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Abstract 

Hitting hard on the binary halides yields in the formation of Cs2[AgIn]Br6. The lead-free double 

perovskite marks, although not usable itself, a further step forward in finding sustainable and 

durable perovskite materials for photovoltaic applications. Cs2[AgIn]Br6 is one of the prominent 

examples of double perovskites materials that have been suggested to circumvent the use of lead 

compounds in perovskite solar cells. We herein report the successful synthesis of the material using 

a mechanochemical approach. It crystallizes in an elpasolite-type structure, an ordered perovskite 

superstructure, with a cell parameter of a = 11.00 Å. However, the compound exhibits a relatively 

large optical bandgap of 2.36 eV and is unstable under illumination, which impedes its use as solar 

absorber material at this early stage. Still, substitution of lead and the potential of this synthesis 

method are promising as well as the fruitful combination of theoretical considerations with 

experimental materials discovery. 

 

 

Hybrid organic-inorganic perovskite solar cells are clearly one of the most intriguing developments 

within the field of energy materials in recent years.[1] Their quick development is, however, in stark 

contrast to some their inherent problems, which are most prominently the comparably low stability 

under working conditions as well as the toxicity of lead.[2] Additionally, lead is not only a scientific 

hurdle, for instance due to the complicated modelling of the organic cation orientation,[3] but also a 

legal one. The use of lead is strictly limited for electrical devices in most countries, for instance 

through the RoHS directive in the European Union,[4] and similar regulations in most countries. 

Therefore, considerable efforts have been invested in the development of lead-free and all-inorganic 

perovskite materials to overcome both the toxicity as well as the stability issue related to hybrid 

organic-inorganic lead halides.[5] An intriguing class of compounds that are bearing these properties 

are double perovskites of the general formula AI
2[BIB’III]X-I

6. In this material class the B position in 

AIBIIX-I
3 perovskites is substituted by equal amounts of single and triple charged cations. A number of 

stable double perovskites with B’ = Bi have been successfully synthesized,[6] but they generally have 

an indirect bandgap,[7] which gives them a considerable disadvantage in performance versus direct 

bandgap materials. Materials with B’ = In, on the other hand, have also been proposed through 

theoretical considerations,[7] but have proven to be more challenging to synthesize. Cs2[AgIn]Br6, for 

instance, was found to be thermodynamically stable but only in a very narrow region of the chemical 

potential.[7] Other calculations did actually predict an instability of the material compared to ternary 

compounds in the system.[8] It is hence expectable that the formation of this compound is 

challenging, and was in fact claimed unlikely to be achieved based on Goldschmidt tolerance factor 



considerations.[9] It should be noted that a number of recent publications report on the synthesis 

Cs2[AgIn]Cl6,[9,10] but its bromide analogue has, to the best of our knowledge, not been reported so 

far. 

We used a mechanochemical approach that previously been used successfully for the synthesis of 

lead halide perovskite materials.[11-15] This technique is advantageous for the formation of 

compounds with narrow existence region.[16] First, the confined space of the reaction avoids loss of 

starting material and hence allows to control the final composition by the overall composition of the 

starting materials. Second, the reactions take place near ambient conditions and without any 

solvent. This prevents the formation of undesired phases through differences in solubility of the 

different starting materials or intermediate compounds as in a high temperature synthesis. Using a 

planetary ball mill with a stoichiometric mixture of the binary metal halides as starting materials, we 

obtained a bright yellow powder, which was treated in a nitrogen-filled glovebox due to its 

anticipated sensitivity towards moisture. Further details of synthesis and characterisation may be 

found in the supplementary information. 

 

Figure 1. a) X-ray diffraction patterns of Cs2[AgIn]Br6 produced through milling times of 100 min (red) and 720 min (blue) 

(normalized and shifted for visibility) compared to the theoretical peak positions and intensities of the elpasolite-type 

structure (green sticks) and perovskite-type structure (blue sticks – largely overlapping the green sticks) The circles and 

stars mark residual reflections of AgBr and CsBr respectively. Structure representations of the ordered elpasolite-type 

structure (b) and disordered perovskite-type structure (c). 

