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Abstract This study uses electrocorticography in humans to assess how alpha- and beta-band

rhythms modulate excitability of the sensorimotor cortex during psychophysically-controlled

movement imagery. Both rhythms displayed effector-specific modulations, tracked spectral

markers of action potentials in the local neuronal population, and showed spatially systematic

phase relationships (traveling waves). Yet, alpha- and beta-band rhythms differed in their

anatomical and functional properties, were weakly correlated, and traveled along opposite

directions across the sensorimotor cortex. Increased alpha-band power in the somatosensory

cortex ipsilateral to the selected arm was associated with spatially-unspecific inhibition. Decreased

beta-band power over contralateral motor cortex was associated with a focal shift from relative

inhibition to excitation. These observations indicate the relevance of both inhibition and

disinhibition mechanisms for precise spatiotemporal coordination of movement-related neuronal

populations, and illustrate how those mechanisms are implemented through the substantially

different neurophysiological properties of sensorimotor alpha- and beta-band rhythms.

DOI: https://doi.org/10.7554/eLife.48065.001

Introduction
To control a movement, specific neuronal populations supporting particular features of that move-

ment need to be facilitated while other populations need to be suppressed (Ebbesen and Brecht,

2017; Greenhouse et al., 2015; Mink, 1996). Both operations need to be organized in a precise

spatiotemporal pattern, such that the demands of coordinating body segments for movement are

dynamically solved through the selective excitation and inhibition of relevant and irrelevant sensori-

motor neuronal populations, respectively (Bruno et al., 2015; Dombeck et al., 2009; Gra-

ziano, 2016; Shenoy et al., 2013). One putative mechanism through which this sensorimotor

coordination is implemented is the rhythmic modulation of neuronal local field potentials in the

alpha (8–12 Hz) and beta (15–25 Hz) frequency range (Brovelli et al., 2004; Pfurtscheller and Berg-

hold, 1989; Picazio et al., 2014; van Wijk et al., 2012).

Neuronal local field potentials in the sensorimotor cortex are organized in two prominent spectral

clusters, alpha- and beta-band rhythms, known to be relevant for movement selection and to differ

across several features. For instance, there are differences in the cortico-subcortical loops supporting

alpha- and beta-band rhythms (Bastos et al., 2014; Leventhal et al., 2012; Schreckenberger et al.,

2004; West et al., 2018), and only the latter rhythm has clear modulatory effects on corticospinal
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neurons (Baker et al., 1997; Madsen et al., 2019; Mima and Hallett, 1999; van Elswijk et al.,

2010). Yet, the neurophysiological characteristics of alpha- and beta-band rhythms have often been

studied by aggregating these two rhythms into the same (mu-) rhythm category (Cuevas et al.,

2014; Hari, 2006; Miller et al., 2010), an approach often justified by the partial overlap in their spa-

tial and spectral distributions (Bressler and Richter, 2015; Haegens et al., 2014; Salmelin and

Hari, 1994; Szurhaj et al., 2003) and by the temporal correlation of their power envelopes

(Carlqvist et al., 2005; de Lange et al., 2008; Tiihonen et al., 1989). By aggregating those

rhythms, it has been recently shown that 4–22 Hz activity modulates high-frequency broadband

power in primates’ frontal cortex (Bastos et al., 2018; Johnston et al., 2019), and that 10–45 Hz

activity is spatially organized in traveling waves (Rubino et al., 2006; Takahashi et al., 2015). It

remains unclear, however, whether that aggregation could obscure differential contributions of

those rhythms to movement selection. For

instance, it is an open question whether alpha-

and beta-band rhythms modulate the excitability

of the same neuronal ensembles in the same

direction when a movement is selected across

the sensorimotor cortex (Brinkman et al., 2016;

Brinkman et al., 2014).

