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Abstract

The existence and uniqueness of global solutions for a fractional func-
tional differential equation is established. The asymptotic behaviour of a
lattice system with a fractional substantial time derivative and variable
time delays is investigated. The existence of a global attracting set is es-
tablished. It is shown to be a singleton set under a certain condition on
the Lipschitz constant.
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1. Introduction

In this paper, we study the global existence and the long time behaviour
of solutions for a fractional delay lattice system of the form{

Dα
s ui(t)−(ui−1(t)−2ui(t)+ui+1(t))+λui(t)+fi(t, uit)=0, t ≥ τ,

ui(t) = φi(t− τ), ∀t ∈ [τ − h, τ ],
(1.1)

where λ ∈ R, 0 < α < 1, i ∈ Z and the Caputo fractional substantial
derivative Dα

s is defined as

Dµ
s f(x)=Dm

s [Iνs f(x)], ν=m−µ, m is the smallest integer which exceeds µ,

where

Iνs f(x) =
1

Γ(ν)

∫ x

0
(x− τ)ν−1e−β(x−τ)f(τ)dτ, ν > 0,

is the fractional substantial integral [5, 7] and Γ is the Gamma function. β
is a positive constant and

c© Year Diogenes Co., Sofia

pp. xxx–xxx, DOI: ......................

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/231995596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 L. Liu, T. Caraballo, P.E. Kloeden

Dm
s =

(
∂

∂x
+ β

)m
=

(
D + β

)m
=

(
D + β

)(
D + β

)
. . .

(
D + β

)
.

The concept of fractional substantial derivative was introduced in 2006
by Friedrich et al. [8] to consider retardation effects in Kramers-Fokker-
Planck type equations, where these are expressed mathematically by a
fractional substantial derivative, which is more appropriate to characterize
nonlocal coupling in time and space than the classic fractional derivative.
The fractional substantial derivative is widely applied in physics, such as
long jump of Lévy flights, anomalous diffusion, turbulence research, Fokker-
Planck equations, forward and backward fractional Feynman-Kac equations
etc [13, 6]. Moreover, the fractional substantial diffusion model is useful
in applications to geophysics [11] as well as finance [4]. In finance, where
the tempered stable process models price fluctuation which displays semi-
heavy tails, resembling a power law behavior at moderate time scales, but
finally converging to a Gaussian at large time scales. See [8, 3] for more
information about the application of fractional substantial derivative, [10]
and related literatures for the classic fractional calculus.

A main objective is to analyze the existence of solutions of fractional
functional differential equations with the Caputo fractional substantial de-
rivative, since there has been little published on this topic or on fractional
lattice systems with delay.

First we use Leray-Schauder’s fixed point theorem to prove the existence
of local solutions for a fractional functional differential equation with α ∈
(0, 1). Then, by a priori estimates, we prove that the local solution is
actually a global one. Our assumption here on delay termf(t, ut) is weaker
than many available references. Finally, we apply this result to a fractional
lattice system with variable delay, i.e., system(1.1), and obtain the existence
and uniqueness of global solutions, as well as global attracting sets. Our
result also applies to fractional lattice systems with distributed delay.

The paper is structured as follows. Notation, some basic definitions and
preliminary results are included in the next section. Additionally, Section
2 is also devoted to the global existence and uniqueness of solutions for
an abstract fractional functional differential equation (2.1) in a separable
Hilbert space. This theoretical result is applied to a fractional delay lattice
system in Section 3. A priori estimates are obtained in Section 4 and used
in Section 5 to establish the main result of this paper, namely, the existence
of global attracting set while, which becomes a singleton under appropriate
conditions.
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2. Preliminaries

Let X be a separable Hilbert space with norm ‖ · ‖ and inner product
(·, ·). For a fixed τ ∈ R, CT := C([τ−h, T ];X), h > 0, T ≥ 0, be the Banach
space of continuous functions u : [τ − h, T ] → X, endowed with the norm
‖u‖CT = supτ−h≤s≤T ‖u(s)‖.For anyu ∈ CT and t ∈ [τ, T ], we denote by ut
the element of C0 = C([−h, 0];X) defined byut(θ)=u(t+ θ), θ ∈ [−h, 0].

The dual coupling between X and its dual X∗ is denoted by 〈·, ·〉. Since
X is a Hilbert space, by the Riesz representation theorem, X∗ is isomorphic
to X. So the dual coupling 〈·, ·〉 is the inner product in X.

Let Xw be the space X endowed with the weak topology. We consider
the space C0,w = C([−h, 0];Xw) and say that unt → ut in C0,w if for any
θ ∈ [−h, 0] withun(t+ θn)→ u(t+ θ) in Xw for all θn → θ.

We say that the function f : [0,∞) × C0 → X is weakly continuous in
bounded sets for each t ∈ [0,∞), if un → u in C0,w, and ‖un‖C0 ≤M for all
n imply that f(tn, u

n
t )→ f(t, ut) in Xw. Similar concepts were introduced

in [2] to establish the existence of solutions for a delay differential equation
in a Banach space.

We consider the global existence theorems for the following delay differ-
ential equations with Caputo fractional substantial time derivative in the
separable Hilbert space X,{

Dα
s u(t) = f(t, ut), t ≥ τ,

u(t) = φ(t− τ), ∀t ∈ [τ − h, τ ],
(2.1)

where the nonlinear term f is weakly continuous in bounded sets.