The X-ray diffraction pattern of the reaction product showed a pattern of mediocre quality (Figure 

1a), which is mainly due to the small coherent domain size, as is characteristic for mechanochemical 

syntheses.[17] It should also be noted, that the synthesis of this compound using other methods 

proved difficult as it was reportedly not possible to obtain Cs2[AgIn]Br6 through solution synthesis[9] 

or solid state reaction.[18] Therefore, the disadvantages of a mechanochemical approach for further 

synthesis, namely the low crystallinity of the obtained product, are outweighed by the fact that this 

method is the only one so far to produce this compound. To evaluate the approximate crystallite 

size, we have used a Williamson-Hall type relationship[19] between the refined Lorentzian peak shape 

function and the crystallite size. This yielded in an approximate crystallite size of 10 nm (Figure S5). 

Attempts to anneal the product at temperatures up to 200 °C were unsuccessful and hence, an 

increase of the crystallinity could not be achieved. This was further confirmed in a temperature-

dependent X-ray diffraction measurement, where the sample was heated under nitrogen gas flow 

(Figures S6-S8). It is evident that the double perovskite phase decomposes between 140 °C and 160 



°C with a further phase change at 220 °C (Figure S7). Given the complex powder diffraction pattern, 

we were not successful to distinguish the exact composition of the decomposition product, yet. 

However, the powder pattern does neither match to the starting materials, nor to the phases 

identified as competing phases within the system.[7,8] Nevertheless, we were able to perform a 

Rietveld refinement of the compound in an elpasolite type structure (Figure 1b) using Jana2006,[20] 

which is also adopted by the analogous chloride compound Cs2[AgIn]Cl6.[9] The full details of the 

Rietveld refinement may be found in the ESI (Figure S1 and S2 and Table S1 – Table S14). Our refined 

cell parameter of a = 10.997(5) Å is larger than the one found for Cs2[AgIn]Cl6 (a = 10.47 Å),[9] which 

is in line with the differences in ionic radii for Br– (r = 1.96 Å) and Cl– (r = 1.81 Å).[21] In fact, the 

difference in cell parameters Δa = 0.52 Å between the bromide compound reported here and the 

chloride compound synthesized by Volonakis et al.[9] coincides very closely with the difference in 

atomic radii (taking into account that two anions sit on each cell edge) 2∙Δd = 4∙Δr = 0.6 Å. Given the 

poor crystallinity of the powder pattern and the background introduced from the airtight sample 

holder, the Rietveld refinements yield relatively large uncertainties. The excellent agreement of our 

found cell parameters with the values expectable based on the chloride analogue therefore add 

another level of confidence in the findings presented herein. In order to reach a stable refinement, 

the isotropic displacement parameters of In3+ and Ag+ were constrained to a common value, since 

both ions are isoelectronic and hence indiscernible from X-ray diffraction.  

The elpasolite-type structure can be thought of as a perovskite-type derived structure, where the 

octahedral, corner sharing, B-sites are alternatingly occupied by Ag and In atoms. Corner-sharing 

[InBr6] and [AgBr6] octahedra form the backbone, in the voids of which the Cs atoms occupy 

dodecahedrally coordinated positions. Since In3+ and Ag+ are indiscernible from X-ray diffraction, the 

question whether the B-cations are ordered alternatingly in the elpasolite-type structure, or 

disordered in the perovskite-type structure (with 2∙aPerovskite = aelpasolite) cannot be answered directly 

from X-ray diffraction (Figure 1a-c, see ESI for Rietveld refinements in both structural models). While 

the differences in neutron scattering lengths (bAg = 5.922 fm, bIn = 4.065–0.0539i fm) should, in 

principle, suffice to make a clear distinction between the ordered and disordered structural model, 

the low crystallinity of our samples and the consequently large peak widths, prevented any 

conclusion on the ordering of the structure with this method (Figure S3 and S4).  

Nevertheless, we are confident to attribute the structure to the ordered elpasolite type, due to 

another characteristic of this structure, as compared to the perovskite type structure. While the 

bromide positions in the undistorted perovskite-type are fixed by symmetry to be exactly in the 

middle between two metal positions, and hence only allow one M–Br distance, no such restriction 

exists in the elpasolite-type structure, were the Br atom can be distorted from the symmetrical 

position between two edge-sharing octahedra. This supplementary degree of freedom allows the 

formation of two distinct sorts of [MBr6] octahedra with different M–Br distances. When refining this 

site, the Br atom shifts away from the symmetrical position at ¼ towards one of the metal sites 

yielding in a larger octahedron with dM–Br = 2.84(5) Å and a smaller octahedron with dM–Br = 2.66(5) Å. 

