
LiquidML: A Web Modeling Language Supporting Fast Metamodel
Evolution

Esteban Robles Luna1, Julián A. García-García3, Gustavo Rossi1, 2, José Matías Rivero1, 2,
Francisco Domínguez Mayo3 and María José Escalona3

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
2Conicet, Caba, Argentina

3Web Engineering and Early Testing Group, University of Seville, Seville, Spain

Keywords: Evolution, Model-based Development, Self-reflective, Web Development.

Abstract: Model Driven development approaches are being adopted by the software industry due to a core set of
benefits such as raising the level of abstraction and reducing coding errors. However, their underlying
modelling languages tend to be quite rigid, making their evolution hard, specifically when the
corresponding metamodel do not support primitives and/or functionalities required in specific business
domains. In this work, we present an approach for fast evolution of the modelling language that is “self
reflective”, allowing modellers to abstract new language concepts from the primitives. The main advantage
of our approach is that it provides zero application downtime and automatic tool evolution. As a
consequence, applications created with our approach are able to adapt quicker to the business needs than
those based on traditional Web modelling languages. We compare our approach with existing modelling
languages in a case study providing a proof of its ability to adapt faster than to new business needs.

1 INTRODUCTION

During the last couple of years a myriad of
Technologies and Languages (T&L) have been
developed to simplify and speed up the process of
Web application development and maintenance.
These T&L range from development frameworks
such as GWT (GWT, 2016), JQuery (JQuery, 2016)
to non-relational databases such as MongoDB
including tools that help you monitor the running
application (to keep the application running 24x7)
such as New relic (New Relic, 2016). Most of these
T&Ls have been developed in the industry and are
based on coding activities while only a few domain
specific languages (DSL) for Web application
development (Ceri et al, 2000; Escalona et al, 2008;
García-García et al, 2014) have been developed in
the Academia and have real world application
(Escalona et al, 2013). These Web DSLs are
generally based on MDE (Model-Driven
Engineering) (Schmidt, 2006) or MDD (Model-
Driven Development) (Pastor et al, 2008) and thus
require a model to code transformation in order to
obtain a running application.

In addition to these T&L, the industry has shifted
from traditional cascade development approaches to
agile practices. Through constant communication
between stakeholders and software reusability and
adaptability to change, these practices have reduced
software development costs. The necessity for quick
changes has surged due to the huge number of
applications that makes harder to acquire and
withhold users active in the Web site. As a
consequence, the ability to make small but effective
changes in a matter of 1 to 3 days became
increasingly important and affects the decision of
which T&Ls to be used. A clear example of this
issue is the introduction of A/B testing techniques to
help with the analysis of which design version of a
new feature will be implemented in full. To achieve
it, each version of the feature is partially
implemented and presented in a production
environment while usage data is recorded.
Afterwards, a usage analysis report is generated,
making the choice of which design suits better (e.g.
makes the users more active or improves user
retention) a simpler decision. Then the design must
be implemented in full within the next couple of
days.

318
Luna, E., García-García, J., Rossi, G., Rivero, J., Mayo, F. and Escalona, M.
LiquidML: A Web Modeling Language Supporting Fast Metamodel Evolution.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 318-326
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/231995645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this context, a common problem that these
DSL share is their inability to evolve fast as the
underlying business requirements change, e.g.
introducing new modelling primitives for
accelerating the implementation of a project with
tight deadlines when fine-grain business-related
requirements arise. In those cases, where the current
metamodel does not support the desired
functionality, a set of activities needs to be
performed in the development environment to adapt
to it, including: Extend the metamodel with new
concepts; Extend the transformation engine to derive
the desired code; Perform a full round of tests of the
new functionality; Adapt the tooling to add the new
elements in the user interface; Deploy the new
version into modelers’ machines.

Depending on the metamodel change, these
activities can take an amount of time that a project
might not tolerate. A workaround to this problem
can be achieved if the modeling environment
supports hooks where modelers can introduce pieces
of programming code that are taken into account
during code derivation (Ceri et al, 2000). However,
if that workaround needs to be applied to multiple
model elements, it can be time consuming and error
prone – implying also a violation of model’s
abstraction, which is one of the primary advantages
of using a Model-Driven process.

Our approach overcomes this problem by
allowing modelers to “abstract” concepts from
existing models following a modeling by example
approach. That is, when an aspect of the application
can be captured in a reusable concept, the
implementation environment allows modelers to
select the elements from the models and abstract a
new concept that gets automatically integrated in the
language. Additionally, the approach takes care of
the whole development lifecycle by including the
new concept in the derived application and thus
minifying the hassle of evolving the metamodel.

