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Abstract We study the existence of weak solutions to a nonlinear strongly coupled
parabolic–elliptic PDEs arising in the heating induction-conduction process of steel
hardening. In this setting, our major concern is to consider the case when the electric
conductivity is nonuniformly elliptic which, together with a right hand side in L1 in
the energy balance equation, yields to a difficult theoretical situation. The existence
result gives a weak solution to a similar PDEs system where the energy balance
equation has been perturbed by a measure term.

1 Introduction

The aim of this work is to analyze the existence of weak solutions to a nonlinear
PDEs system arising in the heating induction-conduction process of a steel work-
piece [7, 8, 10, 11, 13]. Since we are dealing with high oscillating sinusoidal in time
for both electric potential and magnetic vector potential, we introduce a change of
variables separating the two time scales. This leads us to a new PDEs system, the
so-called harmonic regime, namely
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In this context, ˝; D � R3 are open, bounded, connected and Lipschitz-continuous
sets such that N̋ � D, @˝ D �0 [ �1 is a smooth partition of the boundary of
˝ . The unknowns are the electric potential, ', the magnetic vector potential, A,
and the temperature, � ; � and � stand for the electric and thermal conductivities,
respectively, ! is the frequency, �0 the initial temperature and L 2 L .X;X0/ is an
elliptic operator defined on a certain Hilbert space X with values on its dual space
X0. Also, � is the density and c" is the specific heat at constant pressure. Finally,
'0 2 L2.H 1.˝// is a given function with zero flux gradient on �1 and i is the
imaginary unity.

In this work we have included in (1) the divergence term i�!r � .�.�/A/, where
� 2 �

0; 1 � 1
!

�
is a parameter. Usually, this term is not taken into account, that is

� D 0. Notice that in the original model we have � D 1 (cf. [2, 3]).
This work is organized as follows. In Sect. 2, we describe the notation used along

this paper, introduce some functional spaces, enumerate the hypotheses on data and
give the main result. In Sect. 3 we sketch the proof of the main result by introducing
approximate problems, deriving the necessary a priori estimates and, finally, passing
the limit.

2 Notation, Assumptions and Main Result

Let ˝1; ˝2 � R3 be two open bounded, connected and Lipschitz-continuous sets
such that S D N̋

1 \ N̋
2 ¤ ; is a smooth surface. We then consider the set of

conductors ˝ D ˝1 [ ˝2 [ int.S/ where int.S/ means the interior of S within
the induced topology. ˝1 is the steel workpiece whereas ˝2 is the copper inductor;
since S ¤ ;, the workpiece and the inductor are put in contact so that ˝ itself
becomes the coil. Let �0 � @˝2 be a smooth surface.

For a normed linear space V , we put V D .V /3. Also, if X is a Banach space,
we write Lp.X/ D Lp.0; T I X/ and W 1;p.X/ D W 1;p.0; T I X/, where p0 is the
conjugate exponent of p. Let V be the complex valued Hilbert space V D f� 2
H 1.˝/ = � D 0 on �0g provided with the norm k�kV D �R

˝
jr�j2�1=2

, which is
equivalent to the standard norm in H 1.˝/ on V .

We also consider a complex valued Hilbert space X such that H 1
0.D/ � X �

H 1.D/ where lies the magnetic vector potential A. Obviously, the space X is related
to the boundary conditions of A. For instance, it may take the form

X D fv 2 H 1.D/ = v D 0 on @Dg; or

X D fv 2 H 1.D/ = r � v D 0 in D; v � nD0 on @Dg where @D2C 1;1 in this case.



On the other hand, the elliptic operator L 2 L .X;X0/ is given by

L.v/ D r �
�

1

	
r � v

�
� ır.r � v/;

where 	 is the magnetic permeability (a positive bounded function) and ı > 0 a
constant value.

In the analysis of parabolic problems with right hand side in L1 it is useful the
next result (see [14])

Lemma 1 Let X , B and Y be three Banach spaces such that X ,! B ,! Y , all
embeddings being continuous and the injection X ,! B compact. For 1 � p; q <

C1 define W to be the Banach space W D ˚
v 2 Lp.X/ = dv

dt
2 Lq.Y /

�
. Then, the

embedding W ,! Lp.B/ holds and is compact.

The assumptions on data now follows.

