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1. Introduction

As evidenced by the papers Arcones (2007), Batsidis et al. (2013), Cardoso de

Oliveira and Ferreira (2010), Ebner (2012), Enomoto et al. (2012), Farrel et al. (2007),

Hanusz and Tarasińska (2008, 2012), Henze et al. (2017), Joenssen and Vogel (2014),

Jönsson (2011), Kim (2016), Koizumi et al. (2014), Mecklin and Mundfrom (2005),

Pudelko (2005), Székely and Rizzo (2005), Tenreiro (2011, 2017), Thulin (2014), Villa-
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señor-Alva and Estrada (2009), Voinov et al. (2016), Yanada et al. (2015), and Zhou

and Shao (2014), there is an ongoing interest in the problem of testing for multivariate

normality. Without claiming to be exhaustive, the above list probably covers most of

the publications in this field since the review paper Henze (2002).

Recently, Henze and Koch (2017) provided the lacking theory for a test for uni-

variate normality suggested by Zghoul (2010). The purpose of this paper is twofold.

First, we generalize the results of Henze and Koch (2017) to the multivariate case, thus

obtaining a class of affine invariant and consistent tests for multivariate normality. Se-

cond, in contrast to that paper (and most of the other publications), which considered

only independent and identically distributed (i.i.d.) observations, we also provide the

asymptotics of our test statistics in the context of GARCH-type dependence.

To be more specific, let (for the time being) X,X1, X2, . . . be a sequence of i.i.d.

d-variate random column vectors that are defined on a common probability space

(Ω,A,P). We assume that the distribution PX is absolutely continuous with respect to

Lebesgue measure. Let Nd(µ,Σ) denote the d-variate normal distribution with mean

vector µ and non-degenerate covariance matrix Σ, and write Nd for the class of all

non-degenerate d-dimensional normal distributions. A test for multivariate normality

is a test of the null hypothesis

H0 : PX ∈ Nd,

and usually such a test should be consistent against any fixed non-normal alternative

distribution. Since the classNd is closed with respect to full rank affine transformations,

any genuine test statistic Tn = Tn(X1, . . . , Xn) based on X1, . . . , Xn should also be

affine invariant, i.e., we should have Tn(AX1 + b, . . . , AXn + b) = Tn(X1, . . . , Xn) for

each nonsingular d×d-matrix A and each b ∈ Rd, see Henze (2002) for a critical account

on affine invariant tests for multivariate normality.

In what follows, let Xn = n−1
∑n

j=1Xj, Sn = n−1
∑n

j=1(Xj − Xn)(Xj − Xn)>

denote the sample mean and the sample covariance matrix of X1, . . . , Xn, respectively,

where > means transposition of vectors and matrices. Furthermore, let

Yn,j = S−1/2
n (Xj −Xn), j = 1, . . . , n,

be the so-called scaled residuals of X1, . . . , Xn, which provide an empirical standard-
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ization of X1, . . . , Xn. Here, S
−1/2
n denotes the unique symmetric square root of Sn.

Notice that Sn is invertible with probability one provided that n ≥ d + 1, see Eaton

and Perlman (1973). The latter condition is tacitly assumed to hold in what follows.

Letting

Mn(t) =
1

n

n∑
j=1

exp
(
t>Yn,j

)
, t ∈ Rd, (1.1)

denote the empirical moment generating function of Yn,1, . . . , Yn,n, Mn(t) should be

close to

m(t) = exp(‖t‖2/2),

which is the moment generating function of the standard normal distribution Nd(0, Id).

Here and in the sequel, ‖ · ‖ stands for the Euclidean norm on Rd, and Id is the unit

matrix of order d.

The statistic proposed in this paper is the weighted L2-statistic

Tn,β = n

∫
Rd

(Mn(t)−m(t))2 wβ(t) dt, (1.2)

where

wβ(t) = exp
(
−β‖t‖2

)
, (1.3)

and β > 1 is some fixed parameter, the role of which will be discussed later. Notice

that Tn,β is the ’moment generating function analogue’ to the BHEP-statistics for

testing for multivariate normality (see, e.g., Baringhaus and Henze (1988), Henze and

Zirkler (1990), Henze and Wagner (1997)). The latter statistics originate if one replaces

Mn(t) with the empirical characteristic function of the scaled residuals and m(t) with

the characteristic function exp(−‖t‖2/2) of the standard normal distribution Nd(0, Id).

For a general account on weighted L2-statistics see, e.g., Baringhaus et al. (2017).

In principle, one could replace wβ in (1.3) with a more general weight function

satisfying some general conditions. The above special choice, however, leads to a test

criterion with certain extremely appealing features, since straightforward calculations

yield the representation

Tn,β = πd/2

(
1

n

n∑
i,j=1

1

βd/2
exp

(
‖Yn,i + Yn,j‖2

4β

)
+

n

(β − 1)d/2
(1.4)

−2
n∑
j=1

1

(β − 1/2)d/2
exp

(
‖Yn,j‖2

4β − 2

))
,
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which is amenable to computational purposes. Notice that the condition β > 1 is

necessary for the integral in (1.2) to be finite. Later, we have to impose the further

restriction β > 2 to prove that Tnβ has a non-degenerate limit null distribution as n→
∞. We remark that Tn,β is affine invariant since it only depends on the Mahanalobis

angles and distances Y >n,iYn,j, 1 ≤ i, j ≤ n. Rejection of H0 is for large values of Tn,β.

The rest of the paper unfolds as follows. The next section shows that letting β

tend to infinity in (1.2) yields a linear combination of two well-known measures of

multivariate skewness. In Section 3 we derive the limit null distribution of Tn,β in

the i.i.d. setting. Section 4 addresses the question of consistency of the new tests

against general alternatives, while Section 5 considers the new criterion in the context

of multivariate GARCH models in order to test for normality of innovations, and it

provides the pertaining large-sample theory. Section 6 presents a Monte Carlo study

that compares the new tests with competing ones, and it considers a real data set from

the financial market. The article concludes with discussions in Section 7.

2. The case β → ∞

In this section, we show that the statistic Tn,β, after a suitable scaling, approaches

a linear combination of two well-known measures of multivariate skewness as β →∞.