Given the comparably large difference in ionic radii between Ag+ (r = 1.15 Å) and In3+ (r = 0.8 Å) in 

octahedral coordination,[21] it is only logic to assume an ordered elpasolite-type structure with Ag+ in 

the larger octahedra and In3+ in the smaller octahedra. Applying the bond-valence concept to these 

compounds (RIn-Br = 2.41, RAg-Br = 2.22 and b = 0.37 taken from Brese and O’Keeffe[22]), the valence 

sums of In and Ag in these octahedra of 3.05 and 1.12 are close to their charges. In other words, the 

expected bond lengths from trivalent Indium dIn-Br = 2.666 Å and monovalent silver dAg-Br = 2.883 Å 

are very close to the values observed in the structure. In fact, the very same shift is observed in 

Cs2AgInCl6, where the distances are dAg-Cl = 2.85 Å and dIn-Cl = 2.38 Å.[9] The situation for Cs2AgBiBr6 is 

less clear as the differences in size between the Bi-Br and Ag-Br octahedra are less distinct. As a 



matter of fact, two of the three structures reported in the ICSD report the Ag-Br distance to be 

smaller than the Bi-Br distance,[23,24] while the third reports the inverse situation.[6] The second case 

appears more physical at first sight, since the Shannon radius for Bi3+ (1.03 Å) is smaller than the one 

for Ag+. 

To further confirm the physicality of this anion shifting, we performed a structure optimization of 

the elpasolite-type structure. Firstly, we note that the cell parameters of the optimized structure are 

slightly larger than the observed cell parameters (Table S14). Using the PBE exchange-correlation 

potential often produces slightly overestimated cell parameters,[25] but the optimized cell 

parameters do correlate very well with the ones prior obtained using more expensive calculation 

methods.[7,8] Herein, we observe a significant shift of the Br atoms away from the symmetrical 

position towards the In atoms. The M-Br distances in the optimized structure of dAg-Br = 2.869 Å and 

dIn-Br = 2.738 Å are slightly longer than our observed values, which is mainly due to the fact that the 

optimized unit cell parameters are approximately 2 % larger than the observed ones. However, the 

increase is nearly isotropic and the ratio dAg-Br/dIn-Br (DFT) = 1.048 is close to the observed one (dAg-

Br/dIn-Br = 1.068). 

 

Figure 2: Tauc-plot for a direct forbidden transition (red line) with a linear fit in the region of 2.6-3.25 eV (black line, f(x) = 

5.187*x-11.858). The horizotal black line give the base line as g(x) = 0.36. 

While our finding confirms the general conclusion of prior theoretical work that the compound 

should be stable, we find an optical bandgap of Eg = 2.36 eV from diffuse reflectance measurements 

(Figure 2). The optical bandgap was obtained by treating the diffuse reflectance data with the 

Kubelka-Munk function F(R) = (1-R)²/2R (where R is the reflectance of the sample) to obtain a 

calculated absorption combined with a Tauc-plot treatment, as successfully applied on halide 

semiconductors previously.[26] Plotting the data as for a direct forbidden transition with [F(R)∙hν]2/3 

gives a very good linear fit over a wide region above the optical bandgap. This optical bandgap is 

significantly higher than predicted from theoretical calculations (Eg in the range of 1.33 – 1.5 eV).[7,8] 

It is remarkable that the same effect is observed for the chloride analogue, where the bandgap error 

is Eg(expt.)-Eg(theor.) = 0.9 eV.[7-9] In a recent theoretical study, this behavior was explained by parity-

forbidden transitions that make excitations at the bandgap level unlikely.[27] When zooming on the 

onset of the Tauc function below the optical bandgap, one finds an increase of the absorption at 

about 1.7 eV and hence much closer to the theoretically calculated bandgap (Figure S10). This 

discrepancy may be taken as a hint for a parity-forbidden transition in this material as predicted by 

Mitzi et al.[27] 



 

Figure 3: Integrated reflectance signals over the 400- 1100 nm range vs light exposure time. The measurement over 7 

hours (red curve) is shifted by 2.5 in intensity for a better comparison with the measurement over 16 hours (black curve). 

