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Abstract: A methodology aiming to predict the vulnerability of masonry structures under seismic 

action is presented herein. Masonry structures, among which many are cultural heritage assets, 

present high vulnerability under earthquake. Reliable simulations of their response to seismic 

stresses are exceedingly difficult because of the complexity of the structural system and the 

anisotropic and brittle behavior of the masonry materials. Furthermore, the majority of the 

parameters involved in the problem such as the masonry material mechanical characteristics and 

earthquake loading characteristics have a stochastic-probabilistic nature. Within this framework, a 

detailed analytical methodological approach for assessing the seismic vulnerability of masonry 

historical and monumental structures is presented, taking into account the probabilistic nature of 

the input parameters by means of analytically determining fragility curves. The emerged 

methodology is presented in detail through application on theoretical and built cultural heritage 

real masonry structures. 

Keywords: Artificial Neural Networks; damage index; failure criteria; fragility analysis; masonry 

structures; monuments; restoration mortars; seismic assessment; stochastic modeling 

 

1. Introduction 

Masonry corresponds to one of the most ancient building structure types. This explains the fact 

that the majority of monuments are masonry structures, meaning main building elements are joined 

together through the use of mortars. The main building elements could refer to stones or bricks or a 

combination of both and can have different geometries, ranging from orthogonal shaped elements of 

standardized dimensions to random shaped elements of different dimensions (rubble masonry). The 

inhomogeneous and anisotropic nature of this particular structure type, as well as that of the 
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materials comprising it, define to a great extent the seismic response of monumental buildings. In 

particular, a common characteristic of these structures is their high seismic vulnerability when 

subjected to earthquake stresses, which is attributed to the highly brittle behavior and relatively low 

tensile strength of the individual building materials comprising masonries. Historical masonry 

monumental buildings, for instance ancient masonry churches, are unique and cannot be reduced to 

any standard structural scheme: this makes the evaluation of their seismic reliability a very 

challenging task, because—in addition to the many uncertainties that are common to all existing 

structures—no statistics on their behavior are available [1–4]. The cultural, social and architectural 

values of historical buildings demand respect of their uniqueness and individual identity. Thus, any 

measures taken for their protection, aiming to decrease their vulnerability, must comply with the 

principles of reversibility and compatibility; reversibility of an intervention means that any 

conservation action implemented can be “undone” without any damaging alteration to the authentic 

structure and materials, while compatibility of the intervention means that the intervention and 

materials applied will not harm the authentic materials and structure in any way, i.e., provoke or 

intensify damaging chemical reactions, introduce soluble salts, prevent homogenous behavior 

regarding water transfer phenomena, cause aesthetic alteration, etc. Of course, it is difficult for an 

intervention, and especially a reinforcement intervention, to truly and fully abide with these two 

principles, however it is necessary to undertake all possible strain and measures in this direction in 

order to ensure that cultural heritage assets of the past are passed along to future generations with a 

promise of longevity for centuries to come. Thus, this obligation to protect cultural heritage assets 

creates the demand for the strict compliance of protection measures within the regulatory 

frameworks which govern these structures, on both national and international levels. 

Already from the beginning of the previous century [5,6], regulatory frameworks regarding the 

protection of historical buildings were formulated and accepted, such as the guidelines given by the 

International Scientific Committee of the Analysis and Restoration of Structures of Architectural 

Heritage of ICOMOS in 2001, and in particular the ICOMOS Charter regarding the Principles for the 

Analysis, Conservation and Structural Restoration of Architectural Heritage (ISCARSAH Principle). 

This particular regulatory framework is based on the principles of research and documentation, 

authenticity and integrity, aesthetic harmony, least invasive interventions and reversibility, 

principles which are in accordance with the demands of the Athens and the Venice Charters, as well 

as with the principles established by Morton and Hume [7]. An additional prerequisite for the 

successful protection of these structures is related to the interdisciplinary approach, which should be 

adopted during the investigation and assessment of any repair scenario. 

A prerequisite for the formulation of a reliable methodology to predict the seismic vulnerability 

of historical/monumental masonry structures is the successful simulation of the structural system, as 

well as of the materials comprising the masonry, through the formulation of appropriate analytical 

statutory laws. In this direction, however, the complex mechanical behavior of masonries, which is a 

multiphase material, is a serious obstacle. Furthermore, an additional and at the same time basic 

difficulty regarding the formulation of such a methodology is related to the probabilistic nature of 

the parameters influencing the behavior of masonry structures. Among these parameters are the 

values of the mechanical properties of the materials (due to the wide dispersion of these values 

regarding the whole of the structure or due to limitation regarding the accuracy of the 

measurements, related to the lack of sufficient accuracy of methods and instruments used, in 

addition to limitations imposed by monuments protection legislation regarding sampling). 

Additionally, the probabilistic nature of earthquakes, directly connected and influenced by a large 

number of parameters, must be taken into account. Due to the high uncertainty of the parameters 

influencing the behavior of masonry structures, the assessment of their vulnerability cannot be 

conducted in terms of a deterministic approach [8–23]. To the contrary, a probabilistic approach 

would be more appropriate, in order to be applied in cases where the response of the structure is 

evaluated and compared with limit states, such as specific limit values of response directly 

interlinked with structural damages. 



Appl. Sci. 2019, 9, 243 3 of 72 

In the framework of the above limitations and issues of specific consideration, this study 

presents an analytical methodology for the evaluation of seismic vulnerability of masonry 

structures, taking into account the probabilistic nature of the parameters involved through the 

development of analytical fragility curves. 

2. Need for Research 

Despite the plethora of research work conducted and published in the last two decades (Figure 

1), modeling and assessment of the seismic vulnerability of masonry structures remains an open 

issue and, at the same time, a challenge for the practicing civil engineer. 

 

Figure 1. Evolution of number of publications concerning the masonry materials and structures 

based on Scopus bibliographic database (28 December 2018). 

Masonry structures are an important part of today’s built environment, as it is one of the oldest 

building systems known to humanity. It is believed to have been in use for over 6000 years and is 

still in use today in several regions globally. Specifically, in addition to the plethora of important 

historical structures and monuments which are masonry structures and must be preserved for future 

generations due to their historical importance, masonry is the most widely used construction type, 

not only in poverty-stricken countries, due to its low cost compared to the other modern materials, 

but also in developed countries, due to the aesthetic value that it provides when used in modern 

constructions. However, it should be highlighted that a common characteristic of all masonry 

structures is their high seismic vulnerability when subjected to seismic stresses. This is due to the 

fact that masonry structures are of a brittle and anisotropic nature and, subsequently, each one 

depicts a distinct brittle and anisotropic behavior. Indeed, masonry is a composite “material” that 

exhibits distinct directional properties, mainly because the mortar joints act as planes of weakness. 

The modeling of the structural behavior, as well as the mechanical characteristics of masonry 

structures, and the materials comprising it, is still an open issue to this day. The importance of the 

issue, in addition to the historical values of many masonry structures and of course the safety issues 

involved, is also linked with economic factors, as approximately 80% of the structural cost from 

earthquakes is attributable to damage of masonry walls and to the consequent damage of doors, 

windows, and electrical and hydraulic installations [24]. The intense computational complexity 
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which accompanies such a complex building system is a main problem that must be overcome to 

successfully accomplish their modeling and assessment in relation to seismic vulnerability and thus 

successfully protect them by implementing various reinforcement action. For the special case of 

monumental masonry structures, additional necessary restrictions based on legislations for 

monument protection, aiming to preserve cultural, artistic, and historical values of the structure, as 

stated in a series of scientific Charters (e.g., the Athens Charter (1931) [5], the Venice Charter (1964) 

[6], etc.), make the process of modeling and restoration even more complex. 

In addition to the above difficulties, one must also consider the probabilistic nature of 

earthquakes, which is directly connected and influenced by a significant number of parameters. 

Thus, due to the high uncertainty of the parameters influencing the behavior of masonry structures, 

the assessment of their vulnerability cannot be conducted in terms of a deterministic approach. To 

the contrary, as presented and validated in the following sections, it is suggested to follow a 

probabilistic approach, which should be applied in cases where the response of the structure is 

evaluated and compared with limit states, such as specific limit values of response directly 

interlinked with structural damages. 

Taking into account the intensely anisotropic nature and behavior of masonry, it would not be 

an exaggeration to state that masonry material is the mother of all materials (indeed, the word 

material derives from μήτηρ in ancient Greek (méeteer), mater in Latin and matar in ancient Hindu, 

which are all words for “mother”). In fact, the authors believe that it would be extremely valuable 

for lectures in mechanics and material strength, aiming to educate young engineers, to be orientated 

to masonry materials instead of only concrete and steel, as is usual practice today. Although 

reinforced concrete is the choice material of today, masonry still comprises a great percentage of 

existing buildings and incorporates a complexity in its analysis which can be of high educational 

value. 

3. Proposed Methodology 

Taking into account the principles and guidelines of ICOMOS, as well as the results of relative 

research projects [25–46], a specific methodology has been developed in relation to the restoration of 

historical masonry structures. The flow chart of the proposed methodology is presented in Figure 2. 

The proposed methodology is formulated by discrete steps. In particular, it includes the 

evaluation and/or determination of the mechanical properties of the materials, the simulation of the 

structural system and of the forces, the analysis of the structure regarding specific stresses, the 

determination of the failure areas of the structure and the respective damage indices, regarding both 

the model of the structure in its current condition, as well as for the models of the structure in 

relation to different repair scenarios. Finally, based on the damage indices, fragility curves are 

developed, which, as illustrated in the following section, contribute to the quantified assessment of 

the structure’s vulnerability in its current condition, and to the assessment of the effectiveness of 

different repair scenarios. 

In the framework of the proposed methodology, the following eight distinct steps that also 

define the structure of the present work are included. 
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Figure 2. Flow chart of the proposed methodology. 

3.1. Step 1: Reliable Reconstruction of Structure 

The successful modeling of an existing masonry structure is a prerequisite for the reliable 

seismic vulnerability assessment and for the correct decision-making during a restoration process. 

To achieve that, detailed data able to represent not only the whole geometry of the structure but also 

the geometry and the mechanical characteristics of the constitutive materials are necessary. 
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Furthermore, the mathematical reconstruction is crucial to include the interconnections of materials. 

Connections of perpendicular walls or of walls and floors should be thoroughly investigated. 

The need for detailed reconstruction of an existing structure through reliable numerical models 

is greater in the case of a historical masonry building. The great difference between a numerical 

model for the design of a new building and a numerical model of a monumental masonry structure 

is that in the first case the numerical model represents the reality to which the new structure (still 

virtual) will have to resemble, whereas in the analysis of a historical building, the reality is 

represented by the building itself, and the virtual model must be able to describe this singular 

reality. For this reason, the accurate identification of reality in all its aspects (geometry, history, 

traumas, deformations, materials, deteriorations, etc.) constitutes the preliminary and fundamental 

phase of structural analysis: only the complete knowledge of reality and the agreement between the 

model results and the reality itself will be able to validate the structural analysis. 

In light of the above the interdisciplinary approach, a basic requirement according to ICOMOS 

[5,6] as mentioned in the Introduction, becomes imperative and should be adopted during all main 

phases comprising the proposed methodology about the stochastic vulnerability assessment of 

masonry historical structures. Such an interdisciplinary approach needs a close cooperation of 

different experts such as architects, civil engineers, chemical engineers, historians, archeologists and 

specialists in digital reconstruction. The participation of historians and archeologists in the research 

team is essential for conservation and restoration of historic buildings and their role is to detect and 

preserve the values of the monument, highlighting its importance. Furthermore, its participation is 

crucial for the documentation of the structure including aspects such as the history of the building, 

its chronology and the history of constructive techniques. Information concerning historical 

constructive issues could be obtained from documentary sources, such as ancient drawings and 

descriptions or historical studies [47,48] and can be supported by scientific data, as produced by the 

other disciplines involved [49]. In addition, the participation of specialists in the digital 

reconstruction is of great interest for a reliable reconstruction of such structures. In the last two 

decades, image-based techniques and terrestrial laser scanning have proved to be suitable tools for 

the digital reconstruction of such complex structures producing three dimensional models of the 

structure [50,51]. The production of the high-resolution 3-D model enables the extraction of the 

necessary conventional 2-D information. 