Theorem 2.1 We have

lim
β→∞

β3+d/2 96Tn,β
nπd/2

= 2b1,d + 3b̃1,d,

where

b1,d =
1

n2

n∑
j,k=1

(
Y >n,jYn,k

)3
, b̃1,d =

1

n2

n∑
j,k=1

Y >n,jYn,k ‖Yn,j‖2 ‖Yn,k‖2

are multivariate sample skewness in the sense of Mardia (1970) and Móri, Rohatgi and

Székely (1993), respectively.

Proof. Let b2,d = n−1
∑n

j=1 ‖Yn,j‖4 denote multivariate sample kurtosis in the sense

of Mardia (1970). From (1.4) and

exp(y) = 1 + y +
y2

2
+
y3

6
+O(y4)

4



as y → 0, the result follows by very tedious but straightforward calculations, using the

relations
∑n

j=1 Yn,j = 0,
∑n

j=1 ‖Yn,j‖2 = nd,
∑n

j,k=1 ‖Yn,j + Yn,k‖2 = 2n2d,

n∑
j,k=1

‖Yn,j + Yn,k‖4 = 2n2
(
b2,d + d2 + 2d

)
,

n∑
j,k=1

‖Yn,j + Yn,k‖4Y >n,jYn,k = 8n2b2,d + 4n2b1,d + 2n2b̃1,d,

n∑
j,k=1

‖Yn,j + Yn,k‖6 = 2n
n∑
j=1

‖Yn,j‖6 + 6(d+4)n2b2,d + 8n2b1,d + 12n2b̃1,d.

For the derivation of the second but last expression, see the proof of Theorem 4.1 of

Henze et al. (2017). We stress that although b2,d and
∑n

j=1 ‖Yn,j‖6 show up in some of

the equations above, these terms cancel out in the derivation of the final result.

Remark 2.2 Interestingly, Tn,β exhibits the same limit behavior as β → ∞ as both

the statistic studied by Henze et al. (2017), which is based on a weighted L2-distance

involving both the empirical characteristic function and the empirical moment genera-

ting function, and the BHEP-statistic for testing for multivariate normality, which is

based on the empirical characteristic function, see Theorem 2.1 of Henze (1997). At

first sight, Theorem 2.1 seems to differ from Theorem 4 of Henze and Koch (2017)

which covers the special case d = 1, but a careful analysis shows that – with the

notation τ(β) in that paper – we have limβ→∞ β
7/2τ(β) = 0.

3. Asymptotic null distribution in the i.i.d. case

In this section we consider the case that X1, X2, . . . are i.i.d. d-dimensional ran-

dom vectors with some non-degenerate normal distribution. The key observation for

deriving the limit distribution of Tn,β is the fact that

Tn,β =

∫
Rd
Wn(t)2wβ(t) dt,

where

Wn(t) =
√
n (Mn(t)−m(t)) , t ∈ Rd, (3.1)

with Mn(t) given in (1.1). Notice that Wn is a random element of the Hilbert space

L2
β := L2(Rd,Bd, wβ(t)dt) (3.2)
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of (equivalence classes of) measurable functions f : Rd → R that are square integrable

with respect to the finite measure on the σ-field Bd of Borel sets of Rd given by the

weight function wβ defined in (1.3). The resulting norm in L2
β will be denoted by

‖f‖L2
β

=
√
〈f, f〉. With this notation, Tn,β takes the form

Tn,β = ‖Wn‖2
L2
β
. (3.3)

Writing ”
D−→” for convergence in distribution of random vectors and stochastic pro-

cesses, the main result of this section is as follows.

Theorem 3.1 (Convergence of Wn under H0)

Suppose that X has some non-degenerate d-variate normal distribution, and that β > 2

in (1.3). Then there is a centred Gaussian random element W of L2 having covariance

kernel

C(s, t) = exp

(
‖s‖2 + ‖t‖2

2

)(
es

>t − 1− s>t−
(
s>t
)2

2

)
, s, t ∈ Rd,

so that Wn
D−→ W as n→∞.

In view of (3.3), the Continuous Mapping Theorem yields the following result.

Corollary 3.2 If β > 2, then, under the null hypothesis H0,

Tn,β
D−→ ‖W‖2

L2
β

as n→∞.

Remark 3.3 The distribution of T∞,β := ‖W‖2
L2
β

(say) is that of
∑∞

j=1 λjN
2
j , where

λ1, λ2, . . . are the positive eigenvalues of the integral operator f 7→ Af on L2
β associated

with the kernel C given in Theorem 3.1, i.e., (Af)(t) =
∫
C(s, t)f(s) exp(−β‖s‖2)ds,

and N1, N2, . . . are i.i.d. standard normal random variables. We did not succeed in

obtaining explicit solutions of this equation. However, since

E(T∞,β) =

∫
Rd
C(t, t)wβ(t) dt,

V(T∞,β) = 2

∫
Rd

∫
Rd
C2(s, t)wβ(s)wβ(t) dsdt

(see Shorack and Wellner, 1986, p. 213), tedious but straighforward manipulations of

integrals yield the following result, which generalizes Theorem 2 of Henze and Koch

(2017).
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Theorem 3.4 If β > 2 we have

a)

E(T∞,β) = πd/2
(

1

(β − 2)d/2
− 1

(β − 1)d/2
− d

2(β − 1)d/2+1
− d(d+ 2)

8(β − 1)d/2+2

)
,

b)

V(T∞,β) = 2πd
(

1

(β(β − 2))d/2
− 2d+1

ηd/2
− (1 + 2d)2d

ηd/2+1
− d(d+ 2)2d

ηd/2+2

+
1

(β − 1)d
+

d

2(β − 1)d+2
+

3d(d+ 2)

64(β − 1)d+4

)
,

where η = 4(β − 1)2 − 1.

Proof of Theorem 3.1. In view of affine invariance, we assume w.l.o.g. that the

distribution of X is Nd(0, Id). In Henze et al. (2017), the authors considered the

“exponentially down-weighted empirical moment generating function process”

An(t) = exp

(
−‖t‖

2

2

)
Mn(t), t ∈ Rd. (3.4)

Notice that, with the notation given in (3.2), we have

‖An‖2
L2
β

= ‖Mn‖2
L2
γ
,

where γ = β − 1 From display (10.5) and Propositions 10.3 and 10.4 of Henze et al.