Not only that the observed optical bandgap of 2.36 eV is probably too large for direct use of this 

material in a solar cell, we further observed another problematic characteristic that will prevent this 

material from being used as solar absorber. When exposing the compound to light, a rather quick 

degradation of the material can be observed, clearly visible through a darkening of the illuminated 

area (Figure S11). To quantify the effect of light on Cs2[AgIn]Br6 compound, we performed long–term 

spectrally resolved reflectance measurements with a broadband light source on the sealed sample. 

The decay of the reflection below the band gap of Cs2[AgIn]Br6 (2.3 eV ≈ 540 nm) shows that the 

compound degrades quickly under light illumination (Figures 3, S12 - S14). One can quantify that 

approximately half of the relative change happening in the first ≈40 min (Figure 3). While the 

illuminated area is clearly darkened after the light exposure, the rest of the sample preserved its 

color during the measurement, showing that the degradation was caused by the light, rather than 

being an intrinsic effect of the material (Figure S13). The stability in dark conditions is also supported 

by prior diffuse reflectance measurements of freshly prepared material and after 2 hours of storage 

in in the dark (Figure S9). The light-induced decomposition of the material might happen in analogy 

to AgBr, which decomposes into elemental silver nanoparticles and Br2(g) under light illumination.[28] 

A similar effect of light on the analogous Bi-containing double perovskite Cs2AgBiBr6, but not with 

the same severity, has been observed.[6,24] Further studies on nanocrystals of the material showed 

the formation of silver nanoparticles during the degradation.[29] We would expect that the 

decomposition process in Cs2[AgIn]Br6 would work through a similar pathway. The degradation of 

the material results in a notable change of the reflectance in the region below the bandgap (500-900 

nm) (Figure S14-S17). Furthermore, we observed that the irradiated spot appeared less dark after a 

period of time (Figure S13), which could rather be a consequence of an overall sample degradation 

than a “healing effect” but a more detailed study would clearly be beneficial to understand the light 

degradation of this material. 

In conclusion, we present the successful mechanochemical synthesis of Cs2[AgIn]Br6 which is of great 

interest due to its predicted suitability as potential solar absorber material. However, the measured 

optical bandgap of the compound is 2.36 eV and is approx. 1 eV larger than predicted by theory. This 

relatively large band gap and the observation of a light-induced degradation are significant 

challenges for the application of Cs2[AgIn]Br6 in photovoltaics should be addressed in further studies. 

Still, the proof of its existence in this work is a powerful demonstration of the possibilities of in silico 

materials discovery and their targeted synthesis to screen the chemical space in the most efficient 

way. 
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Supplementary Information 

 

1) Materials and Methods 

Synthesis 

Stoichiometric amounts of InBr3 (Roth, 99.999 %), AgBr (Roth, 99.999 %) and CsBr (Alfa Aesar, 99 %) 

were used as supplied and weighed in a nitrogen filled glovebox (O2 < 10 ppm, H2O < 10 ppm) to 

make up 2 g of reaction mixture and tightly sealed in a 45 ml ball-mill steel jar with 10 mm steel 

balls. The mechanochemical syntheses were performed in a Fritsch Pulverisette 7 premium line 

planetary ball mill with a ball-to-powder ratio of 1:16. Milling was performed in sequences of 10 min 

milling at 400 rpm, interrupted by 2 min of resting time and a sequence of 10 cycles. Increasing the 

reaction time to 72 cycles (10 min milling at 400 rpm and 5 min rest) produces a very similar result 

(Figure 1a) and further characterizations were performed on the material produced at shorter 

reaction time. It should be noted that all samples contained traces of the starting materials, but they 

were so small that the fractions could not be refined in the Rietveld refinements. We attribute their 

presence to the comparably inaccurate weighing procedure within the glovebox that is, for instance, 

affected by small changes in the pressure within the glovebox. More accurate weighing could for 

instance be obtained by increasing the overall mass of the reaction mixture in order to reduce the 

relative error of the scale.  

