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Abstract

We consider the steady state of the thermistor problem consisting of a coupled set of nonlinear 
elliptic equations governing the temperature and the electric potential. We study the existence of 
weak solutions under two kind of assumptions. The 4rst one considers the case in which the two 
di5usion coe6cients are not b ounded b elow far from zero, arising to a doub ly non-uniformly 
elliptic system. In the second one, we assume in addition that the thermal conductivity blows up for a 
4nite value of the temperature, arising to a singular and non-uniformly coupled system.

Keywords: Non-uniformly and singular elliptic systems; Nonlinear elliptic equations; Thermistor problem; 
Sobolev spaces

1. Introduction

The heat produced b y an electrical current passing through a conductor device is 
governed b y the so-called thermistor prob lem. This prob lem consists of a system of 
nonlinear parab olic–elliptic system describ ing the temperature, u, and the electric potential 
’ [2,8]. Here, we consider the steady-state case, resulting in a coupled non-linear elliptic 
system. Let J b e the current density, Q the heat >ux and E = −∇’ the electric 4eld; then 
b y Ohm’s and Fourier’s law we have

J = �(u)E; Q = −a(u)∇u;
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where a(u) and �(u) are, respectively, the thermal and electric conductivities. Also, 
from the usual conservation laws ∇ ·  J = 0,  ∇ ·  Q = E · J we obtain



−∇ · (a(u)∇u) = �(u)|∇’|2 in �;

∇ · (�(u)∇’) = 0 in �;

u= 0 on @�;

’= ’0 on @�;

(1)

where � is an open, bounded and smooth enough set in RN , N¿ 1. We note that, the
right-hand side of the equation for the temperature may be written as ∇ · (�(u)’∇’)
thanks to the equation veri4ed by ’; this is true, for instance, if ’∈H 1(�) (this aspect
is also discussed in Remark 2).
The steady-state thermistor problem has been studied by several authors along the

last two decades. Among them, we refer to Cimatti [4–7] and Cimatti and Prodi [9].
In these papers, the authors have obtained some existence results of weak solutions in
both, two and three dimensions, using the so-called Diesselhorst transformation, and
under the conditions u= u0 on @�, and u0 being a constant value, or u= u0¿ um ¿ 0
on @�, together with the hypothesis 0¡am6 a(u), or a(u) = a0 constant, or even
under the Wiedemann–Franz law (that is, a(s) = Ls�(s), L¿ 0 a constant value) with
metallic conduction, and certain assumptions on �(u). We notice that in all these papers
is assumed that a(s)¿ a0 ¿ 0, for all s.

In the present work we show two existence results of weak solution to the steady-state
thermistor problem under the general assumption that both a(s) and �(s) are not
bounded below far from zero (Theorems 1 and 2). In this way, system (1) becomes
doubly non-uniformly elliptic; in general, we cannot expect the regularity ’∈H 1(�)∩
L∞(�), or that u belongs to some Sobolev space. We point out that the technique
used here in the analysis of the non-singular case is not based on the derivation of
L∞-estimates for the temperature. On the other hand, our setting for the singular and
non-uniformly elliptic problem leads us to derive L∞-estimates for the temperature,
and this implies more regularity for both, the electric potential ’ and the temperature
u itself.

2. Setting of the non-uniformly elliptic problem

We consider the steady-state thermistor problem in divergence form, namely


−∇ · (a(u)∇u) =∇ · (�(u)’∇’) in �;

∇ · (�(u)∇’) = 0 in �;

u= 0 on @�;

’= ’0 on @�;

(2)



together with the following hypotheses on data:
(H.1) �∈C(R) and 0¡�(s)6 J�, for all s∈R.
(H.2) a∈C(R) ∩ L∞(R),

∫ +∞
0 a(s) ds = +∞, and A(r) =

∫ r
0 a(s) ds is a strictly

increasing function.
(H.3) ’0 ∈H 1(�).
(H.4) There exist an integer M ¿ 1 and a function � : [M;+∞) → R such that