Definition 2.1. A function u ∈ CT is called a solution of the initial
value problem (2.1) if u(t) = φ(t − τ) for t ∈ [τ − h, τ ] with φ ∈ C0, and,
for t ∈ [τ, T ], u(t) satisfies the integral equation

u(t) = φ(0)e−β(t−τ) +
1

Γ(α)

∫ t

τ
(t− r)α−1e−β(t−r)f(r, ur)dr, t ∈ [τ, T ].

Hereafter, we assume that:

(H1) The mapping f : [τ,∞) × C0 → R is continuous, and there exists
M1 > 0 such that

‖f(t, ϕ)− f(t, ψ)‖ ≤M1‖ϕ− ψ‖C0 for all ϕ, ψ ∈ C0 and t ∈ [τ,∞).

(H2) The function f(t, 0) is L1+ 1
α locally integrable, and there exists

G > 0 such that∫ t

τ
(t− r)α−1e−β(t−r)‖f(r, 0)‖2dr ≤ G, ∀t ≥ τ.



4 L. Liu, T. Caraballo, P.E. Kloeden

Now for any φ ∈ C0, we define an operator Sφ : CT → CT by

Sφu(t) :=


φ(t− τ), t ∈ [τ − h, τ ],

φ(0)e−β(t−τ)+
1

Γ(α)

∫ t

τ
(t− r)α−1e−β(t−r)f(r, ur)dr, t ∈ [τ, T ].

(2.2)
We can prove that the operator Sφ is well-defined on CT by a similar method
as Lemma 2.1, so the details are omitted.

SinceX is a separable space, there exists a sequence such that the subset
{e1, e2, · · · , en, · · · } is dense in X, and by the Gram-Schmidt procedure, we
can obtain an orthonormal subset ofX, still denoted by {e1, e2, · · · , en, · · · }.
Taking Xn = {e1, e2, · · · , en}, and Pn : X → Xn an orthonormal projector,
defined as Pnu = un, and Pnφ = φn, for every n, we can introduce the
mapping Sn,φ : CT → CT as, for any φn,

Sn,φun(t):=


φn(t− τ), t ∈ [τ − h, τ ],

φn(0)e−β(t−τ)+
1

Γ(α)

∫ t

τ
(t−r)α−1e−β(t−r)Pnf(r, un,r)dr,t ∈ [τ, T ].

We will need the following auxiliary theorem.

Theorem 2.1. (Leray-Schauder’s fixed point theorem [9, 12]) Let T
be a continuous and compact mapping of a Banach space X, such that the
set {x ∈ X : x = λTx, for some 0 ≤ λ ≤ 1} is bounded. Then T possesses
a fixed point.

For any positive constant ρ, denote by

A(ρ) :=

{
un∈CT :un(t)=φn(t−h), t∈[τ − h, τ ], and sup

t∈[τ,T ]
‖un(t)‖≤ρ

}
.

(2.3)

Lemma 2.1. For any φ ∈ C0, the operator Sn,φ maps the bounded
subset A(ρ) ⊂ CT into another bounded set A(ρ′) ⊂ CT .

P r o o f. For our purpose, it is enough to show that for ∀ρ > 0,
there exists a positive constant ρ′ such that for each un ∈ A(ρ) we have
supt∈[τ,T ] ‖Sn,φun(t)‖ ≤ ρ′, where A(ρ) is defined in (2.3). Let un ∈ A(ρ) be

arbitrary. From the definition of Sn,φ as in (2.2), we have for all t ∈ [τ, T ],

‖Sn,φun(t)‖2≤2‖φn(0)‖2+
2β−α

Γ(α)

∫ t

τ
(t−r)(α−1)e−β(t−r)‖f(r, un,r)‖2dr. (2.4)
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By (H1) and (H2), we derive

‖f(r, un,r)‖2 =‖f(r, un,r)−f(r, 0)+f(r, 0)‖2≤2M2
1 ‖un,r‖2C0 +2‖f(r, 0)‖2,

which together with (2.4) and the Gronwall lemma implies that

‖Sn,φun(t)‖2CT ≤ 2‖φ‖2C0 +
2β−αG

Γ(α)
+ 2M2

1β
−2αρ2 := ρ′2 <∞, ∀t ∈ [τ, T ].

Hence, Sn,φ maps the bounded set A(ρ) into another bounded set A(ρ′). 2

Lemma 2.2. For any φ ∈ C0, the mapping Sn,φ is continuous and
completely continuous.

P r o o f. Step 1: First, we verify that Sn,φA(ρ) is relatively compact.
Since Xn has finite dimension n, it suffices to prove that the family of
continuous functions {Sn,φun : un ∈ A(ρ)} is uniformly bounded and is a
family of equicontinuous functions of CT on [τ, T ]. As proved in Lemma
2.1, for any un ∈ A(ρ), we find ‖Sn,φun(t)‖CT ≤ ρ′, which implies that
{Sn,φun : un ∈ A(ρ)} is uniformly bounded.

