
1 

 

 

Low temperature co-evaporation of hollow CsPbI3 perovskite layers for solar cells 

Pascal Becker1,2, José A. Márquez1, Justus Just1,3, Amran Al-Ashouri4, Charles Hages1, Hannes 

Hempel1, Marko Jošt4, Steve Albrecht4, Ronald Frahm2 and Thomas Unold1 

 

1Helmholtz-Zentrum-Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany 

2Bergische Universitaet Wuppertal, Gausstrasse 20, 42119 Wuppertal, Germany 

3Lund University, Paradisgatan 2, 22100 Lund, Sweden 

4Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum-Berlin, Hahn 

Meitner-Platz 1, 14109 Berlin, Germany 

 

E-mail: unold@helmholtz-berlin.de 

 

Abstract 

 

The structure stability and optoelectronic properties of co-evaporated CsPbI3 thin films with a 

wide range of [CsI]/[PbI2] compositional ratios are investigated. We find that for CsI-rich 

growth conditions, CsPbI3 can be synthesized directly at low temperature into the distorted 

perovskite  CsPbI3 phase with Schottky-type defects and without detectable secondary 

phases. In contrast, PbI2-rich growth conditions are found to lead to the non-perovskite -

phase. Photoluminescence spectroscopy and optical pump-THz probe measurements show 

carrier lifetimes larger than 75 ns and charge carrier (sum) mobilities larger 60 cm2/Vs for the 

-phase, indicating their suitability for high efficiency solar cells. Building on these results p-

i-n type solar cells with a maximum efficiency exceeding 12 % and high shelf stability of 

more than 1200 h are demonstrated.  
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After the steep rise of hybrid organic-inorganic perovskite solar cells (PSCs) with certified 

power conversion efficiencies over 22 %,1,2 fully inorganic PSCs with cesium replacing the 

organic anion have lately drawn significant attention due to their better thermal stability.3,4 In 

particular, lead-based CsPbX3 (X = I, Br) represents a promising candidate for high efficiency 

stable photovoltaic devices. While the band gap of CsPbBr3 is about 2.3 eV,5,6 and therefore 

too large for photovoltaic applications,3 the band gap of CsPbI3 of 1.76 eV is ideal for top cells 

in tandem applications in conjunction with low band gap bottom cells.7 Solution processed thin 

films based on CsPbI3 absorber layers recently have reached an efficiency of 15.7 %,8 while the 

current world record for quantum dot solar cells was reported employing CsPbI3 nanocrystals 

with efficiencies exceeding 13 %.9 

Unfortunately, for CsPbI3 thin films at room temperature the orthorhombic -phase with a band 

gap of 2.8 eV is thermodynamically favored over the desirable cubic perovskite - and distorted 

perovskite tetragonal- and orthorhombic- phases.10,11 Thus at room temperature the material 

has the tendency to either form directly in the -phase or to undergo a spontaneous phase change 

into the -phase, making it difficult to obtain or retain CsPbI3 films in the perovskite phase.10 

The identification of the room-temperature phase has been a matter of considerable debate, with 

a number of earlier literature reports suggesting the (metastable) presence of the cubic- phase 

12–14. However, more recent reports demonstrated that the -phase is only stable at high 

temperatures above 310 °C10,15 and undergoes a phase transition into the - and -phases when 

the samples are cooled down to ambient temperatures. In order to add clarity to this issue, 

special attention will be placed on the characterization of the crystal structure that CsPbI3 adopts 

in this work. In order to obtain CsPbI3 in the perovskite phase thin films are usually heated 

above 320 oC to convert the yellow -phase into the perovskite phase.14,16–18 However, such 

high temperatures can damage organic charge transport layers or flexible substrates, which 

limits the application in p-i-n solar cell architectures and in tandem devices. Different 

approaches have been used to form and stabilize the perovskite phase of CsPbI3 at lower 

temperature, for example the use of mixed halide perovskites with partial substitution of iodine 

by bromide (CsPbI3-xBrx),
19,20 or the 21,22 introduction of bismuth,12 strontium,23 sulfobetaine 

zwitterions24, hydroiodic acid,25,26 and of phenethylamine (PEA).26–28  

In this work we show a direct route to synthesize CsPbI3 in the distorted perovskite -phase by 

co-evaporation of CsI and PbI2 at a substrate temperature of 50 °C without the need for a 

post-deposition annealing treatment. Our process results in thin films with a lateral gradient in 

composition which allows us to study in depth the composition-dependent structural and 

optoelectronic properties of this material system. To this end, contactless high throughput 



3 

 

characterization including time-resolved and calibrated absolute photoluminescence (PL) and 

optical pump THz probe (OPTP) spectroscopy is employed. Finally p-i-n-type solar cells were 

fabricated using the low temperature-deposited CsPbI3 thus demonstrating the applicability of 

the deposition route presented here for devices manufacturing.  

