing
(method). The latter refers to dynamic analysis and therefore, it is
not included in this study. The scale ++/+/0/—/——, being ++
the best and — the worst, is used to evaluate properties.

3.1.1. Metrics implemented

The more metrics a tool implements, the more complete it will be
and the better it will meet our needs. It is only applicable for tools cov-
ering data acquisition otherwise it will be empty. It is used to answer Q2.
After carrying out a preliminary study of the implemented metrics in
tools represented in Table 1, the following results have been obtained:

» Complexity metrics. They are derived from McCabe's Cyclomatic
Complexity Number (CCN) [44], which is based on the number of
independent paths.

CK metrics. Chidamber and Kemerer [45] proposed six design metrics
in object-oriented classes, which later became what is commonly
known as the CK metric suite: Weighted Methods Per Class (WMC),
Depth of Inheritance Tree (DIT), Number of Children (NOC), Coupling
Between Object classes (CBO, also known as Efferent Couplings, Ce),
Response For a Class (RFC), and Lack of Cohesion in Methods
(LCOM). Normally, this category also includes Ca (Afferent Couplings).
Code size metrics. Metrics of number of packages, number of classes,
Number of Methods (NOM), LOC (Lines of Code) and NCLOC (Non-
Comment Lines of Code), and NCSS (Non-Commenting Source State-
ments) are often used in the Java community as code size metrics.
NCSS was defined as part of JavaNCSS [28].

Comment size metrics. The number of single-line comments, number of
block comments, and number of javadocs, among others, can be mea-
sured in order to quantify documentation. However, there are more
significant metrics such as density of comment lines or density of
javadocs [46].

Number of coding convention violations. The number of coding conven-
tion violations is frequently used as a quality metric for readability.
Sun Code Conventions for Java [47] are among the most widespread
coding conventions.

Number of code smells. Code smells metaphor was coined by Martin
Fowler and Kent Beck [48] to define certain structures in the code
that suggest the possibility of refactoring because of potential bugs.
There are several ways to recognize these code smells, such as bad
coding practices or bug patterns.

* Amount of duplicated code. A measure of the amount of duplicated
code, for example in the form of duplicated lines, duplicated blocks or
duplicated tokens, is an indicator of maintainability and reliability.

Thus, if the duplicated code is changed, then this change will have to

be executed to all duplicates. They are areas of high risk due to poten-

tial errors, since a defect that occurs in a particular code may occur in
the same way in all the duplicates.

Dependency metrics. Robert C. Martin [49] proposed three principles

dealing with the relationships among components which described

metrics to measure and characterize the dependency structure of
the design:

O The Acyclic Dependencies Principle (ADP): “Allows no cycles in the
component dependency graph”. The metric number of cycles of
dependencies among components is defined.

O The Stable-Dependencies Principle (SDP): “Depends in the direc-
tion of stability”. The metric Instability (I) is defined, thus the I
value of a component must be higher than the I value of the com-
ponents it depends on. It is calculated from Ca (Afferent Couplings)
and Ce (Efferent Couplings).

O The Stable-Abstractions Principle (SAP): “A component should be
as abstract as stable”. To measure the balance between Abstraction
(A) and Stability (I), the metric Distance from the main sequence (D)
is defined.

3.1.2. Functional features covered

It indicates whether it is a comprehensive tool that fully covers all
features and needs at all levels, or by the contrary, it is a tool that partially
covers needs and requires some others to complement it. It is used to
answer Q3. According to Giles and Daich [45,50], the three main tasks
that metric tools must perform are:

* Data acquisition. It includes a set of methods and techniques for
obtaining necessary data for measurement.

* Analysis of the measures. It includes the ability to store, retrieve,
manipulate and perform data analysis.

« Data presentation. It provides formats to generate the obtained docu-
mentation. There are some examples of possible representation such
as tables and graphs or exporting files to other applications.

The process of measuring quality could be implemented following
this order: first, data acquisition; second, analysis of the measures; final-
ly, data presentation. The data acquisition phase represents the lowest
level of abstraction, since it achieves a large set of numerical data.
Then, the analysis of measure phase summarizes and interprets the
data. Finally, the data presentation phase makes them understandable,
becoming the highest level of abstraction.

3.1.3. Year of first version and year of last version

They are used to answer Q4 and Q5. By means of the difference be-
tween the first year and the latest year, the years of development indi-
cating the maturity of the tool are obtained. The year of last version
reveals if the tool (maintenance) development is still alive today.

4. Characterization of tools

This section represents the study of the state-of-the-art tools
responsible for measuring Internal Quality of the Software Product.

Table 3

Characterization scheme for Jdepend.
Attributes Dominion
Internal Quality models supported None

Metrics implemented Dependencies
Functional features covered Data acquisition
Year of first version 2001

Year of last version 2005

Tools are displayed in chronological order by the years of last version,
and the information shown in the template of Section 3.1 above is
extracted for each tool.

4.1. Jdepend

Jdepend [21] is a tool that analyzes directories of compiled Java files
(.class or bytecode) and generates design quality metrics for each of the
packages. It produces metrics of dependencies among packages: Affer-
ent Couplings (Ca), Efferent Couplings (Ce), Abstraction (A), Instability
(I), and Distance from the main sequence (D). It also reports whether
a packet is involved in a cycle. Table 3 represents the characterization
scheme for Jdepend.