�(s)¿ 0, for all s¿M , � is non-increasing and �(s)¿ �(s)¿ 0.
(H.5) Let p∈ (2N=(N + 2); 2) if N¿ 2, p∈ (1; 2) if N = 1 and p′ = 2− p, then

∫ +∞

M

ds
�(s)p=p′A(s− 1) Jq=2

¡+∞ with




Jq= 2∗ if N¿ 3;

Jq∈ [2;+∞) if N = 2;

Jq∈ [1;+∞) if N = 1:

(3)

Remark 1. If we consider that � and ’0 are smooth enough, then ’ will be smooth too,
for instance |∇’| ∈L∞(�), and then we could obtain that u∈L∞(�); in particular,
this implies �(u)¿ �(‖u‖L∞(�)), that is, �(u) becomes uniformly elliptic; thus, we
have again that � and ’0 are smooth, starting over the cycle. However, this does not
correspond with our setting, since both a and � are non-uniformly elliptic.

The main result of this section now follows.

Theorem 1. Under assumptions (H.1)–(H.5), problem


−LA(u) =∇ · (�(u)’∇’) in D′(�);

∇ · (�(u)∇’) = 0 in �;

u= 0 on @�;

’= ’0 on @�;

(4)

has a weak solution (u; ’) in the following sense:

∀ q¡
N

N − 1
if N¿ 2; q= 2 if N = 1; A(u)∈W 1; q

0 (�); (5)

’− ’0 ∈W 1;p
0 (�); �(u)1=2∇’∈L2(�)N ; (6)

∫
�
∇A(u)∇�=−

∫
�
�(u)’∇’∇� for all �∈D(�); (7)

∫
�
�(u)∇’∇�= 0 for all �∈H 1

0 (�): (8)

Furthermore, the term ∇ · (�(u)’∇’) is a Radon measure and u¿ 0 almost every-
where in �.

The proof of this theorem is developed along the next paragraphs.



2.1. Approximate problems

Let n ∈ N and introduce the functions an(s) =  a(s) + 1=n, �n(s) =  �(s) + 1=n, then 
we set the approximate prob lem given as follows:



−∇ · (an(un)∇un) = �n(un)|∇’n|2 in �;

∇ · (�n(un)∇’n) = 0 in �;

un = 0 on @�;

’n = Tn(’0) on @�;

(9)

where Tn(s) is the truncation function at height n, that is

Tn(s) = min(|s|; n) sign s: (10)

By virtue of the classical existence results [2], problem (9) has a solution such that
un ∈H 1

0 (�), ’n − Tn(’0)∈H 1
0 (�) ∩ L∞(�).

2.2. Estimates and passing to the limit

Since∫
�
�n(un)∇’n∇�= 0 for all �∈H 1

0 (�); (11)

taking �= ’n − Tn(’0) yields∫
�
�n(un)|∇’n|2 =

∫
�
�n(un)∇’n∇Tn(’0)

6
(∫

�
�n(un)|∇’n|2

)1=2(∫
�
�n(un)|∇’0|2

)1=2
;

hence ∫
�
�n(un)|∇’n|26 �̃

∫
�
|∇’0|26 �̃‖’0‖H 1(�) = C(�̃; ’0) = C1; (12)

therefore, (fn) = (�n(un)|∇’n|2) is bounded in L1(�).
Let vn = An(un), An(r) =

∫ r
0 an(s) ds and consider the elliptic problem

−Lvn = fn in �;

vn = 0 on @�:

From Boccardo–GallouOet estimates [3,11], we deduce that

(vn) is bounded in W 1; q
0 (�); for all q¡

N
N − 1

if N¿ 2; q= 2 if N = 1: (13)



As a result, there exist a subsequence (still denoted in the same way) and v∈W 1; q
0 (�)

such that

vn * v in W 1; q
0 (�)-weakly: (14)

Since the embeddings W 1; q
0 (�) ,→ Lr(�), for all r ¡N=(N−2) if N¿ 2, or W 1; q

0 (�)=
H 1

0 (�) ,→ C( J�) if N = 1, are compacts, we may also assume that

vn → v in Lr(�)-strongly if N¿ 2; (15)

vn → v in C( J�)-strongly if N = 1; (16)

vn → v a:e: in �: (17)

Moreover, since fn¿ 0 in �, then vn¿ 0 in �. Since An is strictly increasing, we
also have un¿ 0 in �. Now, we show that (A(un)) ⊂ H 1

0 (�) is bounded in W 1; q
0 (�).