(2017) we have

An(t) = exp

(
−‖t‖

2

2

)√
n

(
1

n

n∑
j=1

et
>Xj −m(t)

)
+ Vn(t) +Rn(t),

where
∫
Rd R

2
n(t)wγ(t)dt = oP(1), and

Vn(t) = − 1

2
√
n

n∑
j=1

(
(t>Xj)

2 − ‖t‖2
)
− 1√

n

n∑
j=1

t>Xj.

Display (3.4) and the representation of An as a sum yield

Wn(t) =
1√
n

n∑
j=1

Zj(t) +m(t)Rn(t),
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where

Zj(t) = et
>Xj −m(t)− m(t)

2

(
(t>Xj)

2 − ‖t‖2
)
−m(t)t>Xj.

Notice that Z1, Z2, . . . are i.i.d. centred random elements of L2
β. Since∫

Rd
(m(t)Rn(t))2wβ(t) dt =

∫
Rd
R2
n(t)wγ(t) dt = oP(1),

a Central Limit Theorem in Hilbert spaces (see e.g., Bosq, 2000) shows that there is a

centered Gaussian random element W of L2
β, so that Wn

D−→ W. Using the fact that

t>X has the normal distribution N(0, ‖t‖2) and the relations

E
[
es

>X(t>X)2
]

= m(s)
(
(s>t)2 + ‖t‖2

)
,

E
[
es

>Xt>X
]

= m(s)s>t,

E
[
(s>X)2(t>X)2

]
= 2(s>t)2 + ‖s‖2 ‖t‖2,

some straightforward algebra shows that the covariance kernel C(s, t) figuring in the

statement of Theorem 3.1 equals EZ1(s)Z1(t).

4. Consistency

The next result shows that the test for multivariate normality based on Tn,β is

consistent against general alternatives.

Theorem 4.1 Suppose X has some absolutely continuous distribution, and that MX(t) =

E[exp(t>X)] <∞, t ∈ Rd. Furthermore, let X̃ = Σ−1/2(X − µ), where µ = E(X) and

Σ−1/2 is the symmetric square root of the inverse of the covariance matrix Σ of X.

Letting MX̃(t) = E[exp(t>X̃)], we have

lim inf
n→∞

Tn,β
n
≥
∫
Rd

(
MX̃(t)−m(t)

)2
wβ(t) dt

almost surely.

Proof. Because of affine invariance we may w.l.o.g. assume EX = 0 and Σ = Id. Fix

K > 0 and put M◦
n(t) = n−1

∑n
j=1 exp(t>Xj). From the proof of Theorem 6.1 of Henze

et al. (2017) we have

lim
n→∞

max
‖t‖≤K

∣∣Mn(t)−M◦
n(t)

∣∣ = 0

8



P-almost surely. Now, the strong law of large numbers in the Banach space of contin-

uous functions on B(K) := {t ∈ Rd : ‖t‖ ≤ K} and Fatou’s lemma yield

lim inf
n→∞

Tn,β
n

≥ lim inf
n→∞

∫
B(K)

(Mn(t)−m(t))2wβ(t) dt

≥
∫
B(K)

(
Eet

>X −m(t)
)2

wβ(t) dt

P-almost surely. Since K is arbitrary, the assertion follows.

Now, suppose that X has an alternative distribution (which is assumed to be

standardized) satisfying the conditions of Theorem 4.1. Since E exp(t>X)−m(t) 6= 0

for at least one t, Theorem 4.1 shows that limn→∞ Tn,β =∞ P-almost surely. Since, for

any given nominal level α ∈ (0, 1), the sequence of critical values of a level-α-test based

on Tnβ that rejects H0 for large values of Tn,β converges according to Theorem 3.1, this

test is consistent against such an alternative. It should be ’all the more consistent’

against any distribution not satisfying the conditions of Theorem 4.1 but, in view of

the reasoning given in Csörgő (1986), the behavior of Tn,β against such alternatives is

a difficult problem.

5. Testing for normality in GARCH models

In this section we consider the multivariate GARCH (MGARCH) model

Xj = Σ
1/2
j (θ)εj, j ∈ Z, (5.1)

where θ ∈ Θ ⊆ Rv is a v-dimensional vector of unknown parameters. The unobservable

random errors or innovations {εj, j ∈ Z} are i.i.d. copies of a d-dimensional random

vector ε, which is assumed to have mean zero and unit covariance matrix. Hence

Σj(θ) = Σ(θ;Xj−1, Xj−2, . . .)

is the conditional variance of Xj, given Xj−1, Xj−2, . . .. The explicit expression of Σj(θ)

depends on the assumed MGARCH model (see, e.g., Francq and Zaköıan, 2010, for a

detailed description of several relevant models). The interest in testing for normality

of the innovations stems from the fact that this distributional assumption is made in
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some applications, and that, if erroneously accepted, some inferential procedures can

lead to wrong conclusions (see, e.g., Spierdijk, 2016, for the effect on the assessment of

standard risk measures such as the value at risk).

Therefore, an important step in the analysis of GARCH models is to check whether

the data support the distributional hypotheses made on the innovations. Because of

this reason, a number of goodness-of-fit tests have been proposed for the innovation

distribution. The papers by Klar et al. (2012) and Ghoudi and Rémillard (2014)

contain an extensive review of such tests as well as some numerical comparisons between

them for the special case of testing for univariate normality. The proposals for testing

goodness-of-fit in the multivariate case are rather scarce.

The class of GARCH models has been proved to be particularly valuable in mode-

ling financial data. As discussed, among others in Rydberg (2000), one of the stylized

features of financial data is that they are heavy-tailed. From an extensive simulation

study (a summary is reported in Section 6), we learnt that, for i.i.d. data, the test

of normality based on Tn,β exhibits a high power against heavy-tailed distributions.

