
Model-driven Test Engineering
A Practical Analysis in the AQUA-WS Project

C. R. Cutilla1, J. A. García-García1, J. J. Gutiérrez1, P. Domínguez-Mayo1, M. J. Escalona1,

L. Rodríguez2 and F. J. Domínguez-Mayo1
1IWT2 Research Group. University of Seville, Seville. Spain

2Emasesa, Seville, Spain

Keywords: Model-driven Engineering, Quality, Software Metrics, Model-driven Web Engineering, Methodologies.

Abstract: The effective application of test phases has been one of the most relevant, critical and cost phases in the life

cycle of software projects in the last years. During the test phase, the test team has to assure the quality of

the system and the concordance with the initial requirements of the system. The model driven paradigm is

offering suitable results in some areas and the test phase could be one of them. This paper presents how the

application of this paradigm can help to improve this aspect in the functional test generation and it analyses

the experience in a real project developed under this approach.

1 INTRODUCTION

The quality assurance of a system is one of the most

studied and analysed aspects in Software

Engineering. The finding of methods, techniques

and tools to reduce quality assurance costs and

increase the guarantee of the results becomes an

essential aim for enterprises and development teams

(Ahmed, 2012).

The test phase is one of the most important in

quality assurance. It guarantees that the system

meets its necessities in relation to requirements

(Binder, 1999).

However, bad estimations, time problems or

other inconveniences in projects make the amount of

resources oriented to the test phase not to be enough.

For this reason, both research and enterprise are

looking for solutions to reduce the cost of this phase.

In the last years, the use of the model-driven

paradigm for test generation has become an

important fact that is offering good results (Heckel

and Lohmann, 2003).

This paper presents how a Model-Driven Web

approach, named NDT (Navigational Development

Techniques) (Escalona and Aragon, 2008) was

enriched with a set of models and transformation so

as to generate functional test cases from the

functional requirements. This improvement of NDT

enriches the approach offering a suitable solution for

quality assurance in systems developed with NDT.

In order to illustrate this improvement, this paper

presents its application in a real project named

AQUA-WS Project.

This paper is an evolution of the paper presented

in (Cutilla et al., 2011) where we adapted our

original and theoretical approach for functional test

generation presented in detail (Gutierrez et al., 2011)

for being applied in a practical environment. This

new paper presents the complete adaptation of the

theoretical approach and learned lesson in the

enterprise environment.

The paper is structured as follows: it starts with a

global vision of NDT and presents how the approach

of (Gutierrez et al., 2008) was adapted to generate

functional tests cases from functional requirements

in NDT. Section 3 introduces the AQUA-WS project

and presents how the process was adapted to be

explained in this paper and learned lessons from the

experience are later concluded. Finally, it offers

some related work and conclusions as well as

suggests some future work in this line of research.

2 AN OVERVIEW OF NDT

NDT methodology is a Web methodology proposed

111Cutilla C., García-García J., Gutiérrez J., Domínguez-Mayo P., Escalona M., Rodríguez L. and Domínguez-Mayo F..
Model-driven Test Engineering - A Practical Analysis in the AQUA-WS Project.
DOI: 10.5220/0003991301110119
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 111-119
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/231996054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

under the Model-Driven paradigm. Initially, NDT

dealt with the definition of a set of formal

metamodels for the requirements and analysis

phases. In addition, NDT defined a set of derivation

rules, expressed under the standard QVT (Query-

View-Transformation) (OMG 2008), which

generated the analysis models from requirements

model. QVT standard defined a declarative and

imperative language proposed by the OMG (Object

Management Group) for model transformation in the

Model-Driven Engineering context.

Nowadays, NDT defines a set of metamodels for

every phase of the life cycle of software

development: the Feasibility Study phase of the

project, the Requirements phase, the Analysis phase,

the Design phase, the Implementation phase, the

Testing phase, and finally the Maintenance phase.

Besides, it states new transformation rules to

systematically generate models.

Figure 1 represents a diagram of the life cycle of

NDT. Although it is represented sequentially, NDT

supports different life cycles like iterative or agile

processes.