X-ray Diffraction 

X-ray diffraction patterns were recorded on a Bruker d8 Advance system with an air-tight sample 

dome, filled in the glovebox (see above), with Bragg-Brentano geometry. The diffractometer is 

equipped with a LynxEye detector and Ni-filtered Cu-Kα radiation (λ = 1.5418 Å). Rietveld 

Refinements of the data were performed with Jana2006,[S1] using a manual background and a 

supplementary 5-term Legendre polynomial function to account for the complicated background 

form mainly caused by the sample dome. The isotropic displacement parameters of Ag1 and In1 

were constrained to a common value to account for their similarity in scattering. Very small 

reflections of the starting materials AgBr and CsBr can be found in the pattern, but their intensity is 

so low that a stable refinement could not be achieved, and they were hence excluded from the 

refinement. Based on the intensity of the side phases, we estimate their remaining amount to be 

below 1 vol-%. The temperature-dependent X-ray diffraction was recorded using a nitrogen flushed 

Anton Paar HTK1200N hotstage. A short contact of the sample with air of ≈10 sec could not be 

avoided during the sample loading, but was reduced to a minimum by filling the sample holder in the 

glovebox and transporting it to the instrument in a closed vessel. The reaction chamber was flushed 

with nitrogen prior to loading the sample. After being loaded, the sample was heated from 40 °C to 

360 °C in steps of 20 K. At each step, a powder pattern was recorded for approx. 1 hour. Structure 

visualizations were performed using Diamond 3,[S2] and powder pattern simulations were made 

using PowderCell 2.4.[S3]  

Neutron diffraction 

A sample was measured on both the E9 instrument[S4] and the E6 instrument at the BERII research 

reactor in Berlin. The sample was measured at room temperature within an air-tight vanadium 

container (6 mm diameter) that was filled in the glovebox. 

Measurement details E9: The sample was measured for 9 h with a static detector (λ = 1.7981Å, 

focussing in an angular range, where the 511 reflection of the elpasolite-type structure is located. 



This reflection is not overlapping with a reflection from the perovskite-type and should hence clearly 

indicate the ordered elpasolite-type if observed. 

Measurement details E6: The sample was measured in the complete angular range overnight (≈15 h) 

in order to cover as many reflections as possible with λ = 2.4 Å. The longer wavelength spreads the 

reflections further apart in angular space and hence helps to separate weak reflections. This has to 

be traded against stronger instrumental peak broadening compared to E9. 

DFT calculations 

GGA-DFT calculations were performed using Abinit 8.6.3[S5] with PBE exchange-correlation 

potential[S6] and pseudopotentials created with the ONCVPSP code.[S7] Abinit input files were created 

using the cif2cell program.[S8]  

Optical measurements 

Diffuse reflectance UV-VIS spectrometry was recorded using a Perkin-Elmer Lambda 950 

spectrometer. To this end, the sample was mounted on the back of the integrating Ulbrichts-sphere 

and illuminated with monochromatic light from a tungsten-halogen lamp. The reflection light was 

measured by an avalanche photo diode and calibrated to a white standard. To protect the sample 

from moisture, it was prepared between two glass slides and sealed with high-viscosity vacuum 

grease and duct tape. Long term reflectometry measurements under constant illumination were 

conducted in a custom-built setup, which consist of the Thorlabs SLS2001 tungsten halogen broad 

band light source (center wavelength ≈ 1000 nm) and AvaSpec-2048XL high speed UV- and NIR 

sensitivity back-thinned CCD Spectrometer. 

2) Rietveld Refinement of Cs2[AgIn]Br6 

a) Refinement in Elpasolite-type structure 

 



Figure S1: Observed (black crosses) and refined (red line) powder profile and their difference (blue 

line) together with the calculated peak positions (black ticks, bottom to top) for Cs2[AgIn]Br6, AgBr 

and CsBr. The latter two are shown for information but were not included in the refinement. 

Table S1: Crystal data 

 AgBr6Cs2In F(000) = 90 

Mr = 967.9 Dx = 4.834 Mg m-3 

Cubic, Fm3̅m Cu K radiation,  = 1.5418 Å 

Hall symbol:  -F 4 2 3 T = 293 K 

a = 10.997 (5) Å Particle morphology: irregular, visual 

examination 

V = 1329.9 (10)  Å3 yellow 

Z = 4 10 × 10 mm 

 

Table S2: Data collection 

 Bruker d8 advance  

diffractometer 

Data collection mode: reflection 

Radiation source: sealed tube, Bruker d8 

advance 

Scan method: continuous 

Ni filter monochromator 2min = 20.02°, 2max = 139.97° 

Specimen mounting: powder on off-cut Si with 

dome 

 

 

Table S3: Refinement 

 Rp = 0.028 16 parameters 

Rwp = 0.036 0 restraints 

Rexp = 0.024 4 constraints 

R(F) = 0.095 Weighting scheme based on measured s.u.'s  

5360 data points (/)max = 0.007 

Excluded region(s): from 19.98 to 20.000, from 

139.995 to 140.135 

Background function: Manual background 

combined with 5 Legendre polynoms 

Profile function: Pseudo-Voigt Preferred orientation correction: none 

 