Because of these reasons, this section is devoted to adapt that procedure to testing

for normality of the innovations based on data X1, . . . , Xn that are driven by equation

(5.1). Therefore, on the basis of the observations, we wish to test the null hypothesis

H0,G : The law of ε is Nd(0, Id).

against general alternatives. Notice that H0,G is equivalent to the hypothesis that,

conditionally on {Xj−1, Xj−2, . . .}, the law of Xj is Nd(0,Σj(θ)), for some θ ∈ Θ. Two

main differences with respect to the i.i.d. case are: (a) the innovations in (5.1) are

assumed to be centered at zero with unit covariance matrix; and (b) the conditional

covariance matrix Σj(θ) of Xj is time-varying in a way that depends on the unknown

parameter θ and on past observations.

Notice that although H0,G is about the distribution of ε, the innovations are un-

observable in the context of model (5.1). Hence any inference on the distribution of

the innovations should be based on residuals

ε̃j(θ̂n) = Σ̃
−1/2
j (θ̂n)Xj, 1 ≤ j ≤ n. (5.2)

Recall that Σj(θ) = Σ(θ;Xj−1, Xj−2, . . . ), but we only observe X1, . . . , Xn. Therefore,
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to estimate Σj(θ), apart from a suitable estimator θ̂n of θ, we also need to specify values

for {Xj, j ≤ 0}, say {X̃j, j ≤ 0}. So we write Σ̃j(θ) for Σ(θ;Xj−1, . . . , X1, X̃0, X̃−1 . . .).

Under certain conditions, these arbitrarily fixed initial values are asymptotically irre-

levant.

Taking into account that the innovations have mean zero and unit covvariance

matrix, we will work directly with the residuals, without standardizing them. Let MG
n

be defined as Mn in (1.1) by replacing Yn,j with ε̃j(θ̂n), 1 ≤ j ≤ n, and define TGn,β as

Tn,β in (3.3) with Wn changed for WG
n , where WG

n is defined as Wn in (3.1) with Mn

replaced by MG
n . In order to derive the asymptotic null distribution of WG

n we will

make the assumptions (A.1)–(A.6) below. In the sequel, C > 0 and %, 0 < % < 1,

denote generic constants, the values of which may vary across the text, θ0 stands for

the true value of θ, and for any matrix A = (akj), ‖A‖ =
∑

k,j |akj| denotes the l1-norm

(we use the same notation as for the Euclidean norm of vectors).

(A.1) The estimator θ̂n satisfies
√
n(θ̂n− θ0) = n−1/2

∑n
j=1 Lj + oP(1), where Lj = hjgj,

gj = g(θ0; εj) is a vector of d2 measurable functions such that E(gj) = 0 and

E(g>j gj) < ∞, and hj = h(θ0; εj−1, εj−2 . . .) is a v × d2-matrix of measurable

functions satisfying E(‖hjh>j ‖2) <∞,

(A.2) supθ∈Θ

∥∥∥Σ̃
−1/2
j (θ)

∥∥∥ ≤ C, supθ∈Θ

∥∥∥Σ
−1/2
j (θ)

∥∥∥ ≤ C P-a.s.,

(A.3) supθ∈Θ ‖Σ
1/2
j (θ)− Σ̃

1/2
j (θ)‖ ≤ C%j,

(A.4) E ‖Xj‖ς <∞ and E
∥∥∥Σ

1/2
j (θ0)

∥∥∥ς <∞ for some ς > 0,

(A.5) for any sequence x1, x2, . . . of vectors of Rd, the function θ 7→ Σ1/2(θ;x1, x2, . . . )

admits continuous second-order derivatives,

(A.6) for some neighborhood V (θ0) of θ0, there exist p > 1, q > 2 and r > 1 so that

11



2p−1 + 2r−1 = 1 and 4q−1 + 2r−1 = 1, and

E sup
θ∈V (Θ)

∥∥∥∥∥
v∑

k,`=1

Σ
−1/2
j (θ)

∂2Σ
1/2
j (θ)

∂θk∂θ`

∥∥∥∥∥
p

<∞,

E sup
θ∈V (Θ)

∥∥∥∥∥
v∑
k=1

Σ
−1/2
j (θ)

∂Σ
1/2
j (θ)

∂θk

∥∥∥∥∥
q

<∞,

E sup
θ∈V (Θ)

∥∥∥Σ
1/2
j (θ0)Σ

−1/2
j (θ)

∥∥∥r <∞.
The next result gives the asymptotic null distribution of WG

n .

Theorem 5.1 (Convergence of WG
n under H0,G)

Let {Xj} be a strictly stationary process satisfying (5.1), with Xj being measurable

with respect to the sigma-field generated by {εu, u ≤ j}. Assume that (A.1)–(A.6) hold

and that β > 2. Then under the null hypothesis H0,G, there is a centered Gaussian

random element WG of L2
β, having covariance kernel CG(s, t) = cov(U(t), U(s)), so

that WG
n

D−→ WG as n→∞, where

U(t) = exp(t>ε1)−m(t)−m(t)a(t)>L1,

a(t)> = (t>µ1t, . . . , t
>µvt), µk = E[A1k(θ0)], A1k(θ) = Σ

−1/2
1 (θ) ∂

∂θk
Σ

1/2
1 (θ), 1 ≤ k ≤ v.

From Theorem 5.1 and the Continuous Mapping Theorem we have the following

corollary.

Corollary 5.2 Under the assumptions of Theorem 5.1, we have

TGn,β
D−→ ‖WG‖2

L2
β

as n→∞.

The standard estimation method for the parameter θ in GARCH models is the

quasi maximum likelihood estimator (QMLE), defined as

θ̂n = arg max
θ∈Θ

Ln(θ),

where

Ln(θ) = −1

2

n∑
j=1

˜̀
j(θ), ˜̀

j(θ) = X>j Σ̃j(θ)
−1Xj + log

∣∣∣Σ̃j(θ)
∣∣∣ .
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Comte and Leiberman (2003) and Bardet and Wintenberger (2009), among others,

have shown that under certain mild regularity conditions the QMLE satisfies (A.1) for

general MGARCH models.