It is common practice for researchers to focus on the detailed reconstruction of the monumental 

structure but at the same time give little attention to the reconstruction of the subsoil and the 

foundation. To this end, several data acquisition techniques such as the ground penetrating radar 

[52] are available for the reliable reconstruction of the subsoil and the foundation of the structure. 

This technique has been used with great success in the Holy Aedicule’s rehabilitation of the Holy 

Sepulchre in Jerusalem [53]. Interpretation of the measurements revealed the position of the rock, 

remnants of the initial cave, which, according to tradition, is the original site of Christ’s burial and 

resurrection, thus providing information regarding the underground features as well as details 

regarding the internal phases of the structure’s masonry. 

3.2. Step 2: Materials Characterization and Mechanical Characteristics 

Among the crucial tasks for a successful modeling of masonry structures is that referring to the 

characterization (physical and mechanical properties) of the building materials. Furthermore, in the 

case of monumental masonry structures, both the characterization and the properties of materials 

such as stones, bricks and mortars are critical for the structural modeling of the structure. When 

dealing with historic masonries, the researcher must keep in mind that the structure in its current 

state, as well as the materials comprising it, are disturbed systems, which have been in service for 

centuries or even millennia under real mechanical and environmental loads [54]. Thus, the historical 

building materials comprising it, as well as their characteristics, are a projection of the material that 

was applied. Characterization of the historical materials, as well as diagnosis of their decay, is 

crucial to obtain input data necessary for the evaluation of the monument’s response in its current 

state, as well as to select new compatible and performing restoration materials that will serve 
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adequately in relation to the mechanical stresses they are subjected to and be durable in relation to 

the environment factors negatively affecting them. 

Analysis of the historical building stones can provide interesting information regarding 

historical aspects, in relation to quarries exploited during the construction of the masonry, transport 

routes of the era, methods of material transportation, etc. Furthermore, the study of their decay is a 

useful tool regarding the durability of different types of stones under environmental loads, as they 

have withstood natural ageing; therefore, their state of preservation is an indicator of their durability 

under the specific loads. New stones can be selected through a compatibility assessment of the 

historical stone with today’s quarry stones, regarding mineralogical composition (X-ray diffraction 

measurements and petrographic analysis, aiming to the highest possible similarity in relation to 

crystalline compounds), mechanical strength (where the mechanical properties of the new stone, 

compressive strength, flexural strength, tensile strength, modulus of elasticity, etc.) must be as close 

as possible to the historical stone in order to ensure that no damage is inflicted on the weaker 

material), microstructural characteristics and thermohygric behavior (i.e., through mercury 

intrusion porosimetry, which measures the microstructural characteristics of materials, and capillary 

rise tests, which provide the capillary rise coefficient of the materials and reveals how water is 

absorbed from the underground and neighboring materials, where similar values are necessary in 

order to ensure homogenous moisture transfer and avoid preferential moisture accumulation). The 

same applies when bricks are used as main building elements or in combination with stones, 

however in the case of bricks, as they are artificial materials and not natural, the aim is to uncover 

their production technology (for example, raw materials used, firing temperature, etc.) and try and 

reproduce bricks of similar mechanical and physicochemical characteristics. 

Mortars are a complex material, constituted of different materials. Analysis of the historical 

mortar can provide archaeological information regarding the materials and production technique 

employed [55,56], while analysis of its constituents can provide information regarding the 

provenance of the historical raw materials used with further archaeological implications and 

discoveries [49,57]. Typical investigative methods for the characterization of historical 

mortars—mineralogical and chemical—were analyzed to a great extent by Middendorf et al. [58,59]. 

Specifically, the most usual techniques applied are simultaneous thermal analysis, aiming to 

determine the components of the mortar and their relative proportion; X-ray diffraction to conduct 

mineralogical investigation and reveal the presence of crystalline compounds; and mercury 

intrusion porosimetry to examine the microstructural characteristics of the historical mortar [60], 

while correlation of the results can lead to categorization of mortar types [61]. Scanning electron 

microscopy coupled with microanalysis is a valuable tool, for both characterization and decay 

diagnosis [62], while total soluble salts are indicative of salt decay and/or accumulation [63,64]. It is 

obvious that all above techniques provide a different type of information, which must then be 

correlated and examined in total in order to achieve a correct characterization of the historical 

mortar, while in many cases, other techniques must be implemented in order to provide additional 

information. 

At the same time, analysis of the historical mortars allows for the design of new restoration 

mortars through the reverse engineering approach, aiming to produce restoration mortars with 

characteristics as similar as possible to the characteristics of the historical mortars [65,66]. This is 

especially important in cases where the historical mortars have shown great longevity under the 

environmental loads and mechanical stresses they have been subjected to [67]. In many cases, to 

achieve the optimum synthesis, optimization can take place, aiming to enhance the restoration 

mortar characteristics [68]. Other considerations should also be considered, such as technical 

requirements, environmental loads, and worksite limitations, to design of the optimum restoration 

mortar [45,69,70]. Due to the significance of restoration mortars in the response of a masonry 

structure, while also taking into account that repointing with new restoration mortars is the most 

usual conservation action implemented in historical masonry restoration works, an insight into the 

analysis of historical mortars and a classification according to their characteristics, as well as the 
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philosophy behind the design and assessment of restoration mortars in relation to historical mortars, 

is herein included. 

All the characteristics discussed are of importance to achieve a compatible, durable restoration, 

even though not all are necessary for modeling and structural analysis. As stressed above, the 

characteristics of materials composing the structure are basic input data for structural analysis. 

Namely, the compressive/tensile strength of the materials, the modulus of elasticity and Poisson 

ratio are of primary importance, at least as far as a linear/elastic analysis is concerned. For the 

estimation of those parameters, combinations of analytical or semi-empirical methods and 

experimental data have to be used. Based on the great importance and interest of the mechanical 

properties of masonry material for a successful and reliable modeling of masonry structures, a 

section about these has been included herein. 

3.3. Step 3: Structural Model 

The choice and the use of the most suitable mathematical model for the structural modeling of 

masonry structures is a difficult and challenge task for engineers. Furthermore, for the special case of 

complex historic structures consisting of many of materials, the structural modeling is a crucial task 

for the reliable modeling of the structure and of great interest for engineers. In light of the above, a 

state-of-the-art report on the structural modeling of masonry structures has been included in a 

following section. In addition, a new anisotropic finite element macro-model has been developed 

and presented in detail in a following section. 

3.4. Step 4: Actions 

Different loading cases have to be considered, including seismic actions for structures built in 

seismic areas. Combinations of dead loads, live loads and earthquake demands, have to be used. 

Earthquake has to be considered along all unfavorable directions for the building. Nevertheless, 

certain issues are still open, regarding, e.g., the poor hysteretic behavior of masonry or the adverse 

influence of the simultaneous vertical component of the seismic action. 

3.5. Step 5: Analysis 

Using input data of the previous steps, a finite element analysis is performed and stresses 

(normal-shear)—displacements at the joints of the mesh—are calculated. Due to the actual behavior 

of plain masonry and the high degree of uncertainty in the previous steps, elastic analysis is a first 

valuable tool for such structures, especially before any repair and/or strengthening. 

3.6. Step 6: Failure Criterion and Assessment 

A failure criterion must be established for the definition of the damaged regions of the structure 

(as a first insight). Taking into account the conclusions of Step 2 concerning materials’ 

characteristics, such a criterion is proposed, and is used as an input to carry out the analysis. 

These failure results are used as input data for the development of a damage index. Based on 

this index, the possibility of a structure to be damaged beyond a specified level (heavy, moderate, 

and insignificant) for various levels of ground acceleration is determined. This information is 

important during the analysis and redesign process for a historical structure since it gives the 

opportunity to investigate different scenarios with different options regarding repair/strengthening. 

3.7. Step 7: Repairing and/or Strengthening Decisions and Reanalysis 

According to the results of Steps 5 and 6, all the damaged regions are repaired and/or 

strengthened. The method to be used, the extent of the interventions, the type of the materials, etc., 

could be directly related to the results and are based on semi-empirical expressions for the final 

mechanical characteristics of masonry (see, e.g., [71]). 

Last, a new structural analysis has to be performed including all the final materials, loading and 

structural data. Results of the analysis are subsequently used in the processes of Steps 5 and 6, 
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leading to a final approval (or rejection) of the decisions already taken for repair or strengthening of 

the existing structure. 

3.8. Step 8: Explanatory Report 

The last step, as a result of the proposed methodology, includes the detailed “Explanatory 

Report”, where all the collected information, the diagnosis, including the safety evaluation, and any 

decision to intervene should be fully detailed. This document is essential for eventual future 

analyses and interventions’ measures in the structure. 

4. Computational and Mathematical Aspects 

In this section, the most basic analytical constitutive laws and numerical models required for 

the successful implementation of the proposed methodology are presented in detail. In particular, 

the finite element model for the macro-modeling of masonry structures, the failure criteria, the 

damage indices, the performance levels and the mathematical background of fragility curves are 

presented. 

4.1. Constitutive Laws of Masonry Materials 

For the determination of the masonry compressive and tensile strength, several semi-empirical 

expressions are available in the literature. In the majority of these expressions, global effects 

contributing to the system resistance, such as buckling-effects or local-compression resistance are 

not considered. Recent studies [72,73] have shown that masonry codes underestimate the 

compressive strength of masonry with high coefficients of variation. 

For the estimation of the masonry strengths of low-strength masonry, with a single leaf, the 

following formula have been proposed by Tassios and Chronopoulos [71]: 
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bmjm ht  is the ratio between average bed (horizontal) joint thickness 
jmt , and average block 

height 
bmh . 

Based on a large database of compressive test results on masonry prisms from the literature and 

using regression analysis or soft computing techniques such as Artificial Neural Networks (ANNs) 

and Fuzzy Logic (FL), a plethora of mathematical models have been proposed for the estimation of 

masonry compressive strength. Detailed state-of-the-art reports can be found in the works of Sarhat 

and Sherwood [72], Thaickavil and Thomas [73], and Garzón-Roca et al. [75]. A common feature of 

these proposals (Table 1) is that they only consider the compressive strength of brick and mortar. 

Table 1. Formulae for the estimation of masonry compressive strength. 