On the other hand, for any t1, t2 ∈ [τ, T ] with t1 < t2, we have

‖Sn,φu(t1)− Sn,φu(t2)‖ ≤ eβτ‖φn(0)‖|e−βt1 − e−βt2 |+A1 +A2. (2.5)

By (H2) and the Hölder inequality, A1 can be bounded by

A1 =
1

Γ(α)
‖
∫ t1

τ
[(t1−r)α−1e−β(t1−r)−(t2−r)α−1e−β(t2−r)]f(r, un,r)dr‖

≤ M ′1ρ
′

Γ(α+1)
[(t1−τ)α − (t2−τ)α + (t2 − t1)α]+

1

Γ(α)
(

∫ t1

τ
(t1−r)α−1

−(t2−r)α−1)pdr)
1
p×(

∫ t1

τ
‖f(r, 0)‖qdr)

1
q +

M1ρ
′

βα
(1−e−β(t2−t1))

+
(1− e−β(t2−t1))√

Γ(α)βα
(

∫ t1

τ
(t1 − r)α−1e−β(t1−r)‖f(r, 0)‖2dr)

1
2 .

(2.6)
Again, thanks to the Hölder inequality,

A2 =
1

Γ(α)
‖
∫ t2

t1

(t2−r)α−1e−β(t2−r)f(r, un,r)dr‖

≤M1ρ(t2−t1)α

Γ(α+ 1)
+

(t2−t1)
α
2

√
αΓ(α)

· (
∫ t2

t1

(t2−r)α−1e−β(t2−r)‖f(r, 0)‖2dr)
1
2 .

(2.7)

From (2.5), (2.6) and (2.7), the right-hand side of (2.5) tends to zero as
t1 → t2 . Therefore {Sn,φun : un ∈ A(ρ)} is equicontinuous on [τ, T ], and
therefore Sn,φA(ρ) is relatively compact in Xn.
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Step 2: Now we show that Sn,φ is continuous on CT . Let uin ∈ CT be
a sequence such that uin → u in CT as i→∞. We can prove that, for any
t ∈ [τ, T ], as i goes to ∞,

‖uin,t − ut‖CT = sup
θ∈[−h,0]

‖uin,t(t+ θ)−u(t+ θ)‖≤ sup
t∈[τ,T ]

‖uin,t(t)− u(t)‖ → 0.

Then from Eq. (2.2), (H4) and the Hölder inequality, we have for all
t ∈ [τ, T ],

‖Sn,φuin(t)− Sn,φu(t)‖2

=
1

Γ2(α)

∥∥∥∥∫ t

τ
(t− r)α−1e−β(t−r) (Pnf(r, uin,r)− Pnf(r, ur)

)
dr

∥∥∥∥2

≤ M2
1β
−α

Γ(α)

∫ t

τ
(t− r)(α−1)e−β(t−r)‖uin,r − ur‖2C0dr.

Hence,

‖Sn,φuin(t)− Sn,φu(t)‖2 ≤M2
1β
−2α‖uin − u‖2CT → 0 as i→∞.

Therefore the operator Sn,φ is continuous on CT . By the arbitrariness of ρ
and Lemma 2.1, we have that Sn,φu

i
n is uniformly bounded on CT , while

Step 1 implies that Sn,φu
i
n is a family of equi-continuous functions. There-

fore, by the Arzelà-Ascoli theorem, we obtain that Sn,φu
i
n → Sn,φu in CT .

And hence, from Lemma 2.1, Step 1, Step 2 and the Arzelà-Ascoli theorem,
we obtain that Sn,φ : C([τ − h, T ];Xn) → C([τ − h, T ];Xn) is continuous
and completely continuous. 2

Lemma 2.3. Assume that (H1)− (H2) hold true, then for any φ ∈ C0,
the fractional functional differential equation (2.1) has at least one local
solution in Xn.

P r o o f. We use the Leray-Schauder fixed point theorem to prove this
conclusion, i.e., there exists an open set O ⊂ C([τ − h, T ];Xn) with un 6=
λSn,φun for λ ∈ (0, 1) and un ∈ ∂O.

We need to prove that if un = λSn,φun with λ ∈ (0, 1) on O, then
un∈ intO.

Let un ∈ C([τ −h, T ];Xn) and un = λSn,φun for some 0 < λ < 1. Then
for every t ∈ [τ, T ],

un(t) = λ

{
φn(0)e−β(t−τ) +

1

Γ(α)

∫ t

τ
(t− r)α−1e−β(t−r)Pnf(r, un,r)dr

}
.
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From (H1)− (H2) and the Hölder inequality with p = 1+α and q = 1+ 1
α ,

we find for all t+ θ ≥ τ ,

‖un(t+ θ)‖

=λ

∥∥∥∥φn(0)e−β(t+θ−τ)+
1

Γ(α)

∫ t+θ

τ
(t+θ−r)α−1e−β(t+θ−r)Pnf(r, un,r)dr

∥∥∥∥
≤‖φn(0)e−β(t+θ−τ)‖+

β−αG

Γ(α)
+T0

(∫ t+θ

τ
e−

qβ(t+θ−r)
2 ‖ur−vr‖qC0dr

) 1
q

,

(2.8)

where 0 < G(t + θ) = β−α

Γ(α)(
∫ t+θ
τ (t + θ − r)α−1e−β(t+θ−r)‖f(r, 0)‖2dr), and

T0 = M1Γ(α2)
1

1+α

( pβ
2

)
α2
1+α Γ(α)

.

Note that if τ − h ≤ t ≤ τ , then

‖un(t)‖ = ‖φn(t− τ)‖ ≤ e−
qβ(t+2θ−2τ)

2 ‖φn‖C0 .
Then for any t ≥ τ ,

e
qβt
2 ‖un,t‖qC0 ≤ C∗e

− qβ(t−2τ)
2 ‖φn‖qC0 +G1e

qβt
2 + T1

∫ t

τ
e
qβr
2 ‖un,r‖qC0dr,

where C∗ = 3qeqβh, G1 = β−qα

Γq(α)3q−1Gq and T1 = 3q−1T q0 e
qβh
2 .