42.]JCSC

JCSC [22] checks source code against a highly definable coding
standard, which by default is “Sun Code Conventions” [47]. It also checks
potential bad code, such as empty catch/finally block, switch without
default, throwing of type ‘Exception’ and slow code. It is rule-based
operating. It also collects NCSS and CCN metrics. Table 4 represents
the characterization scheme for JCSC.

4.3. QALab

QALab [23] collects and consolidates data from several QA tools and
keeps track of them overtime. Among other tools, it collects data from
the following ones: Checkstyle, PMD/CPD and FindBugs. QALab gener-
ates two types of reports: Charts and Movers. Charts track the evolution
of data from the beginning of the project or from QALab installation.
Movers let users see at a glance what has changed since the last execu-
tion of QALab. Table 5 represents the characterization scheme for QALab.

44, CKM

CKJM [24] calculates Chidamber and Kemerer object-oriented met-
rics (WMC, DIT, NOC, CBO, RFC and LCOM), and some others which do
not belong to CK suite (Afferent Couplings, Ca, and number of public
methods or NPM), by processing the bytecode of compiled Java files
and displaying the results for each class.

Table 6 represents the characterization scheme for CKJM.

4.5. Panopticode

Panopticode [25] provides a standardized format for describing the
structure of software projects as well as integrates metrics from several
tools into that format through a set of Ant files (Ant [54] is a software
tool for automating software build processes which uses XML files to
describe the build process and its dependencies). It also provides a set
of open source tools (plugins) for gathering, correlating, and displaying
code metrics. Although the documentation indicates that it collects met-
rics from different tools, the unique version available only integrates
metrics from Jdepend (dependencies) and JavaNCSS (complexity, code
size, comment size) to be displayed in a treemap report [51]. [51] repre-
sents the characterization scheme for Panopticode (Table 7).

Table 4

Characterization scheme for JCSC.
Attributes Dominion
Internal Quality models supported None

Metrics implemented Complexity, code size,

coding convention violations, code smells
Functional features covered Data acquisition

Year of first version 2002

Year of last version 2005

Table 5

Characterization scheme for QALab.
Attributes Dominion
Internal Quality models supported None
Metrics implemented None
Functional features covered Data presentation
Year of first version 2005
Year of last version 2006

4.6. Same

Same [26] detects duplicated code chunks within a set of Java files. It
normalizes Java code and is able to find duplicated code chunks even
when the formatting is radically different, when the variable name has
changed, and even when constants have changed. Table 8 represents
the characterization scheme for Same.

4.7. FindBugs

FindBugs [27] looks for bugs in Java programs by means of a static
analysis of the bytecode (compiled class files). It is based on the concept
of bug patterns. A bug pattern is a code idiom that is often an error.
Bug patterns arise for a variety of reasons: difficult language features,
misunderstood APl methods or misunderstood invariants when the
code is modified during maintenance, among others. Since its analysis
is sometimes imprecise, FindBugs can report false warnings, which are
warnings that do not indicate real errors. In practice, the rate of false
warnings reported by FindBugs is less than 50%. FindBugs supports a
plugin architecture allowing anyone to add new bug detectors. FindBugs
uses data flow and syntactic analysis to detect bugs [9]. Table 9 repre-
sents the characterization scheme for FindBugs.

4.8. JavaNCSS

JavaNCSS [28] is a tool that globally, by package, class and method
measures the code size (number of packets, number of classes, Number
of Methods and NCSS), comment size (javadocs) and complexity (CCN)
on the Java source code. Table 10 represents the characterization
scheme for JavaNCSS.

4.9. PMD and CPD

PMD [29] is a powerful static analysis tool including a comprehensive
set of rules which can be configured. PMD scans Java source code and
looks for potential problems like possible bugs, dead code, suboptimal
code and overcomplicated expressions, for instance. It is based on sets
of validation rules or rulesets. Each ruleset comprises a set of rules, and
every rule corresponds to a code checking. Most of the rules of PMD
look for bad coding practices to avoid potential errors resulting from the
experience of a team of expert programmers in Java. PMD uses syntactic
analysis to detect bugs [9].

PMD also includes a module known as CPD “Copy Paste Detector”,
which can detect the duplicated code existing in the program, and
therefore measure the number of blocks, lines and duplicated tokens.
Table 11 represents the characterization scheme for PMD and CPD.

Table 6

Characterization scheme for CKJM.
Attributes Dominion
Internal Quality models supported None
Metrics implemented CK
Functional features covered Data acquisition
Year of first version 2005
Year of last version 2007

Table 7
Characterization scheme for Panopticode.

Table 9
Characterization scheme for FindBugs.

Attributes Dominion Attributes Dominion
Internal Quality models supported None Internal Quality models supported None
Metrics implemented Complexity, code size, comment size, Metrics implemented Code smells

dependencies

Functional features covered Data acquisition, data presentation

Year of first version 2007
Year of last version 2007
4.10. Xradar

Xradar [30] is a code report tool currently supporting Java based sys-
tems. It produces HTML/SVG reports presented in tables and graphs. It
gets results from several plugins: Checkstyle, CK]M, FindBugs, JavaNCSS,
JDepend and PMD/CPD. It measures complexity metrics (CCN), CK
(WMC, DIT, CBO, RFC, LCOM, Ce, Ca), code size (NCSS, NOM, number
of classes), comment size (number of javadocs, number of single-line
comments, number of block comments), coding convention violations,
code smells, duplicated code (duplicated lines, duplicated blocks,
duplicated tokens) and dependencies (number of cycles, I, D). The
most important report in Xradar is a spider graph (or radar graph)
representing the values of 12 metrics which are calculated by this tool,
within 4 domains (Architecture (ARCH), Design (DES), Code Quality
(CODE) and Test Suite (TS)), as part of the calculation of Total Quality
(TQ). This overall measure inspired the Total Quality Sonar Plugin
[37]. Table 12 represents the characterization scheme for Xradar.