Sl. No. Reference Formula 

1 Engesser (1907) [76] mcbcwc fff
3

2

3

1


 

2 Bröcker (1963) [77] 
3/12/1

68.0 mcbcwc fff 
 

3 Mann(1982) [78] 
18.066.0

83.0 mcbcwc fff 
 

4 Henry and Malek (1986) [79] 
208.0531.0

317.0 mcbcwc fff 
 

5 Dayaratnam (1987) [80] 
5.05.0

275.0 mcbcwc fff 
 

6 Rozza (1995) [81]   10/8.0 mcmbcuwc fvfvf   

7 Bennett, Boyd and Flanagan (1997) [82] bcwc ff 3.0
 

8 AS 3700 (2001) [83] 
5.0

bcmhwc ff   

9 Dymiotis and Gutlederer (2002) [84]  0.3266 1 0.0027 0.0147
wc bc bc mc
f f f f     

10 Eurocode 6 (2005) [85] 
3.07.0

mcbcwc fff 
 

11 Kaushik, Rai and Jain (2007) [86] 
134.0866.0

317.0 mcbcwc fff 
 

12 Gumaste, Rao, Reddy and Jagadish (2007) [87] 
32.049.0

63.0 mcbcwc fff 
 

13 Christy, Tensing and Shanthi (2013) [88] 
25.065.0

35.0 mcbcwc fff 
 

14 Garzón-Roca, Marco and Adam (2013) [89] 32.1093.053.0  mcbcwc fff
 

15 Sarhat and Sherwood (2014) [72] 
18.075.0

886.0 mcbcwc fff   

16 Lumantarna, Biggs and Ingham (2014) [90] 
31.075.0

75.0 mcbcwc fff 
 

17 Kumavat (2016) [91] 
35.06.0

69.0 mcbcwc fff 
 

wcf , masonry compressive strength; 
bcf , brick compressive strength; 

mcf , mortar compressive 

strength; 
uv , relative volume of unit; 

mv , relative volume of mortar; K is a constant in Eurocode 6 

formula, modified according to the National Annex for different countries. The value of this 

constants in the UK is 0.52 [92] while in Greece is 0.20–1.00 depending on brick/block unit properties 

and their arrangement; 
h  is a factor in Australian AS 3700 code [83] that accounts for the ratio of 

unit height to mortar joint thickness (1.3 for blocks of 190 mm high blocks and mortar joints with 10 

mm thickness); 
m  is also a factor in Australian AS 3700 [83] code that accounts for bedding type 

(1.4 for full bedding and 1.6 for face-shell bedding). 

Recently, Thaickavil and Thomas [73] proposed a formula taking into account the majority of 

parameters affecting the masonry compressive strength. Namely, the authors, based on regression 

analysis on many test data (232 datasets) corresponding to the masonry unit strength of 3.1–127.0 

MPa, mortar strength of 0.3–52.6 MPa and h/t ratio of 1.15–5.75, have proposed the following 

formula: 
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  28.0

6.03.3004.006.154.0

t
h

mHbmcbc
wc

VRVFff
f
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  (5) 

where 
bVF  is the volume fraction of brick and 

MhVR  the volume ratio of bed joint to mortar defined 

by the following equations: 

p

u
b

V

V
VF   

(6) 

where 
uV  is the volume of masonry units and 

pV  is the volume of prism. 

mVmH

mH
mH

VV

V
VR


  

(7) 

where 
mHV  is the volume fraction of mortar in horizontal joints and 

mVV  is the volume fraction of 

mortar in vertical joints. The volume fraction is obtained by dividing the respective volume with the 

corresponding total volume in the prism. The above proposed analytical formula (Equation (5)) 

seems to be the most reliable for the determination of masonry compressive strength [93] among a 

plethora of proposed equations available in the literature [76–91]. 

4.2. Structural Modeling Techniques for Masonry Structures 

As pointed out above, masonry is in fact a heterogeneous material comprising masonry units 

and mortar. Due to the existence of mortar joints as planes of weakness, a masonry wall exhibits 

distinct directional mechanical properties. Therefore, a masonry wall can be treated as an 

orthotropic material. Depending on the orientation of the joints to the stress directions and the 

applied normal stress level, four different failure modes are feasible for unreinforced masonry walls 

according to FEMA 356, 2000 [94]. Namely, pier diagonal tension, toe crushing, bed joint-sliding, 

and rocking failure can occur. The first two failure modes are considered force-controlled (brittle 

failure) and hence no plastic deformation capacity is considered. The last two failure modes are 

considered deformation-controlled (ductile failure) and a plastic deformation capacity is taken into 

account. 

To model the structural behavior of a masonry wall, there are some influencing factors such as 

material properties of masonry units and mortar, dimension of the units, mortar thickness and the 

brittle behavior of masonry units, which should be taken into account properly. If these factors are 

incorporated suitably into a structural model of a masonry wall, the four above-mentioned failure 

modes can be simulated. 

Depending on the required level of accuracy and simplicity, there are different structural 

modeling strategies for masonry wall elements as follows. 

4.2.1. Modeling Masonry as a Three-Phase Material (Detailed Micro-Modeling Approach) 

In this approach, the masonry constituents (units, mortar and unit-mortar interfaces) are 

modeled as they are in masonry wall elements. In other words, units and mortar in the joints are 

represented by continuum elements, whereas the unit–mortar interface is represented by 

discontinuous elements accounting for potential slip planes as shown in Figure 3b. Even though the 

accuracy of this approach is high, it needs high computational costs and time. In addition, the elastic 

and inelastic material properties of both masonry units and mortar and the unit/mortar interface 

mechanical property as well, are required to be determined by some realistic masonry sample tests. 

Therefore, this approach is mostly preferred for the analysis of small-scale experimental specimens 

and structural details to determine accurately their components’ stress distribution (Lourenço and 

Pina-Henriques, 2006 [95]; Papa, 2001 [96]; Rots, 1991 [97]; Tzamtzis and Asteris, 2003 [98]; Zucchini 

and Lourenço, 2006 [99]). 
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Figure 3. Modeling strategies for masonry: (a) typical masonry specimen; (b) detailed 

micro-modeling; (c) simplified micro-modeling; and (d) macro-modeling (Lourenço, 1996 [100]). 

Recently, Sarhosis and Lemos (2018) [101] proposed a detailed micro-modeling approach for 

the analysis of masonry couplets and prisms. In this approach, masonry constituents are represented 

as an assemblage of densely packed discrete irregular deformable particles bonded together by zero 

thickness interface elements. The advantage of this approach is that failure can occur at the masonry 

units, mortar and/or brick–mortar interface in a realistic manner. In this approach, the crack 

initiation and propagation can be traced as well. 

4.2.2. Modeling Masonry as a Two-Phase Material (Simplified Micro-Modeling Approach) 

In this approach, masonry units/blocks are represented by fictitious expanded units in size 

(Phase I) to keep the geometry consistent, however, mortar is not modeled explicitly. The fictitious 

expanded unit dimensions are of the same size as the original dimensions plus the real joint 

thickness, as shown in Figure 3c. The interface’s stiffness is represented numerically by the stiffness 

of the real joint. The elastic or inelastic, isotropic model is used for the behavior of the masonry units 

to simulate properly their possible crushing and cracking propagation patterns. The interaction 

between the expanded units is represented by an interface element (Phase II). To simulate the 

behavior of mortar joints, the properties of the mortar and the interface elements are lumped into the 

zero-thickness common interface elements. This approach leads to the reduction in computational 

intensiveness and yields a model that is applicable to a wider range of structures. In fact, the 

drawback of the large computational effort required by the detailed micro-modeling is partially 

overcome by the simplified micro-modeling strategy. Cracking in the masonry units can also be 

simulated by assigning potential vertical zero thickness interfaces (unit to unit) at the unit’s center 

lines (Lourenço 1996 [100]). Another important factor influencing the accuracy of the simplified 

micro-modeling strategy is the masonry units’ aspect ratio that should be taken into account. 

According to Schlegel and Rautenstrauch (2004) [102], aspect ratio of stone masonry units (stone 

shape or the ratio of stone unit length to height lst/hst) has an effect on the joint failure and 

load-carrying capacity of masonry walls. For example, as shown in Figure 4, the load-carrying 

capacity of a masonry wall increases as a result of the decreasing stone rotation with an increasing 

ratio of lst/hst. Furthermore, it can be observed in this figure that an increase in the stone unit 

dimensions in each direction (expanding stone units), would increase the ultimate load to some 

extent depending on the ratio of lst/hst. Therefore, it can be concluded that expanding masonry units 

in the simplified micro-modeling strategy may alter the accuracy of the analysis depending on the 
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mortar joint relative thickness. Finally, it should be kept in mind that, although this procedure is 

preferred to the abovementioned detailed micro-modeling approach, it is still time consuming as the 

masonry structure size increases [103]. This modeling strategy has been used successfully in the 

literature to investigate nonlinear static and dynamic behavior of masonry wall elements [104–109], 

masonry buildings [110,111], ancient structures [112–117], stone masonry arches and aqueducts 

[117–123] and masonry infilled frames [124]. 

Recently, Mohebkhah et al. (2018) [124] used this strategy to investigate the nonlinear dynamic 

behavior of an ancient dry-joint stone masonry tower subjected to earthquake excitations. The 

numerical model developed using the distinct element method software 3DEC [125], in which the 

stone blocks are assumed to behave as rigid elements connected by zero-thickness interfaces. The 

zero thickness interfaces between adjacent blocks were modeled using the Mohr–Coulomb slip 

model. Since the tower has been constructed with dry joints, both the cohesion and tensile strength 

at the interfaces are assumed to be zero. During the dynamic analysis, no viscous damping is 

assumed, the only dissipation being due to frictional sliding on the joints. This conservative 

assumption is often used in simulating stone masonry structures containing dry joints 

(Papantopoulos et al., 2002, [126]). This study shows that the tower sustains considerably large 

lateral drifts in each direction without collapse. This large lateral drift may be attributed to the 

governing failure mode of the tower, which is a sliding shear failure mode throughout the tower 

height. 

 

Figure 4. Ultimate loads for different variations of stone height (hst) and of stone unit length (lst) 

(Schlegel and Rautenstrauch, 2004 [102]). 

4.2.3. Modeling Masonry as a One-Phase Material (Macro-Modeling Approach) 

In this approach, there is no distinction between the masonry constituents (i.e., units and 

mortar) and in fact they are smeared out in a homogeneous, isotropic or anisotropic continuum 

(Figure 3d). For the cases in which blocky behavior is the dominant deformation mode such as small 

masonry walls or masonry structures with large masonry units, considering a masonry wall as a 

homogeneous media may lead to the difficulty of simulating the failure modes. However, this 

approach is preferred for the analysis of large-scale real masonry structures, because of the reduced 

time and memory requirements. On the basis of this approach, some computational models based 

on continuum plasticity (Lourenço, 1996 [100] and Lourenço et al., 1998 [127]) and continuum 

damage (Papa et al., 2000 [128]) have been developed and implemented successfully for in-plane 
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analysis of masonry shear walls. Lourenço et al. (1998 [127]) developed a homogeneous anisotropic 

continuum model for the analysis of masonry as a composite. In this model, the behavior of the 

composite media is stated, based on average stresses and strains, assuming different elastic and 

inelastic properties along the material axes. 

Syrmakezis and Asteris [129]) proposed a general anisotropic (orthotropic) failure criterion for 

masonry under biaxial stress state, using a cubic tensor polynomial. This failure criterion was then 

used by Asteris and Tzamtzis [130] for the non-linear macro-modeling and analysis of unreinforced 

masonry shear walls under biaxial stress state using the finite element method. The proposed failure 

criterion takes into account all possible combinations of plane stress state and makes it easier to be 

included into existing software for the analysis of masonry walls. The detailed description of this 

methodology is given in Sections 3.3 and 3.4. Asteris [131] also investigated the influence of the 

masonry infill panel opening in the reduction of the infilled frames stiffness by means of this 

technique. 

El-Dakhakhni et al. [132] developed a macro-model for in-plane analysis of concrete masonry 

walls with and without reinforcements. In this multi-laminate model, a masonry wall is simulated 

by an equivalent homogeneous media consisting two sets of planes of weakness along the head and 

bed joints. To determine the global behavior of the model, the influence of these planes of weakness 

is smeared. This modeling technique allows prediction of the different possible failure modes, 

whether the planes of failure follow the mortar joints or not (El-Dakhakhni et al., 2006, [132]). The 

advantage of this model is that it can predict the initiation and progress of different failure modes 

(i.e., head joint, bed joint or homogeneous media failure) in a separate or a combined manner. 