Indeed,

|∇A(un)|= |a(un)∇un|6 |an(un)∇un|= |∇An(un)|= |∇vn|
and by virtue of (13), (A(un)) is also bounded in W 1; q

0 (�); then there exist a subse-
quence (denoted in the same way) and z ∈W 1; q

0 (�) such that

A(un) * z in W 1; q
0 (�)-weakly; (18)

A(un) → z in Lr(�)-strongly for all r ¡
N

N − 2
if N¿ 2; (19)

A(un) → z in C( J�)-strongly if N = 1; (20)

A(un) → z a:e: in � (21)

But, since A is one-to-one, from (21) we deduce

un → A−1(z) = u a:e: in � (22)

with u¿ 0 a.e. in �.
Thanks to the de4nition of �n, together with (22), we obtain

�n(un) → �(u) a:e: in �: (23)

Also, by virtue of (H.1), (�n(un)) is bounded in L∞(�), and taking into account (23),
we have

�n(un) → �(u) in L∞(�)-weakly- ∗ : (24)

Now, we seek for estimates to the sequence (’n) in some Sobolev space W 1;p(�),
with 1¡p¡ 2. By virtue of (H.5), 2=p′ is the conjugate exponent of 2=p. Applying
Young’s inequality and taking into account (12), we obtain∫

�
|∇’n|p6

(∫
�

�n(un)−p=p′
)p′=2(∫

�
�n(un)|∇’n|2

)p=2

6Cp=2
1

(∫
�
�n(un)−p=p′

)p′=2

:



Let us show the following estimate:∫
�
�n(un)−p=p′

6C2: (25)

From 0¡�(s)6 �n(s)6 �̃, for all s∈R, it yields
�̃−p=p′

6 �n(s)−p=p′
6 �(s)−p=p′

for all s∈R;
hence ∫

�
�n(un)−p=p′

6
∫
�
�(un)−p=p′

6
∫
{|un|6M}

�(un)−p=p′
+
∫
{un¿M}

�(un)−p=p′
:

Thanks to (H.1), �−1 is bounded on compact sets of R, in particular, there ex-
ists a constant value CM ¿ 0 such that min|s|6M �(s) = CM , and this implies that

�(un)−p=p′
#{|un|6M}6C−p=p′

M , and∫
{|un|6M}

�(un)−p=p′
6C−p=p′

M |�|= C(M;p; p′; �) = C3:

On the other hand, by virtue of (H.4), we deduce∫
{un¿M}

�(un)−p=p′
6
∫
{un¿M}

�(un)−p=p′
6
∑
i¿M

∫
{i6un¡i+1}

�(un)−p=p′

6
∑
i¿M

∫
{i6un¡i+1}

�(i + 1)−p=p′

6
∑
i¿M

�(i + 1)−p=p′ |{un¿ i}| (26)

In order to derive some estimate to |{un¿ i}|, we 4rst study |{vn = An(un)¿ i}|. To
do so, we take Ti(vn) as a test function in the equation of un; then∫

�
∇vn∇Ti(vn) =

∫
�
�n(un)|∇’n|2Ti(vn)6C1i;

the left-hand side can be written as
∫
� ∇vn∇Ti(vn)=

∫
� |∇Ti(vn)|2 = Ii;n. By Sobolev’s

inequality we have

Ii;n¿C
(∫

�
|Ti(vn)| Jq

)2= Jq
¿C

(∫
{vn¿i}

|Ti(vn)| Jq
)2= Jq

= C

(∫
{vn¿i}

i Jq
)2= Jq

= Ci2|{vn¿ i}|2= Jq;