 

Structure, composition and chemical stability of the -CsPbI3 phase.   To evaluate the 

influence of the compositional deviations from stoichiometry of CsPbI3 on the materials 

properties, thin-films were deposited by co-evaporation of CsI and PbI2 on quartz glass at a 

substrate temperature of 50 °C as shown in Figure 1a (see methods in the SI).  

 

Figure 1 (a) Schematics of the evaporation chamber used in this work. (b) Photographic image of an 

as-evaporated CsPbI3 film. Two clearly distinct regions can be observed; one yellow, one brown. (c) 

[Cs]/[Pb] atomic ratio from XRF measurement as a function of position measured perpendicular to the 

phase boundary. The yellow and brown phases are color-labelled in the background (d) XRD patterns 

from a line scan for the combinatorial sample showing the phase transition as a function of composition 

(sample position). The arrows mark the positions at which measurements are taken. (e) XRD patterns 
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acquired in the brown and yellow regions of the sample. (f) Unit cells of the -CsPbI3 (yellow – Pnma) 

and the -CsPbI3 (brown – Pbnm) phases. 

 

The substrate is not rotated during deposition to allow the formation of a compositional gradient 

across the sample and the evaporation rates of both sources were controlled individually with 

quartz balance monitors. Figure 1b shows a photographic image of the as-evaporated sample 

where two clearly distinct regions can be observed, indicating the presence of a brown and a 

yellow phase with a distinct phase boundary. The chemical composition of the sample was 

analyzed by X-ray fluorescence (XRF) mapping. Error! Reference source not found.c shows a 

line-scan perpendicular to the yellow-to-brown phase boundary. A monotonic, almost linear 

increase of the relative [Cs]/[Pb]-atomic ratio is observed moving from the yellow to the brown 

region of the sample, with a variation of the [Cs]/[Pb]-atomic ratio of more than 20 % across 

the 50 mm wide substrate. Interestingly, a stoichiometric 1:1:3 composition is observed directly 

at the phase boundary between the yellow and brown phase, although we note that the absolute 

uncertainty in the [Cs]/[Pb]-atomic ratio is estimated to be about 10 %.  

 

To identify the structural properties of the sample as a function of composition an X-ray 

diffraction (XRD) line-scan was performed in direction of the chemical gradient. Error! 

Reference source not found.d shows XRD patterns acquired as a function of sample position 

relative to the boundary between the two regions. Again a sharp boundary with distinctly 

different XRD patterns is observed between the yellow and brown regions of the sample within 

the experimental resolution. Typical diffractograms for the yellow and brown phase, 

respectively, are shown in Error! Reference source not found.e. Comparison with reference 

peak positions shows that the observed phases can only be assigned to the distorted perovskite 

-CsPbI3 (space group Pbnm) in the brown region and the non-perovskite phase -CsPbI3 (space 

group Pnma) in the yellow region.10 This confirms that the stable perovskite at room 

temperature is the CsPbI3and not the cubic  phase, in agreement with some recent 

studies.10,15,29,30 Le Bail analysis was performed for the patterns acquired in the laboratory for 

both phases taking as starting models the  and  phases reported by Marronnier et al.10 The 

analysis resulted in the -phase with lattice parameters a = 10.471 ± 0.002Å, b = 4.790 ± 0.001 

Å and c = 17.781 ± 0.003 Å, and the -phase with a = 8.629 ± 0.001 Å, b = 8.834 ± 0.001Å and 

c = 12.472 ± 0.002 Å (see Figure S1 and Table S1). We note that the lattice parameters values 

obtained for the -phase differ from the previously reported ones in the literature for the -

phase.10,29,30 Particularly, we observe that the ratio of the lattice parameters of the unit cells vary 
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between the four studies. We estimate that our sample has the largest ratio in a / b and the 

smallest in c / (a+b) in comparison with the values reported in literature including CsPbI3 

nanocrystals (see Table S1). The variations on the unit cell parameters might affect the phase 

stability and the octahedral distortion, therefore also affecting the optoelectronic properties of 

the material. Such differences in the lattice parameters might be caused by different synthesis 

methods, composition and different thermal history of the sample and further studies are 

required to fully understand their correlation. Importantly, our work demonstrates for the first 

time that pure CsPbI3 can be directly synthesized in a perovskite phase at low temperatures < 

60 °C without the need of a post-deposition annealing treatment which is in contrast to many 

previous reports.3,17,31 It is important to note that despite the non-stoichiometric composition in 

most parts of the sample, the XRD linescan shown in Figure 1d does not indicate the presence 

of secondary phases, e.g. CsI, PbI2 or Cs2PbI4 for the compositional regime 0.96 ± 0.1 < 

[CsI]/[PbI2] 1.07 ± 0.1. However, secondary phases are observed for larger stoichiometric 

deviations, resulting in CsI segregation for [CsI]/[PbI2] > 1.07 ± 0.1 and PbI2 segregation for e 

[CsI]/[PbI2] < 0.96 ± 0.1 (see supplementary material Figures S2 and S3) .  