In this paper we present the runtime environment
and the implementation of our model-based
approach that minifies the difficulties of metamodel
evolution. The theoretical foundation of our proposal

is described in (Robles et al, 2014) and it is named
LiquidML. LiquidML allows building applications
that can be modeled using the message-passing
paradigm (Hohpe et al, 2003). We present the
approach using a simple Web application where a
weather component needs to be introduced into the
language primitives.

Rest of the paper is structured as follows: in
Section 2 we present the LiquidML environment,
describing its primitives and its ability to abstract
new concepts. We provide details about how these
aspects are translated into a production environment
by presenting the LiquidML’s runtime environment
in Section 3. We introduce part of the
implementation in Section 4. Finally in Section 5 we
describe some related work and in Section 6 we
present some conclusions and future work.

2 LiquidML

In the following subsections we introduce the
LiquidML modeling environment.

2.1 Overview

LiquidML (Robles et al, 2014) is a modeling
language that allows modelers to create applications
based on the message passing paradigm (Hohpe et
al, 2003). There are many different subtypes of
applications that can be built using LiquidML
including Web and Integration applications. This
work focuses on the Web aspects of LiquidML and
as a consequence we will emphasize the relationship
between LiquidML, other modeling languages such
as WebML and NDT (Escalona et al, 2008; García-
García et al, 2014) and the actual Web Application.

Applications models built with “conventional”
approaches (e.g. WebML) are transformed into code
that is run inside a Web container such as Apache
Tomcat or a PHP server. The basic primitives in
these languages abstract high level entities such as
Web page, domain objects and usual behaviors such

Figure 1: WebRatio model for an E-Commerce application.

LiquidML: A Web Modeling Language Supporting Fast Metamodel Evolution

319

as navigation. As an example, consider the WebML
model of Fig. 1 that describes a simplified E-
Commerce application that has 2 pages: the “Home”
and the “Detail”. The boxes inside the pages are
instances of model elements that allow listing the
Products and allows to see the actual details of a
specific one. In addition, the other box allows
computing a ranking for the product to be displayed,
e.g. “Ranked #2 in Computers”.

As will be shown in the following subsections,
LiquidML has a finer grained metamodel that
focuses on the basic concepts of model passing
languages such as message, message source,
processor and router (Hohpe et al, 2003). Thus from
a level of abstraction point of view, LiquidML
seems to be closer to the level of abstraction of code
that to the elements in WebML. Also, the focus of
LiquidML is completely behavioral, whereas
WebML is structural; for instance, the arrows
between the elements do not imply a sequence of
evaluation but connections such as hyperlinks.

From a development process perspective,
LiquidML models can be either derived semi-
automatically from high-level models such as
WebML and NDT or they can be created manually
using a LiquidML editor (Robles et al, 2014). When
manipulated, some higher-level concepts can be
abstracted as modelers discover them and thus the
development metamodel gets enriched interactively
within the process (Sect. 2.4). Similar to what
happens in the lifecycle when using “traditional”
model-driven approaches, a Build/Snapshot is
created and then it gets deployed into a server that is
capable of running/interpreting the Web
Application.

2.2 Basic Concepts

Our main motivation to develop LiquidML has been
the lack of behavioral expressiveness in existing
Web modeling languages. As a consequence,
transforming the behavioral aspects of a Web
application (e.g. in WebML) becomes cumbersome
and usually extra notations need to be added to
(graphically) represent a new expected behavior.
Additionally, the high level (and mostly structural)
nature of these languages completely hides the way
in which lower level Web requests are processed
(e.g. in which sequence) by just ignoring them, thus
hindering important spots for introducing
performance improvements, for instance, to obtain
better application scalability. LiquidML provides a
way of representing the behavioral aspects for
applications that can be modeled using the message

passing paradigm such as Web Applications and
thus enables to refine such important and low-level
aspects.