The Feasibility Study phase gathers the result of

the studies that verify the viability of a particular

software project. The needs of the project can be

analysed, but not in depth. NDT proposes derivation

rules to generate the basic model of the

Requirements phase from these requirements

specifically defined.

The next one is the Requirements phase. It

focuses on defining the catalogue of requirements

which contains the needs of the system to be

developed. It is divided into a series of activities (see

Figure 2): capture, definition and validation of

requirements.

The objectives of the system are stated in the

first activity of the requirements phase. From these

objectives, the different system requirements are

captured and defined.

NDT proposes to classify project requirements

according to their nature: information storage

requirements (storage requirements and new

natures), functional requirements, actor

requirements, interaction requirements and non-

functional requirements. NDT provides special

patterns and UML techniques (OMG 2005) to define

them, such as the use cases technique for functional

requirements specification.

Once the requirements have been defined, NDT

recommends validating them. If there are no errors

in the definition of requirements, the System

Requirements Document can be generated. This

document is the starting point for the specification of

the analysis phase.

On the contrary, if there is just an error in the

definition of requirements, the previous activities

would be carried out once again. This process can be

repeated until obtaining a suitable System

Requirements Document.

Figure 1: Phases covered by NDT.

The use of patterns or templates to define every

requirement offers a structured and in-depth

description.

Moreover, the fact that some fields of such

patterns only admit particular values makes results

be obtained systematically in the remaining life

cycle process of NDT.

The following phase, the Analysis phase, will

include the resulting products from the analysis,

definition and organization of requirements in the

previous phase.

NDT proposes four models in this phase (see

Figure 2) described as follows:

1. The Conceptual Model, which represents

the static structure of the system.

2. The Process Model, which represents the

functional structure of the system.

3. The Navigation Model, which shows how

users can navigate through the system.

4. The Abstract Interface Model, which are a

set of prototypes of the system interface.

The transition between the requirements model and

the analysis model is standardized and automated

and based on QVT transformations, which change

the concepts of requirements metamodels to design

the first versions of the analysis models. These

models are known in NDT as basic models of

analysis. For instance, the basic conceptual model of

analysis is obtained from the storage requirements

defined during the Requirements phase.

Thereafter, the team of analysts can transform

these basic models to enrich and complete the final

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

112

model of analysis. As this process is not automatic,

the expertise of an analyst is required.

Transformations are represented in Figure 2 through

the stereotype «NDTSupport».

In order to ensure consistency between

requirements and analysis models, NDT controls

these transformations by means of a set of defined

rules and heuristics.

After completing the analysis models, NDT

define transformations to generate the basic models

of the Design phase.

Then, the Design phase provides the relevant

knowledge to carry out the analysis in the machine.

It is oriented to the specific platform used and must

be related to the structure of the future code

developed during the Implementation phase.

NDT proposes the following models for the

Design phase:

1. The Design Class Model, which is based on

design-oriented layers. In fact, this model

consists of three other models:

a. The Presentation Class Model, corresponding

to the presentation layer. This model is

obtained from the navigation classes of the

Analysis phase.

b. The Business Class Model, corresponding to

the business logic layer. This model is

obtained from the process class model of the

Analysis phase.

c. The Data Access Classes Model,

corresponding to the data access layer. This

model is obtained from the content class

model of the Analysis phase.

2. The Prototype Design Model, which deals with

the prototypes design of the application that

have to be agreed with the client. This model is

obtained from the navigation model of the

Analysis phase.

3. The Physical Data Model, which describes the

structure of a database such as data, data

relationships and the restrictions they must

comply with. This model is obtained from the

content class model of the Analysis phase.

After creating the basic models, the team of analysts

can execute controlled transformations of such

models in order to enrich and create the final design

models.

This idea is being followed in the remaining life

cycle with implementation. The NDT life cycle ends

with the Maintenance phase. This process begins

when the project has gone into production and ends

when the system is out of date. This process is very

complex and critical consequently, this phase is one

of the most expensive in the life cycle.