4.11. Checkstyle

Checkstyle [32] automates the process of checking Java code that ad-
heres to a coding standard such as Sun Code Conventions [47]. It is high-
ly configurable and can be made to support almost any coding standard.
Its operation is based on validation rules, which are equivalent in most
cases to coding conventions, so rule violations allow measuring coding
conventions violations. Even though this is its main functionality,
since version 3 it can identify class design problems, duplicated code,
or bug patterns. Table 13 represents the characterization scheme for
Checkstyle.

4.12. Sonar

Sonar [33] is an open platform to manage Code Quality in a continu-
ous way. It mainly consists of two executable components: a maven
plugin [52] that performs static analysis and a web application [33]
that stores metrics in a database and presents them. To perform static
analysis it invokes tools or plugins like Checkstyle, PMD/CPD, FindBugs
and Squid (a rewritten version of JavaNCSS specifically for Sonar).
By using these plugins, it is able to gather metrics in all categories:
code size (Lines of Code, Classes and some others related), comment
size (Density of comment lines and some other related), duplicated
code (Density of duplicated lines and some others related), complexity
(Average complexity by method, Average complexity by class, Average
complexity by file and some others related), coding convention viola-
tions and code smells (Violations and some others related), dependen-
cies (Package tangle index, Package cycles, Package dependencies to cut,

Functional features covered Data acquisition
Year of first version 2003
Year of last version 2009

File dependencies to cut and some others related), and CK metrics
(LCOM and RFC). It shows a radar graph indicating the extent to which
5 out of the 6 categories or characteristics of ISO 9126 are followed
[13], in terms of analysis and presentation of data, since Functionality
does not appear. Table 14 represents the characterization scheme for
Sonar.

4.13. Classycle

Classycle [34] analyzes the static class and package dependencies. It
is similar to JDepend which does also a dependency analysis but only on
the package level. Besides, it can measure the number of classes and
packages dependency cycles. For each analyzed class/package it can
measure the number of classes/packages directly referring to this
class/package, and the number of internal classes/packages directly
used by this class/package. In addition, Classycle can search for
unwanted dependencies and group classes/packages into layers. It also
analyzes the compiled class files or bytecode. Table 15 represents the
characterizations scheme for Classycle.

4.14. Jlint

Jlint [36] analyzes compiled Java code (bytecode) to find bugs, incon-
sistencies and synchronization problems by doing data flow analysis
and building a lock graph. It uses syntactic and data flow analysis [9]
and identifies 3 types of problems: synchronization (due to the use of
threads, such as deadlocks), class inheritance (mismatch of methods
profiles or components shadowing, among others) and data flow
(value ranges of expressions and local variables). Table 16 represents
the characterizations scheme for Jlint.

4.15. Sonar Plugins

Sonar [33] can be extended by means of plugins. Although there is a
variety of plugins [37], the open source plugins that are directly related
to the Internal Quality of Java code are shown below:

« Security rules. It groups the number of security rules violations of
FindBugs and PMD (code smells).

Useless Code. It reports on the number of lines that can be reduced,
either for being a duplicated code or a dead code, using for the latter
unused code rules of PMD (code smells).

Quality Index. It combines a global measure (quality index) of quality
with a measure of the method complexity (complexity factor). The
Quality Index uses 4 metrics: code smells from PMD, distribution
function of the method complexity, test coverage (which refers to

Table 8 Table 10

Characterization scheme for Same. Characterization scheme for JavaNCSS.
Attributes Dominion Attributes Dominion
Internal Quality models supported None Internal Quality models supported None

Metrics implemented Duplicated code
Functional features covered Data acquisition
Year of first version 2007
Year of last version 2007

Metrics implemented Complexity, code size, comment size
Functional features covered Data acquisition

Year of first version 1997

Year of last version 2009

Table 11
Characterization scheme for PMD and CPD.

Table 13
Characterization scheme for Checkstyle.

Attributes Dominion

Attributes Dominion

Internal Quality models supported None
Metrics implemented Code smells, duplicated code
Functional features covered Data acquisition

Internal Quality models supported None
Metrics implemented Coding convention violations, code smells
Functional features covered Data acquisition

Year of first version 2002 Year of first version 2001
Year of last version 2009 Year of last version 2011
the External Quality), and coding conventions violations from Checkstyle. In Xradar:

It uses a formula to give a global note (QI) between 0 and 10 to the pro-
ject. The complexity factor measures the complexity density through
the distribution function of the methods complexity, obtaining a sum-
mary value (CF) by means of a formula.