where Jq=2∗ =2N=(N − 2) and C =C(�;N ), if N¿ 3, Jq∈ [2;+∞) and C =C(�; Jq),
if N6 2. Consequently,

|{vn¿ i}|2= Jq6 C1i
i2C

=
C1

iC
;



which yields, |{vn¿ i}|6 (C1=iC) Jq=2 = C4=i Jq=2. Since un¿ 0 in �, An(un)¿A(un) in
�, {A(un)¿ i} ⊂ {vn = An(un)¿ i} and

|{A(un)¿ i}|6 |{vn¿ i}|6 C4

i Jq=2
;

hence

|{un¿A−1(i)}|6 C4

i Jq=2
;

this can be expressed as

|{un¿ l}|6 C4

A(l) Jq=2
:

Therefore, thanks to (3) in (H.5) and (26), we have∫
{un¿M}

�(un)−p=p′
6
∑
i¿M

�(i + 1)−p=p′ C4

A(i) Jq=2

6C4

∫ +∞

M−1

ds
�(s+ 1)p=p′A(s) Jq=2

= C5:

This shows (25) and we deduce that∫
�
|∇’n|p6Cp=2

1 Cp′=2
2 = C6; (27)

which means that, ’n − Tn(’0) is bounded in W 1;p
0 (�). We then take a subsequence

(still denoted in the same way) and ’∈W 1;p(�) such that

’n * ’ in W 1;p(�)-weakly; (28)

’n → ’ in L Jr(�)-strongly for all Jr ¡p∗ if N¿ 2; (29)

’n → ’ in C( J�)-strongly if N = 1; (30)

’n → ’ a:e: in �: (31)

From (H.5), p¿ 2N=(N + 2) which implies that p∗ = Np=(N − p)¿ 2. In particular

’n → ’ in L2(�)-strongly: (32)

Thanks to (12) the sequence (�n(un)1=2∇’n) is bounded in L2(�)N ; thus there exist a
subsequence (still denoted in the same way) and &∈L2(�)N such that

�n(un)1=2∇’n * & in L2(�)N -weakly: (33)

From (24), (28) and (33) it is deduced that &=�(u)1=2∇’∈L2(�)N . Moreover, taking
into account (H.1), (24) and (33), we also have

�n(un)∇’n * �(u)∇’ in L2(�)N -weakly: (34)



Going b ack to (11) and taking � = ’n�, with � ∈ D(�). Then

0 =
∫
�
�n(un)∇’n∇(’n�) =

∫
�
�n(un)|∇’n|2�+

∫
�
�n(un)∇’n’n∇�

=
∫
�
�n(un)|∇’n|2�−

∫
�
∇ · (�n(un)’n∇’n) �

and so,

�n(un)|∇’n|2 =∇ · (�n(un)’n∇’n) en D′(�): (35)

From the equality∫
�
�n(un)’n∇’n∇�=

∫
�
�n(un)1=2’n�n(un)1=2∇’n∇�

and by virtue of (23), (32) and (33), passing to the limit, it yields∫
�
�(u)1=2’�(u)1=2∇’∇�=

∫
�
�(u)’∇’∇� for all �∈D(�);

so, �n(un)|∇’n|2 = ∇ · (�n(un)’n∇’n) → ∇ · (�(u)’∇’) en D′(�). Since
�n(un)|∇’n|2¿ 0 is bounded in L1(�), we conclude that ∇ · (�(u)’∇’) is a pos-
itive Radon measure.
This ends up the proof of Theorem 1.