To confirm that the position of the phase boundary is directly related to the chemical 

composition of [CsI]/[PbI2] = 1 and not due to other specific experimental conditions, three 

combinatorial samples were prepared for which the ratio of the evaporation rate of CsI and PbI2 

was varied, which should lead to a spatial shift of the phase boundary. For each sample, the 

yellow to brown phase boundary was found at a different sample position. However, the 

composition at the phase boundary was identical (see Figure S4Error! Reference source not 

found.). This corroborates that using low temperature processing the brown phase can only be 

obtained for [CsI]/[PbI2]  1. Because of the significant non-stoichiometry of the -CsPbI3 and 

lack of secondary phases obtained in this study we conclude the presence of a Schottky-defect 

pair type perovskite structure, which can be described by the chemical formula Cs1+xPb1-xI3-x. 

The formation of Schottky defect pairs such as [VPb
-2 and 2VI

+1] has been theoretically predicted 

to have a low formation energy and thus to be thermodynamically favored.32 Experimentally 

this has been shown in hybrid perovskites with the incorporation of di-cationic molecules 

increasing the stability of the phase in so called “hollow” perovskites.33 The term “hollow” 

perovskite arises from the abundance of lead and iodine vacancies in the [PbI3] framework.33 

Starting from CsPbI3, the concentration of these Schottky-defects is expected to increase as x 

increases and the Cs1+xPb1-xI3-x phase becomes more CsI rich, which might increase the stability 

of the perovskite phase in a similar way to what it has been observed in hybrid-hollow 

perovskites.33 Alternatively it has been proposed that the stabilization of CsPbI3 is favored 
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over CsPbI3 by a decreasing grain sizes (or enlarged grain boundary surface area), due to the 

lower surface energy of the former, compared to the latter phase.34 In a recent study CsPbI3 

has been synthesized by annealing at 100 °C for average grain sizes between 100 nm and 

200 nm, where the small grain sizes were obtained by using addition of HI and H2O in the 

solution process.34 In the current work small grain sizes between 100 nm and 200 nm are 

obtained without any additives in the CsI rich region during the evaporation process. On the 

other hand, somewhat larger grain sizes are observed for the region of the sample crystallizing 

in the CsPbI3 phase. This could also explain the stabilization of the phase caused be an 

inhibition of grain growth for samples grown under CsI-excess in the hollow-perovskite region.  

 

Dependence of the optoelectronic properties on composition.  The CsPbI3 -brown phase 

shows a sharp absorption onset at about 1.76 eV with absorption coefficient values exceeding 

3x104 cm-1 as shown for [CsI]/[PbI2] ≈ 1.10 in Figure 2a together with a photoluminescence 

(PL) spectrum acquired under one sun equivalent conditions (see also Figure S5). It can be 

seen that the emission is centered at the energy of the absorption onset, indicating that the 

observed emission band originates from a band-band transition. To investigate the change of 

the optical properties as a function of CsI/PbI2 ratio, the PL peak position is plotted as a function 

of composition in the top graph of Figure 2d. A small blue-shift of the energy of the PL band 

(PLmax) is observed with increasing the CsI/PbI2 ratio in the brown phase. A similar trend is 

observed in the external PL quantum yield (EQEPL), which increases from 3x10-4 % for 

[CsI]/[PbI2] ≈ 1.0 to 1x10-2 % for [CsI]/[PbI2] ≈ 1.10 indicating that non-radiative 

recombination is significantly reduced as the CsPbI3 phase becomes more CsI-rich. This is 

further confirmed by a similar trend observed in the minority carrier lifetime (SRH) derived 

from the TRPL decays shown in Figure 2b, which shows low values SRH < 10 ns close to the 

phase boundary and increases up to a maximum values close to 80 ns [CsI]/[PbI2] ≈ 1.05. 

Interestingly, both the EQEPL and the carrier lifetime SRH start to decrease again, when the 

[CsI]/[PbI2] ratio is increased beyond about 1.05 which is also close to composition when a 

CsI-segregation becomes detectable. Optical Pump THz Probe (OPTP) measurements allow to 

characterize the charge carrier dynamics with high temporal resolution,35 in particular the 

identification of fast carrier trapping processes in the photoconductivity decays, and the 

estimation of intra-grain carrier mobilities form their complex frequency response.36 An 

overview of such measurements for the sample consisting of the yellow and the brown phase is 

shown in Figure 2c, where the photoconductivity decay is plotted as a function of the sample 

position. It can be seen that for the yellow region no photoconductivity response is recorded, 
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although the samples where excited with fs-pulses above the band gap of the yellow phase. On 

the other hand in the CsPbI3 region, decay times compatible with the TRPL decays are 

detected, although decreasing strongly close to the phase boundary (see also SI). Interestingly, 

the transients do not exhibit any fast decay component within the first picoseconds, which 

indicates that charge carrier trapping plays a minor role in the recombination kinetics here.  