SIG Maintainability Model. It implements the Software Improvement
Group Maintainability Model [43]. Among the metrics proposed in
the model for each code attribute, it selects the following: global LOC
(size) for volume, CCN per method for unit complexity, duplicated code
density for duplication, LOC per method for unit size and test coverage
(which refers to External Quality). It shows the sub-characteristics
(analyzability, changeability, stability and testability) on a graph.
Technical Debt. It calculates the technical debt (cost to amend the bad
quality of software) from the following 6 metrics: duplicated code,
coding conventions violations and code smells, complexity, test coverage
(which refers to the External Quality), comment size and dependencies
between files. It calculates, by means of formulas, the effort to correct
all defects in man days, the cost of correcting them given in dollars
and the percentage of the technical debt versus the total possible debt
of the project (called TPD, being this the technical debt when metrics
have the worst value for quality).

Total Quality. It combines four domains measures in order to calculate a
global and unified project quality health (TQ): Architecture (ARCH),
Design (DES), Code Quality (CODE) and Test Suite (TS). The metrics
used in each domain are: Architecture domain, dependency metrics;
Design domain, CK metrics; Code Quality domain, metrics of comment
size, coding convention violations, code smells and duplicated code;
Test Suite domain, test coverage metrics (External Quality). TQ metric
is similar to that obtained by Xradar [30], as the main formula is the
same:

TQ = 0.25*ARCH + 0.25*DES + 0.25*CODE + 0.25*TS.

Nevertheless, they differ in the formulas of each of the domains:

In Sonar:
* ARCH = 100 — TI
* DES = 0.15 * NOM + 0.15 « LCOM + 0.25 « RFC + 0.25 =
CBO + 0.20 = DIT
* CODE = 0.15 « DOC + 0.45 * RULES + 0.40 + DRYNESS
* TS = 0.80 = COV + 0.20 = SUC.

* ARCH = 04 « MOD + 0.6 = COH

* DES = 0.20 * NOM + 0.30 = RFC + 0.30 =« CBO + 0.20 = DIT
* CODE = 0.15 » DOC + 0.4 = DRY + 0.3 = FRE + 0.15 = STY
* TS = 0.5 « TSC + 0.5 = TMR.

Table 17 describes the metrics used in the Total Quality plugin and
Xradar.

All these plugins analyze the measurements and present the data by
delegating the data acquisition of metrics to the platform provided by
Sonar. Table 18 represents the characterization scheme for Sonar
Plugins.

4.16. Squale (Software QUALity Enhancement)

Squale [38] consists of two executable components: a web applica-
tion that presents metrics (SqualeWeb) and a batch process developed
in Java that performs the analysis of source code (Squalix) by means of a
database that stores the metrics. Squalix invokes the following plugins
for static analysis: Checkstyle, JavaNCSS, CKJM, PMD/CPD and Jdepend.
It can gather metrics in all categories by using these plugins: complexity
(CCN and summation of CCN per class), CK metrics (DIT, LCOM, Ca, RFC,
Ce), code size (NCSS, NOM and number of classes) and comment size
(number of comment lines), coding convention violations and code
smells, duplicated code (number of duplicated lines) and dependencies
(number of dependency cycles and Distance from the main sequence
(D)). In terms of analysis and presentation of data, it shows 3 out of 6
factors of SQUALE Quality Model: maintainability, evolutivity and
reuse capacity, discarding analysis, functionality, architecture and reli-
ability. Table 19 represents the characterization scheme for Squale.

4.17. Other related tools

There are several tools in Table 1 that have not been discussed in
previous sections for the following reasons:

» JCCD [31] is an API to build detectors of duplicated code, but it is not a
tool for detecting and measuring the duplicated code itself.

* JCosmo [20] is a tool for displaying source code models as a graph with
information about code smells, which helps in refactoring code re-
gions. However, it is not a tool to obtain code smells metrics.

* Moose [35] is a language-independent environment which represents
software models in a meta-model called FAMIX. It supports tools to vi-
sualize, analyze and manipulate the source code for complex software

Table 12 Table 14

Characterization scheme for Xradar. Characterization scheme for Sonar.
Attributes Dominion Attributes Dominion
Internal Quality models supported None Internal Quality models supported 1SO 9126

Metrics implemented Complexity, CK, code size, comment size,
coding convention violations, code smells,
duplicated code, dependencies

Data acquisition, analysis of the measures,
data presentation

Year of first version 2007

Year of last version 2009

Functional features covered

Metrics implemented Complexity, CK, code size, comment size,
coding convention violations, code smells,
duplicated code, dependencies

Data acquisition, analysis of the measures,
data presentation

Year of first version 2007

Year of last version 2011

Functional features covered

Table 15
Characterization scheme for Classycle.

Attributes Dominion
Internal Quality models supported None
Metrics implemented Dependencies
Functional features covered Data acquisition, analysis of
the measures, data presentation
Year of first version 2003
Year of last version 2011

systems. CodeCrawler (which later was renamed Mondrian) is one of
the visualization tools. Nevertheless, this platform does not provide
the user with the code metrics itself therefore, it is necessary to devel-
op tools to display the calculated metrics.

5. Analysis

This section compares the analyzed tools based on the data obtained
in Section 4, after applying the characterization scheme in Section 3.1.
This comparative analysis is divided into each attribute of the scheme
to be easily represented:

Metrics implemented. As Table 20 shows, code smells metrics are the
most covered by the tools (7 tools), closely followed by complexity
and code size metrics (6 tools). Most tools only implement a small
set of metrics (since they are highly specialized), except for Sonar
and Squale tools that cover all categories and become the most
complete tools in relation to this feature.