(H.1) � W D � R ! R is given by
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�.1/.s/ if x 2 ˝1, s 2 R

�.2/.s/ if x 2 ˝2, s 2 R,
0 if x 2 D n N̋ , s 2 R,

where �.1/; �.2/ 2 C.R/, and there exist some constant C1; C2; K1; K2 > 0 and
0 < ˛ < 5=3 such that for all s 2 R we have

0 <
C1

1 C jsj˛ � �.1/.s/ � C2; K1 � �.2/.s/ � K2:

(H.2) � D �i and c" D ci
" in ˝i , i D 1; 2 where �1; �2; c1

" ; c2
" 2 R are positive

constant values.
(H.3) � W ˝ � R 7! R is a Carathéodory function and there exist two constant

values �1 and �2 such that, almost everywhere x 2 ˝ and for all s 2 R, we have
0 < �1 � �.x; s/ � �2:

(H.4) L 2 L .X;X0/ and there exists a constant value ˛ > 0 such that, for all
v 2 X,

hL.v/; NviX0;X � ˛kvk2
X:

(H.5) � 2 �
0; 1 � 1

!

�
.

(H.6) '0 2 L2.H 1.˝// and @'0

@n
D 0 on �1 � .0; T /.

(H.7) G 2 L1.˝T /.
(H.8) �0 2 L1.˝/.



The main result of this paper is the next

Theorem 1 Under the assumptions (H.1)–(H.8) there exist three measurable func-
tions '; � W ˝T 7! R, A W DT 7! R3, and a Radon measure � 2 M .˝T / such
that

' 2 Lr .W 1;r .˝//; for all r 2 Œ1; 10=.5 C 3˛//I ; ' D 0 on �0; (6)
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Z
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Z
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i!

Z

˝T

�.�/A � Nv C
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Z

˝T

�.�/r' � Nv; v 2 L2.X/; (9)

� 2 Lp.W 1;p.˝// \ C.Œ0; T 
I .W 1;p0
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for all � 2 D. N̋
T / such that �.�; T / D 0 in ˝: (12)

Remark 1 Due to (H.1), the function � is not uniformly elliptic. In particular, we
cannot derive the regularity ' 2 L2.V /. This is also related with the “strange term”
� appearing in the equation for the temperature.

3 Proof of the Main Result

In order to prove the Theorem 1 we first introduce a sequence of approximate
problems then deduce some a priori estimates. The approximate problems regularize
the solution in three different ways: (1) introduction of a time derivative term
in the equations of ' and A to assure the measurability of both functions when
passing to the limit; (2) modification of the electric conductivity in order to deal
with uniformly elliptic operators; and (3) truncation of the L1 terms in the energy
equation.



3.1 Approximate Problems

For k 2 N we introduce the approximate the function � as follows

�k.x; s/ D

8
ˆ̂
<

ˆ̂
:

�.1/.s/ C 1

k
if x 2 ˝1, s 2 R,

�.2/.s/ if x 2 ˝2, s 2 R,
0 if x 2 D n N̋ , s 2 R.

We also use the truncation function Tk at height k > 0, that is

Tk.s/ D
8
<

:

�k; if s < �k,
s; if jsj � k,
k; if s > k.

The approximate problems of (1)–(5) are given by

'k 2 L2.V /; Ak 2 L2.X/; �k 2 L2.H 1.˝// \ C
�
Œ0; T 
I L2.˝/

�
; (13)

1

k

d'k

dt
� r � .�k.�k/r'k/ D i�!r � .�k.�k/Ak/
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k
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(15)
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@'k

@n
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Ak D 0 on @D � .0; T /, (17)

'k.�; 0/ D 0 in ˝; Ak.�; 0/ D 0 in D, (18)

�c"

d�k

dt
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@�k

@n
D 0 on @˝ � .0; T /; �k.�; 0/ D Tk.�0/ in ˝; (20)

where Fk D �k.�k/

2
Tk

�ji!Ak C r'kj2� C Tk.G/ and DT D D � .0; T /.

For the system (13)–(20) it can be shown the following existence result [12].



Lemma 2 For every k � 1, there exists a weak solution .'k; Ak; �k/ to prob-
lem (13)–(20).

Remark 2 Since we are dealing with complex valued function spaces, the key point
is to define the right bilinear elliptic form related to the system for .'k; Ak/ for a
given �k . From that point on, the proof of Lemma 2 is a straightforward application
of J. L. Lions’ theorem together with Schauder’s fixed point theorem.