 

Figure 2 (a) Absolute intensity PL spectrum and absorption coefficient for [CsI]/[PbI2] ≈ 1.10 , (b) 

TRPL decays as a function of [CsI]/[PbI2] ratio (c) THz photoconductivity transient map collected at 

different positions of the sample with different [CsI]/[PbI2] ratios. (d) Optoelectronic properties 

determined from the aforementioned measurements as a function of [CsI]/[PbI2] atomic ratio and 

relative position on the sample. From top to bottom: Photon energy of the PL maximum (PLmax) and 

external PL quantum yield (EQEPL) extracted from the hyperspectral PL imaging data, minority carrier 

lifetime (SRH) deduced from TRPL and sum mobility (THz) deduced from terahertz spectroscopy. 

 

The sum of electron and hole mobility, THz, extracted from the spectral response of the OPTP 

measurements are shown in Figure 2d as a function of the composition on the sample. It can 

be seen that for the yellow -phase, the THz values are < 0.1 cm2V-1s-1 proving the unsuitability 

of the yellow phase as a photovoltaic material. On the other hand, large carrier mobilities > 

65 cm2V-1s-1 are observed for the brown region (-phase) of the sample, which continuously 

decrease to about 45 cm2V-1s-1 for increasing [CsI]/[PbI2]. We note that the mobilities observed 
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for the -phase in the present study are similar or higher than the values previously reported for 

solution processed CsPbI3 films with a post annealing treatment and for CH3NH3PbI3 

(MAPI).17,37,38 

Interestingly, opposite to the trend in the carrier lifetime and EQEPL, the carrier mobilities 

almost immediately decrease as the sample becomes more CsI-rich (see Figure S6). However, 

this observation may be a direct evidence for the presence of the hollow perovskite structure, 

which exhibits a decreasing connectivity of its [PbI6] octahedra building blocks with increasing 

CsI-content. Whereas in stoichiometric CsPbI3 in the  and  phase,10 each of the [PbI6] 

octahedra share their corners with another octahedron leading to extended wavefunctions of the 

valence band (halogen p orbitals and Pb-s-orbitals) and the conduction band (unoccupied Pb-p 

orbitals) this octahedra interconnectivity becomes disrupted for CsI-excess in the so-called 

hollow perovskites.39 Thus for increasing CsI-content a reduction in the carrier mobilities is 

predicted from theory40 and indeed observed in our experiments. In the -phase the [PbI6] 

octahedra are present in a non-corner-sharing double-chain, resulting in lower crystallographic 

dimensionality as well as a less dispersive and thus higher effective mass CBM and VBM39,40 

(see Figure 1f). These properties predict very poor charge carrier mobilities, which again are 

confirmed in our experiments. The low values of THz, the bandgap value of 2.8 eV,41 and lack 

of measurable carrier lifetime for this non-perovskite phase, show that this polymorph is not 

suitable for photovoltaic applications as described by previous reports.42 

 

Figure 3 (a) Implied Voc calculated from absolute PL imaging as a function atomic ratio 

[CsI]/[PbI2]. The Shockley-Queisser limit calculated for each position is also shown as a 
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reference. (b) Diffusion length (Ld) as a fucntion of atomic ratio [CsI]/[PbI2]. The dotted grey 

line shows the thickness of the CsPbI3 film. 

 

The optoelectronic properties reported in the previous section can be combined to assess the 

charge carrier transport and recombination parameters which are directly relevant to the 

performance and operation of solar cells based on the investigated materials. To estimate the 

implied open-circuit voltage (iVoc) of the -phase, we calculated the quasi-Fermi level splitting 

(QFLS) from the photoluminescence data at 300 K as a function of position on the sample 

(Figure 3a). The values were obtained from the calibrated PL spectra at each position in a 

similar way as reported for mixed cation, mixed halide organic-inorganic perovskites.43,44 

QFLSvalues between 1.14 and 1.24 ±0.02 eV are obtained, corresponding to the maximum 

achievable VOC that a given absorber layer could generate in a solar cell, assuming that the 

charge transport and contact layers do not alter the recombination at the perovskite surface. 

Figure 3a shows both the QFLS values in the radiative Shockley Queisser limit and the QFLS 

measured on the CsPbI3 films (iVoc), where the distance between both values indicates the non-

radiative recombination losses in the material. It can be seen that as the [CsI]/[PbI2] ratio 

increases the non-radiative recombination losses are reduced and the iVoc values become larger. 