Applying Gronwall’s inequality, we find for all t ≥ τ ,

‖un,t‖qC0 ≤ Ce
(T1− qβ2 )(t−τ) + C.

Thus, there exists a positive constant B∗ such that ‖un,t‖C0 ≤ B∗ for
all t ∈ [τ, T ]. Set

O = {un ∈ C([τ − h, T ];Xn) : ‖un‖CT ≤ B
∗ + 1} .

Note that Sn,φ : O → C([τ−h, T ];Xn) is continuous and completely contin-
uous. From the choice of O, there is no un ∈ ∂O such that un = λSn,φ(un)
for λ ∈ (0, 1), on the other hand 0 ∈ O is obvious. Therefore, as a con-
sequence of Theorem 2.1, we deduce that Sn,φ has a fixed point un in O,
which is a local solution of (2.1) in C([τ − h, T ];Xn). 2

Lemma 2.4. Under the assumptions of Lemma 2.3, for any φ ∈ C0,
problem (2.1) has a local solution in C([τ − h, T ];X).

P r o o f. In Lemma 2.3, we have proved the existence of local solutions
of problem (2.1) in C([τ − h, T ];Xn). By taking the limit, we prove the
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existence of local solutions of problem (2.1) in C([τ − h, T ];X). For this,
we form the approximating equations:{

Dα
s un(t) = Pnf(t, un,t), t ≥ τ,

un(t) = φn(t− τ), ∀t ∈ [τ − h, τ ].
(2.9)

Similarly as in Lemma 2.3, there exists a solution un to problem (2.9) on
[τ, T ] such that

sup
t∈[τ,T ]

‖un(t)‖ ≤ C. (2.10)

Since X is a separable Hilbert space, from (2.10) we can conclude that for
any t ∈ [τ, T ], {un(t)}∞n=1 is weakly convergent to u(t) in X. Moreover for
any tm, t ∈ [τ − h, τ ] with tm → t, we have when n,m go to ∞,

‖un(tm)− u(t)‖≤‖φn(tm − τ)−φ(tm − τ)‖+ ‖φ(tm − τ)−φ(t− τ)‖ → 0.

On the other hand, for any tm, t ∈ [τ, T ] with tm → t, and any v ∈ X∗, we
have as n,m go to ∞,

|〈un(tm)− u(t), v〉| ≤ |〈un(tm)− u(tm), v〉|+ |〈u(tm)− u(t), v〉| → 0.

Therefore, {un,t}∞n=1 is weakly convergent to ut in C0.
Now we prove that u(·) is a solution of (2.1). For this we need to pass

to the limit in the following integral

un(t) :=


φn(t− τ), t ∈ [τ − h, τ ],

φn(0)e−β(t−τ)+
1

Γ(α)

∫ t

τ
(t−r)α−1e−β(t−r)Pnf(r, un,r)dr, t ∈ [τ, T ].

(2.11)
Since f is Lipschitz continuous, for any t ∈ [τ, T ], we obtain

f(t, un,t)→ f(t, ut), weakly in X. (2.12)

Using the Riesz representation theorem, we obtain that for any v ∈ X∗,
there exists a unique w ∈ X such that 〈u, v〉 = (u,w) for all u ∈ X, and
therefore

|〈Pnf(t, un,t), v〉 − 〈f(t, un,t), v〉|
= |(Pnf(t, un,t)− f(t, un,t), w)|
= |(f(t, un,t), (I − Pn)w)| ≤ C‖(I − Pn)w‖ → 0, n→∞.

(2.13)

Then by (2.12)-(2.13) and Lebesgue’s dominated convergence theorem we
obtain for any v ∈ X∗,

〈
∫ t

τ
(t− r)α−1e−β(t−r)Pnf(r, un,r)dr, v〉→〈

∫ t

τ
(t− r)α−1e−β(t−r)f(r, ur)dr, v〉.

(2.14)
Hence, (2.11) and (2.14) imply that, for any v ∈ X∗,
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〈u(t), v〉 = 〈u(τ)e−β(t−τ), v〉+
1

Γ(α)
〈
∫ t

τ
(t− r)α−1e−β(t−r)f(r, ur)dr, v〉,

which means that

u(t) = u(τ)e−β(t−τ) +

∫ t

τ
(t− r)α−1e−β(t−r)f(r, ur)dr, for all t ∈ [τ, T ].

2

Theorem 2.2. (Global existence and uniqueness and continuous de-
pendence on the initial values of solutions of Caputo substantial fractional
differential equation) Suppose that (H1) and (H2) hold. Then,

(i) for any φ ∈ C0, the initial value problem (2.1) with the initial con-
dition u(t) = φ(t − τ), t ∈ [τ − h, τ ], has a unique global solution
u(·, φ) on the whole interval [τ − h,∞).

(ii) on any bounded time interval [τ, T ], where T > 0, the solution
u(·, φ) depends continuously on φ, i.e.,

lim
φ→ϕ

sup ‖u(t, φ)− v(t, ϕ)‖CT = 0.