A LiquidML model is a composition of Flows;
each Flow describes a sequence of steps that need to
be applied to the current Web request (called a
Message in LiquidML) to obtain a proper response.
A Message has a payload (body) and a list of
properties while each step is visually identified by
an icon and constitutes an Element of the Flow.
Communication between Elements occurs by means
of message interchanges. The way in which
messages are moved from one Element to another is
defined by the Connections between them. We have
categorized the Elements using the categories found
in (Hohpe et al, 2003) and every element has a
different icon that represents it:

Message Source
A message source is responsible for creating
instances of messages based on different conditions.
There can be many different types of message
sources, for instance one of the HTTP message
source listens for incoming requests and generating
Messages from them. Another example is the Queue
message source that listens to a Data queue and
creates a new message when the queue is filled.
Some other message sources include:

 Cron message source: Creates a message
every time a Cron expression to true.

 FTP message source: Creates a message for
each file that is read from a remote FTP
server.

 File message source: Creates a message for
each file that is read from the local file
system.

Processor
A processor may transform, execute or just read
information from a message by changing or reading
the message’s payload and properties. There is a
wide variety of processors though the most common
one is the ScriptingProcessor that allows modeller to
write scripting code for custom complex logic. Some
other common processors are:

 Log processor: it reads information from the
message and generates log information based
on its configuration.

 Select SQL processor: it uses a Select SQL
statement to fetch information from a
database and sets the list of rows recovered
into the message payload.

 Change SQL processor: it executes an
Insert/Update/Delete statement in a database
and stores the number of affected rows in a

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

320

property configured by the modeller.
 Dust processor: it converts the message

payload using a dust template into processed
HTML that can be rendered in a Web
browser.

 JSON transformer: it transforms the message
payload into a JSON object.

 XML transformer: it transforms the message
payload into a XML document using an
XSLT definition.

 Mapping transformer: it transforms the
message payload into a Map/Dictionary using
the configured keys and expressions.

Router
It moves the message between Elements depending
on its type and conditions. For instance, a
ChoiceRouter routes the message to a specific
Element of its list based on a Boolean condition.

 Choice router: Behaves in the same way as a
“switch” statement in a procedural
programming language. It evaluates the
conditions of each of the choice connections
in sequence and the first one that evaluates to
true is the one that gets activated: the element
that the connection reaches is the next one to
be evaluated.

 All router: it creates a copy of the current
message sending it to all the “all
connections” evaluating them in parallel and
collecting the results.

 Wiretap router: it creates a copy of the
message and sends it in async way to the wire
tap connection. It is an implementation of the
EIP (Enterprise Integration Patterns).

 Chain router: The chain router evaluates each
of the chain connections in sequence. After
evaluating the 1st chain connection, the result
is passed to the 2nd connection and so on
until all the chain connections are exhausted.

Connections
It describes a relationship between 2 elements. The

most common connection is the “Next in chain”
which specifies that after the “source” element
processes the message, then the “target” element
will be the next to process the message. The
complete list of connections is:

 Next in chain: It describes a sequence
between a source element and a target
element. The source element can have only 1
next in chain connection while the target
element may have multiple.

 Choice connection: Choice connections have
a configurable condition and the source
element can only be a choice router though
the target element can be any kind of
element. The choice router may have multiple
choice connections.

 All connection: Similar to choice
connections, all connections only apply to
source all routers though the target element
can be of any kind. The all router may have
multiple all connections.

 Wiretap connection: It only applies to wiretap
routers and a wiretap router can only have 1
wire tap connection that is connected to any
kind of element.

 Chain connection: Similar to choice
connections, chain connections only apply to
source chain routers though the target
element can be of any kind. The chain router
may have multiple chain connections.

To exemplify the concepts, we present a Flow
for the product’s detail page of an E-commerce web
application (Fig. 2). The Element with no incoming
arrow represents the Message source listener that
will receive incoming requests – in this case, it will
receive HTTP request and will transform them into
Messages. The Element connected to the Message
source named “Route path” is a ChoiceRouter,
which behaves like a choice/switch statement and it
will route the message to the “Get info” processor if
the request comes to a URL starting with
“/product/*”. The “Get info” is another router that
gets information in parallel from multiple sources. It

Figure 2: Product details flow.

LiquidML: A Web Modeling Language Supporting Fast Metamodel Evolution

321

obtains the product info from the DB: (“Get product
info”) and triggers the computation of the product’s
rank, which involves two database queries (“Get
user reputation” and “Get product reviews”) and a
Processor that computes the rank from this
information (“Compute product rank”). Finally, the
information gets composed (“Compose data”) and
used for rendering a Web page in the “Render
template” processor.