These iVoc values correspond to an EQEPL of approximately ~0.01 % (Figure 2d), which is 

around two orders of magnitude below the EQEPL for bare mixed cation, mixed halide 

organic-inorganic perovskite films, and similar to the EQEPL measured in ~20 % efficient full 

stack solar cells.43,45 This indicates that non-radiative recombination in these inorganic 

perovskites is still larger than in the mixed cation, mixed halide organic-inorganic perovskites 

absorber layers used to fabricate high efficiency solar cell devices. With the knowledge of the 

charge carrier mobilities and lifetimes the diffusion length 𝐿𝑑 = √ 𝜏𝑆𝑅𝐻  𝜇  𝑘𝐵𝑇 𝑞⁄  can be 

estimated for the investigated films assuming balanced electron and hole mobilities n=p for 

the sum mobilities derived from OPTP, as the effective masses of electrons and holes are very 

similar.46 As can be seen in Figure 3b, the diffusion length is found to be larger than 2 m for 

most of the compositional region of the brown phase, except close to the phase boundary, where 

rapidly decreasing values are derived. We note that the maximum diffusion length observed is 

about four times larger than the thickness of the film (~450 nm) (see Figure 3b), which clearly 

shows that the CsI-rich -phase investigated in this study is well suited for the fabrication of 

solar cells. 
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Photovoltaic performance. P-i-n type (so called “inverted”) solar cells were made employing 

poly(triarylamine) (PTAA) as a hole transporting material and fullerene C60 as electron 

transport layer (Figure 4a). The current density - voltage (JV) scan of the best performing 

device is shown in Figure 4b. Here we achieve a VOC of 0.96 V, a short-circuit current density 

(JSC) of 17.8 mA/cm2, a fill factor (FF) of 73 % and a power conversion efficiency (PCE) of 

above 12 % in the reverse scan. We note that no significant differences are observed in the JV 

scans as function of scan speed or light soaking (see Figure S7) The stabilized efficiency 

measured over three minutes by maximum power point (mpp) tracking shows a sharp drop 

within the first seconds before the PCE settles at 10.7 % (see Figure 4c). It is worth noting that 

the stabilized PCE is improved to 11.3 % within the first days after preparation and maintains 

this performance for several weeks which corresponds to a shelf life stability of over 1200 h 

(see inset in Figure 4c). The current density measured in the JV scan matches quite well with 

the integrated current density from external quantum efficiency (EQE) of 17.3 mA/cm2 shown 

in Figure 4d. The cell shows an EQE of over 80 % over a wide range of the visible spectrum 

as a consequence of the large Ld values estimated from the TRPL and OPTP data. The drastic 

loss in measured VOC in the JV scan compared to the iVoc (QFLS) measured on the bare CsPbI3 

absorbers, as well as the strong hysteresis, may indicate a misaligned band structure due to 

non-optimal contact layers or severe interface recombination limiting the device performance. 

Therefore, optimizing the contact layers is the most promising approach to further increase the 

efficiency of the presented CsPbI3 solar cell. 
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Figure 4 (a) Schematic of the p-i-n type device configuration used in this work. (b) JV scan of 

the best performing device measured at day 15 after preparation with a scan rate of 250 mV/s. 

A strong hysteresis effect between forward and reverse scan is observed as indicated. (c) Power 

conversion efficiency of the same device over time by maximum power point tracking over 

3 minutes. The inset shows the stabilized power conversion efficiency after 3 minutes maximum 

power point tracking over the course of several weeks. (d) External quantum efficiency (EQE) 

spectra under 1 sun AM1.5G illumination on the left axis. Integrated photocurrent density from 

EQE spectra on the right axis. 

 

In conclusion we have shown that inorganic CsPbI3 can be directly synthesized in the 

perovskite phase at low temperature by co-evaporation under CsI-rich composition. Direct 

correspondence between the different polymorphs and their compositional region of stability is 

obtained employing samples which exhibit a linear gradient in the [CsI]/[PbI2] ratio. Lack of 

secondary phases in the CsI-rich regime indicates the presence of a hollow perovskite structure 

with Schottky defect pairs. Optoelectronic analysis shows promising charge transport and 

recombination properties with electron and hole sum mobilities above 60 cm2/Vs and carrier 

lifetimes larger 70 ns, resulting in large diffusion lengths > 2 m and an implied Voc of up to 

1.24 eV. P-i-n type solar cells fabricated with the -CsPbI3 phase obtained by co-evaporation 

show stabilized efficiencies over 11 % and very high shelf stability of over 1200 h. Since the 

VOC values of these solar cells are currently about 300 mV smaller than the implied Voc 

measured for the bare absorber material significant further improvements are expected from a 

further optimization/exploration of the charge transport and contact layers in these solar cells. 

 

Acknowledgements.  

The spatially resolved X-ray diffraction experiments were performed at Beamline BL10 at the 

DELTA Synchrotron Radiation Facility, Dortmund, Germany. We gratefully acknowledge 

Dirk Lützenkirchen-Hecht and Ralph Wagner for technical advice and consultation with data 

analysis as well as the DELTA machine group for providing synchrotron radiation reliably. 