Functional features covered. With regard to functionality, as observed
in Table 21, data acquisition is the main feature of the tools. Most of
them only cover one feature (again for being highly specialized),
except for Xradar, Sonar and Squale, which are comprehensive tools
that cover all functionalities. This means that, except for Xradar,
Sonar and Squale, tools are incomplete and have to be complemented
so as to cover the necessary features to interpret the measurement
values.

Year of first version and year of last version. Regarding the year of the
versions, Table 22 shows that there is a group of 6 tools (Checkstyle,
Sonar, Classycle, Jlint, Sonar Plugins, Squale) that has an active devel-
opment (2011) and a group of 4 tools (FindBugs, JavaNCSS, PMD/CPD,
Xradar) with fairly recent development (2009). The 6 remaining
tools were developed 4 years ago, which may indicate that they
have been discarded in terms of evolution and maintenance. In addi-
tion, it can be realized that this group of 10 newly developed tools
are mature enough (development period between 6 and 12 years),
with the exception of Xradar, Sonar, Sonar Plugins and Squale. This
fact can be justified by considering that they are heavily based on
tools with more mature development (Checkstyle, FindBugs,
JavaNCSS, PMD/CPD), which are used in the data acquisition phase,
and they only evolve; thanks to their maturity level and gradual
emergence.

Internal Quality models supported. In relation to Quality models,
Table 23 shows the little coverage given by the analyzed tools to

Table 16
Characterization scheme for Jlint.
Attributes Dominion
Internal Quality models supported None
Metrics implemented Code smells
Functional features covered Data acquisition, analysis of the
measures, data presentation
Year of first version 2004

Year of last version 2011

RCI = 100

Table 17

Description of TQ and Xradar metrics.
Metric Description
TI Tangle index
NOM Number of Methods
LCOM Lack of cohesion of methods
RFC Response for class
CBO Coupling between objects
DIT Depth of Inheritance Tree
DOC Documentation
RULES Rules Compliance Index
DRY DRYness (DRY: don't repeat yourself)
cov Code coverage
Suc Unit test success density
MOD Modularization
COH Cohesion
FRE Freshness
STY Stylishness
TSC Statement test coverage
TMR Method test reference

Internal Quality models, as evidence has only been found in Sonar
(which refers to ISO 9126), Sonar Plugins (which refers to SIG) and
Squale (which refers to SQUALE).

5.1. Implementation of models by tools

An analysis on how Internal Quality models are implemented by

tools and therefore, the possible relationship between the acquired
metrics and the implemented Internal Quality models is carried out.

5.1.1. Implementation of ISO 9126 model by Sonar

Before analyzing the implementation in Sonar, a review on how ISO

9126 handles internal metrics must be performed. As mentioned in [53],
ISO 9126 suggests metrics that are not based on direct observation of
the software product and it does not provide a guide to weight or collect
metrics so as to reflect their importance in quality factors. Therefore, a
methodology is needed for evaluating the static behavior as proposed
in [53], which selects the quality characteristics of functionality, efficiency,
maintainability and portability, and their respective sub-characteristics,
rejecting reliability and usability because they are related to the dynamic
behavior.

Then the implementation of the model by Sonar is analyzed. Sonar

calculates a new metric called RCI (Rules Compliance Index) from coding
convention violations and code smells metrics. It indicates the ratio of
Weighted Violations and the number of Lines of Code. To understand
this metric, it must be kept in mind that during data acquisition,
Sonar collects information from 3 rule engines: Checkstyle, PMD and
FindBugs. Then Sonar, based on the configuration of each rule (in a
quality profile), aggregates the number of times that the rules have
been violated in the project. It then calculates the RCI by the following
formula:

__ weighted_violations

100
ncloc

ncloc: number of Lines of Code.

Table 18
Characterization scheme for Sonar Plugins.
Attributes Dominion
Internal Quality models supported SIG
Metrics implemented None
Functional features covered Analysis of the measures, data presentation
Year of first version 2010
Year of last version 2011

Table 19
Characterization scheme for Squale.

Table 21
Functional features covered by tools.

Attributes Dominion Data acquisition ~ Analysis of measures Data presentation Total
Internal Quality models supported SQUALE Jdepend X 1
Metrics implemented Complexity, CK, code size, comment size, Jcsc X 1
coding convention violations, code smells, QALab X 1
duplicated code, dependencies CKJM X 1
Functional features covered Data acquisition, analysis of the measures, Panopticode X X 2
data presentation Same X 1
Year of first version 2008 FindBugs X 1
Year of last version 2011 JavaNCSS X 1
PMD/CPD X 1
Xradar X X X 3
weighted_violations: Weighted Violations, which is calculated as Checkstyle X !
Sonar X X X 3
. o . o Classycle X 1
weighted violations = " violations of priority i+ weight of priority i. Jlint X]
Sonar Plugins X X 2
Being priority i, blocker, critical, major, minor, and info. The priority of igi‘;‘e ﬁ Z é 3

each rule is specified in the quality profile. The weight of each priority is
a configuration parameter of Sonar, with default values INFO = 0,
MINOR = 1, MAJOR = 3, CRITICAL = 5, and BLOCKER = 10.