4.2.4. Modeling Masonry Using Equivalent Frame Method 

The most widely used method for the modeling of real cases masonry structures is the 

simplified analysis method (SAM). The SAM is based on the macro-element approach that has been 

first proposed and developed by Magenes and Della Fonata (1998) [133] to overcome the 

shortcomings of the previously proposed method of “story-mechanism” by Tomazevic and Weiss 

(1990) [134]. The SAM stems from the concept of framed buildings analysis using beam and beam–

columns elements. In fact, in the SAM to simulate the in-plane behavior of a masonry wall panel, the 

constituent piers and spandrel beams are substituted by the equivalent beam–columns elements 

with appropriate mechanical properties. Therefore, sometimes the SAM is called the equivalent 

frame method (EFM) which is a familiar method and has been widely used to analyze RC coupled 

shear walls in the literature (Figure 5). 

 

Figure 5. A schematic representation of equivalent frame model for planar walls with openings 

(Magenes, 2000, [134]). 
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The SAM has been used successfully by Magenes and Della Fontana (1998) [133] to analyze two 

multi-story masonry walls subjected to lateral loads. The SAM was then developed by Magenes 

(2000) [135] to be used for seismic assessment of practical and historic masonry buildings making 

use of displacement spectra and of the substitute-structure approach. Kappos et al. (2002) [136] 

investigated the effectiveness of the SAM or EFM for the design and/or assessment of masonry 

buildings. Penelis (2006) [137] based on the concept of the EFM proposed an approach for the 

pushover analysis of URM buildings. This approach is similar to the SAM of Magenes and Della 

Fontana (1998) [133], however, it uses an analytical approach and a Mohr–Coulomb failure criteria 

for flexural and shear strengths, respectively. Furthermore, the shear stiffness and ultimate shear 

deformation capacity of wall elements are estimated from experimental tests results (Penelis, 2006, 

[137]). Pasticier et al. (2008) [138] investigated the capability of a commercial software for pushover 

analysis of masonry buildings using the EFM. This study showed that the EFM can be used only for 

pushover analysis of masonry walls of usual and regular geometry (Pasticier et al., 2008, [138]). This 

is because the software does not take into account the effects of axial load variation in the piers’ 

shear strength capacity during the analysis process.  

The main advantage of the SAM is that it is based on simple strength criteria of masonry piers 

and spandrel beams corresponding to the well-known flexural and shear failure modes (Magenes 

and Della Fontana, [133]). In addition, it requires low computational effort to simulate both linear 

and nonlinear lateral load behavior of practical large masonry wall panels. Detailed state-of-the-art 

reports can be found in [139–154]. 

In light of the above and despite the plethora of mathematical models that have been proposed 

for the modeling of masonry structures, for real masonry structures, it is preferable to use simplified 

macro-models such as modeling the masonry as a one-phase material (macro-modeling approach) 

while the use of more sophisticated micro-models is suggested for the modeling of special parts of 

the masonry structural model. Detailed works on the advantages and disadvantages among 

different mathematical models about masonry structures can be found in [40,100,101,155,156]. 

4.3. Anisotropic Finite Element Macro-Model 

The basic concepts of the finite element method are well documented and are not repeated in 

this paper. Only the essential features are presented. In this paper, an anisotropic (orthotropic) finite 

element model is proposed for the macro-modeling of masonry structures. Specifically, a four-node 

isoparametric rectangular finite element model with eight degrees of freedom (DOF) is used (Figure 

6). 

   

x,u   

y,v   

2   1   

3   4   

a   

b   
a

b
  

 

Figure 6. Finite element macro-model dimensions. 

The major assumption when modeling masonry behavior under plane stress is that the material 

is homogeneous and anisotropic. Specifically, the material shows a different modulus of elasticity in 
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the x direction (Ex) (direction parallel to the bed joints of brick masonry) and the y direction (Ey) 

(perpendicular to the bed joints). In the case of plane stress, the elasticity matrix is defined by 
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where νxy and νyx are the Poisson’s ratios in the xy and yx plane, respectively, and Gxy is the shear 

modulus in the xy plane. It is worth noticing that, in the case of plane stress in an anisotropic 

material, the following equation holds 

xyyEyxxE   (9) 

4.3.1. Displacement Functions 

Figure 6 shows the four node isoparametric rectangular finite element model, with nodes 1, 2, 3, 

4 numbered in an anticlockwise order. The displacements of a node have two components, namely 

i
i
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and the eight components of element displacements are listed as a vector 
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The displacements within an element have to be uniquely defined by these eight values. The 

simplest representation is given by two linear polynomials, namely 

 

 
u x y x xy y

v x y x xy y

,

,

   
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a a a a

1 2 3 4

5 6 7 8

 (12)

The eight constants i  (where i = 1, 2, …, 8) can be evaluated easily by solving the two sets of 

four simultaneous equations, which will arise if the nodal coordinates are inserted and the 

displacements equated to the appropriate nodal displacements. 

 

4.3.2. Strain (Total) 

The total strain at any point within the element can be defined by its three components which 

contribute to the internal work. Thus, 
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With displacements known at all points within the element, the strains at any point can be 

determined. These will always result in a relationship that can be defined in matrix notation 

according to: 

  B e
 (14)

where B is a suitable linear operator. 

4.3.3. The Stiffness Matrix 

The stiffness matrix of the finite element is defined by the general equation 


eV

)vol(dDBTBeK  
(15)

The analytical form of the anisotropic finite element stiffness matrix is defined by integration 

over the area of the element (see Appendix A). Extensive research works on the modeling of 

anisotropic brick masonry behavior using finite elements can be found in Samarasinghe’s PhD thesis 

[157], Asteris’s PhD thesis [158] and a work by Asteris [159] focused on the problem of the analysis 

of anisotropic non-linear masonry. 

4.4. Failure Criteria 

The key point for a reliable seismic vulnerability assessment of masonry is the failure criterion 

used for the determination of masonry failure. In this section, failure criteria both for isotropic and 

anisotropic behavior of masonry materials are presented. Namely, two semi-empirical isotropic 

failure criteria, the cubic tensor polynomial failure criterion, and a failure criterion based on 

Artificial Neural Networks (ANNs) are presented in the following three sub-sections. 

4.4.1. Semi-Empirical Isotropic Failure Criteria 

Despite the distinct anisotropic nature of masonry material, many researchers use for the 

modeling of its failure isotropic failure criteria such as the failure criterion proposed by Kupfer and 

Gerstle [160] for concrete material and the Von Mises modified failure criterion proposed by 

Syrmakezis et al. [8,25] for modeling masonry under biaxial stress state. 

The first isotropic criterion was proposed by Kupfer et al. [160,161] and has been adopted by 

many researchers [162–164] assuming isotropic behavior for masonry material. Based on this 

criterion, the failure (Figure 7) can be approximated for the three-stress state under the axis of 

symmetry  21    by the following expressions in terms of principal stress: 

For the case under biaxial compression by 
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for the case of heterosemous biaxial stress state (tension/compression) by 
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and for the case under biaxial tension by 
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It should be noted that a very small area of the heterosemous biaxial stress state is expressed by 

Equation (16), as can be noticed in Figure 7. 

The second isotropic criterion (Figure 8) is the Von Mises modified isotropic failure criterion 

proposed by Syrmakezis et al. [8,25] for the modeling of masonry under biaxial stress state and has 

been adopted by many researchers [165–170] assuming isotropic behavior for masonry material. 

Based on this criterion, the failure can be approximated for the three-stress state under the axis 

of symmetry  21    by the following expressions also in terms of principal stress: 

For the case under biaxial compression by 
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for the case of heterosemous biaxial stress state (tension/compression) by 
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and for the case under biaxial tension by 
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4.4.2. Cubic Tensor Polynomial 

A key point for a successful application of the proposed methodology is the use of a reliable 

failure criterion for the modeling of the masonry failure. To this end, a tensor polynomial has been 

used for the modeling of the masonry failure. Specifically, according to this criterion, the masonry 

material is assumed to exhibit a distinct anisotropic nature and the failure surface can be described 

by the following equation: 

 













¦

failureexceeded1

failure1

failureno1

kσjσiσijkFjσiσijFiσiFσ  (22)

where i, j, k = 1, 2,..., 6. Fi, Fij and Fijk are (strength) tensors of the second, fourth and sixth rank, 

respectively. 

Based on the above equation, restricting the analysis to a plane stress state and assuming that a 

cubic formulation is a reasonably accurate representation of the failure surface and by taking into 

consideration the symmetry and anisotropic nature of the material [129,171,172], the masonry failure 

surface, known as the cubic tensor failure criterion, can be expressed by Equation (23). 
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Figure 7. Kupfer and Gerstle isotropic failure criterion. 
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Figure 8. Von Mises modified isotropic failure criterion. 
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Eliminating all third-order terms in Equation (24), a simplified failure criterion is derived 

[129,171,172]: 
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This simple form of the criterion has already been used [173–176]. In Figures 9 and 10, graphical 

representations of cubic and simplified failure criterion in dimensionless principal and normal stress 

terms are depicted. Detailed description about the cubic tensor polynomial masonry failure criterion 

can be found in the works of Syrmakezis and Asteris [129] and Asteris [171,172]. 

  
(a) (b) 

Figure 9. Dimensionless failure surface of masonry material using the cubic tensor polynomial 

failure criterion: (a) non-dimensionless normal stress terms; and (b) non-dimensionless principal 

stress terms. 
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(a) (b) 

Figure 10. Dimensionless failure surface of masonry material using the simplified failure criterion: 

(a) non-dimensionless normal stress terms; and (b) non-dimensionless Principal stress terms. 

4.4.3. Failure Criterion Based on Artificial Neural Networks 

This section summarizes the basic concepts of artificial neural networks (ANNs) as well as the 

architecture of the optimum ANN model developed for the modeling of masonry compressive 

strength. ANNs are information processing models configured for a specific application through a 

training process. A trained ANN has learned to rapidly map a given input into the desired output 

quantities (similar to curve fitting procedures) and thereby can be used as a meta-model enhancing 

the computational efficiency of a numerical analysis process. This major advantage of a trained 

ANN over conventional numerical analysis procedures, such as regression analysis, under the 

condition that the training and validation data cover the entire range of input parameters values, is 

that the results can be produced with much less computational effort [93,177–186]. 

In the present study, using the available in the literature experimental results conducted by 

Kupfer and Gerstle (1973) [160] concerning the failure of concrete under biaxial stresses, the 

Back-Propagation Neural Network (BPNN) technique was used for the development of a reliable 

and robust ANN that can predict the failure of concrete. To this end, for each failure point 

(experimental data), the polar angle was used as input parameter, while the polar radius was 

selected as output parameter. 

In light of the above, 36,900 BPNN models (900 with one hidden layer and 36,000 with two 

hidden layers) were studied. The parameters used for the training of NN models are summarized in 

Table 2. All developed ANN models were ranked based on the Root Mean Square Error (RMSE). 

Based on the results, the optimum BPNN model is that of 1-3-5-1 structure. This network 

corresponds to the case of architecture with two hidden layers of 3 and 5 neurons, respectively 

(Figure 11). Using this optimum ANN model, the concrete failure criterion under biaxial stress state 

both in dimensional principal stresses terms (Figure 12a) and in polar coordinates (Figure 12b) was 

produced. 
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Table 2. Training Parameters of BPNN models. 

Parameter Value 

Training Algorithm Levenberg–Marquardt Algorithm 

Number of Hidden 

Layers 
1; 2 

Number of Neurons 

per Hidden Layer 
1 to 30 by step 1 

Cost Function Mean Square Error (MSE); Sum Square Error (SSE) 

Transfer Functions 
Hyperbolic Tangent Sigmoid transfer function (tansig); Log-sigmoid 

transfer function (logsig); Linear transfer function (purelin) 

 

 

 

Figure 11. Architecture of the optimum 1-3-5-1 BPNN model. 
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(a) 

 

 
(b) 

Figure 12. Concrete failure criterion under biaxial stress state: (a) in dimensional principal stresses 

terms; and (b) in polar coordinates. 
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It is common practice in published literature on NN models for the authors to present the 

architecture of the optimum NN model without providing any information regarding the final 

values of NN weights. Admittedly, this practice has very little value for other researchers and 

practicing engineers. To be useful, a proposed NN architecture should be accompanied by the 

(quantitative) values of weights [186]. In such a case, the NN model can be readily implemented in 

an MS-Excel spread sheet, thus available to anyone interested in the issue of modeling. 