The authors acknowledge financial support from the HyPerCells joint Graduate School 

(www.perovskites.de). A.A.A., M.J. and S.A. are funded by the German Federal Ministry of 

Education and Research (BMBF), within the project “Materialforschung für die Energiewende” 

(grant no. 03SF0540). S.A. further acknowledges funding by the German Federal Ministry for 

Economic Affairs and Energy (BMWi) through the “PersiST” project (grant no. 0324037C). 



12 

 

 

Additional information 

Supplementary information is available in the online version of the paper.  

 

Competing financial interests. The authors declare no competing financial interests.  

 

References 

(1)  Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Il Seok, S.; Lee, 

J.; Seo, J. A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable 

Perovskite Solar Cells. Nat. Energy 2018, 3 (8), 1–8. https://doi.org/10.1038/s41560-018-0200-

6. 

(2)  Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. 

Y. Solar Cell Efficiency Tables (Version 51). Prog. Photovoltaics Res. Appl. 2018, 26 (1), 3–12. 

https://doi.org/10.1002/pip.2978. 

(3)  Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; 

Snaith, H. J. Inorganic Caesium Lead Iodide Perovskite Solar Cells. J. Mater. Chem. A 2015, 3 

(39), 19688–19695. https://doi.org/10.1039/c5ta06398a. 

(4)  Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium 

Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. J. Phys. Chem. 

Lett. 2016, 7 (1), 167–172. https://doi.org/10.1021/acs.jpclett.5b02597. 

(5)  Kulbak, M.; Cahen, D.; Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite 

Photovoltaic Cells? Efficient CsPbBr3 Cells. J. Phys. Chem. Lett. 2015, 6 (13), 2452–2456. 

https://doi.org/10.1021/acs.jpclett.5b00968. 

(6)  Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T. C.; 

Wibowo, A. C.; Chung, D. Y.; Freeman, A. J.; et al. Crystal Growth of the Perovskite 

Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Cryst. Growth 

Des. 2013, 13 (7), 2722–2727. https://doi.org/10.1021/cg400645t. 

(7)  Ahmad, W.; Khan, J.; Niu, G.; Tang, J. Inorganic CsPbI 3 Perovskite-Based Solar Cells: A 

Choice for a Tandem Device. Sol. RRL 2017, 1 (7), 1700048. 

https://doi.org/10.1002/solr.201700048. 

(8)  Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. 

Solvent-Controlled Growth of Inorganic Perovskite Films in Dry Environment for Efficient and 

Stable Solar Cells. Nat. Commun. 2018, 9 (1), 2225. https://doi.org/10.1038/s41467-018-04636-

4. 

(9)  Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. 

M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced Mobility CsPbI3quantum Dot 

Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells. Sci. Adv. 2017, 3 (10), 



13 

 

eaao4204. https://doi.org/10.1126/sciadv.aao4204. 

(10)  Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J. M.; Bonnassieux, Y.; 

Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J. Anharmonicity and Disorder in the Black 

Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. ACS Nano 2018, 

12 (4), 3477–3486. https://doi.org/10.1021/acsnano.8b00267. 

(11)  Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide 

Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared 

Photoluminescent Properties. Inorg. Chem. 2013, 52 (15), 9019–9038. 

https://doi.org/10.1021/ic401215x. 

(12)  Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. Bismuth Incorporation Stabilized α-

CsPbI3for Fully Inorganic Perovskite Solar Cells. ACS Energy Lett. 2017, 2 (10), 2219–2227. 

https://doi.org/10.1021/acsenergylett.7b00508. 

(13)  Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, 

J. A.; Chakrabarti, T.; Luther, J. M. Quantum Dot-Induced Phase Stabilization of -CsPbI3 

Perovskite for High-Efficiency Photovoltaics. Science (80-. ). 2016, 354 (6308), 92–95. 

https://doi.org/10.1126/science.aag2700. 

(14)  Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, 

M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T.; et al. Bandgap-Tunable Cesium Lead 

Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 

2016, 6 (8), n/a-n/a. https://doi.org/10.1002/aenm.201502458. 

(15)  Pistor, P.; Burwig, T.; Fra, W. Crystal Phases and Thermal Stability of Co-Evaporated CsPbX 3 

(X = I, Br) Thin Films ̈. 2018, 3. https://doi.org/10.1021/acs.jpclett.8b02059. 

(16)  Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. 

J.; Troshin, P. A. Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells 

Produced by Thermal Coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 2017, 8 (1), 67–72. 

https://doi.org/10.1021/acs.jpclett.6b02594. 

(17)  Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and 

Enhanced Photovoltaic Performance. ACS Energy Lett. 2017, 2 (8), 1901–1908. 

https://doi.org/10.1021/acsenergylett.7b00591. 