P r o o f. Part (i): From Lemmas 2.4, we know that (2.1) has a local
solution on [τ − h, T ]. So we need to prove that the local solution is a
global one. Namely, we prove that the local solutions will not blow up on
any bounded interval. By a similar procedure as we used in Lemma 2.3,
we can prove that for any solution u(t), we have for all t ≥ τ ,

‖ut‖qC0 ≤ Ce
(T1− qβ2 )(t−τ) + C,

which implies that the local solution u(t) will not blow up on any finite
interval [τ, T ]. Then it is actually a global solution on [τ − h,∞).

Finally, we show that the global solution is unique. Let u(t), v(t) be
solutions of (2.1) with the same initial value φ. Then for t ∈ [τ, T ],

‖u(t)− v(t)‖=

∥∥∥∥ 1

Γ(α)

∫ t

τ
(t−r)α−1e−β(t−r) (f(r, ur)−f(r, vr)) dr

∥∥∥∥ . (2.15)

Replacing t by t + θ in (2.15), note that ‖u(t + θ) − v(t + θ)‖ = 0 when
t+ θ ≤ τ with θ ∈ [−h, 0]. On the other hand, taking p = 1 +α, q = 1 + 1

α ,
then by Hölder’s inequality, we have, for t+ θ ≥ τ ,

‖u(t+ θ)− v(t+ θ)‖ ≤ T0

(∫ t+θ

τ
e−

qβ(t+θ−r)
2 ‖ur − vr‖qC0dr

) 1
q

,

which means (here T0 is defined in (2.8))
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e
qβt
2 ‖ut − vt‖qC0 ≤ T

q
0 e

qβh
2

∫ t

τ
e
qβr
2 ‖ur − vr‖qC0dr, ∀t ≥ τ.

By the Gronwall inequality, we obtain ‖ut − vt‖ = 0, which implies that
‖ut − vt‖2C0 = 0 for all t ∈ [τ, T ]. Thus, the global solution is unique.

Part (ii): Choose and fix T > 0 and φ, ϕ ∈ C0. Since u(·, φ) and v(·, ϕ)
are solutions of (2.1), condition (H4) implies that

‖u(t, φ)−v(t, ϕ)‖≤e−β(t−τ)‖φ(0)−ϕ(0)‖+ 1

Γ(α)

∫ t

τ
(t−r)α−1e−β(t−r)‖ur−vr‖C0dr.

Replacing t by t+ θ with t+ θ ≥ τ in the last inequality,

‖u(t+ θ, φ)− v(t+ θ, ϕ)‖

≤ e−β(t+θ−τ)‖φ− ϕ‖qC0 + T0

(∫ t+θ

τ
e−

qβ(t+θ−r)
2 ‖ur − vr‖qC0dr

) 1
q

.
(2.16)

Notice that, for τ − h ≤ t ≤ τ , we have

‖u(t, φ)− v(t, ϕ)‖ = ‖φ(t− τ)− ϕ(t− τ)‖ ≤ e−
β(t+2θ−2τ)

2 ‖φ− ϕ‖C0 ,

which together with (2.16) yields, for all t ≥ τ ,

e
qβt
2 ‖ut − vt‖qC0≤2qe

qβ(t−2τ−2h)
2 ‖φ− ϕ‖qC0 +T q0 e

qβh
2

(∫ t

τ
e
qβr
2 ‖ur − vr‖qC0dr

)
.

By the Gronwall lemma, we conclude, for all t ≥ τ ,

‖ut − vt‖C0 ≤ 2eβh‖φ− ϕ‖C0e
(T q0−

qβh
2

)
(t−τ)
q → 0, as φ→ ϕ,

which implies lim
φ→ϕ

sup ‖u(t, φ)− v(t, ϕ)‖CT = 0. The proof is completed. 2

3. Fractional lattice systems with time variable delays

Now we will apply our abstract theory developed in the previous section
to the fractional lattice system (1.1).

3.1. Setting of the problem. Let `2 = {v = (vi)i∈Z :
∑

i∈Z v
2
i < ∞}

be the separable Hilbert space with norm ‖v‖ = (
∑

i∈Z v
2
i )

1
2 and scalar

product (w, v) =
∑

i∈Zwivi, and let `∞ = {v = (vi)i∈Z : supi∈Z |vi| < ∞}
be the Banach space with norm ‖v‖∞ = supi∈Z |vi|. Further, we use the
notation X = `2, CT = C([τ − h, T ]; `2) and CT,∞ = C([τ − h, T ]; `∞),
where T > 0, with the norms

‖u‖CT = sup
s∈[−h,T ]

‖u(s)‖, and ‖u‖CT,∞ = sup
s∈[−h,T ]

‖u(s)‖∞.
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By simple computation, we can verify that CT ⊂ CT,∞ with ‖u‖CT,∞ ≤
‖u‖CT for all u ∈ CT .

We consider the system (1.1) on the phase space CT . To this end, we
assume the following conditions:

(C1) The operator f : [τ,∞) × C0 → X given by the rule (f(t, ut))i =
fi(t, uit), i ∈ Z, is well defined, bounded and continuous.

(C2) There exists Lf > 0 such that

‖f(t, φ)− f(t, ϕ)‖ ≤ Lf‖φ− ϕ‖C0 for all φ, ϕ ∈ C0 and t ≥ τ.

(C3) The function f(t, 0) is L2 local integrable, and there exists a positive
constant L such that∫ t

τ
(t− r)α−1e−β(t−r)‖f(r, 0)‖2dr ≤ L, ∀t ≥ τ.