Table S4: Fractional atomic coordinates and isotropic or equivalent isotropic displacement 

parameters (Å2) for (I) 

 x y z Uiso*/Ueq 

Cs1 0.25 0.25 0.25 0.038 (11)* 

In1 0 0 0 0.065 (12)* 



Ag1 0.5 0.5 0.5 0.065 (12)* 

Br1 0.242 (4) 0 0 0.056 (10)* 

 

Table S5: Geometric parameters (Å, º) for (I) 

In1—Br1 2.66 (5) Ag1—Br1vi 2.84 (5) 

    

Br1—In1—Br1i 180.0 (5) Br1vi—Ag1—Br1viii 90 

Br1—In1—Br1ii 90 Br1vi—Ag1—Br1ix 90 

Br1—In1—Br1iii 90 Br1vi—Ag1—Br1x 90 

Br1—In1—Br1iv 90 Br1vi—Ag1—Br1xi 90 

Br1—In1—Br1v 90 Br1vii—Ag1—Br1viii 90 

Br1i—In1—Br1ii 90 Br1vii—Ag1—Br1ix 90 

Br1i—In1—Br1iii 90 Br1vii—Ag1—Br1x 90 

Br1i—In1—Br1iv 90 Br1vii—Ag1—Br1xi 90 

Br1i—In1—Br1v 90 Br1viii—Ag1—Br1ix 180.0 (5) 

Br1ii—In1—Br1iii 180.0 (5) Br1viii—Ag1—Br1x 90 

Br1ii—In1—Br1iv 90 Br1viii—Ag1—Br1xi 90 

Br1ii—In1—Br1v 90 Br1ix—Ag1—Br1x 90 

Br1iii—In1—Br1iv 90 Br1ix—Ag1—Br1xi 90 

Br1iii—In1—Br1v 90 Br1x—Ag1—Br1xi 180.0 (5) 

Br1iv—In1—Br1v 180.0 (5) In1—Br1—Ag1xii 180.0 (5) 

Br1vi—Ag1—Br1vii 180.0 (5)   

 

Symmetry codes:  (i) -x, -y, z;  (ii) z, x, y;  (iii) z, -x, -y;  (iv) y, z, x;  (v) -y, z, -x;  (vi) x, y+1/2, z+1/2;  (vii) -

x+1, -y+1/2, z+1/2;  (viii) z+1/2, x, y+1/2;  (ix) z+1/2, -x+1, -y+1/2;  (x) y+1/2, z+1/2, x;  (xi) -y+1/2, 

z+1/2, -x+1;  (xii) x, y-1/2, z-1/2. 

b) Refinement in perovskite-type structure 



 

Figure F2: Observed (black crosses) and refined (red line) powder profile and their difference (blue 

line) together with the calculated peak positions (black ticks, bottom to top) for Cs2[AgIn]Br6, AgBr 

and CsBr. The latter two are shown for information but were not included in the refinement. 

Table S6: Crystal data 

 Ag0.5Br3CsIn0.5 F(000) = 90 

Mr = 484 Dx = 4.833 Mg m-3 

Cubic, Pm3̅m Cu K radiation,  = 1.5418 Å 

Hall symbol:  -P 4 2 3 T = 293 K 

a = 5.4991 (18) Å Particle morphology: irregular, visual 

examination 

V = 166.29 (9)  Å3 yellow 

Z = 1 10 × 10 mm 

 

Table S7: Data collection 

 Bruker d8 advance  

diffractometer 

Data collection mode: reflection 

Radiation source: sealed tube, Bruker d8 

advance 

Scan method: continuous 

Ni filter monochromator 2min = 20.02°, 2max = 139.97° 

Specimen mounting: powder on off-cut Si with 

dome 

 

 

Table S8: Refinement 



 Rp = 0.027 15 parameters 

Rwp = 0.035 0 restraints 

Rexp = 0.024 4 constraints 

R(F) = 0.090 Weighting scheme based on measured s.u.'s  

5360 data points (/)max = 0.018 

Excluded region(s): from 19.98 to 20.000, from 

139.995 to 140.135 

Background function: Manual background 

combined with 5 Legendre polynoms 

Profile function: Pseudo-Voigt Preferred orientation correction: none 

 