To sum up, NDT offers an environment

conducive to the development of Web systems since

it completely covers the life cycle of software

development. Furthermore, this methodology

provides a set of Java-free tools that speed up the

work for the development of every phase in the life

cycle. This toolkit is distributed under the NDT-

Suite package (NDT-Suite 2012), which is

composed of the following tools:

1. NDT-Profile is a specific profile for NDT,

developed using Enterprise Architect

(Enterprise Architect 2012). This tool offers

the chance of having all the artefacts that

define NDT easy and quickly as they are

integrated within the tool Enterprise Architect.

2. NDT-Driver is the key tool for executing

transformations among NDT models. It

implements a set of automated procedures that

enables to perform all MDE transformations

among the different models of NDT that were

previously described. The data source to use

this tool is a project developed with NDT-

Profile.

3. NDT-Quality is a tool that automates most of

the methodological review of a project

developed with NDT-Profile. It checks the

quality of using NDT methodology in each

phase of software life cycle and the quality of

traceability of MDE rules of NDT.

4. NDT-Prototype is a tool designed to

automatically generate a set of XHTML

prototypes from the navigation models

described in the Analysis phase, of a project

developed with NDT-Profile.

5. NDT-Glossary consists in implementing an

automated procedure that generates the first

instance of the glossary of terms of a project

developed by means of NDT-Profile tool. This

tool is useful for the validation of requirements

captured during the Requirements phase of the

project.

2.1 Including Early Testing in NDT

To be applied in several real projects is one of the

most important advantages of NDT. The necessity of

ensuring the quality of the system as well as

improving the approach with the Test phase was

detected during these applications. Thus, the life

cycle of NDT was enriched with a new Test phase.

Using the same ideas that in the rest of its phases, a

Test phase was added in NDT. Once the

requirements specification phase has been completed

and the catalogue of system requirements has been

Model-driven Test Engineering - A Practical Analysis in the AQUA-WS Project

113

Figure 2: NDT Transformations from Requirements to Analysis and from Requirements to Testing model.

drafted and validated, NDT defines derivation

rules to generate the System test model, the

Testing phase model and the Analysis phase

models. Figure 2 shows all these transformations

through the stereotype «QVTTransformation».

NDT conceives the Testing phase as an early

phase of software life cycle. Thus, test cases can be

defined in relation to the needs of the system that

have been gathered during the Requirements

phase. Furthermore, this methodology proposes to

carry it out together with the remaining phases.

The Testing phase is divided into the following

activities: drawing up the test plan, a parallel

activity to the Analysis phase; environment

specification and test plan design, a parallel

activity to the Design phase; and implementation

of test plan, a parallel activity to the system

construction and Implementation phase.

NDT suggests three models in this phase (see

Figure 2): implementation tests model, system tests

model, and acceptance tests model. Every model is

described by means of the use case diagrams of

UML.

The system tests model is the only one that can

be generated systematically. NDT proposes

derivation rules to generate the basic model of

system tests from the functional requirements

defined in the Requirements phase. These

transformation rules are based on the rules

described in the paper (Gutierrez et al 2008).

Figure 3 represents a global view of the

transformations used for testing generation in NDT.

From the functional requirements model of NDT,

obtained during the requirements, a transformation

is generated to enrich this model with some specific

paths that describe each functional path (T1 in

Figure 3). Two transformations are defined from

this enriched model. The first one, T2, enables to get

Test Scenarios Model where any specific possible

scenario is described. The second one, T3, allows

the generation of another model, Test Value Model.

Moreover, both are integrated within a fourth

transformation, T4, to get the Test Case Model.

Figure 3: An overview of the transformation process.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

114

All transformations were defined in QVT-

Procedural and they are based on NDT

metamodels and new models defined for testing.

This paper does not aim to present these

transformation and metamodels in details as they

can be consulted in (Gutierrez et al 2008). It

particularly intends to explain how this process can

be applied in a real project like AQUA.

2.2 Implementing Early Testing in
NDT-Suite

In order to carry out this early testing solution in

NDT for its practical application, we have to

implement it in NDT-Suite.