Here we used direct recordings from the

human cortical surface (electrocorticography,

ECoG; Figure 1A) to assess the anatomical and

functional specificity of alpha- and beta-band

rhythms and their effects on the local excitability

of sensorimotor neuronal ensembles during per-

formance of a motor imagery task that offers a

window into movement selection. Local cortical

effects were quantified through two complemen-

tary power-spectral metrics of excitability. First,

we considered high-frequency (60–120 Hz) con-

tent in the ECoG signal, a mesoscale correlate of

action potentials and dendritic currents in the

local neural population (Leszczynski et al.,

2019; Manning et al., 2009; Miller et al., 2009;

Ray and Maunsell, 2011; Rich and Wallis,

2017). Second, we considered the slope of the

power-spectral density function (1/f slope), a

putative summary index of synaptic excitation/

inhibition balance (Gao et al., 2017). Further-

more, rather than assuming that alpha- and

beta-band rhythms are spatially stationary across

the sensorimotor cortex (Brinkman et al., 2016;

Brinkman et al., 2014), we examined the spatio-

temporal distribution of the two sensorimotor

rhythms and their cortical effects through two

complementary analyses. First, we considered

the organization of spatially systematic phase

relationships among rhythmic signals (traveling

waves) across the sensorimotor cortex

(Ermentrout and Kleinfeld, 2001; Muller et al.,

2018). Second, we explored the spatiotemporal

relation between rhythm strength and local corti-

cal excitability through analysis of representa-

tional similarity between those spectral markers

(Kriegeskorte et al., 2006).

This neurophysiological characterization of

alpha- and beta-band rhythms is based on a
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Figure 1. Recording electrode locations and

movement imagery task. (A) Neural signals were

recorded from the cortical surface of eleven epilepsy

patients that were implanted with subdural electrode

grids and strips. The electrode locations of all

participants are overlaid on a template brain (black

markers). Electrodes resulting in either a somatomotor

or somatosensory response in the upper limb upon

electrical stimulation are highlighted in white. (B)

Participants imagined grasping the middle-third of a

black-white cylinder with either their left or right hand.

At the response screen, they indicated whether their

thumb was on the black or the white part of the

cylinder at the end of the imagined movement. (C) The

preferred manner in which the cylinder was grasped

(thumb on black or white part, related to overhand vs.

underhand grasping) was modulated as a function of

the cylinder’s orientation and differed for the left and

right hand. Error bars indicate M ± SEM over nine

participants. Lines and shaded areas indicate M ± SEM

of sine-wave fits to individual over-/underhand data

points.

DOI: https://doi.org/10.7554/eLife.48065.002
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principled differentiation of the two sensorimotor rhythms along spectral, anatomical, and move-

ment-related dimensions. Spectrally, alpha- and beta-band signals were disambiguated from arrhyth-

mic spectral components in each individual participant (Wen and Liu, 2016). This procedure

increases spectral precision and physiological interpretability by controlling for the effects of task-

related power-spectral 1/f modulations over those rhythms (He, 2014). Anatomically, the ECoG

recordings were precisely registered to the cortical anatomy of each patient (Stolk et al., 2018), and

sorted according to the sensorimotor responses evoked by electrical stimulation of the electrodes.

Functionally, the movement-related specificity of alpha- and beta-band signals was experimentally

controlled by using imagined movements psychophysically-matched to actual movements

(Figure 1B; Brinkman et al., 2014; Rosenbaum et al., 1995). This procedure is grounded on shared

processes between movement selection and motor imagery. Besides sharing motor control variables

and sensitivity to biomechanical constraints (de Lange et al., 2006; Gentili et al., 2004;

Vargas et al., 2004), movement selection and motor imagery evoke the same activity patterns in

dorsal premotor cortex and in the subthalamic nucleus (Cisek and Kalaska, 2004; Kühn et al.,

2006), leading to similar consequences on the excitability of the corticospinal system (Lebon et al.,

2019). Moreover, using motor imagery increases functional interpretability by avoiding confounding

execution-related somatosensory reafference known to differentially affect post-movement power

dynamics in the alpha- and beta-bands (Alayrangues et al., 2019; Jurkiewicz et al., 2006;

Tan et al., 2016).

Results

Direct cortical recording during psychophysically-controlled movement
imagery
Neurosurgical epilepsy patients implanted with subdural grid and strip electrode arrays for clinical

diagnostic purposes performed up to three sessions of a movement imagery task where they imag-

ined how to grasp an object with either their left or right hand. Eleven patients participated, eight

with left hemisphere arrays, and three with arrays on the right (see overlay on a template brain in

Figure 1A). Two participants experienced difficulties adhering to the task instructions and were

excluded from further analysis.