Remark 3.1. We would like to mention that condition (C1) holds
if all the component functions fi, i ∈ Z, are globally Lipschitz with the
same Lipschitz constant, while condition (C2) holds provided that each
component function fi, i ∈ Z, is Lipschitz continuous with a constant Lfi

and Lf =
(∑

i L
2
fi

)1/2
< ∞, i ∈ Z. And condition (C3) holds if it holds

for each fi with constant Li, and L =
∑

i Li <∞, i ∈ Z.

We first establish the existence of solutions for problem (1.1). For this
we rewrite it in abstract form. We define the operator A : X → X by

(Av)i = −vi−1 + 2vi − vi+1, i ∈ Z.

It is easy to check that

‖Av‖ ≤ 4‖v‖ for all v ∈ `2. (3.1)

Then the operator F : C0 → X is defined by F (t, v) = −Av(0) − f(t, v) −
λv(0). Problem (1.1) can be rewritten as{

Dα
s u(t) = F (t, ut), t > τ,

u(t) = φ(t− τ), ∀t ∈ [τ − h, τ ].

Theorem 3.1. Assume that (C1)-(C3) hold. Then for every φ ∈ C0,
the problem (1.1) has a unique solution defined on [τ − h,∞).

P r o o f. It is not difficult to check that F (t, v) satisfies (H1) and (H2).
Thus the conclusion follows from Theorem 2.2. 2
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3.2. Time variable delays. We will consider time variable delays with
the delay function satisfying the following condition:

(D1) For each i ∈ Z the function ρi : [0,∞)→ [0, h] is continuous.

We consider a function f : [0,∞) × C0 → X given component-wise by
the rule (f(t, v))i = fi(t, vi), where

fi(t, vi) = F1,i(t, vi(−ρi(t))) +

∫ 0

−h
bi(t, s, vi(s))ds

with h > 0, i.e., putting v = ut = u(t + ·), problem (1.1) can be rewritten
as, for t > τ, i ∈ Z,

Dα
s ui(t)− (ui−1(t)− 2ui(t) + ui+1(t)) + λui(t)+

F1,i(ui(t− ρi(t))) +

∫ 0

−h
bi(t, s, ui(t+ s))ds = 0,

ui(t) = φi(t− τ), ∀t ∈ [τ − h, τ ].

(3.2)

We also use the following conditions:

(D2) F1,i are continuous in (t, x), and satisfy that |F1,i(t, x)−F1,i(t, y)| ≤
A1|x − y| for all x, y ∈ R and uniformly in t ≥ τ , where A1 is a
positive constant and |F1,i(t, 0)| ≤ |A2,i| and uniformly in t ≥ τ ,
where A2 = (A2,i)i∈Z ∈ `2.

(D3) bi(t, s, x) are continuous in (t, x), and |bi(t, s, x)−bi(t, s, y)| ≤ |A3,i|·
|x − y| for all x, y ∈ R and a.a. s ∈ [−h, 0], uniformly in t > τ ,
and |bi(t, s, 0)| ≤ m0,i(s), with m0,i(·) ∈ L1(−h, 0), m0,i(s) ≥ 0,
A3 = (A3,i)i∈Z ∈ `2 and M2

0 :=
∑

i∈ZM
2
0,i < ∞, where M0,i =∫ 0

−hm0,i(s)ds.

Let us check conditions (C1) and (C2). First, in order to obtain (C1)
we prove that f is well defined and bounded as well as continuous. By
(D2)-(D3), we deduce that∑

i∈Z
|F1,i(vi(−ρi(t)))|2 ≤

∑
i∈Z

2A2
2,i + 2A2

1‖v‖2C0 ,

∑
i∈Z

(∫ 0

−h
|bi(t, s, vi(s))|ds

)2

≤ 2h2‖A3‖2‖v‖2C0 + 2M2
0 ,

for all t > τ . Then for all t > τ , by (D1), we have

‖f(t, v)‖2≤2

(∑
i∈Z
|F1,i(vi(−ρi(t))))|2+

∑
i∈Z

(∫ 0

−h
|bi(t, s, vi(s))|ds

)2
)

≤4‖A2‖2 + 4A2
1‖v‖2C0 + 4M2

0 + 4h2‖A3‖2‖v‖2C0 .
(3.3)
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And from (D2) and (D3), for any v, u ∈ C0, we obtain that

‖f(t, v)− f(t, u)‖2 ≤ (2A2
1 + 2‖A3‖2)‖v − u‖2C0 . (3.4)

Besides, let tn ≥ τ , {vn}∞n=1 ⊂ C0, and t ≥ τ , v ∈ C0 such that tn → t,
and vn → v in C0. Notice that F1,i and bi(t, s, x) are continuous in (t, x),
we have when n goes to infinity

‖fi(tn, vn)− fi(t, v)‖

≤ ‖F1,i(tn, vn)− F1,i(t, v)‖+ ‖
∫ 0

−h
bi(tn, s, vn(s))− bi(t, s, v(s))ds‖ → 0.

Therefore (C1) holds true.

On the other hand, for any t > τ ,∫ t

τ
(t− r)α−1e−β(t−r)‖f(r, 0)‖2dr

=

∫ t

τ
(t− r)α−1e−β(t−r)

∑
i∈Z
|Fi(r, 0) +

∫ 0

−h
bi(r, s, 0)ds|2dr

≤ 2β−α(‖A2‖2 +M2
0 ) <∞.