As observed before, there are many MGARCH parametrizations for the matrix

Σj(θ). Nevertheless, there exist only partial theoretical results for such models. The

Constant Conditional Correlation model, proposed by Bollerslev (1990) and extended

by Jeantheau (1998), is an exception, since its properties have been thoroughly stud-

ied. This model decomposes the conditional covariance matrix figuring in (5.1) into

conditional standard deviations and a conditional correlation matrix, according to

Σj(θ0) = Dj(θ0)R0Dj(θ0), where Dj(θ0) and R0 are d × d-matrices, R0 is a correla-

tion matrix, and Dj(θ0) is a diagonal matrix so that σ2
j (θ) = diag

{
D2
j (θ)

}
with

σ2
j (θ) = b+

p∑
k=1

BkX
(2)
j−k +

q∑
k=1

Γkσ
2
j−k(θ). (5.3)

Here, X
(2)
j = Xj�Xj, where � denotes the Hadamard product, that is, the element by

element product, b is a vector of dimension d with positive elements, and {Bk}pk=1 and

{Γk}qk=1 are d× d matrices with non-negative elements. This model will be referred to

as CCC-GARCH(p,q). Under certain weak assumptions, the QMLE for the parameters

in this model satisfies (A.1), and (A.2)–(A.6) also hold, see Francq and Zaköıan (2010)

and Francq et al. (2017).

The asymptotic null distribution of TGn,β depends on the equation defining the

GARCH model and on θ0 through the quantities µ1, . . . , µv, as well as on which es-

timator of θ has been employed. Therefore, the asymptotic null distribution cannot

be used to approximate the null distribution of TGn,β. Following Klar et al. (2012), we

will estimate the null distribution of TGn,β by using the following parametric bootstrap

algorithm:

(i) Calculate θ̂n = θ̂n(X1, . . . , Xn), the residuals ε̃1, . . . , ε̃n and the test statistic

TGn,β = TGn,β(ε̃1, . . . , ε̃n).

(ii) Generate vectors ε∗1, . . . , ε
∗
n i.i.d. from a Nd(0, Id) distribution. LetX∗j = Σ̃

1/2
j (θ̂)ε∗j ,

j = 1, . . . , n.

(iii) Calculate θ̂∗n = θ̂n(X∗1 , . . . , X
∗
n), the residuals ε̃∗1, . . . , ε̃

∗
n, and approximate the null
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distribution of TGn,β by means of the conditional distribution, given the data, of

TG∗n,β = TGn,β(ε̃∗1, . . . , ε̃
∗
n).

In practice, the approximation in step (iii) is carried out by generating a large

number of bootstrap replications of the test statistic TGn,β, whose empirical distribution

function is used to estimate the null distribution of TGn,β. Similar steps to those given

in the proof of Theorem 5.1 show that if one assumes that (A.1)–(A.6) continue to

hold when θ0 is replaced by θn, with θn → θ0 as n → ∞, and ε ∼ Nd(0, Id), then

the conditional distribution of TG∗n,β, given the data, converges in law to ‖WG‖2
L2
β
, with

WG as defined in Theorem 5.1. Therefore, the above bootstrap procedure provides a

consistent null distribution estimator.

Remark 5.3 The practical application of the above bootstrap null distribution esti-

mator entails that the parameter estimator of θ and the residuals must be calculated for

each bootstrap resample, which results in a time-consuming procedure. Following the

approaches in Ghoudi and Rémillard (2014) and Jiménez-Gamero and Pardo-Fernández

(2017) for other goodness-of-fit tests for univariate GARCH models, we could use a

weighted bootstrap null distribution estimator in the sense of Burke (2000). From a

computational point of view, it provides a more efficient estimator. Nevertheless, it can

be verified that the consistency of the weighted bootstrap null distribution estimator of

TGn,β requires the existence of the moment generating function of the true distribution

generating the innovations, which is a rather strong condition, specially taking into

account that the alternatives of interest are heavy-tailed.

As in the i.i.d. case, the next result shows that the test for multivariate normality

based on TGn,β is consistent against general alternatives.

Theorem 5.4 Let {Xj} be a strictly stationary process satisfying (5.1), with Xj be-

ing measurable with respect to the sigma-field generated by {εu, u ≤ j}. Assume

that (A.1)–(A.6) hold, that ε has some absolutely continuous distribution, and that

Mε(t) = E[exp(t>ε)] <∞, t ∈ Rd. We then have

lim inf
n→∞

TGn,β
n
≥
∫
Rd

(Mε(t)−m(t))2 wβ(t) dt

in probability.
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Similar comments to those made after Theorem 4.1 for the i.i.d. case can be done

in this setting.

Proof of Theorem 5.1. From the proof of Theorem 7.1 in Henze et al. (2017), it

follows that WG
n (t) = WG

1,n(t) + rn,1(t), with WG
1,n(t) = n−1/2

∑n
j=1 Vj(t),

Vj(t) = exp(t>εj)−m(t)a(t)>
√
n(θ̂n − θ0)−m(t),

and ‖rn,1‖L2
β

= oP(1). By Assumption A.1, WG
1,n(t) = WG

2,n(t) + rn,2(t), with WG
2,n(t) =

n−1/2
∑n

j=1 Uj(t),

Uj(t) = exp(t>εj)− exp(−‖t‖2/2)a(t)>Lj − exp(−‖t‖2/2),

and ‖rn,2‖L2
β

= oP(1).

To prove the result we will apply Theorem 4.2 in Billingsley (1968) to {WG
2,n(t), t ∈

Rd} by showing that (a) for each positive M , {WG
2,n(t), t ∈ B(K)} converges in law to

{WG(t), t ∈ B(K)} in C(B(K)), the Banach space of real-valued continuous functions

on B(K) := {t ∈ Rd : ‖t‖ ≤ K}, endowed with the supremum norm; (b) for each

ε > 0, there is a positive K so that∫
Rd\B(K)

E
[
WG

2,n(t)2
]
wβ(t) dt < ε, (5.4)

∫
Rd\B(K)

E
[
WG(t)2

]
wβ(t) dt < ε. (5.5)

Proof of (a): By applying the central limit theorem for martingale differences, the

finite-dimensional distributions of {WG
2,n(t), t ∈ Rd} converge to those of {WG(t), t ∈