In the following subsection we present the actual
metaclasses, templates and the Abstraction class in
LiquidML. The components in the models described
in Fig. 2 show how a traditional Web page can be
splitted in atomic steps, which allows to model and
optimize fine-grain aspects of the application. The
cost of having such low-level modelling language
(in comparison to classic model-based Web
development approaches) is compensated with the
possibility of easily grouping its components in
more abstract elements at modelling time.

2.3 Abstracting Concepts from
Examples

When developing applications with models,
sometimes a desire business feature requires having
a flexible general model that is not always available.
For instance, in the E-commerce application, we
may want to present and change the behavior of the
application based on the weather conditions where
the user is located.

This functionality was not natively included in
LiquidML’s language and as a consequence a
workaround is needed to implement it. Therefore the
modelers are able to come with a solution that
integrates a sequence of processors to perform the
external API calls to, for instance, the OpenWeather
API (Open weather map, 2006). Basically, by
making an IP to City mapping and then looking up
for that city in the API we are able to get the
information needed for our recommendation
systems.

This solution works fine for one specific flow;
however, the E-Commerce application is composed
by a set of Applications where each may contain
multiple flows. In several of these flows we may
have to use Weather information and applying this
workaround everywhere is clearly not a feasible
solution.

Following the same approach that code based
environments provide, in LiquidML we have the
ability to encapsulate and abstract a new concept
from a subgraph. So, modelers are able to select the
elements to be abstracted, click the “Abstract”

button and the environment automatically
reconfigures the Flow with the new abstracted
element. The environment then creates an instance
of the Abstraction metaclass as shown in the next
section

2.4 Models and Templates

LiquidML allows abstracting new metamodel
concepts from LiquidML application models. For
achieving this, our approach uses a set of template
classes that configure the parts of the abstraction
(Fig. 3). A special metaclass is required in the
metamodel to capture the new abstracted concepts;
we call this class Abstraction. A new instance of the
Abstraction class is created when a concept is
captured (Section 2.3). The instance of the
Abstraction class knows how to instantiate its
internal pieces since it reference the list of templates
to configure each of them (Fig. 3).

The primitives of the language are instantiated
by looking into the metamodel implementation and
its configuration. To achieve the instantiation, we
use a set of template classes that may have a one to
one correspondence with the meta classes, however
the instances of the template classes are one per
model instance while the meta classes are one per
concept. Templates are either Simple or Composite;
simple templates have a list of properties to
configure the instance and composite elements know
how they are composed.

2.5 Evolution Process

Once the Abstraction instance is created a set of
activities is performed automatically to evolve the
development environment and the application under
development.

The 1st step is to block the user interaction with
the flow under development and checks that the
elements selected formed a single connected
subgraph with a root element (an element that does
not have an incoming arrow). This is because the
semantics of message passing require an initial
element to delegate the behavior.

Once the validation is performed, the abstraction
and templates instances are created. The abstraction
is set a default icon and the modeler can input a
name for the abstraction.

The 3rd step is to remove the elements from the
flow under development, creating a template that
refers to the new abstraction and hooking up the
incoming/outcoming arrows to the abstraction
created.

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

322

3 RUNTIME ENVIRONMENT

As aforementioned, flows define the behavioral part
of the Web application. On the contrary to all
MDWE approaches, we decided to interpret rather
than to derive the code of a Web application. Strong
cons and pros of both approaches can be found in
(Mellor et al, 2002) and in many informal
discussions (The Enterprise Architect, 2016;
Executable models, 2016; Webratio, 2016);
however, we do not expect to find a definite answer
to this matter but rather present the advantages we
found for Web application development in our
model based approach. It is true that at a first sight,
code-generation seems to be the right option,
however interpretation gives us an opportunity to
easily modify the behavior in a dynamic way.

As our behavioral models (Flows) are rather
simple, the interpreter algorithm is quite simple too.
We present a simplified version of the algorithm
using a Java-based pseudocode in the next lines: the
interpreter works when messages are received (event
driven (Hohpe et al, 2003)) on Message sources (e.g.
an HTTP message source) (line 1). It finds the next
element (currentElement) that will handle the
message (line 3 and 6) and evaluates it using the
message content (line 4). An evaluation returns a
Message instance that could be the same as the

previous one or a new one depending on the Element
intent (data transformation, routing, etc.) and it is
passed to the next Element until we run out of
Elements (line 3).