Metamodels for testing were included in NDT-

Suite and transformations were implemented and

included in NDT-Driver. Besides, both NDT-

Quality and NDT-Report were enriched to support

this new phase

In NDT, functional requirements can be

described in two different ways: using the scenario

technique or UML activity diagrams.

NDT provides different transformation rules to

generate functional test cases, depending on how

you define a functional requirement. For instance,

if a functional requirement is described by means

of scenarios, it may generate as many test cases as

scenarios that requirement has. Nevertheless, if a

functional requirement is described by means of

activity diagrams, it may produce as many test

cases as paths between the initial and the final

activities exist.

Once the basic model of the system tests has

been created, the team of analysts can execute

transformations in this model to enrich and

complete it. As this step is not automatic, the

expertise of the analyst is needed. These

transformations are represented in Figure 2 by the

stereotype «NDTSupport».

3 AQUA-WS PROJECT

Emasesa (Emasesa 2012) is a company operating

the general management of the urban water cycle,

providing and ensuring water supply to all the

citizens in Seville. For this reason, its objectives

are to guarantee the quality of this supply, solve

problems occurred in the supply and control the

correct use of water in Seville.

AQUA-WS (AQUA-WebServices) project

consists in developing and implementing an

integrated business system for customer

management, intervening in water distribution and

cleaning up, and managing projects and work.

This project is born when Emasesa requires

integrating their existing systems in a single one as

well as upgrading the technological platform of the

system. The present systems are the customer

management system (AQUA-SiC), network

management system (AQUA-ReD) and the works

and projects management system (AQUA-SigO).

The AQUA-WS project comprises four main

objectives:

 To migrate AQUA-SiC, AQUA-ReD and

AQUA-SigO to a common technological

platform (JavaJ2EE platform) and join them

in a single system: AQUA-WS. This is the

core AQUA.

 To develop an integrated system to support

decision making in AQUA. This is DSS

(Decision Support System).

 To offer a suitable way, based on an

integration bus, to connect AQUA with other

transversal systems in Emasesa.

 To implement a friendly interface with a

suitable connection for both clients and

employees. This is FrontEnd.

Figure 4: AQUA-WS Architecture.

Figure 4 shows the architecture of AQUA-WS.

AQUA Core, FrontEnd, DSS and the

communication with transversal systems are based

on the use of SAP ERP (SAP Enterprise Resource

Planning) (SAP ERP, 2012) and SAP BW (SAP

Netweaver Business Warehouse) (SAP BW, 2012)

on a GIS (Geographical Information System) and a

documentary resources system.

The development of AQUA is fronted by a

mixed group composed of two international

companies and two research groups from two

Spanish universities. Our group constitutes the

Technical Quality Office of AQUA-WS project.

Model-driven Test Engineering - A Practical Analysis in the AQUA-WS Project

115

4 TEST PHASE IN AQUA

PROJECT

During the development of AQUA-WS, the

working team is using NDT and their associated

tools. In the Test phase NDT-Driver (a tool

described in Section 2) has been used to generate

the test plan.
In Cutilla et al., 2011 the study presents an

estimation of the hour of work that would suppose
realizing the test plan manually and the estimation
realizing with the NDT-Driver tool. In these
preliminary estimates the project saves
approximately 1808 hours of work. The analyst
team was divided in two groups. The group A
performed the test plan manually and the group B
generates the test plan with the NDT-Driver tool.
Group A devoted approximately 40 minutes for
each test case, about 10 minutes more than was
estimated. After the review of the Technical
Quality Office of AQUA-WS Project, the group
A’s test plan was incomplete, there were many test
case not identified. Consequently, the group A had
to make a one more cycle of delivery and revision
of the test plan than the group B, increasing the
number of hours of work.

AQUA-WS is following an iterative life cycle;

NDT-Driver is applied for each piece of the system

that is presented in order to generate its test plan.

The Testing phase relevance is noticed in the

proper AQUA-WS project planning, which assigns

nearly 40% of the duration of the project on the

different types of tests.