(18)  Chen, C. Y.; Lin, H. Y.; Chiang, K. M.; Tsai, W. L.; Huang, Y. C.; Tsao, C. S.; Lin, H. W. All-

Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar 

Cells with Stabilized Efficiency Exceeding 11%. Adv. Mater. 2017, 29 (12), 1605290. 

https://doi.org/10.1002/adma.201605290. 

(19)  Ma, Q.; Huang, S.; Chen, S.; Zhang, M.; Lau, C. F. J.; Lockrey, M. N.; Mulmudi, H. K.; Shan, 

Y.; Yao, J.; Zheng, J.; et al. The Effect of Stoichiometry on the Stability of Inorganic Cesium 

Lead Mixed-Halide Perovskites Solar Cells. J. Phys. Chem. C 2017, 121 (36), 19642–19649. 

https://doi.org/10.1021/acs.jpcc.7b06268. 



14 

 

(20)  Ma, Q.; Huang, S.; Wen, X.; Green, M. A.; Ho-Baillie, A. W. Y. Hole Transport Layer Free 

Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation. Adv. Energy 

Mater. 2016, 6 (7), n/a-n/a. https://doi.org/10.1002/aenm.201502202. 

(21)  Chen, H.; Xiang, S.; Li, W.; Liu, H.; Zhu, L.; Yang, S. Inorganic Perovskite Solar Cells: A 

Rapidly Growing Field. Sol. RRL 2018, 2 (2), 1700188. https://doi.org/10.1002/solr.201700188. 

(22)  Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; 

Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium Lead Halide Perovskites with Improved 

Stability for Tandem Solar Cells. J. Phys. Chem. Lett. 2016, 7 (5), 746–751. 

https://doi.org/10.1021/acs.jpclett.6b00002. 

(23)  Lau, C. F. J.; Zhang, M.; Deng, X.; Zheng, J.; Bing, J.; Ma, Q.; Kim, J.; Hu, L.; Green, M. A.; 

Huang, S.; et al. Strontium-Doped Low-Temperature-Processed CsPbI2Br Perovskite Solar 

Cells. ACS Energy Lett. 2017, 2 (10), 2319–2325. 

https://doi.org/10.1021/acsenergylett.7b00751. 

(24)  Wang, Q.; Zheng, X.; Deng, Y.; Zhao, J.; Chen, Z.; Huang, J. Stabilizing the α-Phase of 

CsPbI3Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films. Joule 2017, 1 

(2), 371–382. https://doi.org/10.1016/j.joule.2017.07.017. 

(25)  Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; 

Snaith, H. J. Inorganic Caesium Lead Iodide Perovskite Solar Cells. J. Mater. Chem. A 2015, 3 

(39), 19688–19695. https://doi.org/10.1039/c5ta06398a. 

(26)  Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Grätzel, M.; Zhao, Y. Bication Lead Iodide 2D 

Perovskite Component to Stabilize Inorganic A-CsPbI3perovskite Phase for High-Efficiency 

Solar Cells. Sci. Adv. 2017, 3 (9), e1700841. https://doi.org/10.1126/sciadv.1700841. 

(27)  Li, F.; Pei, Y.; Xiao, F.; Zeng, T.; Yang, Z.; Xu, J.; Sun, J.; Peng, B.; Liu, M. Tailored 

Dimensionality to Regulate the Phase Stability of Inorganic Cesium Lead Iodide Perovskites. 

Nanoscale 2018, 10 (14), 6318–6322. https://doi.org/10.1039/c8nr00758f. 

(28)  Jiang, Y.; Yuan, J.; Ni, Y.; Yang, J.; Wang, Y.; Jiu, T.; Yuan, M.; Chen, J. Reduced-Dimensional 

α-CsPbX3Perovskites for Efficient and Stable Photovoltaics. Joule 2018. 

https://doi.org/10.1016/j.joule.2018.05.004. 

(29)  Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. 

ACS Nano 2017, 11 (4), 3819–3831. https://doi.org/10.1021/acsnano.7b00017. 

(30)  Sutton, R. J.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H. J. 

Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI 3 by 

Theory and Experiment. ACS Energy Lett. 2018, 3 (8), 1787–1794. 

https://doi.org/10.1021/acsenergylett.8b00672. 

(31)  Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. 

T. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium 

Lead Iodide. J. Phys. Chem. Lett. 2017, 8 (6), 1278–1282. 



15 

 

https://doi.org/10.1021/acs.jpclett.7b00134. 

(32)  Walsh, A.; Scanlon, D. O.; Chen, S.; Gong, X. G.; Wei, S. H. Self-Regulation Mechanism for 

Charged Point Defects in Hybrid Halide Perovskites. Angew. Chemie - Int. Ed. 2015, 54 (6), 

1791–1794. https://doi.org/10.1002/anie.201409740. 