Table S9: Fractional atomic coordinates and isotropic or equivalent isotropic displacement 

parameters (Å2) for (I) 

 x y z Uiso*/Ueq Occ. (<1) 

Cs1 0.5 0.5 0.5 0.046 (9)*  

In1 0 0 0 0.071 (10)* 0.5 

Ag1 0 0 0 0.071 (10)* 0.5 

Br1 0.5 0 0 0.066 (8)*  

 

Table S10: Geometric parameters (Å, º) for (I) 

In1—Ag1 0 Ag1—Br1i 2.7496 (18) 

    

Ag1—In1—Br1iii 0 Br1i—Ag1—Br1 180.0 (5) 

Ag1—In1—Br1iv 0 Br1i—Ag1—Br1ii 90 

Ag1—In1—Br1v 0 Br1i—Ag1—Br1iii 90 

Br1i—In1—Br1 180.0 (5) Br1i—Ag1—Br1iv 90 

Br1i—In1—Br1ii 90 Br1i—Ag1—Br1v 90 

Br1i—In1—Br1iii 90 Br1—Ag1—Br1ii 90 

Br1i—In1—Br1iv 90 Br1—Ag1—Br1iii 90 

Br1i—In1—Br1v 90 Br1—Ag1—Br1iv 90 

Br1—In1—Br1ii 90 Br1—Ag1—Br1v 90 

Br1—In1—Br1iii 90 Br1ii—Ag1—Br1iii 180.0 (5) 

Br1—In1—Br1iv 90 Br1ii—Ag1—Br1iv 90 

Br1—In1—Br1v 90 Br1ii—Ag1—Br1v 90 

Br1ii—In1—Br1iii 180.0 (5) Br1iii—Ag1—Br1iv 90 

Br1ii—In1—Br1iv 90 Br1iii—Ag1—Br1v 90 

Br1ii—In1—Br1v 90 Br1iv—Ag1—Br1v 180.0 (5) 

Br1iii—In1—Br1iv 90 In1—Br1—In1vi 180.0 (5) 



Br1iii—In1—Br1v 90 In1—Br1—Ag1 0.0 (5) 

Br1iv—In1—Br1v 180.0 (5) In1—Br1—Ag1vi 180.0 (5) 

In1—Ag1—Br1i 0 In1vi—Br1—Ag1 180.0 (5) 

In1—Ag1—Br1 0 In1vi—Br1—Ag1vi 0.0 (5) 

In1—Ag1—Br1ii 0 Ag1—Br1—Ag1vi 180.0 (5) 

 

Symmetry codes:  (i) x-1, y, z;  (ii) z, x-1, y;  (iii) z, x, y;  (iv) y, z, x-1;  (v) y, z, x;  (vi) x+1, y, z. 

3) Neutron Measurements 

 

 

Figure S3: Measured diffractogram of Cs2[AgIn]Br6 (red line) at E9 with the calculated peak positions 

and intensities for the perovskite-type structure model (blue sticks) and elapsolite-type model 

(green sticks). The reflections from unreacted AgBr and CsBr are marked with a circle and star 

respectively. 



 

Figure S4: Measured diffractogram of Cs2[AgIn]Br6 (red line) at E6 with the calculated peak positions 

and intensities for the perovskite-type structure model (blue sticks) and elapsolite-type model 

(green sticks). The reflections from unreacted AgBr and CsBr are marked with a circle and star 

respectively. 

4) Crystallite Size Analysis 

 

Figure S5: Williamson-Hall plot for the line broadening in Cs2[AgIn]Br6 refined in the elpasolite-

type structure (see section 1 in the SI) as obtained from the Lorentzian peak profile. The data 

points were fitted with a linear function as f(x) = 0.6402*x + 1.4610. 

The peak shape function was analysed using Jana2006 using its Williamson-Hall analysis tool. 

Herein, the peak broadening over the angular range (as defined through the Lorentzian terms 

used in the Rietveld refinement) was plotted against sin(theta). Given the strong broadening of 



the reflections and the comparably rough estimate of the method, we assumed the instrumental 

broadening to be negligible. With the line broadening term ß as the intersection of the linear fit 

with the y-axis (ß = 1.4609), the apparent crystallite size L can be calculated as ß=K∙λ/L, where K 

is a shape factor and is assumed to be 0.9-1. 