This phase has been provided by a group of

experts headed by some members of the AQUA-

WS Technical Quality Office. This group consists

of members of the Technical Quality Office,

members of the company responsible for the

maintenance of the current system and members of

the companies carrying out the development of

AQUA-WS system.

The test cycle is very complex and there are

some different kinds of tests in different part of the

life cycle. These tests are: The Unit tests are

performed by the developments team when testing

the design and behaviour of every element of the

system is built. For this test, the developments

teams use JUnit (JUnit 2012) tool, which allows

the automation of code Java test cases.

The Integration tests verify the correct

relationship among the system components

through their interfaces and their compliance with

the established functionality. JMeter’s (JMeter

2012) tool is being executed to deal with unit

testing performances. It is a loading tool useful to

prove simulations on any software resources. It

was initially designed to strength testing on Web

applications. The performance on AQUA-WS

project is considered relevant due to the large

number of the staff who is simultaneously working

at the company.

The Acceptance tests, a subset of the System

testing, are performed by the testing group and are

intended to verify both, the system functionality

and quality attributes. These tests are carried out in

an environment as similar as possible to the

operational one. As we have previously mentioned,

the system tests are automatically generated by

NDT-Driver from the functional requirements

defined in the Requirements Phase of the project.

In test implementations some errors or incidents

are detected and reported to the development team

who works simultaneously to solve such incidents.

The User tests are a subset Acceptance tests

that are executed with final users. They focus on

ensuring the correct implementation of the system.

The use of NDT is oriented towards

Acceptance and User tests. After studying the

different tools for the automatic execution of

system tests, all of them were discarded. Due to the

high level of casuistry and interrelation of data

with the different systems, controlling the

automatic test was more tedious than the individual

accomplishment of the testing team.

The system tests are the most important in

AQUA-WS project. Their accomplishment is

structured in two cycles of tests executed by the

testing team. In the first cycle, a large number of

tests are applied with the aim of validating a major

number of casuistries. The tests cycles have been

carried out according to the Test Plan outline,

which has been generated by NDT-Driver (a tool

described in Section 2). This Test Plan has shown

all the functionality and casuistry of the project.

The incidents detected during the different

cycles have been managed by a procedure

designed by the Technical Quality Office in liaison

with the project manager and all the implied actors.

It is based on different types of incidents and

degrees of views.

Once the development team has solved all

incidents, the second tests cycle begins. The tests

gathered in the Test Plan are executed to check and

assess that all the reported incidents have been

correctly managed and no new incident has been

generated due to collateral effects.

Provided that this project arises from the

unification of previously well-established systems,

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

116

the tests lead, even more, to keep the functionality

and a high degree of similarities to the previous

application, but without forgetting the optimization

of the system and its performance.

5 LEARNED LEASSONS

Thanks to the collaboration with the Technical

Quality Office as the Testing group in this project,

we must highlight the importance of delivering the

different cycles of planned tests during the course

of the project. One of the key points to perform a

successful Test phase is to have a defined Test

Plan, as complete and thorough as possible, in

order to verify that all the functionality offered by

the developed system works correctly, according

to the end user’s expectations.
In this regard, AQUA-WS project reveals that

due to the wide range of possible test cases and the
large number of potential casuistry, the analyst
team must complete, correctly define and structure
the Test Plan for all subsystems conforming the
project (indicated in Section 4). The lack of
involvement when providing the Testing group
with a correct Test Plan has been essentially
motivated by the delays occurred during life cycle
of the project.

Other important learned aspect was the
necessity of “hiding” the mechanism of
transformations, metamodels and Model-Driven
paradigm in general to the development team. In
fact, these concepts are very abstract and complex
for the development team and, if they are put into
practise, suitable tools, like NDT-Suite, based on
UML diagrams that are widely known by software
teams, are definitely required.

Another essential aspect is the early detection
of errors through the early testing. As Functional
tests are directly and automatically derived from
requirements, both the development team and users
can check what they demanded in the requirements
by detecting inconsistencies and other errors in
early phases.