(33)  Spanopoulos, I.; Ke, W.; Stoumpos, C. C.; Schueller, E. C.; Kontsevoi, O. Y.; Seshadri, R.; 

Kanatzidis, M. G. Unraveling the Chemical Nature of the 3D “ Hollow ” Hybrid Halide 

Perovskites. 2018. https://doi.org/10.1021/jacs.8b01034. 

(34)  Zhao, B.; Jin, S.-F.; Huang, S.; Liu, N.; Ma, J.-Y.; Xue, D.-J.; Han, Q.; Ding, J.; Ge, Q.-Q.; Feng, 

Y.; et al. Thermodynamically Stable Orthorhombic γ-CsPbI 3 Thin Films for High-Performance 

Photovoltaics. J. Am. Chem. Soc. 2018, 140 (37), 11716–11725. 

https://doi.org/10.1021/jacs.8b06050. 

(35)  Jepsen, P. U.; Cooke, D. G.; Koch, M. Terahertz Spectroscopy and Imaging - Modern 

Techniques and Applications. Laser Photon. Rev. 2011, 5 (1), 124–166. 

https://doi.org/10.1002/lpor.201000011. 

(36)  Hempel, H.; Redinger, A.; Repins, I.; Moisan, C.; Larramona, G.; Dennler, G.; Handwerg, M.; 

Fischer, S. F.; Eichberger, R.; Unold, T. Intragrain Charge Transport in Kesterite Thin Films - 

Limits Arising from Carrier Localization. J. Appl. Phys. 2016, 120 (17). 

https://doi.org/10.1063/1.4965868. 

(37)  Dastidar, S.; Li, S.; Smolin, S. Y.; Baxter, J. B.; Fafarman, A. T. Slow Electron-Hole 

Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole. ACS Energy 

Lett. 2017, 2 (10), 2239–2244. https://doi.org/10.1021/acsenergylett.7b00606. 

(38)  Staub, F.; Hempel, H.; Hebig, J. C.; Mock, J.; Paetzold, U. W.; Rau, U.; Unold, T.; Kirchartz, T. 

Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved 

Photoluminescence. Phys. Rev. Appl. 2016, 6 (4), 044017. 

https://doi.org/10.1103/PhysRevApplied.6.044017. 

(39)  Xiao, Z.; Yan, Y. Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. 

Adv. Energy Mater. 2017, 7 (22), 1701136. https://doi.org/10.1002/aenm.201701136. 

(40)  Xiao, Z.; Meng, W.; Wang, J.; Mitzi, D. B.; Yan, Y. Searching for Promising New Perovskite-

Based Photovoltaic Absorbers: The Importance of Electronic Dimensionality. Mater. Horizons 

2017, 4 (2), 206–216. https://doi.org/10.1039/c6mh00519e. 

(41)  Kim, Y. G.; Kim, T.-Y.; Oh, J. H.; Choi, K. S.; Kim, Y.-J.; Kim, S. Y. Cesium Lead Iodide Solar 

Cells Controlled by Annealing Temperature. Phys. Chem. Chem. Phys. 2017, 19 (8), 6257–6263. 

https://doi.org/10.1039/C6CP08177K. 

(42)  Ripolles, T. S.; Nishinaka, K.; Ogomi, Y.; Miyata, Y.; Hayase, S. Efficiency Enhancement by 

Changing Perovskite Crystal Phase and Adding a Charge Extraction Interlayer in Organic Amine 

Free-Perovskite Solar Cells Based on Cesium. Sol. Energy Mater. Sol. Cells 2016, 144, 532–

536. https://doi.org/10.1016/j.solmat.2015.09.041. 



16 

 

(43)  Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.; Albrecht, 

S.; Burn, P. L.; Meredith, P.; Unold, T.; et al. Visualization and Suppression of Interfacial 

Recombination for High-Efficiency Large-Area Pin Perovskite Solar Cells. Nat. Energy 2018. 

https://doi.org/10.1038/s41560-018-0219-8. 

(44)  Ross, R. T. Some Thermodynamics of Photochemical Systems. J. Chem. Phys. 1967, 46 (12), 

4590–4593. https://doi.org/10.1063/1.1840606. 

(45)  Liu, Z.; Krückemeier, L.; Krogmeier, B.; Klingebiel, B.; Márquez, J. A.; Levcenko, S.; Öz, S.; 

Mathur, S.; Rau, U.; Unold, T.; et al. Open-Circuit Voltages Exceeding 1.26 V in Planar 

Methylammonium Lead Iodide Perovskite Solar Cells. ACS Energy Lett. 2018, 110–117. 

https://doi.org/10.1021/acsenergylett.8b01906. 

(46)  Afsari, M.; Boochani, A.; Hantezadeh, M. Electronic, Optical and Elastic Properties of Cubic 

Perovskite CsPbI3: Using First Principles Study. Optik (Stuttg). 2016, 127 (23), 11433–11443. 

https://doi.org/10.1016/j.ijleo.2016.09.013. 

 