In this study, the final values of weights and biases of the optimum proposed BPNN 1-3-5-1 

model are explicitly reported in Figure 13 and Table 3. By using the reported values of weights and 

biases, as well as the architecture of the NN (Figure 11), one can easily build an ANN-based 

estimator for the failure criterion of concrete under biaxial stress state. 

 

Figure 13. Final weights and bias values of the optimum BPNN model 1-3-5-1 (the values are 

presented in Table 3). 

Table 3. Final weights and bias values of the optimum BPNN model 1-3-5-1. 

iw{1,1}     b{1,1} 

−4.200000     4.200000 

4.200000     0.000000 

−4.200000     −4.200000 

iw{2,1}   b{2,1} 

−0.769482 1.643125 1.561766   2.393966 

0.598218 1.776735 1.488765   −1.196983 

−0.551786 −1.290814 −1.939177   0.000000 

0.995858 2.075282 0.657683   1.196983 

−0.754269 2.267663 −0.140916   −2.393966 

iw{3,2} b{3,1} 

0.264303 0.136018 0.055781 −0.495701 0.754626 0.996540 

iw{1,1}, weights values for input layer; iw{2,1}, weights values for first hidden layer; iw{3,2}, weights 

values for second hidden layer; b{1,1}, bias values for first hidden layer; b{2,1}, bias values for second 

hidden layer; b{3,1}, bias values for output layer. 
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4.5. Damage Index 

Damage control in a building is a complex task, especially under seismic action. Several 

response parameters can be instrumental in determining the level of damage that a particular 

structure suffers during a ground motion; the most important are: deformation, relative velocity, 

absolute acceleration, and plastic energy dissipation (viscous or hysteretic). Controlling the level of 

damage in a structure consists primarily in controlling its maximum response. Damage indices 

establish analytical relationships between the maximum and/or cumulative response of structural 

components and the level of damage they exhibit [38,187–191]. A performance-based numerical 

methodology is possible if, through the use of damage indices, limits can be established to the 

maximum and cumulative response of the structure, as a function of the desired performance of the 

building for the different levels of the design ground motion. Once the response limits have been 

established, it is then possible to estimate the mechanical characteristics that need to be supplied to 

the building so that its response is likely to remain within the limits. 

For the case of masonry structures, a new damage index was proposed by Asteris et al. (2014) 

[38], which employs as response parameter the percentage of the damaged area of the structure 

relatively to the total area of the structure. The proposed damage index (DI) for a masonry structure 

can be estimated by 

100][ 
tot

fail

A

A
DI  (26)

where 
failA  is the damaged surface area of the masonry structure and 

totA  is the total surface area 

of the masonry walls of the structure. 

For a discussion on alternative damage indexes, the reader is referred for instance to the Ph.D. 

thesis by Rota [192] and to the master theses by Zamora [193], Douvika [194] and Skentou [195]. 

4.6. Damage States and Structural Performance Levels 

As is common practice today, performance-based seismic design is initiated with an interplay 

between demands and appropriate performance objectives. The task of the engineer is to then 

develop a design capable of meeting these objectives. Performance objectives are expressed as an 

acceptable level of damage, typically categorized as one of several performance levels, such as 

immediate occupancy, life safety or collapse prevention, given that ground acceleration of specified 

severity is experienced. 

In the past, the practice of meeting performance-based objectives was already included in 

design practice, but in a rather informal, simplistic and non-standardized way. Some engineers 

would characterize performance as life-safety or not; others would assign ratings ranging from poor 

to good. This qualitative approach adopted for performance prediction was appropriate given the 

limited capability of seismic-resistant design technology to deliver building designs capable of 

quantifiable performance. 

In the approach presented herein, we consider three structural performance levels in a similar 

way to the Federal Emergency Management Agency [196]: (a) heavy damage; (b) moderate damage; 

and (c) insignificant damage. The performance levels and the associated damage states are defined 

by the values of DI, as shown in Table 4 and Figure 14. In particular, a value of DI less than 15% can 

be interpreted as insignificant damage; from 15% to less than 25%, as moderate damage; and greater 

than or equal to 25% as heavy damage. Of course, other approaches could be used, according to the 

recent European Codes [197], based on a more engineered (and more detailed) estimation of 

damage. 
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Figure 14. Definition of Limit States (LS) thresholds and Damage States (DS) ranges. 

Table 4. Proposed Structural Performance Levels for un-reinforced masonry. 

Damage 

State 
Insignificant Damage Moderate Damage Heavy Damage 

Element 

Minor cracking of veneers. 

Minor spalling in veneers at a 

few corner openings. No 

observable out-of-plane 

offsets. 

Extensive cracking. 

Noticeable in-plane 

offsets of masonry and 

minor out-of-plane 

offsets. 

Extensive cracking. Face 

course and veneer may 

peel off. Noticeable 

in-plane and out-of-plane 

offsets. 

[SL] 
0.05 ≤ DI <0.15% 

Immediate occupancy 

0.15 ≤ DI <0.25 

Life safety 

0.25% ≤ DI <1.00 

Collapse prevention 

It is worth noting that, for the definition of damage States (DS) ranges, expert opinions are 

needed. When no experimental data are available and analysis of the behavior is not feasible, one or 

more knowledgeable individuals (experts) can offer an opinion as to values of SL defining the 

damage states (DS) ranges, based either on experience or judgment. Furthermore, these SL must be 

periodically updated based on experimental and analytical data, when such data are available. 
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4.7. Fragility Curves 

One of the problems the engineer must face and resolve at the later stages of this integrated 

approach involves the quantitative vulnerability assessment of the building in its current state 

(damaged or not), as well as its projected behavior once it has been “modified” after interventions. In 

other words, a method is necessary to assess the seismic vulnerability of the existing structure as 

well as to assess the intervention scenarios and rank them according to the reduction they induce to 

the seismic vulnerability, thus leading to the selection of the optimal intervention scenario. One of 

the most important tools is considered to be fragility analysis, which provides a measure of the 

safety margin of the structural system above specified structural performance/hazard levels. 

Several methodologies for performing fragility analysis have been proposed in the past (used to 

assess the behavior of structural systems). Simplified methodologies for fragility evaluation were 

proposed by Kennedy et al. (1980) [198], Kircher et al. (1997) [199], Porter et al. (2007) [200,201], 

D’Ayala et al. (2010) [202], Cattari and Lagomarsino (2012) [203] and Kazantzi et al. (2015) [204]. A 

detailed state-of-the-art report can be found in HAZUS 2003 [205]. 

A very interesting 3D homogenized FE limit analysis software package was produced by Milani 

and Venturini (2011) [4] for the fragility curve evaluation of existing masonry churches. It is a 

two-step approach. In the first phase, homogenized masonry strength domains are obtained using a 

simplified kinematic procedure applied on a three-leaf unitary cell. In the second phase, 

homogenized domains are implemented at a structural level on a plate and cell kinematic FE 

software. The procedure is tested on two real scale existing churches located in Italy and compared 

to results provided by means of a conventional elastic approach performed by means of a standard 

commercial software. The global behavior at failure and the overall strength of the buildings are 

assessed through Monte Carlo simulations varying both masonry mechanical properties and 

direction of the equivalent seismic load. Recently, Azizi-Bondarabadi, Mendes, Lourenço and 

Sadeghi 2018 [206], based on the fact that school facilities in Iran, in particular masonry schools, have 

shown poor performance during past earthquakes and can be identified as one the country’s most 

vulnerable infrastructures to earthquakes, proposed a method to perform index-based damage 

assessment for brick masonry schools located in the province of Yazd, the central region of Iran, 

using a comprehensive database of school buildings. The database occurred from field survey forms 

applied for each observed school, which collected the features and damages of each structure. The 

results of a vulnerability index method developed in Iran were employed as input data to obtain 

empirical fragility curves for the school inventory. The Macroseismic model [207] and GNDT II level 

method [208] were two empirical methods combined in this procedure. Finally, the procedure was 

verified using damage survey data obtained after recent earthquakes (1990 Manjil-Rudbar 

earthquake and 2003 Bam earthquake) that occurred in Iran. 

Evaluating seismic fragility information curves for structural systems involves: (a) information 

on structural capacity; and (b) information on the seismic hazard. Since both aforementioned 

contributing factors are uncertain to a large extent, the fragility evaluation cannot be carried out in a 

deterministic manner. A probabilistic approach, instead, needs to be utilized in the cases in which 

the structural response is evaluated and compared against “limit states”, that is limiting values of 

response quantities correlated to structural damage (see Table 4). 

Fragility, as shown in Figure 15, is the probability of the structural damage to reach or exceed a 

certain damage threshold di (performance level) under a given earthquake level (Peak Ground 

Acceleration (PGA)). It generally increases as the earthquake intensity level increases. The failure 

domain is where a Damage Index (DI) overcomes a specified threshold (damage index or 

performance level). 

Fragility is evaluated as the total probability of a response parameter R exceeding the allowable 

response value rlim (limit-state), for various earthquake intensities I. In mathematical form, this is 

simply a conditional probability (Barron-Corverra 2000 [209] and Reinhorn et al. 2001 [210]) given by 
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(27) 

where P(C = cj) denotes the probability that capacity cj occurs, R is the response parameter and I is 

the earthquake intensity. 

In related literature, for the determination of the probability, the use of Probability Density 

Functions (PDF) is indicated, such as the normal distribution, the lognormal distribution, the 

Weibull distribution, the Gamma distribution, etc. [211]. In the current research, normal and 

logarithmic distributions were used. In Section 7, where case studies are presented, basic steps for 

the development of the fragility curves are presented in a detailed manner. 

 

Figure 15. Development process of analytical fragility curves. 

Detailed state-of-the-art reports on the fragility analysis of masonry buildings and more 

specifically on the derivation of fragility curves one can be found in the works by Erberik [14,15], in 

the Ph.D. thesis of Rota [192], in some Master theses [193,212] and in other works [213–222]. 
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5. Finite Element Code 

Based on the above proposed FE macro-model, a computer code called MAFEA (MAsonry 

Finite Element Analysis), in MATLAB® programming language was developed for the structural 

design and analysis of unreinforced masonry (URM) walls. In the following two subsections, the 

basic computational characteristics of the code are presented, as well as a step by step short 

presentation of its main advantages and novelties, illustrated through a case study: the analysis of a 

2D masonry wall that is part of a set of 2D masonry walls, presented detailed in Section 7 entitled 

Case Studies. 

5.1. Basic Characteristics of Finite Element Code 

The code was developed in the Computational Mechanics Laboratory at the School of 

Pedagogical & Technological Education, Athens, Greece, under the supervision of Prof. Asteris. In 

particular, the code was developed during the last decade in the framework of the Master’s Program 

in Applied Computational Structural Engineering (ACSE). The code was continuously updated in the 

course of supporting a series of Master Thesis under the supervision of Professor Asteris [194,195]. 

During the development procedure, special attentionwas given to matrix processing techniques 

that economize storage and solution time by taking advantage of the special structure of the stiffness 

matrix. Specifically, based on the symmetry, sparse, and band form to the principle diagonal of the 

stiffness matrix, an iterative solution technique—such as the Gaussian elimination algorithm, 

tailored to the specific case of banded matrix (half bandwidth)—was used for the solution of finite 

element equilibrium equations of the structure. One of its main advantages has to do with the 

assembling of total Stiffness Matrix of the structure using the stiffness matrix of each one Finite 

Element comprising the total structure. In this way, the stiffness matrix of each one FE is expanded 

from 8 × 8 to n  n, where n being the number of degrees of freedom (DOF) of the entire structure. 