6 RELATED WORK

As it was concluded from comparative studies

(Escalona et al. 2007), the Test phase is one of the

less studied in Web Engineering. Recently, only

some approaches are working in this respect. If this

study also focused on early testing, that is, in test

derived from requirements, the set of approaches

that support them would reduce.

Thus, WebML (Brambilla et al., 2009) includes

BPMN (Business Process Management Notation)

as Computation Independent Model and proposes

the systematic generation of test cases by means of

Model-Driven paradigm.

Robles et al. (Robles et al., 2009) are carrying

out something similar generating mockups from

requirements as a base for testing the application.

Thus, in this approach a Model-Driven approach

begins with a set of requirements described by

means of some mockups and then generates user

interfaces from them as well as, simultaneously, a

set of tests to assess them. Additionally, the

approach uses XML to describe the system.

Another relevant work, developed by Perez et

al.(Pérez et al., 2009), highlights product lines,

although it offers specific examples for Web

environments. It uses the Model-Driven paradigm

for the systematic generation of test cases in

product lines described with a dynamic model.

Some classical Web approaches like UWE

(UML Web Engineering) (Koch et al., 2008) or

OOHDM (Object-Oriented Hypermedia Method)

(Rossi and Schwabe, 2008) try to support the Test

phase in their life cycle. Nevertheless, they have

not provided a concrete solution yet.

In Software Engineering field, the use of

mechanisms for early testing in the generation of

functional tests cases is not a new idea. However,

as it can be concluded from the study in (Escalona

et al.2011) there is an important gap between the

development process and the test process, which

are frequently disconnected. The Model-Driven

paradigm is offering good results when trying to

improve this aspect.

In comparison with these works, our work is

quite relevant since it applies the Model-Driven

paradigm to Web environment for early testing.

7 CONCLUSIONS AND FUTURE

WORK

In Software Engineering and especially in Web

Engineering, it is important to conduct a complete

an exhaustive Test phase in the project life cycle

for the developed product may assure quality and

meet clients and final users’ needs and

expectations.

To achieve these aims, the Test phase must be

planned with enough time to be attained and,

additionally, it must be provided with the

necessary resources, both technical and human.

This work presents how this aspect has been

Model-driven Test Engineering - A Practical Analysis in the AQUA-WS Project

117

managed and how the different tests cycles have

taken place in a relevant project: the AQUA-WS

project.

As a research objective, the project AQUA-WS

has started an important line of investigation that

should be continued. The use of automatic

technologies to generate system tests from

functional requirements captured during the project

phase of requirements has reduced the time

analysts teams would have spent in developing the

different Test Plans.

In this sense, the application of NDT

methodology and its package of tools (NDT-Suite)

for such important project have undoubtedly meant

a great challenge.

One of the most recent ideas carried out in the

last years by several authors is the use of Model-

Driven Engineering (MDE) paradigm in test

generation (Escalona et al., 2011). MDE is a new

paradigm that focuses on defining a set of

metamodels, which are instanced in the

development process, and a set of transformations

among them. Consequently, some related work in

this line of research has recently emerged.

The application of the MDE paradigm in the

test generation context is commonly referred to as

Model-Based Testing (MBT).

As future research papers, we propose using

MBT to improve the Testing phase in the NDT

methodology. Nowadays, NDT only supplies test

cases generation. In the future we intend to

progress on this, so that, it will not only generate

test cases automatically, but also the data set used

to test.

Moreover, we propose future lines of research

with the aim of creating control panels to carry out

an automatic management of the Testing phase, not

as manual as it is being executed today.

Finally, we are working on improving the

approach presented in Figure 3 by adding

mechanisms to give priority to derived testing. The

approach presented in this paper generates a high

number of testing and, in real projects, there is a

common necessity of performing a set of testing

exclusively. We are focusing our work on offering

mechanisms for giving priority to the most critical

tests.

ACKNOWLEDGEMENTS

This research has been supported by the Tempros

project (TIN2010-20057-C03-02) and the project

Red CaSA (TIN 2010-12312-E) of the Ministerio

de Ciencia e Innovación, Spain, as well as by the

NDTQ-Framework project of the Junta de

Andalucía, Spain (TIC-5789).