The motor imagery task involved 60 trials per session. Each trial started with the presentation of a

black-white cylinder on a computer screen. Participants imagined how to grasp the middle-third of

that cylinder with either their left or right hand, in alternating blocks of 10 trials (Figure 1B). After a

fixed amount of time, a response screen appeared where the participants indicated whether their

thumb was on the black or the white part of the cylinder at the end of the imagined movement. The

response screen consisted of two squares on the horizontal plane (one black and one white), where

participants indicated ’black’ or ’white’ by pressing the corresponding button using their left or right

thumb on a button box that they held with both hands. The relative location of the black and white

squares on the screen was pseudo-randomized across trials to prevent the preparation of the thumb

response during the simulation of the grasping movements.

The task was designed to assess whether participants produced imaginary movements conform-

ing to the biomechanical constraints of the corresponding real movements. On each trial, the cylin-

der was pseudo-randomly tilted according to 1 of 15 possible orientations, spanning 0 to 360˚. This

task manipulation resulted in trials affording both overhand and underhand grasping, and trials that

afforded grasping in a single manner only due to biomechanical constraints of the hand. As seen in

Figure 1C, the preferred manner in which participants imagined grasping the cylinder (thumb on

black or white part) depended on the orientation of the cylinder and followed the biomechanical

constraints of the body. This is supported by a psychophysical analysis showing that a sine-wave fit

to the over-/underhand data points explained 81 ± 4% of the variance in the left-hand condition

(M ± SEM; t(8) = 18.4, p<0.001) and 76 ± 4% in the right-hand condition (t(8) = 21.6, p<0.001), con-

sistent with the prediction of two orientation-dependent switch points in each hand’s response

curve, that is the 50% crossings in Figure 1C (Brinkman et al., 2014).

Eight out of nine participants additionally completed a control task that used the same visual

input and response contingencies as the motor imagery task, but where no imagery was required. In

the control task, the surface areas of the cylinder differed slightly across trials, for example 54%
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black and 46% white, and participants reported which side of the black-white cylinder was larger.

This allowed correcting for neural changes unrelated to the movement imagery process, such as

those evoked by the visual input. Participants performed the control task with high accuracy (99.4 ±

0.3% correct, M ± SEM).

In the following sections, we first characterize the anatomical distribution and task-related tempo-

ral profile of neuronal ensembles supporting alpha- and beta-band rhythms across the sensorimotor

cortex, as well as the functional consequences of electrical stimulation of those ensembles. After-

ward, we assess the influence of those rhythms on the spatiotemporal pattern of sensorimotor excit-

ability during imagined movement and the spatiotemporal organization of those rhythms across the

sensorimotor cortex.

Alpha- and beta-band rhythms build on anatomically distinct neuronal
ensembles
Neuronal ensembles producing sensorimotor alpha- and beta-band rhythms across the human sen-

sorimotor cortex were isolated with a four-step procedure. The goal of the procedure is to charac-

terize the spatial distribution of rhythmic and spectrally homogeneous neural activity in sensorimotor

areas in each participant’s subdural grid and strip electrode arrays.

First, for each participant, we selected electrodes that upon electrical stimulation yielded somato-

motor or somatosensory responses of the upper limb contralateral to the cortical grid (i.e., twitches,

movements, tingling of fingers, hand, wrist, arm, or shoulder). This procedure identified cortical

regions supporting sensorimotor components of movement (white electrodes in Figures 1A and

2A). Seven out of nine participants showed such responses, indicating sensorimotor coverage in

these participants. Second, we used irregular-resampling auto-spectral analysis (IRASA, Wen and

Liu, 2016) of the neural signal recorded at the stimulation-positive electrodes. This procedure iso-

lated specific rhythmic activity embedded in the concurrent broadband 1/f modulations. Third, mean

and full-width at half-maximum of alpha and beta spectral distributions were defined for each partic-

ipant using a Gaussian model (red and blue areas of the power-spectra in Figure 2A). This adaptive

approach (Source code 1) avoids having to rely on canonical frequency bands that may not accu-

rately capture the neural phenomena of interest in each individual (Haegens et al., 2014;

Szurhaj et al., 2003). Five out of seven participants had a rhythmic power-spectral component that

overlapped with the 8–12 Hz alpha frequency range, one had a rhythmic component below that

range, and all seven had a rhythmic component that overlapped with the 15–25 Hz beta range (Fig-

ure 2—figure supplement 1). Participant S7 exhibited only a single rhythmic component (in the

beta frequency range) and was excluded from further analysis. On average, the remaining six partici-

pants’ alpha and beta frequency bands were centered on 7.4 ± 0.7 and 16.9 ± 1.1 Hz (M ± SEM),

respectively. Fourth, we localized cortical sites showing relative maxima in alpha and beta power.