Rd}. Hence, to prove (a) we must show that {WG
2,n(t), t ∈ B(K)} is tight. With this

aim we write WG
2,n(t) = WG

3,n(t)−WG
4,n(t), with WG

3,n(t) = n−1/2
∑n

j=1{exp(t>εj)−m(t)}
and WG

4,n(t) = m(t)a(t)>n−1/2
∑n

j=1 Lj. The mean value theorem gives

E
[
{exp(t>ε)− exp(s>ε)}2

]
≤ κ‖t− s‖2, s, t ∈ B(K),

for some positive κ. From Theorem 12.3 in Billingsley (1968), the process {WG
3,n(t), t ∈

B(K)} is tight. By the central limit theorem for martingale differences, n−1/2
∑n

j=1 Lj

converges in law to a v-variate zero mean normal random vector. Hence {WG
4,n(t), t ∈

B(K)}, being a product of a continuous function and a term which is OP(1), is tight,

and the same property holds for {WG
2,n(t), t ∈ B(K)}.
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Proof of (b): In view of E
[
WG

2,n(t)2
]

= E [U1(t)2] < ∞, for each ε > 0 there is some

positive constant K so that (5.4) holds. Likewise, (5.5) holds, which completes the

proof.

Proof of Theorem 5.4. Let εj(θ) = Σ
−1/2
j (θ)Xj. Notice that εj(θ0) = εj. Let M̃G

n (t) =

n−1
∑n

j=1exp{t>ε̃j(θ̂n)}, M̂G
n (t) = n−1

∑n
j=1exp{t>εj(θ̂n)}, M◦

n(t) = n−1
∑n

j=1exp{t>εj}
and B(K) := {t ∈ Rd : ‖t‖ ≤ K}. To show the result we will prove

(a) supt∈B(K) |M̂G
n (t)−M◦

n(t)| = oP(1),

(b) supt∈B(K) |M̃G
n (t)− M̂G

n (t)| = oP(1),

and the result will follow by using the same proof as in the i.i.d. case.

Proof of (a): Let θ̂n=(θ̂n1, . . . , θ̂nv)
>, θ0 =(θ01, . . . , θ0v)

> andAjk(θ)=Σ
−1/2
j (θ) ∂

∂θk
Σ

1/2
j (θ).

We have εj(θ̂n) = εj + ∆n,j, with ∆n,j = −
∑v

k=1 Ajk(θ̃n,j)εj(θ̂nk − θ0k), for some θ̃n,j

between θ̂n and θ0. Observe that exp(t>∆n,j) − 1 = t>∆n,j exp(αn,jt
>∆n,j) for some

αn,j ∈ (0, 1). Now (A.1) and (A.6) yield ‖∆n,j‖ ≤ Dj‖εj‖‖θ̂n− θ0‖ for large enough n,

where E(D2
j ) <∞. The Cauchy–Schwarz inequality gives

|M̂G
n (t)−M◦

n(t)| =

∣∣∣∣∣ 1n
n∑
j=1

exp(t>εj)
{

exp(t>∆n,j)− 1
}∣∣∣∣∣ ≤ r1,n(t)1/2r2,n(t)1/2,

where r1,n(t) = Mn(2t), and

r2,n(t) = ‖t‖2‖θ̂n − θ0‖2 exp

{
2‖t‖‖θ̂n − θ0‖ max

1≤j≤n
Dj‖εj‖

}
1

n

n∑
j=1

D2
j‖εj‖2.

From the strong law of large numbers in the Banach space of continuous functions on

B(K), we have

sup
t∈B(K)

r1,n(t) ≤ sup
t∈B(K)

Mε(2t) + sup
t∈B(K)

|MG
n (2t) +Mε(2t)| < K1 P-a.s.

for some positive constant K1. From the ergodic theorem, n−1
∑n

j=1D
2
j‖εj‖2 < K2

P-almost surely for some positive constant K2. Using stationarity and finite second

moments, if follows that max1≤j≤nDj‖εj‖/
√
n → 0, P-almost surely. Hence (A.1)

yields supt∈B(K) r2,n(t)→ 0, in probability. This concludes the proof of (a).

Proof of (b): The reasoning follows similar steps as the proof of fact (c.1) in the proof

of Theorem 7.1 in Henze et al. (2017) and is thus omitted.
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6. Monte Carlo results

This section describes and summarizes the results of an extensive simulation ex-

periment carried out to study the finite-sample performance of the proposed tests.

Moreover, we consider a real data set of monthly log returns. All computations have

been performed using programs written in the R language.

6.1. Numerical experiments for i.i.d. data

Upper quantiles of the null distribution of Tn,β have been approximated by gene-

rating 100,000 samples from a law Nd(0, Id). Table 1 displays some critical values with

the convention that an entry like −41.17 stands for 1.17× 10−4. The results show that

large sample sizes are required to approximate the critical values by their corresponding

asymptotic values.

A natural competitor of the test based on Tn,β is the CF-based test studied in

Henze and Wagner (1997) (HW-test). The latter procedure is simple to compute as

well as affine invariant, and it has revealed good power performance with regard to

competitors. The behaviour of the test based on Tn,β in relation to the HW-test depends

on whether the distribution is heavy-tailed or not. We tried a number of non-heavy-

tailed distributions (specifically, the multivariate Laplace distribution, finite mixtures

of normal distributions, the skew-normal distribution, the multivariate χ2-distribution,

the Khintchine distribution, the uniform distribution on [0, 1]d and the Pearson type

II family). For these distributions we observed that the power of the proposed test is

either similar or smaller than that of the HW-test; for very heavy-tailed distributions,

the new test outperforms the HW-test. This observation can be appreciated by looking

at Table 2, which displays the empirical power calculated by generating 10,000 samples

(in each case), for the significance level α = 0.05, from the following heavy-tailed

alternatives: (ASEθ) the θ-stable and elliptically-contoured distribution and the (Tθ)

multivariate Student’s t with θ degrees of freedom. The same fact was also observed

in Zghoul (2010), who numerically studied the test based on Tn,β for univariate data.

In our simulations we tried a large number of values for β for the proposed test as

well as for the HW-test. The tables display the results for those values of β giving the

highest power in most of the cases considered. The same can be said for the simulations

17



Table 1: Critical points for π−d/2Tn,β.