REFERENCES

Ahmed, A. Software Project Management. A Process-

Driven Approach. CRC Press. 2012.

Binder, B. Testing Object-Oriented Systems. Addison

Wesley.1999.

Brambilla, M., Fraternali, P., Tisi, M. A Transformation

Framework to Bridge Domain Specific Languages to

MDA. 4th Workshop on Model-Driven Web

Engineering. LNCS 5421. France, 2009. pp. 167-

181.

C. R. Cutilla, J. A. García-García, M. Alba, M. J.

Escalona, J. Ponce, L. Rodríguez, Aplicación del

paradigma MDE para la generación de pruebas

funcionales - Experiencia dentro del proyecto

AQUA-WS, 6th Conferencia Ibérica de Sistemas y

Tecnologías de Información, Chaves, 2011 (CISTI

2011) vol 1, pp 827-831

Heckel, R. Lohmann, M. Towards Model-Driven

Testing. Electronic Notes in Theoretical Computer

Science 82. Nº6. pp. 1-11. 2003.

Enterprise Architect. http://www.sparxsystems.com. Last

Accessed 02-2012

Escalona, M. J., Torres, J. Mejías, M., Gutiérrez, J. J.,

Villadiego, D. The Treatment of Navigation in Web

Engineering. Advances in Engineering Software.

Vol. 38. pp.267-282. Elsevier. 2007.

Escalona, M. J., Aragón, G., 2008. NDT: A Model-

Driven Approach for Web Requirements, IEEE

Transactions on Software Engineering, 34(3). pp.

370-390.

Escalona M. J., Gutiérrez J. J., Mejías M., Aragón G.,

Ramos I., Torres J., Domínguez F. J. An overview

on test generation from functional requirements. The

Journal of Systems and Software. Elsevier. ISSN:

0164-1212. 2011.

Gutiérrez, J. J., Escalona, M. J., Mejías, M., Torres, J.,

Torres-Zenteno, A. H. A Case Study for Generating

Test. Proceedings of IEEE International conference

on Research Challenges in Information Science. pp.

209-214. Morocco, 2008.

JMeter 2012. http://jakarta.apache.org/jmeter/. Last

Accessed 02-2012

JUnit. 2012. http://www.junit.org/. Last Accessed 02-

2012

Koch, N., Knapp, A., Zhang, G. UML-Based Web

Engineering. In Web Engineering: Modelling and

Implementing Web Applications, Springer. pp.157-

191. 2008.

NDT-Suite. http://www.iwt2.org. Last Accessed 02-

2012

Pérez, B., Polo, M., Piatini, M. Software Product Line

Testing - A Systematic Review. 4th International

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

118

http://www.sparxsystems.com/
http://jakarta.apache.org/jmeter/
file:///C:/Users/Villa_de_Rota_1/AppData/Local/Temp/Rar$DI00.958/www.iwt2.org

Conference on Software and Data Technologies.

(ICSoft 2009). 2009.

OMG, 2008. Documents Associated with Meta Object

Facility (MOF) 2.0 Query/View/Transformation.

http://www.omg.org/spec/QVT/1.0/. Last Accessed

02-2012

OMG, 2005. Unified Modelling Language: Super

structure. Specification. http://www.omg.org/cgi-

bin/doc?formal/05-07-04.

Robles, E., Grigera, J., Rossi, G. Bridging Test and

Model-Driven Approaches in Web Engineering. 9th

International Conference on Web Engineering.

LNCS. 5648 (2009) pp.130-150. 2009.

Rossi, G., Schwabe, D. Modeling and Implementing

Web Applications with OOHDM. In Web

Engineering: Modelling and Implementing Web

Applications, Springer. 2008.

SAP ERP, 2012. www.sap.com/ERP. Last Accessed 02-

2012.

SAP BW, 2012. http://www.sap.com/solutions/bench

mark/bw.epx. Last Accessed 02-2012

Model-driven Test Engineering - A Practical Analysis in the AQUA-WS Project

119

http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.sap.com/ERP