(3.5)

Note that the F1,i are Lipschitz continuous and the bi(t, s, x) are Lips-
chitz continuous in x. Hence, (C1), (C2) and (C3) are true by (3.3)-(3.5).
Thanks to Theorem 3.1, we see that for every φ ∈ C0, problem (3.2) has a
unique solution defined on [τ − h,∞).

4. Estimates of solutions

We obtain some estimates of solutions in this section. Such estimates
will imply that the solutions are bounded uniformly with respect to bounded
sets of initial conditions and positive values of time.

Lemma 4.1. Assume that (D1), (D2) and (D3) hold and there exist
positive constants q and c such that

qβ − 2c > 0. (4.1)

Then, every solution u(·) of (3.2) with uτ = φ ∈ C0 verifies

‖ut‖2qC0 ≤
2ac

3qβ + c
e−( qβ

2
−c)(t−τ) + a+ b+

2bc

qβ − 2c
,

where a = 3q−12qe2qβh‖φ‖2qC0 , b = 3q−1Cq1 , c = Cq2

(
Γ

1
1+α (α2)

( pβ
2

)
α2
1+α

)q
e
qβh
2 .



14 L. Liu, T. Caraballo, P.E. Kloeden

P r o o f. The proof is similar to those of Lemma 2.3 and Theorem 2.2.
2

For the proof of compactness of the attracting set, we need the following
lemma.

Lemma 4.2. Suppose that assumptions of Lemma 4.1 hold, and there
exists a positive constant C8 such that qβ > 2C8. Then, for any ε > 0
there exist T (ε,B), K(ε,B) such that

sup
θ∈[−h,0]

√ ∑
|i|≥2K(ε,B)

|ui(t+ θ)|2 < C̃ε, t ≥ T (ε,B),

for any initial conditionφ∈B⊂C0 and any solutionu(·) of (3.2) withuτ =φ.

P r o o f. The proof is similar to that in Bates et al. [1], so is omitted.
2

5. Main results

5.1. Existence of the global attracting set.

Theorem 5.1. Assume that qβ > 2 max{c, C8}. Then

(1) for any bounded subset B ⊂ CT , any sequence {tn} with tn →
∞ (n→∞), {φn}withφn ∈ B, any sequence of solutions {un(·)} of
problem (3.2) with unτ = φn ∈ B, the sequence {untn} is relatively
compact in CT ;

(2) for any bounded subset B of CT , the set

ω(B) = {ψ : ∃tn →∞, φn ∈ B and a sequence of solutions un(·)
of problem (3.2)with unτ = φn ∈ B such that untn → ψ in CT }

is nonempty, compact and attracts B;
(3) the set A =

⋃
{ω(B) : B ⊂ CT , B bounded} is bounded in CT , com-

pact in the topology of C0. Moreover, it is the minimal closed set
that attracts all bounded subsets of CT in the topology of CT , where
E denotes the closure of E.

P r o o f. The proof is based on [1] and is given in four steps:

Step 1. Without loss of generality, we assume that tn ≥ h for all n ∈ N
and ‖φ‖CT ≤ d for all φ ∈ B. Thanks to Lemma 4.1, for fixed θ ∈ [−h, 0]
we can find a subsequence (denoted as un) such that untn(θ) → v in `2. In
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fact, the convergence is strong, which can be deduced from Lemma 4.2.
Indeed, for any ε > 0 there exist M(ε) and N(ε) such that

sup
θ∈[−h,0]

√ ∑
|i|≥2M

|uni (tn + θ)|2 < ε,

√ ∑
|i|≥2M

|vi|2 < ε,

and
√∑

|i|≤2M |uni (tn + θ)− vi|2 < ε if n ≥ N , so that

‖untn(θ)− v‖ ≤
√ ∑
|i|>2M

|uni (tn + θ)− vi|2+

√ ∑
|i|≤2M

|uni (tn + θ)− vi|2 < Cε.

Thus, {untn(θ)} is precompact in `2 for any θ ∈ [−h, 0]. In order to apply
the Arzelà-Ascoli theorem, we need to check the equi-continuity property.
To do this, by Eq.(3.1), (D2)-(D3) and Lemma 4.1, we obtain that every
solution u(·) of (3.2) with uτ = φ ∈ B ⊂ CT satisfies

‖Au(t)‖+ |λ|‖u(t)‖+ ‖F1(u(t− ρi(t))))‖+

∥∥∥∥∫ 0

−h
b(t, θ, u(t+ θ))dθ

∥∥∥∥
≤
(

4 + |λ|
)
‖u(t)‖+

√
2‖A2‖2 + 2A2

1‖ut‖2CT +
√

2M2
0 + 2M2

1 ‖ut‖2CT ≤ c
′,

for all t ≥ τ . Arguing as in the proof of Theorem 2.2, we have that for
n ∈ N and θ1, θ2 ∈ [−h, 0],

‖un(tn + θ1)− un(tn + θ2)‖ ≤ c′
∣∣∣e−βθ1 − e−βθ2∣∣∣+ c′ |θ1 − θ2|α .

Then, Arzelà-Ascoli’s theorem implies that untn is relatively compact in CT .

Step 2. By the conclusion (1) and the definition of ω(B), the nonempti-
ness and compactness of ω(B) follow immediately. Now we show that ω(B)
attracts B. If not, there exist ε′ > 0 and sequences {tn} with tn →∞, {φn}
with φn ∈ B and solutions {un(·)} of (3.2) with un0 = φn such that

distCT (untn , ω(B)) > ε′, ∀n ∈ N, (5.1)

where distCT (·, ·) is the norm of CT . Using the conclusion (1), we obtain
that untn is relatively compact and possesses at least one cluster point v in
CT . By the definition of ω(B), it is clear that v ∈ ω(B), and this contradicts
(5.1).