Sonar shows a radar-like graph that indicates the extent to which
5 out of the 6 categories or characteristics of ISO 9126 [13] are
respected: Efficiency, Maintainability, Portability, Reliability and Usabil-
ity (Functionality is not shown). It uses the same formula as RCI to cal-
culate the degree of compliance of each category, but filtering violations
by such category. For example, in case of Efficiency:

weighted _violations_efficiency
% 100
ncloc

Efficiency = 100—

where:

weighted_violations_efficiency
= Zviolations of priority i and efficiency category*weight of priority

The category of each rule is defined in the quality profile.
Sonar does not completely support ISO 9126 due to the following
reasons:

If it is analyzed from the point of view of the total Internal Quality
model, it covers 5 out of the 6 Internal Quality characteristics,
discarding functionality. If it is analyzed from the point of view of
the assessment methodology static behavior [53], it covers 3 out of
the 4 features, discarding functionality again.

It considers neither the sub-characteristics of ISO 9126 nor those of
the methodology.

It does not use all the metrics it can gather to calculate the
characteristics; it only uses the number of coding convention violations

and the number of code smells. Therefore, it considers neither the
metrics nor the weighting proposed by the methodology [53].

5.1.2. Implementation of SIG model by Sonar Plugins

SIG Maintainability Model plugin is a complete implementation of
the SIG model [43] since it covers all the sub-characteristics of maintain-
ability (analyzability, changeability, stability and testability). Firstly, it
calculates the metrics of Table 24 to obtain the code properties of the
model. It also uses unit test coverage, although this metric refers to
the External Quality and it is not included in the present study.

Secondly, after obtaining the numerical values of the properties,
they are evaluated according to the scale ++/+4/0/—/—, using the
same evaluation schemes of the model. Finally, the same mapping
between sub-characteristics and properties is used and the result is
obtained by applying an average of the evaluations involved in a sub-
characteristic.

5.1.3. Implementation of SQUALE model by Squale

SQUALE model proposes 4 levels: factors, criteria, practices and
metrics. Practices are evaluated by means of automatic and manual
code metrics (metric analysis), UML model metrics (model analysis),
rule checking metrics (rule checking analysis), dynamic analysis metrics
(dynamic analysis) and human analysis metrics (human analysis), where
applicable. The present study only works with metrics that can be
obtained automatically from static code analysis, and therefore it only
considers practices, criteria and factors that may arise from them.
According to this argument, practices of metric analysis (13 practices)
and rule checking analysis (8 practices) are only selected in the practice

Table 20
Metrics implemented by tools.
Complexity CK Code size Comment size Coding convention violations Code smells Duplicated code Dependencies Total

Jdepend X 1
Jcsc X X X X 4
QALab 0
CKIM X 1
Panopticode X X X X 4
Same X 1
FindBugs X 1
JavaNCSS X X X 3
PMD/CPD X X 2
Xradar X X X X 4
Checkstyle X X 2
Sonar X X X X X X X X 8
Classycle X 1
Jlint X 1
Sonar Plugins 0
Squale X X X X X X X X 8
TOTAL 6 4 6 5 4 7 4 5

Table 22
Year of versions of tools.

Year of first version Year of last version Years
Jdepend 2001 2005 4
jcsc 2002 2005 3
QALab 2005 2006 1
CKJM 2005 2007 2
Panopticode 2007 2007 0
Same 2007 2007 0
FindBugs 2003 2009 6
JavaNCSS 1997 2009 12
PMD/CPD 2002 2009 7
Xradar 2007 2009 2
Checkstyle 2001 2011 10
Sonar 2007 2011 4
Classycle 2003 2011 8
Jlint 2004 2011 7
Sonar Plugins 2010 2011 1
Squale 2008 2011 3

level. Table 25 shows that the coverage of these practices in Squale is
76%. The metrics and formulas that the model proposes to evaluate
these practices are the same as those used by the tool.

It has been checked that the tool presents a comprehensive coverage
of factors and criteria that can be derived from the practices listed
above, as shown in the tree of factors and criteria below:

1. Maintainability
1.1. Comprehension
1.2. Homogeneity
1.3. Integration capacity
1.4. Simplicity

2. Evolutionarity
2.1. Comprehension
2.2. Homogeneity
2.3. Modularity

3. Reuse capacity

3.1. Comprehension
3.2. Exploitability
3.3. Integration capacity.

A weighted average of the criteria is performed, by following the
model, in order to assess each factor. Similarly, a weighted average of
practices is carried out for the evaluation of each criterion, thus com-
pleting the model.

Table 23
Internal Quality models supported by tools.

Quality models

Jdepend

Jcsc

QALab

CKIM

Panopticode

Same

FindBugs

JavaNCSS

PMD/CPD

Xradar

Checkstyle

Sonar 1SO 9126
Classycle

Jlint

Sonar Plugins SIG
Squale SQUALE

Table 24
Relationship between metrics and properties of SIG.
Metric Property
Total LOC Volume
CCN per method Complexity per unit
Density of duplicated code Duplications
LOC per method Unit size

6. Conclusions and future work

This paper presents an overview of open source software tools that
automate the collection of Internal Quality metrics of Software Products
from the point of view of static analysis of Java source code. It begins by
describing the procedure defined by SEG for guiding a study of this type
[8]. It applies the terminology proposed by Brereton et al. [12] to specify
the strategy used in this study.