β

d n α 2.5 3.0 3.5 4.0 5.0 6.0 10.0

2 20 0.05 0.213 −10.751 −23.269 −21.639 −35.408 −32.266 −42.241

0.10 0.339 −11.147 −24.857 −22.380 −37.638 −33.150 −43.025

50 0.05 0.391 −11.246 −25.098 −22.436 −37.594 −33.078 −42.875

0.10 0.661 −11.997 −27.802 −23.624 −310.917 −34.330 −43.897

100 0.05 0.511 −11.539 −26.073 −22.838 −38.620 −33.429 −43.111

0.10 0.868 −12.432 −29.168 −24.153 −312.094 −34.724 −44.143

200 0.05 0.612 −11.757 −26.719 −23.085 −39.181 −33.616 −43.232

0.10 1.028 −12.726 −29.908 −24.382 −312.528 −34.845 −44.221

300 0.05 0.679 −11.894 −27.114 −23.223 −39.466 −33.719 −43.296

0.10 1.132 −12.878 −210.259 −24.518 −312.748 −34.905 −44.232

400 0.05 0.701 −11.925 −27.165 −23.248 −39.502 −33.721 −43.283

0.10 1.148 −12.868 −210.084 −24.417 −312.521 −34.843 −44.187

3 20 0.05 0.356 −11.066 −24.095 −21.851 −35.218 −31.942 −41.413

0.10 0.520 −11.504 −25.629 −22.503 −36.886 −32.518 −41.773

50 0.05 0.719 −11.906 −26.760 −22.894 −37.598 −32.709 −41.828

0.10 1.153 −12.879 −29.789 −24.073 −310.317 −33.593 −42.334

100 0.05 0.988 −12.433 −28.258 −23.426 −38.696 −33.043 −41.992

0.10 1.646 −13.732 −211.943 −24.788 −311.572 −33.945 −42.489

200 0.05 1.232 −12.851 −29.322 −23.781 −39.365 −33.231 −42.078

0.10 2.046 −14.319 −213.243 −25.167 −312.210 −34.123 −42.567

300 0.05 1.332 −12.979 −29.555 −23.849 −39.431 −33.242 −42.072

0.10 2.187 −14.441 −213.364 −25.156 −312.105 −34.073 −42.527

400 0.05 1.397 −13.061 −29.725 −23.893 −39.509 −33.260 −42.084

0.10 2.245 −14.481 −213.341 −25.122 −312.010 −34.046 −42.519

5 20 0.05 0.597 −11.347 −24.130 −21.554 −33.275 −30.971 −53.884

0.10 0.774 −11.691 −25.089 −21.886 −33.900 −31.142 −54.474

50 0.05 1.519 −12.868 −27.862 −22.731 −35.215 −31.460 −55.283

0.10 2.332 −14.130 −210.801 −23.633 −36.633 −31.809 −56.260

100 0.05 2.315 −13.947 −210.132 −23.381 −36.134 −31.667 −55.768

0.10 3.782 −15.884 −214.199 −24.530 −37.779 −32.051 −56.782

200 0.05 3.047 −14.744 −211.541 −23.736 −36.565 −31.755 −55.962

0.10 4.969 −16.964 −215.880 −24.896 −38.131 −32.112 −56.875

300 0.05 3.346 −15.016 −211.974 −23.829 −36.636 −31.769 −55.985

0.10 5.445 −17.343 −216.307 −24.960 −38.119 −32.100 −56.832

400 0.05 3.608 −15.234 −212.292 −23.889 −36.679 −31.776 −55.997

0.10 5.838 −17.586 −216.477 −24.958 −38.085 −32.085 −56.821
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Table 2: Percentage of rejection for nominal level α = 0.05 and n = 50.

Test based on Tn,β HW-test

β β

d 3 3.5 4.0 5.0 6.0 10.0 0.1 0.5 1.0

ASE1.75 2 72.47 72.62 72.43 72.08 71.59 70.34 67.29 67.75 59.91

3 82.70 82.78 82.76 82.69 82.52 81.92 79.07 78.16 68.60

5 90.51 90.86 90.95 91.25 91.32 91.05 88.89 87.46 75.71

ASE1.85 2 54.43 54.39 54.35 53.91 53.55 52.59 50.00 48.17 39.35

3 62.72 62.67 62.61 62.46 62.39 61.58 57.95 54.67 42.44

5 75.31 75.52 75.65 75.96 76.03 75.63 71.81 66.66 47.82

ASE1.95 2 24.67 24.62 24.52 24.22 24.11 23.56 22.44 20.78 15.38

3 29.31 29.37 29.47 29.12 28.91 28.45 26.37 24.04 16.79

5 38.28 38.39 38.37 38.27 38.00 37.55 33.99 29.35 17.39

T5 2 58.77 58.82 58.74 58.26 57.82 56.21 51.44 54.20 47.58

3 40.59 40.76 40.98 41.11 41.34 41.31 39.69 37.79 28.99

5 87.14 87.80 88.43 89.17 89.59 89.76 86.36 87.21 77.92

T7 2 42.33 42.21 42.16 41.86 41.43 39.68 36.19 36.30 28.97

3 55.23 55.49 55.51 55.62 55.30 54.38 49.20 48.82 37.89

5 71.51 72.50 73.17 74.07 74.47 74.30 69.35 67.75 51.33

T10 2 28.80 28.82 28.73 28.29 27.99 27.12 24.48 22.94 16.23

3 38.34 38.56 38.58 38.51 38.33 37.00 32.97 30.55 20.84

5 51.64 52.38 53.01 53.91 54.25 54.33 48.85 45.36 28.41

in the next subsection.