Remark 2. It is interesting to know if the equality ∇ · (�(u)’∇’) = �(u)|∇’|2 holds
in our setting. There are cases where this holds true (for instance in N = 1). We also
know some situations where we 4nd that this equality is true:

• In the regular case, that is, if ’∈H 1(�).
• In the non-regular case the situation is more complicated. Indeed, according to
Theorem 1, we have

’∈W 1;p(�); �(u)−1 ∈L1=(r−1)(�); r =
2
p
:

Then, we may show that the equality still holds true in the following cases:
◦ If �(u) is a weight of the Muckenhoupt class [13]; this means that, for all x∈RN ,(

1
|BR(x)|

∫
BR(x)

�(u)
)(

1
|BR(x)|

∫
BR(x)

�(u)−1=(r−1)
)r−1

6C:

◦ Or if the linear problem


∈W 1;p
0 (�); �(u)1=2 ∈L2(�)N ;∫

�
�(u)∇ ∇�= 0 for all �∈H 1

0 (�);

has only the trivial solution  =0 (note that in this linear problem, we cannot take
�=  in the variational formulation).



In the general case and with the regularity deduced here for u and ’, we do not
know if this equality still holds [12]).

3. Analysis of a singular and non-uniformly elliptic problem

The case described in the previous section does not lead to L∞-estimates on the
temperature u. The situation that we are presenting now considers the case of a singular
thermal conductivity, that is, a(s) blows up for a 4nite value s= +¿ 0. Under certain
hypotheses on data, we show that the temperature remains bounded in �. Speci4cally,
it will be shown that 06 u(x)¡+, almost everywhere in �.

We consider the thermistor problem (1). All along this section, we will assume the
following hypotheses:

(H:6) �∈C(R) and 0¡�(s) for all s∈R.
(H:7) a∈C(−∞; +), +¿ 0, a(0)= 0, a(s)¿ 0 for all s∈ (0; +), a(s)¿ 0 for all s¡+,

and
∫ +
0 a(s) ds=+∞.

(H:8) There exists n0 ¿ 1=+ such that a(s) is an increasing function in the interval
(+− 1=n0; +).

(H:9) ’0 ∈H 1(�).

Remark 3. Hypothesis (H.6) is very general. Indeed, like in the previous section we
are not assuming � to be uniformly elliptic. Besides, we do not make any assumption
on the asymptotic behavior of �(s) for great values of s.

Remark 4. Hypotheses (H.7) and (H.8) yield lims→+− a(s) = +∞; so a(s) becomes
singular for the 4nite value s= +.

We have the following existence result:

Theorem 2. Under assumptions (H.6)–(H.9), problem (1) has a weak solution (u; ’)
in the following sense:

u∈L∞(�); 06 u¡+ almost everywhere in �; (36)


∀q¡
N

N − 1
if N¿ 2; q= 2 if N = 1;

u∈W 1; q
loc (�); A(u)∈W 1; q

0 (�); ∇A(u) = a(u)∇u;
(37)

’− ’0 ∈H 1
0 (�); (38)∫

�
a(u)∇u∇�=

∫
�
�(u)|∇’|2� for all �∈D(�); (39)

∫
�
�(u)∇’∇�= 0 for all �∈H 1

0 (�): (40)



P roof. We b egin b y introducing the truncation function T n(s) given as follows:

Tn(s) =

{
s if s¡+− 1=n;

+− 1=n; if s¿ +− 1=n:

Then we de4ne the regularized di5usion coe6cients an(s) and �+(s), namely

an(s) = a(Tn(s)) +
1
n
; �+(s) = �(T+(s));

where T+ is the truncation at height + de4ned in (10). Finally, we set the approximate
problems



−∇ · (an(un)∇un) = �+(un)|∇’n|2 in �;

∇ · (�+(un)∇’n) = 0 in �;

un = 0 on @�;

’n = Tn(’0) on @�:

(41)

A straightforward application of the classical existence results [2] yields that problem
(41) has a solution un ∈H 1

0 (�), ’n − Tn(’0)∈H 1
0 (�) ∩ L∞(�).