The MATLAB® code below was written to expand the FE stiffness matrix to the total stiffness matrix 

of the structure. 

 
clc; clear; 
 
eldof = 8; % eldof (=8)the number of dofs per element 
% Form the steering vector from element’s degrees of freedom 
eldofs = [1; 2; 5; 6; 7; 8; 10; 11]; 
%{ 
% Assemble the global stiffness matrix putting the element stiffness matrix in 
global system 
%} 
for i = 1:eldof 
  if eldofs(i) ~= 0 
    for j = 1: eldof 
      if eldofs(j) ~= 0 
      k_glob(eldofs(i),eldofs(j))=k_glob(eldofs(i),eldofs(j))+k_elem_glob(i,j); 
      end 
    end 
  end 
end 

 

During the development procedure, special attention was given to the graphic imaging of the 

analysis results. The program possesses the capability of automatic crack pattern generation and 

associated damage indices for the set of masonry failure criteria that are presented in the previous 

section. For each criterion, a color image is generated depicting the failure areas of the masonry wall 

and highlighting in distinct ways the kind of stress underpinning the failure. Namely, the developed 

failure of the masonry wall is marked as failure under biaxial tension, which is the most crucial for 

structure, failure under biaxial compression and the most common case of failure, under 

heterosemous biaxial stress state (tension/compression). 
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5.2. Presentation of the Finite Element Code 

For the presentation of the main advantages and novelties of the FE code, a 2D masonry wall 

aws used, which is part of four 2D masonry walls, presented detailed in Section 7 entitled Case 

Studies. Namely, the 2D masonry wall L50100 was studied using the MAFEA code. The geometrical 

and mechanical characteristics are presented in Section 7 (Figure 36 and Table 9.) 

Using the MAFEA code, Figures 16–34 have been produced. The first eight figures present the 

usual, well-known diagrams (undeformed and deformed shape, and stress contours in both normal 

and principal stress terms) which derive from all structural analysis programs and are therefore not 

further explained. In Figures 24 and 25, the developed stress states in both normal and principal 

stress terms are presented. For each stress state, a different color is used depicting the stress state. 

Namely, the developed stress state of the masonry wall is marked as stress state under biaxial 

tension, which is the most crucial for structure, stress state under biaxial compression and the most 

common case of stress under heterosemous biaxial stress state (tension/compression). These figures 

are especially useful, as they combine the information of the usual Figures 18–23 while at the same 

time providing useful information regarding the developed stresses in a simple and comprehensive 

manner. This enables a quick preliminary assessment of the seismic vulnerability. For example, in 

Figure 24, it is confirmed that the most vulnerable area of the masonry is around the corners of the 

openings, which is to be expected, as this is the area where cracks usually are generated, leading to 

the consequent damages. Correspondingly, Figures 26 and 27 contribute in the same direction, 

where the values of the developed stresses are depicted for each joint of the FE mesh. With 

knowledge of the maximum values of developed stresses alone, one can design and propose repair 

mortars to ensure that the developed stresses are adequately addressed, thus improving the seismic 

response of the structure. 

In addition to this preliminary evaluation of vulnerability, Figures 28–31 provide a more 

in-depth assessment of vulnerability on a second, more detailed level. Namely, in these figures, the 

failure of the masonry wall for each failure criterion presented in the previous section is presented. 

For each criterion, a color image is generated depicting the failure areas of the masonry wall and 

highlighting in distinct ways the kind of stress underpinning the failure, namely the developed 

failure of the masonry wall marked as failure under biaxial tension, which is the most crucial for 

structure; failure under biaxial compression; and the most common case of failure, under 

heterosemous biaxial stress state (tension/compression). Such a diagram is of great interest and 

extremely useful for the assessment of more complicated structures, as well. As can be easily 

perceived, different repair measures are demanded when failure occurs under biaxial compression, 

different measures are demanded in the case of biaxial tension and different measures are 

demanded in the case of heterosemous biaxial stress state (tension/compression). 

Beyond the above advantages of the MAFEA code, it is also an educational tool of great 

importance, which supports lectures to both undergraduate and graduate students in relation to the 

seismic behavior of structures (Figures 32–34). Furthermore, the above presented basic 

characteristics and the advantages of the MAFEA code are presented in more detail Section 7 

entitled Case Studies. 
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Figure 16. Undeformed shape and FE MESH of 2D masonry wall L50H100 (Figure 11a) with two 

openings (PGA = 0.40 g). 

 

Figure 17. Deformed shape of 2D masonry wall L50H100 (Figure 11a) with two openings (PGA = 0.40 g). 
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Figure 18. Stress contours of normal stress across x-axis (PGA = 0.40 g). 

 

Figure 19. Stress contours of normal stress across y-axis (PGA = 0.40 g). 
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Figure 20. Stress contours of shear stress (PGA = 0.40 g). 

 

Figure 21. Stress contours of principal stress across I-axis (PGA = 0.40 g). 
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Figure 22. Stress contours of principal stress across II-axis (PGA = 0.40 g). 

 

Figure 23. Contours of angle theta (PGA = 0.40 g). 
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Figure 24. Developed stress state in normal stresses terms (PGA = 0.40 g). 

 

Figure 25. Developed stress state in principal stresses terms (PGA = 0.40 g). 
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Figure 26. Developed stresses in normal stresses terms (PGA = 0.40 g). 

 

Figure 27. Developed stresses in principal stresses terms (PGA = 0.40 g). 
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Figure 28. Mapping cracking pattern based on simple cubic tensor polynomial failure criterion. 

 

Figure 29. Mapping cracking pattern based on general cubic tensor polynomial failure criterion. 
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Figure 30. Mapping cracking pattern based on Syrmakezis et al.’s (1995) failure criterion. 

 

Figure 31. Mapping cracking pattern based on Kupfer and Gerstle’s (1973) failure criterion. 
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PGA = 0.00 g PGA = 0.10 g PGA = 0.20 g PGA = 0.30 g PGA = 0.40 g 

 

Figure 32. Evolution of the developing stress state in normal stress terms for values of PGA ranging from 0.00 to 0.40 g by step 0.10 g. 
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Figure 33. Evolution of the developing failure based on Kupfer and Gerstle’s (1973) failure criterion for values of PGA ranging from 0.00 to 0.40 g by step 0.10 g. 
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Figure 34. Evolution of the developing normal stresses for values of PGA ranging from 0.00 to 0.40 g 

by step 0.20 g. 
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6. Restoration Aspects 

The notion of built heritage protection was first legislated in 1931 in the “Athens Charter for the 

Restoration of Historic Monuments”. This charter is important as many principles still applied today 

are first stated. However, at this point, the concept of compatibility is absent, as they approve the 

judicious use of all resources at the disposal of modern technique and more especially reinforced 

concrete [5]. In the next decades, the detrimental effect of the use of incompatible materials is 

obvious on many cultural heritage assets, and thus, in the declaration of Amsterdam in 1975, it is 

stated that misapplied contemporary technology and ill-considered restoration may be disastrous to 

old structures [223], as well as that new materials and techniques should be used only after approval 

by independent scientific institutions [224]. This lays the foundations for a new approach, which is 

applied today, of preserving monuments with compatible and performing materials, aiming to 

preserve monuments and historical structures with structural integrity for future generations, 

however without compromising the values they carry [225]. 

This approach is not easy to follow, as various considerations must be taken into account. The 

values of the historical asset must be preserved, thus any restoration material and technique must be 

compatible with the values of the monument (aesthetic, historical, etc.). The monument must be 

adequately strengthened to avoid collapse and ensure its preservation for future generations. 

However, this must be done with the application of compatible restoration materials, which do not 

jeopardize the longevity of the historical materials of the asset and do not harm them in any way 

[69]. It is obvious that the above considerations are often in conflict, as some compatible materials 

may not present the demanded mechanical strength to achieve the required structural 

reinforcement. For this reason, it is important for researchers today to develop the appropriate tools 

that can assist in decision making to enable the selection of the optimum restoration material, which 

can provide adequate strengthening, without jeopardizing compatibility [45]. 

6.1. Historical Mortars as a Basis for the Design of Restoration Mortars 

In the restoration of masonry cultural heritage assets, restoration mortars play an important 

role, as they are not only the most vulnerable material of masonry, but they also carry the memory of 

the civilization that produced them, whether it was a small society in some village of the 

Mediterranean using local materials, or the Roman empire, with its vast resources and technological 

advances. Thus, the analysis of historical materials is three-fold: one can learn about the history of 

the people that designed and produced the historical mortar, as this is a value, the value of memory; 

one can design new restoration mortars through the reverse engineering approach, ensuring 

compatibility and continuity; one can reveal the secrets of the great craftsmen of the past, in order to 

produce not only compatible, but enhanced restoration mortars. 

6.2. Historical Mortars 

Mortars have been used since antiquity and the raw materials as well as the technology of their 

production varies according to the use of the mortar in the structure, the raw materials available and 

the technological state of the era and region. Historical mortars can be separated into categories, the 

main ones being: (i) typical lime mortars, which is the oldest type of mortar along with gypsum 

mortars [226]; (ii) gypsum mortars; (iii) hydraulic lime mortars; (iv) pozzolanic mortars, where lime 

is mixed with pozzolanic additives; and (v) crushed brick–lime mortars [63,64]. The study of a great 

number of historical mortars has allowed researchers to establish ranges for the values of their 

characteristics, assisting in their categorization, as can be seen in [61] where value ranges of the 

chemical and physico-mechanical characteristics of historical mortars belonging to different types 

are stated, while PCA has assisted in the correlation of these properties and the categorization of 

historical mortars [227]. 

Lime mortar has been used since the third millennium BC, as evidenced in historical structures 

of that era, and is widely used until today. Gypsum mortar, which is produced using calcinated 

gypsum as binder material in the mortar, is also one of the oldest types of mortar. This is greatly 
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attributed to the low firing temperature required to burn the gypsum rock and transform it into the 

correct form that can be used, after grinding, as binder of the mortar. Gypsum mortars were used in 

ancient Egypt for the construction of the pyramids in 3000 BC [228]. In Portugal, gypsum mortars 

have been widely used for plastering of walls and ceilings since the time of the Roman empire, with 

an intense presence during the 18th–20th centuries [229]. Gypsum was also used in many medieval 

structures in Germany, while recently scientists discovered gypsum mortars in the Holy Aedicule in 

Jerusalem, dating from the construction of Constantine the Great [49]. Although the use of gypsum 

was extensive in the past, today it is not used for the restoration of monuments, mainly due to the 

materials inadequate durability in high moisture conditions, although recent research is concerned 

with the production of durable gypsum mortars. Hydraulic lime mortars are acquired through the 

calcination of impure limestone containing aluminosilicates. Hydraulic lime mortars have been 

found in ancient mortars in Crete, in monuments of the Roman era, etc. [226]. Crushed brick–lime 

mortars were already in use in Cyprus and Greece in the Late Bronze Age, with their main use in 

floors and areas of high moisture (such as water channels). This is an indication that, as early as the 

Late Bronze Age, craftsmen acknowledged the high durability that this combination presented in 

high moisture environments, while in the Levant this technological advance seems to have occurred 

already from the Early Bronze Age [63]. Another interesting fact about this type of mortar is that it 

was extensively used in byzantine monuments, contributing to their earthquake resistance [67]. A 

timeline of mortar types used in different areas and monuments can be found in [61,228]. In Table 5, 

the most important instances in mortar production throughout the ages are summarized. 

Table 5. Summarized timeline of mortar technology. 