6.2. Numerical experiments for GARCH data

In our simulations we considered a bivariate CCC–GARCH(1,1) model with

b =

 0.1

0.1

 , B1 =

 0.1 0.1

0.1 0.1

 , Γ1 =

 γ 0.01

0.01 γ

 , R =

 1 r

r 1

 ,

for γ = 0.3, 0.4, 0.5 and r = 0, 0.3, and a trivariate CCC–GARCH(1,1) model with

b = (0.1, 0.1, 0.1)′,

B1 =


0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

 , Γ1 =


γ 0.01 0.01

0.01 γ 0.01

0.01 0.01 γ

 , R =


1 r r

r 1 r

r r 1


and γ and r as before. The parameters in the CCC-GARCH models were estimated

by their QMLE using the package ccgarch of the language R. For the distribution of

the innovations, we took ε1, . . . , εn i.i.d. from the distribution of ε with ε having a (N)

multivariate normal distribution, in order to study the level of the resulting bootstrap
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test. To assess the power we considered the following heavy-tailed distributions: Tθ,

the multivariate β-generalized distribution (GNθ), that coincides with the normal dis-

tribution for θ = 2 and has heavy tails for 0 < θ < 2 (Goodman and Kotz, 1973), and

the asymmetric exponential power distribution (AEP ), whereby (X1, . . . , Xd)
>, with

X1, . . . , Xd i.i.d. from a univariate AEP distribution (Zhu and Zinde-Walsh, 2009)

with parameters α = 0.4, p1 = 1.182 and p2 = 1.820 (these settings gave useful results

in practical applications for the errors in GARCH type models). As in the previous

subsection, we also calculated the HW-test.

Table 3 reports the percentages of rejections for nominal significance level α = 0.05

and sample size n = 300, for r = 0, 0.3 and γ = 0.4. The resulting pictures for

γ = 0.3, 0.5 are quite similar so, to save space, we omit the results for these values of

γ. In order to reduce the computational burden we adopted the warp-speed method of

Giacomini et al. (2013), which works as follows: rather than computing critical points

for each Monte Carlo sample, one resample is generated for each Monte Carlo sample,

and the resampling test statistic is computed for that sample; then the resampling

critical values for TGn,β are computed from the empirical distribution determined by the

resampling replications of TG∗n,β. In our simulations we generated 10, 000 Monte Carlo

samples for the level and 2, 000 for the power. Looking at Table 3, we conclude that:

the actual level of the proposed bootstrap test is very close to the nominal level, and

this is also true for the HW-test (although to the best of our knowledge, the consistency

of the bootstrap null distribution estimator of the HW-test statistic has been proved

only for the univariate case in Jiménez-Gamero, 2014); and with respect to the power,

the proposed test in most cases outperforms the HW-test.

6.3. A real data set application

As an illustration, we consider the monthly log returns of IBM stock and the

S&P 500 index from January 1926 to December 2008 with 888 observations. This

data set was analyzed in Example 10.5 of Tsay(2010), where it is showed that a CCC-

GARCH(1,1) model provides a adequate description of the data, which is available from

the website http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts/) of the

author. We applied the proposed test and the HW test for testing H0,G. The p-

values were obtained by generating 1000 bootstrap samples. For all values of β in
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Table 3: Percentage of rejections for nominal level α = 0.05, γ = 0.4 and n = 300.

Test based on TGn,β HW-test

β β

d r 2.1 2.2 2.3 2.4 2.5 1.0 1.5 2.0 2.5

N 2 0.0 4.96 4.85 4.81 4.79 4.73 5.06 4.80 4.97 4.82

0.3 4.14 4.33 4.38 4.40 4.27 4.95 5.45 5.36 5.29

3 0.0 4.54 4.71 4.73 4.74 4.73 4.64 4.64 4.88 4.51

0.3 4.96 4.85 4.81 4.79 4.73 5.06 4.80 4.97 4.82

T10 2 0.0 61.85 61.20 59.25 57.55 55.50 26.70 36.70 37.20 34.85

0.3 66.95 66.80 65.85 64.15 61.35 20.50 31.70 32.10 30.60

3 0.0 81.45 80.95 80.15 79.65 78.20 45.75 55.40 50.95 43.80

0.3 78.30 78.05 78.20 77.20 77.15 42.40 55.70 52.85 44.00

GN1.65 2 0.0 22.40 21.05 20.10 18.95 17.85 8.65 15.20 16.45 16.75

0.3 18.30 17.80 17.70 16.80 16.10 8.00 14.00 16.00 14.30

3 0.0 17.55 18.40 18.10 17.80 16.90 9.10 14.85 15.35 15.60

0.3 20.00 19.65 19.85 19.80 18.90 9.70 13.95 15.55 15.15

AEP 2 0.0 56.75 55.50 53.35 51.10 49.00 29.55 49.85 52.85 51.45

0.3 52.70 51.20 49.65 47.90 45.75 26.35 45.20 50.00 49.20

3 0.0 55.40 55.85 54.85 53.75 51.65 38.25 54.25 55.45 49.25

0.3 59.55 59.30 58.75 57.15 57.00 33.15 53.65 53.90 49.70

Table 3 we get the same p-value, 0.000, which leads us to reject H0,G, as expected by

looking at Figure 1, which displays the scatter plot of the residuals after fitting a CCC-

GARCH(1,1) model to the log returns, and Figure 2, that represents the histograms of

the marginal residuals with the probability density function of a standard normal law

superimposed.

7. Conclusions

We have studied a class of affine invariant tests for multivariate normality both

in an i.i.d. setting and in the context of testing that the innovation distribution of a

multivariate GARCH model is Gaussian, thus generalizing results of Henze and Koch

(2017) in two ways. The test statistics are suitably weighted L2-statistics based on

the difference between the empirical moment generating function of scaled residuals

of the data and the moment generating function of the standard normal distribution

in Rd. As such, they can be considered as ’moment generating function analogues’ to
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Figure 1: Scatter plot of the residuals.
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Figure 2: Histograms of the residuals.
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the time-honored class of BHEP tests that use the empirical characteristic function.

As the decay of a weight function figuring in the test statistic tends to infinity, the

test statistic approaches a certain linear combination of two well-known measures of

multivariate skewness. The tests are easy to implement, and they turn out to be

consistent against a wide range of alternatives. In contrast to a recently studied L2-

statistic of Henze et al. (2017) that uses both the empirical moment generating and

the empirical characteristic function, our test is also feasible for larger sample sizes

since the computational complexity is of order O(n2). Regarding power, the new tests

outperform the BHEP-tests against heavy-tailed distributions.
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