We selected electrodes that exceeded the upper limit of the 99% confidence interval for absolute

spectral power in the respective frequency band across all stimulation-positive electrodes defined by

the first step. This analysis yielded 4.0 ± 1.2 alpha and 3.4 ± 0.8 beta peak activity electrodes for par-

ticipants S1 - S5 (M ± SEM, red and blue electrodes in Figures 2A and 1). Due to limited sensorimo-

tor coverage, the number of electrodes could not be narrowed down for participant S6, and the four

stimulation-positive electrodes in this participant were used for the analysis of temporal dynamics

only.

The cortical sites isolated through this principled four-step procedure had systematically different

functional and anatomical properties. All 20 electrodes with alpha-band local maxima were located

posterior to the central sulcus, �2(19)=40, p<0.001 (pre vs. postcentral sulcus), see the red electro-

des in Figure 2D. As seen in the same figure, the 17 blue electrodes with beta-band local maxima

were localized to both sides of the central sulcus, �2(16)=1.1, p=0.3 (7 pre- and 10 postcentral). Fur-

thermore, only 7 out of 30 combined unique electrodes were local maxima for both sensorimotor

rhythms, suggesting that alpha- and beta-band rhythms involve largely different neuronal ensembles,

�
2(29)=17, p<0.001. On average, alpha- and beta-band local maxima were separated by 11.8 ± 2.2

mm (M ± SEM).
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Figure 2. Anatomical and functional dissociation of sensorimotor alpha and beta. (A) Spectral and spatial distributions of alpha and beta rhythmic

activity during imagined movement in two representative individuals. The insets show in log-log space the original power-spectra (in gray) and

extracted arrhythmic 1/f content (black) that gave rise to the participant-specific rhythmic content shown in the main graph on the left. The color axes of

the cortical maps run from minimum in blue to maximum absolute spectral power in yellow. White electrodes yielded somatomotor or somatosensory

responses of the upper limb following electrical stimulation. Red and blue electrodes represent alpha- and beta-band local maxima across the

sensorimotor cortex, respectively. (B) As the cortical maps in A, but for 60 to 120 Hz high-frequency arrhythmic content (HFA) of the ECoG signal. Green

electrodes represent high-frequency-band local maxima across the sensorimotor cortex. (C) Ditto, but for the 1/f slope between 30 and 50 Hz, indicated

by the orange graph sections in the insets of A. The 1/f slope is a putative power-spectral index of synaptic excitation/inhibition balance. Orange

electrodes represent sensorimotor sites with relatively the strongest inhibition, that is the steepest slope. (D) Template brains showing the local maxima

from five individuals visualized on the left hemisphere. Alpha is maximal at electrodes on the postcentral gyrus that yielded somatosensory sensations

of the upper limb following electrical stimulation (red electrodes). In contrast, beta is strongest at electrodes placed over the central sulcus, with

electrical stimulation yielding both movements and somatosensory sensations (blue electrodes). White dashed lines indicate central sulci. (E) Temporal

dynamics of power changes aggregated across the relevant local maxima during imagined movement of the contralateral or ipsilateral arm. Both

neuronal ensembles producing alpha and beta rhythms showed effector-specific modulation during motor imagery, from 0 to 2 s. Shaded areas

indicate ±1 SEM. Colored bars along the x-axes indicate time intervals of statistically significant lateralization effects. Dashed black lines represent mean

activity in the control task, for reference.

DOI: https://doi.org/10.7554/eLife.48065.003

The following figure supplements are available for figure 2:

Figure supplement 1. As in Figure 2A–C, for seven individuals with sensorimotor coverage.

DOI: https://doi.org/10.7554/eLife.48065.004

Figure 2 continued on next page
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Alpha- and beta-band rhythms build on neuronal ensembles with
different sensorimotor properties: effects of electrical stimulation
To test whether the neuronal ensembles generating alpha and beta rhythms had different functional

properties, we probed the somatosensory and motor responses evoked by electrical stimulation of

those ensembles. As indicated in Figure 2D, alpha electrodes yielded predominantly (14 out of 20

electrodes, 70%) somatosensory sensations of the contralateral upper limb following electrical stimu-

lation, �2(19)=12.4, p<0.001. Additionally, a subset of electrodes (3 out of 20, 15%) were part of

equally many stimulation electrode pairs yielding both somatomotor and somatosensory responses.