1. OnMessageReceived(MessageSource msgSource,
2. Message message): {
3. Element currentElement =
 interpreter.getNextInChain(msgSource);

4. while (currentElement != null) {
5. interpreter.evaluate(currentElement,
 message);
6. currentElement =
 interpreter.getNextInChain(currentElement);}}

A special case is handled by the interpreter (line
5) when currentElement is an Abstraction. In that
case, we follow the same approach as any other
programming language behaves by using a stack as
Abstraction is basically composed of more primitive
elements that may include other processors or
Abstractions. So processing an Abstraction is
processing its internal subflow starting from the
initial element.

Interpretation happens while engineers are
building the application and when the application is
run in every other deployment environment (QA,
Staging, Production). Once the models satisfy the
requirements, the deployment process to a specific

Figure 3: LiquidML models, templates and instances.

LiquidML: A Web Modeling Language Supporting Fast Metamodel Evolution

323

Figure 4: Sending messages to specific model elements.

environment occurs. The deployment is an automatic
process where a copy of the models is moved to the
servers where they can start receiving messages. As
aforementioned, unforeseen problems may appear in
a production environment; thus in the following
subsection, we present two tools to help diagnosing
problems while our models are running.

4 IMPLEMENTATION

The aforementioned concepts have been
implemented in an environment that allows
modellers to create applications based on the
message-passing paradigm. The environment is
completely Web based and to the best of our
knowledge, the first one to additionally implement
the Modelling as a Service paradigm (Toffetti 2012).

One clear advantage of our implementation is
that allows modellers to debug the application under
development at the model level. In Fig 4 we show
how modelers are allowed to send messages to
specific model elements.

The LiquidML environment is composed of 2
main applications that can be instantiated multiple
times and run in a cluster: an editor and servers. The
editor is instantiated in multiple machines running
behind a load balancer in Amazon EC2 though it can
be installed in any local servers. A brief description
of each application is the following: LiquidML
editor, which allows defining the applications,
modelling Flows and deploying them to LiquidML
servers and It also, allows modelers to abstract new
concepts from existing models; and LiquidML
server, which is responsible for holding the
application definitions, the LiquidML interpreter
(Robles et al, 2014) and notifying the editor about
how applications are running. In addition, it
regularly checks if it has any pending deployments
and if so, it fetches the Application and

automatically deploys it.
Both the editor and the server have been built

using open source technologies of the J2EE stack.
We have used Spring and Hibernate for basic service
and ORM mapping, Spring MVC and Twitter
bootstrap for UI and Jersey for the LiquidML API.
As part of this development, we have built the
CupDraw framework for building Web diagram
editors, which is publicly available. For the technical
readers, we invite them to visit the LiquidML site
http://www.liquidml.com and check the project’s
source code and the demonstration videos;
especially the one demonstrating the “abstraction”
feature. A complete version of the Editor without
pruning any of the menus and toolbars can be seen
in the LiquidML site.

5 RELATED WORK

In (Blair et al, 2009) the idea of holding models at
runtime to perform runtime changes is presented.
The approach focuses in the representation of the
actual requirements as models while the application
is running. The applications built under the
models@runtime paradigm are from a different
domain and seems to have less sophisticated
business requirements than a Web application. On
the other hand, LiquidML uses models@runtime to
have a live representation of how the application is
constituted and as a consequence it can be
manipulated to be able to abstract new concepts.

Approaches oriented to allow evolving
metamodels and co-evolve its models have been
studied recently (Cicchetti et al, 2008, Hoisl et al,
2014). They are similar to LiquidML in the need of
adding some extra primitives that are not supported
by the language. However, in LiquidML anything
that could be written with a Scripting processor (>
95% of the cases) can be done with no downtime

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

324

and the tool is evolved automatically within the
abstraction process.

The main problem solved by our approach comes
from applying model driven techniques to industry
applications that require time constraints. As a
consequence and due to the rigid features of
traditional metamodeling approaches (like Eclipse
Modeling Framework (EMF, 2016)), we have to
discard it as a solution for making an easy to evolve
environment.

6 CONCLUSIONS

In this paper, we have presented the LiquidML, a
Web modelling language that supports the fast
evolution of its metamodel and supporting tools. By
capturing the abstraction concept, which references
the templates to configure its parts, we are able to
build concepts from existing model solutions
following a modelling by example approach which
mimics with the approach use to build frameworks
from existing pieces of code. The environment is
fully functional, and is the first one to implement the
modelling as a service approach, so it is fully
reproducible and available for researchers, engineers
and modellers to experiment.