3000 BC Bitumen was used as binding material by Babylonians and Assyrians 

3000 BC 
Mud mortars mixed with straw were used as joint mortars to join bricks, while gypsum 

was preferred to join carved stone blocks in Egypt 

2450 BC 
In Khafaje in Mesopotamia the ruins of a furnace, used for lime production, were 

found, proving the technology of lime calcination 

500 BC 

Studies of the cistern of Kameiros–Rhodes (500 BC), where pozzolanic concrete is 

covering the walls of the cisterns, confirm the knowledge of concrete production to the 

pre-roman era 

300 BC 

Pozzolan from Pozzuoli mixed with lime is used to build several structures. In Greece 

Santirine earth was used as a pozzolanic additive. The technology of adding pozzolan 

to lime was spread to the entire roman empire. During this era, crushed bricks were 

also used as pozzolanic additives and hydraulic lime was used extensively, deriving 

from the calcinations of appropriate limestones. 

1793 Hydraulic lime is rediscovered by John Smeaton 

1860 The era of modern cement initiates 

Another issue that must be considered is the fact that, due to the many centuries that historical 

masonry structures have been in use, past restoration materials are present in the structure. This 

could create confusion if they are not documented interventions and they are not easily discernible. 

Furthermore, these restorations are not always compatible, and thus, deterioration products may be 

present, attributed to these materials. For example, in one study, researchers have analyzed two 

types of hydraulic brick–lime mortars from an Ottoman bath wall and have found that, although 

being exposed to the same environment, the historic repair plaster is structurally unsound in 

comparison to the authentic historical mortar, which was found in an excellent state of preservation. 

Furthermore, it was found that the historical repair mortar contained ettringite crystals, which 

expanded and detached the mortar; the presence of ettringite was attributed to the use of a small 

amount of gypsum to the lime–brick mix during the past repair and the consequent formation of 

ettringite due to the high moisture environment [230]. This is an excellent example of the care that 

must be taken when adding additives, as one property may be enhanced, however other properties 

could be detrimentally altered. 
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6.3. Restoration Mortars 

Reverse engineering emerges as the ideal methodological approach for the design and 

production of compatible and performing restoration materials [66]. The main steps (Figure 35) of 

this methodological approach are: (i) characterization of historical materials in order to select similar 

raw materials for the production of the restoration mortars and design the mortar mixture directives, 

always taking into account that the historical mortar is a disturbed system and is not the system that 

was initially produced and applied; (ii) preparation of restoration mortars, i.e. the production of 

designed mortar mixes; (iii) evaluation of the restoration mortar properties, in terms of fresh mortar 

characteristics, such as workability, bulk density, retained water, air content, etc., as well as in terms 

of the mortar characteristics during setting and hardening, i.e. the evolution and final state of 

chemical phases, microstructural characteristics and acquired mechanical strengths; (iv) 

optimization of the mortar mixes, which allows for modifications of the mortar mix in order to 

obtain the best possible characteristics; and (v) pilot application on the cultural heritage asset in 

order to assess the restoration mortar on masonry scale [231]. This methodology has been enhanced 

and NDTs can assist the evaluation, especially in the final step of pilot application [70]. Restoration 

mortars based on traditional materials and techniques can be separated into categories [231], as 

shown in Table 6, while the use of cement in any quantity should be avoided [69] due to the 

incompatibility it presents and the subsequent deterioration of the historical materials [56]. 

 

Figure 35. Basic methodological framework for restoration mortar design and assessment. 
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Table 6. Mechanical properties of restoration mortars after nine months of hardening according to 

Moropoulou et al. [231] and of historical mortars of each type [66]. 

Mortar Type 

Restoration Mortar 
Historical Mortar 

Tensile Strength 

(MPa) 

Compressive 

Strength (MPa) 

Flexural 

Strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Typical lime 

mortars 
1.1–1.2 0.3–0.4 0.2–0.3 <0.35 

Hydraulic lime 

mortars 
2.9–4.9 0.5–0.7 0.4–0.5 0.35–0.55 

Lime–pozzolan 

mortars 
0.9–1.6 0.4–0.4 0.3–0.3 >0.60 

Lime–crushed brick 

mortars 
1.1–2.0 0.3–0.4 0.2–0.3 >0.60 

Hydraulic lime–

crushed brick 

mortars 

3.4–5.2 0.7–1.8 0.5–1.2 >0.55 

The analysis of many historical mortars has allowed researchers to establish requirements that 

the raw materials used to produce restoration mortars for historical structures must comply with 

[231]. An interesting example of the lessons we can learn from the craftsmen of the past is related to 

the firing temperature of the bricks which will be crushed and used as raw materials in lime–crushed 

brick mortars, where scientists have discovered that the pozzolanic reaction and the best mortar 

characteristics are acquired when the brick has been fired at low temperatures, lower than firing 

temperatures today. In recent years, researchers have studied the use of metakaolin, an extremely 

active artificial pozzolan, which contributes to the production of mortars with excellent 

characteristics [232]. 

Compatibility is a quite complex term, as it is assessed chemical, dimensional, hygric, 

aesthetical, adhesion, mechanical and bioecological terms [69]. Moropoulou et al. established a range 

of acceptability limits of physical, chemical and mechanical characteristics that should be fulfilled by 

the restoration mortars, deriving from the evaluation of historical mortars, for different mortar types 

(Tables 7 and 8) [233]. The use of acceptability limits to assess restoration mortars can be found in 

[69], while it should be noted that mechanical strength compatibility is linked with the requirement 

that the restoration mortar is not stronger than the historical building units, in order to avoid failure 

of the historical materials. 

Aesthetic compatibility is achieved when the restoration mortar has the same appearance as the 

authentic mortar. The color, texture, symbolisms, and aesthetic must create an overall appearance 

similar to the original [6]. The shape and design, materials used, and workmanship are often 

addressed as key heritage values [234]. An issue which is also widely discussed nowadays is the 

design and production of environmentally friendly mortars, aiming towards sustainability [235]. 

The use of traditional materials is in accordance with this tendency, as they are non-toxic, and have 

lower firing temperatures and a more sustainable life cycle, especially concerning CO2 emissions. 

Thus, fragility curves can serve as a tool to evaluate the contribution of restoration mortars on 

the response of the monument under dynamic stresses, which, coupled with a compatibility 

assessment and the fulfillment of the above principles, can lead to the selection and application of 

the optimum material, preserving masonry historic structures for centuries to come. 

  



Appl. Sci. 2019, 9, 243 46 of 72 

Table 7. Range of acceptability limits for different types of restoration mortars through thermal 

analysis results (TG/DTA) (physicochemical compatibility) and tensile strength measurements 

(mechanical compatibility) [233]. 

Mortar 

Type 

Hygroscopic 

Water (%) 

Hydraulic Water 

(%) Bound in 

Hydraulic 

Compounds 

CO2 (%) 

Bound in 

Calcareous 

Compounds 

CO2/Η2Οhydraulic * 

Tensile 

Strength 

(ΜPa) 

Lime <1 2–4 >30 >8.5 <0.35 

Crushed 

brick–lime 
1.5–4.5 2.3–5.3 <20 3.2–6.5 0.5–1.2 

Hot lime 0.7–1.5 2–4.6 >25 6–15 0.85–1.5 

Hydraulic 1–2.5 4–7.2 <25 1.8–6.1 - 

Lime–

Pozzolan 
2–4 3.3–5.4 <22 1.3–5.1 - 

Rubble 

masonry 
- 5.6–5.9 <30 3.36–5.13 - 

* CO2/H2O: Inverse hydraulicity ratio, representative of a mortar’s hydraulicity. It is calculated as the 

ratio of CO2 (%) loss during thermal analysis and attributed to calcareous compounds and the 

H2Ohydraulic (%) loss, attributed to water bound to hydraulic compounds (CSH, CASH, etc.). Low 

values (<10) are representative of mortars with hydraulicity, such as lime–poszzolan, natural 

hydraulic lime and lime–crushed brick mortars, while high values (>10) are representative of mortars 

with no hydraulicity, such as aerial lime mortars. 

Table 8. Range of acceptability limits for different types of restoration mortars through mercury 

intrusion porosimetry results (MIP)—microstructural compatibility [233]. 

Mortar Type 
Cumulative 

Volume (mm3/g) 

Apparent 

Density 

(g/cm3) 

Average pore 

Radius (μm) 

Specific 

surface Area 

(m2/g) 

Total 

Porosity 

(%) 

Lime 170–320 1.5–1.8 0.8–3.3 1.3–3.3 30–45 

Crushed 

brick–lime 
170–290 1.5–1.9 0.1–0.8 3.5–15 32–43 

Hot lime 110–180 1.7–1.9 0.3–0.8 2.5–4.7 20–30 

Hydraulic 90–230 1.7–2.1 0.1–3.5 2.5–13.5 18–40 

Lime–

Pozzolan 
160–265 1.6–1.9 0.1–1.5 3–14 30–42 

Rubble 

masonry 
117–220 1.8–2.1 0.2–20.6 1.2–4.7 25–39 

7. Case Studies 

Aiming to assess the proposed methodology, its implementation is presented in this section 

both on theoretical, as well as on actual masonry structures. 

7.1. 2D Masonry Walls 

The behavior of four 2D masonry walls, with square openings, as presented in Figure 36, was 

studied. The values of the percentage of the openings (surface of the opening/wall surface) were 0%, 

16%, 36% and 64%. The mechanical characteristics of the masonry material are presented in Table 9. 

It should be noted that the data used were considered as typical and are stated in the experimental 

study of Page, conducted in 1981 [236], the results of which have been widely utilized by the 

majority of researchers investigating the behavior of masonries, on both experimental and numerical 

levels. 
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Figure 36. Cases of 2D masonry walls examined. 

Table 9. Mechanical characteristics of masonry (Page 1981) [236]. 

Parameter Value 

Elasticity modulus in x direction (GPa) 4.3625 

Elasticity modulus in y direction (GPa) 7.5550 

Compressive strength in the x direction (ΜPa) 4.3625 

Compressive strength in the y direction (ΜPa) 7.5550 

Tensile strength in the x direction (ΜPa) 0.40 

Tensile strength in the y direction (ΜPa) 0.10 

Poisson ratio in the xy plane 0.20 

Poisson ratio in the yx plane 0.20 

Specific weight (kN/m3) 20 

In Figure 37, the failure areas of 2D masonry wall L50H100 are presented. This wall has two 

openings reaching a total opening percentage of 16% and two different failure criteria are utilized, 

with three different values of Peak Ground Acceleration (0.24, 0.32 and 0.40 g). These diagrams are 

especially useful for the determination of failing areas of the structure, as well as for the selection of 

the optimum repair measures aiming to their repair. More specifically, the failure areas are marked 

with different colors highlighting in distinct ways the kind of stress underpinning the failure. As can 

be easily perceived, different repair measures are demanded when failure occurs under biaxial 

compression, biaxial tension and heterosemous biaxial stress state (tension/compression). In Figure 

38, the failure areas of 2D masonry wall L100H100 are presented for three different opening 

percentages (0%, 16% and 36%) using two different failure criteria and for a PGA = 0.32 g. 

In Figures 39 and 40, the damage indices of 2D masonry walls L50H100 (Figure 36a) and 

L100H100 (Figure 36b), both without any opening (total opening percentage of 0%), are presented. 
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These diagrams are especially useful for the assessment of the seismic vulnerability in a preliminary 

stage. Namely, we can see that for both masonry walls the determined damage indices are under the 

lower limit of heavy damage of 25% for values of peak ground acceleration up to 0.24 g. 

Furthermore, a comparison between these two 2D masonry walls depicts that damage indices of the 

“shear” wall L100H100 are much less than the damage indices of the “cantilever” wall L50H100 

something that is expected. Such diagrams are of great interest and extremely useful for the 

assessment of more complicated structures. 