These observations suggest that alpha activity predominantly supports somatosensory components

of a movement, in line with its anatomical distribution along the postcentral gyrus. By contrast, beta

electrodes were marginally more likely (11 out of 17, 65%) to elicit a somatomotor than a somato-

sensory response of the upper limb following electrical stimulation, �2(16)=2.9, p=0.086.

Alpha- and beta-band rhythms contribute to movement imagery with
different temporal dynamics
Since alpha and beta rhythms are anatomically and functionally separated at the cortical level, we

asked whether the neuronal ensembles supporting the two sensorimotor rhythms provide different

contributions to imagined movements. We considered the temporal dynamics of power changes in

alpha- and beta-band rhythms, aggregated across the relevant local maxima. These temporal

dynamics were highly correlated (r = 0.7 ± 0.1, M ± SEM, p<0.002) and both alpha- and beta-band

power was more strongly attenuated for the hemisphere contralateral to the arm used in the imag-

ined movement, see Figure 2E. Yet it can be seen from the same graph that alpha-band power

increases in the (postcentral) cortex ipsilateral to the arm used for imagery, as compared to baseline

levels (+34% between 910 and 1220 ms, p<0.05; alpha-band power also decreased by 26% and 32%

in the contralateral cortex between 170 and 850 ms and between 1230 and 2000 ms, respectively).

In contrast, beta-band power decreases further in the (pre- and postcentral) contralateral cortex

(�21% between 150 and 760 ms vs. �13% in the ipsilateral cortex between �180 and 580 ms; there

was another statistically significant change of �21% from baseline in the contralateral cortex

between 1450 and 2000 ms). These differential power changes are robust on the single-trial level

and, as seen in Figure 2—figure supplement 2, represented modulations of sustained rhythmic

activity (Jones, 2016; Little et al., 2018).

The temporal dynamics of these power changes are highly consistent with previous observations

obtained from non-invasive electrophysiological recordings over sensorimotor cortex during perfor-

mance of the same task (cf. Figure 3 in Brinkman et al., 2014). In that magnetoencephalography

(MEG) study, it was observed that as selection demands increased (when cylinder orientations

afforded both over- and underhand grasping), alpha-band power increased in the sensorimotor cor-

tex ipsilateral to the arm used for motor imagery, whereas beta-band power concurrently decreased

in the contralateral sensorimotor cortex. We examined the alpha- and beta-band local maxima for

similar effects, although the patients recorded in this ECoG study performed a substantially lower

number of trials than the healthy participants of the MEG study (120 vs. 480, respectively). We

defined high demand trials as trials involving cylinders oriented around the switch points estimated

from each hand’s response curve (range: three orientation bins per switch point, that is �24˚ to

+24˚). We compared alpha- and beta-band temporal dynamics on high demand trials with those on

low demand trials, defined as trials with cylinder orientations orthogonal to the switch points and

covering an equivalent range. It can be seen from Figure 2—figure supplement 3 that the direction

of the effects is consistent with the previous MEG observations. There was a statistically significant

Figure 2 continued

Figure supplement 2. Single-trial broadband/unfiltered cortical signals from alpha- and beta-band local maxima (highlighted red and blue electrodes,

respectively) in two representative individuals.

DOI: https://doi.org/10.7554/eLife.48065.005

Figure supplement 3. As in Figure 2E, but with mean temporal dynamics of high demand trials (solid lines, cylinder orientations that afforded both

overhand and underhand grasping) and low demand trials (dashed lines, cylinder orientations that afforded grasping in a single manner only).

DOI: https://doi.org/10.7554/eLife.48065.006
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decrease in contralateral beta rhythmic activity with increasing demand. However, the increase in

ipsilateral alpha rhythmic activity did not pass the statistical threshold. Concerns regarding the lim-

ited number of trials refrained us from using the effects of task demand for further analyses.