The LiquidML language is formally defined and
we do not expect to see much changes in that
regards, however the implementation environment
still needs some improvement regarding its usability
such as allowing modellers to change icons, input
and output parameters (implicit right now),
documentation and the release process of new
abstractions to the community. From a conceptual
point of view, models do not provide a way of being
tested, so we plan to formalize a testing framework
that will allow modellers to test flows and provide
tools such as flow coverage which will give
confidence to modellers when releasing a new
version of the application. Finally, we plan to
include a “concepts” market where people can
consume concepts that a different modeller team are
using and thus creating a community around
LiquidML.

ACKNOWLEDGEMENTS

This research has been supported by MeGUS project
(TIN2013-46928-C3-3-R) of the Ministerio de
Ciencia e Innovación (Ministry of Science and
Innovation, Spain, TIN2013-46928-C3-3-R).

REFERENCES

Blair G., Bencomo N., France R. B., "Models@ run.time,"
Computer, vol. 42, no. 10, pp. 22-27, October, 2009.

Ceri S, Fraternali P, Bongio A. Web Modeling Language
(WebML): a modeling language for designing Web
sites. Comput. Networks, vol.33, pp.137–157, 2000.

Cicchetti A., Di Ruscio D., Eramo R., and Pierantonio A.
Automating Co-evolution in Model-Driven
Engineering. In Proceedings of the 2008 12th
International IEEE Enterprise Distributed Object
Computing Conference. IEEE Computer Society,
Washington, DC, USA, 222-231.

EMF. Website: http://www.eclipse.org/modeling/emf.
Last access: 2016.

Escalona M.J. and Aragon G., “NDT. A Model-Driven
Approach for Web Requirements,” IEEE Trans. Softw.
Eng., vol. 34, no. 3, pp. 377–390, May 2008.

Escalona MJ, Garcia-Garcia JA, Mas F, Oliva M, Valle C.
Applying model-driven paradigm: CALIPSOneo
experience. Conference on Advanced Information
Systems Engineering 2013, vol.1017, pp. 25-32. 2013.

Executable models vs code-generation vs model
interpretation. Website: modeling-languages.com/
executable-models-vs-code-generation-vs-model- inter
pretation-2/. Last access: 2016.

García-García J.A., MJ Escalona, F Domínguez-Mayo, A.
Salido. “NDT-Suite: A metodological tool solution in
the Model-Driven Engineering Paradigm”. DOI:
10.4236/jsea.2014.74022. 2014.

GWT. Development toolkit. Website: www.gwtproject.
org. Last access: 2016.

Hohpe G. and Woolf B., Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Professional, 2003, p. 736.

Hoisl B., Hidaka S., Hu Z., Towards Co-Evolution in
Model-driven Development via Bidirectional Higher-
Order Transformation. 2nd International Conference
on Model-Driven Engineering and Software
Development (MODELSWARD) 2014.

Mellor SJ, Balcer M. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley
Longman Publishing, Inc., Boston, MA, USA. 2002.

New Relic. Website: www.newrelic.com. Last access
2016.

Open weather map. Website: openweathermap.org. Last
access: 2016.

Pastor O, España S, Panach JI, Aquino, N. Model-driven
development. Informatik-Spektrum, 31(5), 394-407.
2008.

The Enterprise Architect. Website: http://www.
theenterprisearchitect.eu/archive/ 2010/ 06/ 28/ model-
driven-development-code- generation- or- model- inter
pretation. Last access: 2016.

Toffetti G. Web engineering for cloud computing (web
engineering forecast: cloudy with a chance of
opportunities). In Proceedings of the 12th
international conference on Current Trends in Web
Engineering. Springer-Verlag, Berlin, Heidelberg, 5-
19 2012.

LiquidML: A Web Modeling Language Supporting Fast Metamodel Evolution

325

Robles E, Rivero JM, Urbieta M, Cabot J. Improving the
scalability of Web applications with runtime
transformations” in Proceedings of the 14th
International Conference in Web Engineering. 2014.

Wimmer M, Schauerhuber A, Kargl H. On the Integration
of Web Modeling Languages: Preliminary Results and
Future Challenges. Proceedings of the 3rd
International Workshop on Model-Driven Web
Engineering, 2007.

Webratio. Website: blog.webratio.com. Last access: 2016.
JQuery. Website: https://jquery.com/. Last access: 2016.
Schmidt DC. Model-Driven Engineering. IEEE Computer,

Computer Society, vol. 39, no. 2, pp. 25-31, 2006.

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

326