In Figure 41, the development process of fragility curves is presented. Namely, having 

determined the damage indices for the case of the 2D masonry wall L50H100 (Figure 36a) with 

opening percentage of 16% for a set of masonry tensile strengths ranging from 0.0650 to 0.4350 MPa 

using a step of 0.0465 MPa (response parameter) and for values of Peak Ground Acceleration 

(intensity measure (IM)) from 0.00 to 0.80 g using a step of 0.08 g, the probability of exceeding a 

damage limit state is determined. Based on these probabilities, the results for values of PGA equal to 

0.00, 0.24, 0.48 and 0.72 g are presented in the four smaller images and the fragility curves are 

derived and presented in the larger image of Figure 41. 

In Figure 42, the fragility curves of the current condition of wall L50H100 are presented, using 

the failure Von Mises modified failure criterion and for an opening percentage of 16% for normal 

and lognormal distribution. In Figure 43, the fragility curves of the current condition of wall 

L50H100 are presented, using the Kupfer and Girstle failure criterion [160], four different opening 

percentages (0%, 16%, 36% and 64%), lognormal distribution and moderate damage performance 

level. 

In Figure 44, the fragility curves of the current condition of three different walls with 

percentage openings of 16% are presented, using the Syrmakezis et al. (1995) failure criterion [8,25], 

lognormal distribution and heavy damage performance level. This particular figure is indicative of 

the potential of fragility curves in quantifying the vulnerability of structures and especially in 

classifying structures according to their vulnerability. 

In Figure 45, the fragility curves for the case of wall L50H100 are presented, using the 

Syrmakezis et al. (1995) failure criterion [8,25], regarding the current state of the wall, as well as the 

repaired states in the cases of using three different repair mortars M5, M10 and M15, of compressive 

strength 5, 10 and 15 MPa, respectively, using lognormal distribution and moderate damage 

performance level. These three types of restoration mortars were evaluated to cover the whole range 

of mechanical properties presented by restoration mortars, which have been assessed to be 

compatible for use in monuments and historical buildings (Moropoulou et al., 2005 [61]). In Table 10, 

the values of the tensile strengths (response parameter) for existing structures as well for the 

repaired ones used for the development of fragility curves are presented. 

Table 10. Values of tensile strength (response parameter) of 2D masonry walls examined. 

Structure Tensile Strengths in MPa 

Existing 2D masonry walls 0.065 to 0.435 by step 0.0465 

Repaired 2D masonry walls with mortar M5 0.117 to 0.467 by step 0.0438 

Repaired 2D masonry walls with mortar M10 0.142 to 0.566 by step 0.0530 

Repaired 2D masonry walls with mortar M15 0.158 to 0.634 by step 0.0595 

Based on Figures 44 and 45, it is obvious that the proposed approach offers a classification 

method which can assist authorities to optimize their decisions in relation to the selection, among a 

variety of structures, of the structure in the most need of repair, as well as in relation to the selection 

of the optimum repair scenario.  
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PGA = 0.24 g; Syrmakezis et al., 1995 PGA = 0.24 g; Kupfer and Gerstle 1973 

  
PGA = 0.32 g; Syrmakezis et al., 1995 PGA = 0.32 g; Kupfer and Gerstle 1973 

  
PGA = 0.40 g; Syrmakezis et al., 1995 PGA = 0.40 g; Kupfer and Gerstle 1973 

 

Figure 37. Failure of 2D masonry wall L50H100 (Figure 11a) with two openings, two different failure 

criteria and three different values of PGA. 
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Opening 0.00%; Syrmakezis et al., 1995 Opening 0.00%; Kupfer and Gerstle 1973 

  
Opening 0.16%; Syrmakezis et al., 1995 Opening 0.16%; Kupfer and Gerstle 1973 

  
Opening 0.36%; Syrmakezis et al., 1995 Opening 0.36%; Kupfer and Gerstle 1973 

 

Figure 38. Failure of 2D masonry wall L100H100 (Figure 36b) for three different opening 

percentages, two different failure criteria and maximum ground acceleration value PGA = 0.32 g. 
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Figure 39. Damage Indices of 2D masonry wall L50H100 (Figure 36a) for opening percentages 0% 

and two different failure criteria (existing structure). 

 

Figure 40. Damage Indices of 2D masonry wall L100H100 (Figure 36b) for opening percentages 0% 

and, two different failure criteria. 
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Figure 41. Derivation of fragility curves of the 2D masonry wall L50H100 (Figure 36a) with opening 

percentage of 16% using normal distribution and Von Mises modified failure criterion (ND, No 

Damage; ID, Insignificant Damage; MD, Moderate Damage; HD, Heavy Damage). 
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(a) 

 
(b) 

Figure 42. Fragility curves of wall L50H100 in its current condition, considering the Syrmakezis et al. 

(1995) failure criterion [8,25] and for an opening percentage of 16%: (a) normal distribution; and (b) 

lognormal distribution. 
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Figure 43. Fragility curves of wall L50H100 in its current condition, considering the Kupfer and 

Girstle (1973) failure criterion [160], four different opening percentages (0%, 16%, 36% and 64%), 

lognormal distribution and moderate damage performance level. 

 

Figure 44. Fragility curves of wall L50H100 in its current condition, for three different walls with an 

opening percentage of 16%, considering the Syrmakezis et al. (1995) failure criterion [8,25], 

lognormal distribution and heavy damage performance level. 
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Figure 45. Fragility curves of wall L50H100, considering the Syrmakezis et al. (1995) failure criterion 

[8,25], for its current condition, as well as its behavior with the use of three different repair mortars of 

5, 10 and 15 MPa compressive strength (M5, M10, M15), for lognormal distribution and moderate 

damage performance level. 

7.2. Monumental Masonry Structures 

In this section, the reliability of the proposed methodology is presented, through its application 

on two real case monumental masonry structures. Specifically, the presented methodology was 

employed to investigate the vulnerability of two different real case monumental masonry structures. 

The first structure is the Catholicon of Kaisariani Monastery (Figure 46), which was built in Athens 

in the late 11th–early 12th century AD, while the second case study structure is the Palace of Chania, 

Crete (Figure 47), which was built in the Chalepa area of Crete in 1882. In 1898, when Crete became 

autonomous, and acquired a ruler and a constitution, Prince George arrived in Crete as high 

commissioner of Crete. The mansion in question, the Palace, was selected as the most appropriate 

structure to serve as his dwelling. 

In Figure 48, the fragility curves for the current situation for both monumental structures are 

presented, in lognormal distribution and heavy damage performance level. This figure is indicative 

of the potential of fragility curves to quantify the vulnerability of structures and furthermore to 

classify them, sorting them by descending degree of vulnerability. Based on this figure, it is obvious 

that for ground acceleration values lower than 0.20 g the Catholicon of Kaisariani Monastery 

presents lower vulnerability than the Palace, while the reverse is true for values above 0.20 g. 
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Figure 46. Front view of Kaisariani Monastery. 

 

Figure 47. Front view of the Palace. 
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Figure 48. Fragility Curves of the current condition for two real case monumental structures using 

lognormal distribution. 

The results for these two monumental structures, regarding the evaluation of their seismic 

vulnerability and the selection of the optimum repair scenarios, are presented in detail in the 

Masters’ theses of Douvika (2017) [194] and Skentou (2018) [195], and in the research papers of 

Asteris et al., (2014, 2016, 2017) [38,42,237], Moropoulou et al. (2015) [238], Douvika et al. (2016) [239], 

Apostolopoulou et al. (2017) [45] and Maniatakis et al. (2018) [240]. 

8. Conclusions 

The modeling and assessment of masonry structures, as well as any restoration actions applied, 

demand a holistic multi-disciplinary approach. In this paper, a methodology is presented for the 

evaluation of the seismic vulnerability of masonry structures, taking into account the probabilistic 

nature of the parameters involved in the simulation of the structure as well as in the mechanical 

characteristics of the materials and seismic forces. The evaluation of the vulnerability of the 

structures, as well as the evaluation of different repair scenarios and the selection of the optimum 

scenario are amongst the main conclusions of this paper. Furthermore, the proposed approach can 

act as a valuable tool for authorities involved in monument protection, as it offers a classification 

methodology, which can contribute in a decisive manner to decision making, not only in relation to 

the selection of the monument in the most need of protection, among several monuments, but also to 

the selection of the optimum repair scenario for each monument. 

In the holistic framework, which the authors have attempted to provide in relation to masonry 

structures and their materials, a new finite element model has been proposed and a new failure 

criterion through neural networks has been developed. 
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Appendix A 

The analytical form of the anisotropic finite element 8 × 8 stiffness matrix is defined by 

integration over the area of the element by the following, symmetric to the principal diagonal 

 K Kij ji coefficients: 

Appendix A.1. Stiffness Matrix Coefficients 1K j  (j = 1) 
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Appendix A.2. Stiffness Matrix Coefficients 2K j  (j = 1, 2) 
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Appendix A.3. Stiffness Matrix Coefficients 3K j  (j = 1, 2, 3) 
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Appendix A.4. Stiffness Matrix Coefficients 4K j  (j = 1, 2, …, 4) 
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Appendix A.5. Stiffness Matrix Coefficients 5K j  (j = 1, 2, …, 5) 
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Appendix A.6. Stiffness Matrix Coefficients 6K j  (j = 1, 2, …, 6) 
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75 31K K  (A26)

76 32K K  (A27)

77 11K K  (A28)

Appendix A.8. Stiffness Matrix Coefficients 8K j  (j = 1, 2, …, 8) 

81 32K K  (A29)

82 64K K  (A30)

83 21K K  (A31)

1
84 22

2
K K   (A32)

85 41K K  (A33)

86 42K K  (A34)

87 43K K  (A35)

88 22K K  (A36)

where t is the thickness of the element, 
b

a
   (see Figure 6), and 

yx xy

E G E Gy xy x xy

 
    according to 

Equation (9). 

Abbreviations 

ANNs Artificial Neural Networks 

BPNNs Back-Propagation Neural Networks 

CDF Cumulative Distribution Function 

DI Damage Index 

DOF Degrees of Freedom 

DS Damage State 

EC2 Eurocode 2 

EC8 Eurocode 8 

FE Finite element 

FEM Finite Element Method 

HD Heavy Damage 

ID Insignificant Damage 

IM Intensity Measure 

IML Intensity Measure Level 

logsig Log-sigmoid transfer function 

LN Lognormal 

LS Limit state 

MAFEA MAsonry Finite Element Analysis 

MD Moderate Damage 

ND No Damage 

PGA Peak Ground Acceleration 

PDF Probability Density Function 

purelin Linear transfer function 
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RC Reinforced Concrete 

tansig Hyperbolic Tangent Sigmoid transfer function 

URM UnReinforced Masonry 

List of Symbols 

Latin letters (Capital) 

failA  Damaged surface area of the structure 

totA  Total surface area of the structure 

E Modulus of elasticity 

Ex Modulus of Elasticity across x-axis 

Ey Modulus of Elasticity across y-axis 

Gxy Shear modulus in the xy plane 

P(·) Probability 

Sa Spectral acceleration 

Sa(T) Spectral acceleration at period T 

Sd(T) Spectral displacement at period T 

SI Spectrum Intensity 

Latin letters (Small) 

wcf  Masonry compressive strength 

bcf  Brick compressive strength 

mcf  Mortar compressive strength 

h Height of masonry wall 

t Thickness of masonry wall 

tb Height of brick 

tm Thickness of mortar joint 

uv  Relative volume of unit 

mv  Relative volume of mortar 

Greek letters 

β Ratio of finite element dimensions 

ν Poisson’s ratio 

νxy Poisson’s ratio in the xy plane 

νyx Poisson’s ratio in the yx plane 

σI Principal stress across I-axis 

σII Principal stress across II-axis. 

σx Normal stress across x-axis 

σy Normal stress across y-axis 

τ Shear stress measured in the x-y plane 
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