From hypothesis (H.6), we deduce that there exist some constants, C+; c+ ¿ 0, such
that c+6 �+(s)6C+ for all s∈R. In particular, taking �=’n−Tn(’0) in the equation
for � yields

c+

∫
�
|∇’n|26

∫
�
�+(un)|∇’n|26C+

∫
�
|∇’0|2:

As a result, (’n) is bounded in H 1(�).
On the other hand, putting An(s)=

∫ s
0 an(t) dt, vn=An(un), then vn¿ 0 almost every-

where in � and (14)–(17) are still valid. Now, let us show that (A(Tn(un))) ⊂ H 1
0 (�)

is bounded in W 1; q
0 (�) for all q¡N=(N − 1). Indeed, using (H.8) and taking n¿ n0,

we have

|∇A(Tn(un))|6 |a(Tn(un))∇un|6 |an(Tn(un))∇un|6 |an(un)∇un|= |∇vn|;

where we have used (H.8) in the last inequality. Since (vn) is bounded in W 1; q
0 (�), the

same is true for (A(Tn(un))). Consequently, there exist a subsequence (still denoted in
the same way) and w∈W 1; q

0 (�) such that

A(Tn(un)) → w in W 1; q
0 (�) and almost everywhere:

In particular, the set {w = +∞} has zero measure. On the other hand, since A and
A−1:[0;+∞) �→ [0; +) are bijective, we have, for x∈� such that w(x)¡+∞,

Tn(un) = A−1(A(Tn(un))) → A−1(w(x)):

We denote u(x) = A−1(w(x)); then w = A(u), 06 u(x)¡+ and also un → u almost
everywhere in �.



Since (’n) is bounded in H 1(�), there exist a subsequence, which we shall denote in
the same way, and ’∈H 1(�), such that ’=’0 on @� and ’n → ’ in H 1(�) -weakly.
Taking into account that �+(u)=�(u), it is straightforward that the convergence ’n → ’
is in fact strongly in H 1(�). Consequently, we may pass to the limit in the approximate
problems; we then obtain∫

�
∇A(u)∇�=

∫
�
�(u)|∇’|2� for all �∈D(�);

∫
�
�(u)∇’∇�= 0 for all �∈H 1

0 (�):

It remains to prove that u∈W 1; q
loc (�) and that ∇A(u) = a(u)∇u. These properties are

based in the following result.

Proposition 1. For every compact subset K ⊂ � there exists a constant 3K ¿ 0 such
that

ess inf
K

A(u)¿ 3K: (42)

Proof of Proposition 1. We have already established that w = A(u)∈W 1; q
0 (�), w¿ 0

a.e. in �.
De4ne f1 = T1

(
�(u)|∇’|2) and let w1 ∈H 1

0 (�) be the unique solution to the vari-
ational problem∫

�
∇w1∇�=

∫
�
f1� for all �∈H 1

0 (�):

Then w1¿ 0 a.e. in �, and since �(u)|∇’|2¿f1, a.e. in �, we deduce that w¿w1,
a.e. in �. Now, f1 ∈L∞(�), and taking into account the estimates given in [1], it
can be shown that w1 ∈W 2;p

loc (�), for all p¿ 1; in particular, w1 ∈W 2;N
loc (�) ∩ C0(�).

Therefore, the hypotheses of Theorem 9.6 of [10] are veri4ed by w1 and hence w1 ¿ 0
in all �.
Finally, if K ⊂ � is a compact subset, we get

ess inf
K

A(u)¿min
K

w1 = 3K ¿ 0:

Since A−1 is globally Lipschitz on sets of the form [4;+∞), 4¿ 0, and w∈W 1; q
0 (�)

we have, using u = A−1(w) that for any subdomain �′ ⊂ � with compact closure in
�, u∈W 1; q(�′) and

∇u=
1

a(u)
∇w in �′:

Note that 1=a(u)∈L∞(�′) thanks to Proposition 1. In conclusion, we have deduced
that ∇w =∇A(u) = a(u)∇u in �′, for any arbitrary subdomain �′ ⊂ � with compact
closure in �.
This ends the proof of Theorem 2.



Remark 5. From the regularity ’ ∈ H 1(�), we know that �(u)|∇u|2 = ∇· (�(u)’∇’). 
Moreover, if ’0 ∈ H 1(�)∩L∞(�) then ’ ∈ L∞(�) and then ∇·(�(u)’∇’) ∈ H−1(�).
In this case, it can be shown that A(u)∈H 1

0 (�) and u∈H 1
loc(�).
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