Step 3. Let Ã =
⋃
{ω(B) : B ⊂ CT , B bounded}, and {yn}∞n=1 be

a sequence in Ã with yn ∈ ω(Bn) and ‖Bn‖CT = supψ∈Bn ‖ψ‖CT ≤ dn.
Then by the definition of ω(Bn), we can deduce that there exist sequences
{tn} with tn → ∞ with φn ∈ Bn, and solutions {untn(·)} of (3.2) with
unτ = φn ∈ Bn such that for all n ∈ N,

‖untn − yn‖C0 ≤
1

n
. (5.2)
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Now we need to prove that untn is relatively compact in C0,w. Since X = `2

is reflexive, from Lemma 4.1 we see that for fixed θ ∈ [−h, 0], {untn(θ)}
is relatively compact in Xw. On the other hand, we deduce that {untn} is
equicontinuous. In fact, by the method we used in Step 1, we could obtain
that from Lemma 2.2, (C5) and (C6), if n ∈ N, θ1, θ2 ∈ [−h, 0] and θ1 ≤ θ2,
then we have for all n sufficiently large,

‖un(tn + θ1)− un(tn + θ2)‖ ≤ C|e−βθ1 − e−βθ2 |+ C(θ2 − θ1)α.

Thus we conclude that {untn} is relatively compact in C0. Combining this
with (5.2), we obtain that {un(·)} is relatively compact in C0, and thus

A =
⋃
{ω(B) : B ⊂ CT , B bounded}

is compact in the topology of C0.
From Lemma 4.1 and the conclusion (2), we see that A is bounded in

CT , and attracts all bounded subsets of CT in the topology of CT .
Finally, we show that A is the minimal closed set attracting set. In-

deed, if there is another closed set A′ which attracts any bounded set
B ⊂ CT , then by the definition of ω(B), we deduce that ω(B) ⊂ A′, and
thus

⋃
{ω(B) : B ⊂ CT , B bounded} belongs to A′. Since A′ is closed, we

have A =
⋃
{ω(B) : B ⊂ CT , B bounded} ⊆ A′. The proof of Theorem 5.1

is completed. 2

5.2. Singleton case. To show that the forward attracting set is a singleton
set, we need the following lemma, which is proved like Theorem 2.2.

Lemma 5.1. Assume that

e−
βh
2 β2α > 2α+ 1

1+α p−
α2

1+α q−
α

1+αΓ
1

1+α (α2)C11,

where C11 :=
8(16+λ2+A2

1+M2
1 )

Γ(α) .

Then for any two solutions u(t) and w(t) of problem (3.2) corresponding
to initial values φ and ψ, we have the strict contracting property

‖ut − wt‖2qCT ≤ C‖φ− ψ‖
2q
CT e
−( qβ

2
−C12)(t−τ) ∀t ≥ τ,

where C12 := 2α+ 1
α p−αΓ

1
α (α2)Cq11e

qβh
2 β−2α.

Theorem 5.2. Assume the condition in Theorem 5.1 . If we addition-
ally assume that, for each i∈Z and any s∈ [−h, 0],F1,i(0) = bi(t, s, 0) = 0.
Then the setA=

⋃
{ω(B) :B ⊂ CT , B bounded} is a singleton set. Moreover,

it is the minimal set that exponentially attracts all bounded subsets of CT .
Thus, every solution exponentially decays to zero in the topology of CT .
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P r o o f. Since for each i ∈ Z and any θ ∈ [−h, 0], F1,i(0) = bi(t, θ, 0) =
0, it follows from Lemma 4.1 that for any solution u(·) of problem (3.2) with
initial value φ, we have

‖ut‖2qCT ≤ C‖φ‖
2q
C0e
−( qβ

2
−c)t ,∀t ≥ 0. (5.3)

Let B be a bounded subset of CT with ‖B‖CT = supψ∈B ‖ψ‖CT ≤ d.
We show that ω(B) is a singleton set. If not, then there would exist

x, y ∈ ω(B) such that x 6= y. By the definition of ω(B), there exist se-
quences {τn} and {sm}, respectively, with τn →∞ (n→∞) and sm →∞
(m→∞), {φn} and {ψm} with φn, ψm ∈ B, solutions {un(·)} and {wm(·)}
of problem (3.2) with unτ = φn, wmτ = ψm such that

unτn → x (n→∞) and wmsm → y (m→∞) in CT .
From (5.3) we deduce that

‖unτn − w
m
sm‖CT ≤ Ce

− (qβ−2C12)
2q

(τn−τ)
+ Ce

− (qβ−2c)
2q

(sm−τ)
,

which implies that

‖unτn − w
m
sm‖CT → 0 as n→∞ and m→∞.

Hence, ‖x − y‖CT = 0, this is a contradiction. Since ω(B) is the same
singleton set for each bounded set B, we obtain from (5.3) that A is a
singleton set. Indeed, as ω(B1) = {x1} and ω(B2) = {x2}. Now B =
B1∪B2, so ω(Bi) ⊂ ω(B) for i = 1, 2, but as ω(B) only contains one point.
Hence x1 = x2. Moreover, every solution exponentially decays to zero in
the topology of CT . Thus the proof is completed. 2
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