3.2 A Priori Estimates

For the solution of (13)–(20) it is easy to obtain the following estimates

Z

˝T

�k.�k/jAkj2 � C2

!2

Z

˝T

�k.�k/jr'kj2: (21)

Z T

0

kAkk2
X � C2

˛!

Z

˝T

�k.�k/jr'kj2: (22)

Z

˝T

�k.�k/jr'kj2 � C�k'0k2
L2.H 1.˝//

; (23)

where

lim
�!.1�1=!/�

C� D C1:

From these estimates we deduce

�
�k.�k/1=2Ak

�
is bounded in L2.L2.˝//; (24)

.Ak/ is bounded in L2.X/:

On the other hand, since X ,! L2.D/ there exists a constant C > 0 such that
kvkL2.˝/ � kvkL2.D/ � C kvkX, for all v 2 X. Thus,

.Ak/ is bounded in L2.L2.˝//:

From (23) and (24) it yields

.Fk/ is bounded in L1.˝T /,



and thus, owing to (H.7), we obtain

.�k/ is bounded in Lp.W 1;p.˝//, for all 1 � p < 5=4; (25)

Remark 3 In [4] it was shown that (25) holds true when dealing with homogeneous
Dirichlet boundary conditions. In the case of homogeneous Neumann boundary
conditions, this result was shown by Clain in [6].

According to (H.1) and (25) we obtain that .�.�k/r�k/ is bounded in
Lp.Lp.˝//. Therefore .r � .�.�k/r�k// is bounded in L1..W 1;p0

.˝//0/. Since
1 � p < 5=4, Sobolev’s embedding implies in particular that

L1.˝/ ,! .W 1;p0

.˝//0

and, in conclusion,

�
d�k

dt

�
is bounded in L1..W 1;p0

.˝//0/, for all 1 � p < 5=4. (26)

3.3 Passing to the Limit

Choosing 1 � q < p� D 3p=.3 � p/, X D W 1;p.˝/, B D Lq.˝/ and Y D
.W 1;p0

.˝//0, and since the embeddings X ,! B and B ,! Y are continuous and
compact, respectively, from Lemma 1 it yields that the space

W D



v 2 Lp.W 1;p.˝// =
dv

dt
2 L1..W 1;p0

.˝//0/
�

is compactly embedded in Lp.Lq.˝//. Moreover, since 1 � p < 5=4 and 1 � q <

15=7, and thanks to (25) and (26), we deduce that the sequence .�k/ is relatively
compact in Lp.Lq.˝//, for 1 � p < 5

4
and 1 � q < 15

7
. Therefore, we may

extract a subsequence, still denoted in the same way, such that �k ! � strongly
in Lp.Lq.˝// and almost everywhere in ˝T . Consequently �k.�k/ * �.�/ in
L1.˝T /-weak–� and almost everywhere in ˝T .

Since .�k/ is bounded in Lr.˝T /, for 1 � r < 5=3, and according to (H.1) it
yields that

�
�k.�k/�1

�
is bounded in Lr.˝T /, for 1 � r < 5=.3˛/. Thus .r'k/ is

bounded in Lr .˝T /, for 1 � r < 10=.5 C 3˛/, and, up to a subsequence, r'k *

r' in Lr.˝T /; ˚ D �.�/1=2r' in L2.˝T /:

As to .Ak/, we deduce the existence of an element A 2 L2.X/ such that, up to
a subsequence, Ak * A weakly in L2.L2.˝//, Ak * A weakly in L2.X/, and
thus �k.�k/1=2Ak * �.�/1=2A weakly in L2.L2.˝//. Finally, by making k ! 1
in (14) and (15) we obtain (8) and (9).



All the properties deduced up till now are not enough in order to assure the strong
convergence of .Fk/ in L1.˝T /. Nevertheless, there exists a Radon measure � 2
M .˝T / such that Fk *

1

2
�.�/ji!ACr'j2 CG C� in M .˝T /-weak–�. We can

pass to the limit in (19) to obtain (12).

Remark 4 Our future work consists in establishing under what conditions on � can
we assure that � D 0 or, in other words, how can one derive the strong convergence
�k.�k/1=2r'k ! �.�/1=2r' in L2.˝T /.

Remark 5 The analysis of the uniqueness of a solution to (6)–(12) is a very complex
task even if we already know that � D 0. This is related to the low regularity of
the unknowns obtained in our existence result. Indeed, a system like (1)–(5) is a
generalization of the so-called thermistor problem [1, 5, 9] which involves only two
unknowns, namely, the electric potential and the temperature.
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