Alpha- and beta-band rhythms arise from spatiotemporally unrelated
neuronal ensembles
Since the temporal dynamics of alpha and beta rhythms aggregated across local maxima is function-

ally divergent, we asked whether that dissociation persists at more fine-grained levels of analysis

across ECoG electrodes and trial-by-trial sensorimotor demands. First, we considered the temporal

and spatial correlations between alpha- and beta-band power both between their respective local

maxima (Figure 3A) and across the same functionally demarcated sensorimotor cortex (Figure 3B,

C). It can be seen from the leftmost bars in these figures that alpha- and beta-band rhythms were

temporally as well as spatially uncorrelated (all BF01 >1.56 in favor of the null hypothesis of no corre-

lation). This finding is a merit of the current procedure separating alpha and beta rhythmic activity

from concurrent 1/f modulations in the power spectrum, as power in the two frequency bands was

correlated when this shared variance was not accounted for (Figure 3—figure supplement 1). Sec-

ond, we considered the representational similarity of the temporal and spatial activity patterns

evoked during movement imagery in the alpha- and beta-bands (Kriegeskorte et al., 2008). Instead
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Figure 3. Spatiotemporal dissociation of sensorimotor alpha and beta. (A - C) Temporal, spatial, and

spatiotemporal correlations between alpha, beta, high-frequency activity (HFA), and the 1/f slope. Alpha and beta

rhythms were weakly correlated in time and space during movement. Both alpha and beta showed a positive

relationship with high-frequency activity, yet only beta-band power closely tracked changes in the 1/f slope across

sensorimotor cortex (B and C). *: p<0.05; **: p<0.001. (D - F) Alpha and beta rhythms showed weak similarity in

sensitivity to sensorimotor demands across different movements. Echoing the correlations shown in panels A to C,

beta is largely sensitive to the same trial-by-trial demands as the 1/f slope, for both sensorimotor demands

contained by temporal dynamics (D) and activity patterns (E and F).

DOI: https://doi.org/10.7554/eLife.48065.007

The following figure supplements are available for figure 3:

Figure supplement 1. As in Figure 3A–C, but without accounting for shared variance in alpha- and beta-band

frequency bands originating from concurrent 1/f modulations in the power-spectrum.

DOI: https://doi.org/10.7554/eLife.48065.008

Figure supplement 2. As in Figure 3A–C, but with high-frequency activity and the 1/f slope index based on the

rhythmic component rather than on the arrhythmic component of the power-spectrum.

DOI: https://doi.org/10.7554/eLife.48065.009
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of calculating direct correlations between the temporal dynamics or the spatial distribution of alpha-

and beta-band power as above, this second-order correlation analysis quantifies the similarity in sen-

sitivity to sensorimotor demands across trials, independently from the frequency-specific neural pat-

terns evoked within a trial. Alpha- and beta-band rhythms showed weak resemblances in sensitivity

to trial-by-trial demands, for both sensorimotor demands contained by temporal dynamics and activ-

ity patterns (Figure 3D–F, BF01s of 1.06, 1.01, and 0.73, respectively). These relations between

alpha- and beta-band effects indicate that the neuronal ensembles producing these two sensorimo-

tor rhythms have no substantial spatiotemporal correspondences, neither within trials nor across

trials.

Alpha- and beta-band rhythms have different influence on local
excitability
The previous sections provide evidence for the notion that the neuronal ensembles generating

alpha- and beta-band rhythms have different spatiotemporal characteristics during motor imagery,

as well as different peripheral consequences following electrical stimulation. These observations con-

firm and qualify the findings of previous ECoG and SEEG reports on differences between alpha- and

beta-band rhythms over the sensorimotor cortex (Brovelli et al., 2004; Crone et al., 1998;

Jasper and Penfield, 1949; Saleh et al., 2010; Szurhaj et al., 2003; Toro et al., 1994;

Vansteensel et al., 2013). Those clear differences between alpha- and beta-band rhythms raise the

issue of understanding the functional consequences of those differences on the excitability of neuro-

nal populations in the sensorimotor cortex during movement imagery. We indexed those conse-

quences through spectral markers of local population-level activity (arrhythmic high-frequency

activity between 60 and 120 Hz; Manning et al., 2009; Miller et al., 2009; Ray and Maunsell,

2011) and of local excitation/inhibition balance (steepness of the power-spectral 1/f slope, esti-

mated between 30 and 50 Hz; Gao et al., 2017). High-frequency activity showed spatial and tempo-

ral correspondences with both alpha- and beta-band rhythmic activity during movement imagery

(Figure 3B,C). This is also seen in the spatial distribution of local maxima in high-frequency activity

(green electrodes in Figure 2D), which were localized to both sides of the central sulcus and

involved neuronal ensembles producing alpha- or beta-band rhythmic activity (14/22: four producing

alpha, four producing beta, six producing both alpha and beta, and eight with no overlap). However,

the lack of clear effector-specificity (Figure 2E) limits the functional relevance of this index.