Sixteen tools are analyzed along the corresponding sections. Most of
them automate the calculation of Internal Quality metrics (data acquisi-
tion), being code smells, complexity and code size the most common
ones. Sonar and Squale are capable of gathering data for all categories
of metrics, while the other tools are more specialized in a limited set
of metrics. There are 3 complete tools (Xradar, Sonar and Squale),
which perform the data acquisition, analysis and presentation. These
tools are relatively new and are based on more mature tools for metric
acquisition.

As a further conclusion, it would be stated that Sonar (including
its plugins) and Squale give support to a greater or lesser extent to
ISO 9126, SIG and SQUALE Quality models, establishing a relationship
between these models and the metrics they collect. Therefore, and to
conclude, it may be pointed out that although there are many tools
that automate the calculation of Internal Quality metrics of Software
Product, very few have shown evidences of the relationship between
metrics and Quality models.

We consider that this paper offers a global review of the situation,
focusing on the features (metrics) supported by each tool, without pro-
viding an empirical validation and comparison of the features exposed
by each tool to assess their real quality. It constitutes the base to detect
the most suitable tools, planning further studies of them and analyze
them in detail in order to discover computing bugs or errors in the met-
rics provided. This paper has offered us the possibility of offering a first
view and it is the begging for future detailed analysis. Thus, as a result of

Table 25
Coverage of metric analysis and rule checking analysis by Squale.

Practice Coverage

Inheritance depth X
Source comments rate
Number of Methods
Method size

Swiss army knife

Class cohesion

Efferent Coupling
Afferent Coupling
Spaghetti code

Copy paste

Stability and abstractness level
Class specialization
Dependency cycle

Layer respect
Documentation standard
Formatting standard
Naming standard
Tracing standard
Security standard
Portability standard
Programming standard
Total

XX XX b KX XX X X X X X

= X

the study, several lines of research for future work have been identified
in this paper:

Static analysis of other technologies

This study would focus on static analysis of Java source code, but it is
applicable to other general purpose programming languages such as
C, C ++ or the programming languages of .NET platform (C# and
Visual Basic.NET), some database programming languages, such as
PL/SQL, or even more specific contexts, such as web application de-
velopment, a category where the quality of code developed for
frameworks like Struts, JSF or ASP.NET should be studied.

Static analysis of other products

This line of research would study the automated measurement of In-
ternal Quality in early stages, prior to code generation, such as anal-
ysis and design documentation. A case study would be the static
analysis of UML diagrams that are generated in these phases.
Supporting tools for Internal Quality models

One of the shortages identified in the analyzed open source tools
deals with the little coverage given by Internal Quality models, so
this line of research would try to find tools in other areas such as
that of commercial tools or propose the design of tools that fulfill
this need, if any tools providing sufficient coverage to these models
are found.

Dynamic analysis, External Quality and quality in use

The dynamic analysis is performed at later stages than the static
analysis, since it requires running the software allowing measuring
either External Quality, if performed in a test environment, or quality
in use, if carried out in a production environment. For example, this
research would analyze tools that measure characteristics associated
with unit testing or resource consumption.

Finally, another important idea resulted from this paper. We were
considering the possibility of changing our characterization scheme in
order to align it with the standard ISO 25000. Despite that this idea is
not particularly oriented towards answering the research questions, it
could be very interesting to define how each approach focuses on the
standard and offers a suitable mechanism to evaluate the relevance of
each tool in this line.

Acknowledgments

This research has been supported by the project Tempros project
(TIN2010-20057-C03-02) of the Ministerio de Ciencia e Innovacion,
Spain and the NDTQ-Framework project of the Junta de Andalucia,
Spain (TIC-5789).

References

[1] Moisés Rodriguez, Marcela Genero, Javier Garzas, Mario Piattini, KEMIS: Entorno
para la medicién de la Calidad del Producto Software, 2007.

[2] ISO/IEC 25000 portal, Last Accessed September 2012.

[3] International Organization for Standardization, ISO/IEC 14598-1:1999 Information
Technology — Software Product Evaluation — Part 1: General Overview, 1999.

[4] CKS.R. Chidamber, A metrics suite for object oriented design, IEEE Trans. Softw.
Eng. 20 (6) (June 1994) 476-493.

[5] International Organization for Standardization, ISO/IEC 25000:2005 Software
Engineering — Software Product Quality Requirements and Evaluation (SQuaRE) —
Guide to SQuaRE, 2005.

[6] [En linea]. Available: http://www.is025000.com/.

[7] TIOBE Index, Last Accessed September 2012.

[8] SEG (Software Enginnering Group), Guidelines for Performing Systematic Literature

Reviews in Software Engineering Version 2.3, 2007.

N. Rutar, C.B. Almazan,].S. Foster, A Comparison of Bug Finding Tools for Java,

2004.

[10] 1. Lamas Codesido, Comparacién de analizadores estaticos para c6digo java, 2011.

[11] Nathaniel Ayewah, William Pugh,]. David Morgenthaler, John Penix, YuQian Zhou,
Evaluating Static Analysis Defect Warnings on Production Software, 2007.

[12] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, Khalil, Lessons From Applying
the Systematic Literature Review Process Within the Software Engineering Domain,
2007.

[13] International Organization for Standardization, ISO/IEC 9126-1:2001 Software
Engineering — Product Quality — Part 1: Quality Model, 2001.

[14] J.F. Smart, Java Power Tools, 20009.

[15] Ohloh.net portal, Last Accessed September 2012.