For K = 0.9: L = 9.5 nm; For K = 1: L = 10.5 nm. 

Given the rough estimate nature of this analysis, this absolute value should, nonetheless, not be 

overestimated. 

4) Non-ambient XRD Measurements 

 

Figure S6: comparison of the XRD patterns obtained at 41 °C (red), 140 °C (green), 160 °C (blue) and 

180 °C (pink) with the simulated powder pattern for Cs2[AgIn]Br6 as refined in the elpasolite-type 

structure. The hkl values for the major reflections are given and the diffraction patterns were shifted 

for better visibility. 



 

Figure S7: Heat map plot of the in-situ XRD measurements at higher temperatures. The tics on the y-

axis signify the measurement temperature (for technical reasons, the lowest temperature 

measurement had to be run at 41 °C instead of 40 °C). 

 

Figure S8: Film strip plot of the in-situ XRD measurements at higher temperatures. Zoom on the 

region between 20° and 30° 2 theta. 

5) DFT calculations 

Cut-off energy and k-point grind were converged first until ΔEtot < 0.0001 Ht (2.7 meV). The 

convergence criterion for all further calculations was set to ΔEtot < 10-10 Ht. 

Table S11: Cutoff Energy convergence. The selected parameter is highlighted. 



Cutoff Energy /Ht Total Energy Etot /Ht (Etot+1)-Etot /mHt 

35 -363.044493 -1.47219 

40 -363.0459652 -0.08306 

45 -363.0460482 -0.01966 

50 -363.0460679 -0.02116 

55 -363.0460891 
 

 

 

Table S12: k-point grid convergence. The selected parameter is highlighted. 

k-point grid Total Energy Etot /Ht (Etot+1)-Etot /mHt 

1 1 1 -363.0372655 -8.78279 

2 2 2 -363.0460483 -0.06965 

4 4 4 -363.0461179 -0.00067 

6 6 6 -363.0461186 
 

 

Structure optimisations were performed using the cell parameters as obtained from the refinement 

(a = 10.997 Å) as well as fully optimised ones. The latter is  

Table S13: Structure optimisation results in fixed cell size. 

 x y z 

Cs1 0.25 0.25 0.25 

In1 0 0 0 

Ag1 0.5 0.5 0.5 

Br1 0.245867 0 0 

    

d(Ag-Br) /Å 2.795   

d(In-Br) /Å 2.704   

 

Table S14: Structure optimisation with optimised cell parameters. 

a /Å 11.21228   

    

 x y z 

Cs1 0.25 0.25 0.25 

In1 0 0 0 



Ag1 0.5 0.5 0.5 

Br1 0.244159 0 0 

    

d(Ag-Br) /Å 2.869   

d(In-Br) /Å 2.738   

 

6) Diffuse reflectance measurements 

 

Figure S9: Diffuse reflectance measurement of Cs2[AgIn]Br6 as prepared (red line) as well as after 

two hours in the instrument (blue line). The green curve is a measurement of the pure glass used as 

sample holder. The absorption below 350 nm is caused by the glass. 



 

Figure S10: Tauc-plot for a direct forbidden transition close to the onset of light absorption (red line). 

The black line gives the horizontal base line as g(x) = 0.36. 

7) Long-time reflectance study 

 

Figure S11: Photographs of the sample used for long-time reflectance testing after the first test of 

approximately 16 hours (left) and the second test of 7 hours. The illuminated spots are marked with 

red and blue arrows respectively. 
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II 

II (~ 7 hours) 

I I 



  

Figure S12: Reflectance spectra during measurement 1 (16 h) at given times (left) and as heatmap 

(right). The spectra clearly demonstrate the degradation of the sample over time. 

 

 

 

Figure S13: Reflectance spectra during measurement 1 (16 h) at given times (left) and as heatmap 

(right) normalised to the region 1000-1100 nm. Further to the overall loss in intensity, this 

demonstrates a stronger decrease in the region 500-900 nm than in the overall spectra. 

 

 

 

Figure S14: Reflectance spectra during measurement 2 (7 h) at given times (left) and as heatmap 

(right). The spectra clearly demonstrate the degradation of the sample over time. 
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Figure S15: Reflectance spectra during measurement 2 (7 h) at given times (left) and as heatmap 

(right) normalised to the region 1000-1100 nm. Further to the overall loss in intensity, this 

demonstrates a stronger decrease in the region 500-900 nm than in the overall spectra. 
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