[16] E.Van Emden, L.Moonen, Java Quality Assurance by Detecting Code Smells, 2002.

[17] J.Robbins, Adopting Open Source Software Engineering (OSSE) Practices by
Adopting OSSE Tools, , 2002.

[18] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P.J. Adams, I. Samoladas, 1.
Stamelos, Evaluating the Quality of Open Source Software, 2009.

[19] S.Wagner,] Jiirjens, C.Koller, P.Trischberger, Comparing Bug Finding Tools With Re-
views and Tests, 2005.

[20] JCosmo, Last Accessed September 2012.

[21] Jdepend, Last Accessed September 2012.

[22] JCSC, Last Accessed September 2012.

[23] QALab, Last Accessed September 2012.

[24] CKJM, Last Accessed September 2012.

[25] Panopticode, Last Accessed September 2012.

[26] Same, Last Accessed September 2012.

[27] Findbugs, Last Accessed September 2012.

[28] JavaNCsS, Last Accessed September 2012.

[29] PMD, Last Accessed September 2012.

[30] Xradar, Last Accessed September 2012.

[31] JCCD, Last Accessed September 2012.

[32] Checkstyle, Last Accessed September 2012.

[33] Sonar, Last Accessed September 2012.

[34] Classycle, Last Accessed September 2012.

[35] Moose, Last Accessed September 2012.

[36] Jlint, Last Accessed September 2012.

[37] Sonar Plugins, Last Accessed September 2012.

[38] Squale, Last Accessed September 2012.

[39] Jim A.McCall, Paul K.Richards, Gene F.Walters, Factors in Software Quality. Volume I.
Concepts and Definitions of Software Quality, 1977.

[40] B.W.Boehm,].R.Brown, H.Kaspar, M.Lipow, G.McLeod, M.Merritt, Characteristics of
Software Quality, 1978.

[41] L O. f. Standardization, ISO/IEC 25010:2011 Systems And Software Engineering —
Systems And Software Quality Requirements and Evaluation (SQuaRE) — System
and Software Quality Models, 2011.

[42] F.Balmas, F.Bellingard, S.Denier, S.Ducasse, B.Franchet, J.Laval, K.Mordal-Manet,
P.Vaillergues, The Squale Quality Model, 2010.

[43] TlljaHeitlager, TobiasKuipers, JoostVisser, A Practical Model for Measuring Maintain-
ability, 2007.

[44] T.McCabe, A Complexity Measure, 1976.

[45] S.R.Chidamber, C.F. Kemerer, A Metrics Suite for Object Oriented Design, 1994.

[46] M.-A. Sicilia, Métricas de Mantenibilidad Orientadas al Producto.

[47] Sun Code Conventions, Last Accessed September 2012.

[48] Martin Fowler, Kent Beck, John Bran, William Opdyke, Don Roberts, Refactoring:
Improving the Design of Existing Code, 1999.

[49] R.C.Martin, Agile Software Development, Principles, Patterns, and Practices, 2002.

[50] Alan E. Giles, Gregory T. Daich, Metrics Tools. Crosstalk, 1995.

[51] B.Shneiderman, Discovering Business Intelligence Using Treemap Visualizations,
2006.

[52] Sonar Maven Plugin, Last Accessed September 2012.

[53] Yiannis Kanellopoulos, Panos Antonellis, Dimitris Antoniou, Christos Makris, Evangelos
Theodoridis, Christos Tjortjis, Nikos Tsirakis, Code Quality Evaluation Methodology
Using the ISO/IEC 9126 Standard, 2010.

[54] Apache Software Foundation. The Apache Ant Project. Available http://ant.apache.
org/.

9

http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0005
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0005
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0010
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0010
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0015
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0015
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0020
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0020
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0020
http://www.iso25000.com/
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0025
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0025
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0030
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0030
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0035
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0040
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0040
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0045
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0045
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0045
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0050
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0050
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0055
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0060
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0060
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0065
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0065
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0070
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0070
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0075
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0075
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0080
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0080
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0085
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0085
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0085
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0090
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0090
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0095
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0095
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0100
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0105
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0110
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0110
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0115
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0120
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0125
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0125
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0130
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0130
http://refhub.elsevier.com/S0920-5489(13)00085-8/rf0130
http://ant.apache.org/
http://ant.apache.org/

	Open source tools for measuring the Internal Quality of Java software products. A survey
	1. Introduction
	2. Related work
	3. Planning and conducting the review
	3.1. A characterization schema
	3.1.1. Metrics implemented
	3.1.2. Functional features covered
	3.1.3. Year of first version and year of last version

	4. Characterization of tools
	4.1. Jdepend
	4.2. JCSC
	4.3. QALab
	4.4. CKJM
	4.5. Panopticode
	4.6. Same
	4.7. FindBugs
	4.8. JavaNCSS
	4.9. PMD and CPD
	4.10. Xradar
	4.11. Checkstyle
	4.12. Sonar
	4.13. Classycle
	4.14. Jlint
	4.15. Sonar Plugins
	4.16. Squale (Software QUALity Enhancement)
	4.17. Other related tools

	5. Analysis
	5.1. Implementation of models by tools
	5.1.1. Implementation of ISO 9126 model by Sonar
	5.1.2. Implementation of SIG model by Sonar Plugins
	5.1.3. Implementation of SQUALE model by Squale

	6. Conclusions and future work
	Acknowledgments
	References