Unlike high-frequency activity, the 1/f slope index showed clear functional specificity. This index

was sensitive to the laterality of the effector involved in the motor imagery task (Figure 2E). This

index was also spatially specific, with a focal reduction of excitation/inhibition ratio (i.e., steepest 1/f

slopes, indicating stronger local inhibition) at electrodes placed over the central sulcus yielding pre-

dominantly somatomotor rather than somatosensory responses following electrical stimulation

(�2(27)=10.3, p<0.002; orange electrodes in Figure 2C,D). The spatial specificity of the 1/f slope

index is further supported by a direct comparison with the spatial distribution of high-frequency

activity: despite superficially similar distributions across the central sulcus (Figure 2D), only 3 out of

47 combined unique electrodes were both local maxima for high-frequency activity and local inhibi-

tion as indexed by the 1/f slope. One of the main findings of this study is that the 1/f slope index

had a differential relationship with the two sensorimotor rhythms. Figure 3A–C illustrates the recip-

rocal changes observed between beta-band activity and the 1/f slope during task performance.

Namely, stronger reductions in beta-band power correlated with stronger increases in local excitabil-

ity across sensorimotor cortex. Furthermore, electrodes with local maxima in beta-band activity and

local inhibition were similarly distributed across the central sulcus, with a 59% (10/17) spatial corre-

spondence. Given that both beta-band and 1/f slope indexes were similarly responsive to the lateral-

ity of the effector involved in the motor imagery task (Figure 2E), the spatiotemporal

correspondence between beta-band rhythm and 1/f slope indicates that the stronger beta-band

power reduction in the somatomotor cortex contralateral to the selected arm is associated with a

relative disinhibition of somatomotor neuronal populations. This inference is supported and general-

ized by the representational similarity analyses of the temporal and spatial relations between those

two spectral indexes evoked during movement imagery (Figure 3D–F). These analyses indicate that

there is a robust spatiotemporal similarity across different imagined movements between beta-band

power and 1/f slope, over and above the within-trial correlations captured in Figure 3A–C.
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In contrast, the 1/f slope index had a different relationship with alpha-band responses to task

demands. The putative index of excitation/inhibition balance was not spatially related to the alpha-

band response (Figure 3B,C), with a 25% correspondence (5/20) between electrodes with local max-

ima in alpha-band activity and local inhibition. However, there was a significant temporal anti-corre-

lation between local maxima of alpha-band power and 1/f slope (Figure 3A). This observation

suggests that the stronger alpha-band power evoked in the somatosensory cortex ipsilateral to the

selected arm (Figure 2E) is associated with a relative but spatially unspecific inhibition of the sensori-

motor cortex. This inference is partially supported by the representational similarity analyses

(Figure 3D–F). Although the trial-by-trial variation in spatiotemporal patterns of alpha-band power

and 1/f slope is significantly related (Figure 3F), there are no clear similarities between those two

spectral indexes when only temporal or spatial profiles are considered (Figure 3D,E).

Alpha- and beta-band rhythms propagate independently across
sensorimotor cortex
The differential relation of alpha- and beta-band rhythms to (dis)inhibition of the sensorimotor cortex

raises the issue of understanding whether that (dis)inhibition is propagated in a consistent spatio-

temporal pattern. This possibility is functionally relevant: It has been suggested that there are consis-

tent phase relationships among rhythmic cortical signals, organized in sparse traveling waves that

could facilitate sequences of activation in proximal-to-distal muscle representations in preparation

for reaching behavior (Ermentrout and Kleinfeld, 2001; Muller et al., 2018). We explored this pos-

sibility by assessing the traveling wave characteristics of ECoG signals filtered at individual alpha-

and beta-band frequencies and examining the functional relationship of those traveling waves with

neuronal ensembles generating alpha and beta rhythms.

Visual inspection of single-trial filtered activity indicated that the phase of alpha- and beta-band

signals varied systematically across the electrode array during motor imagery (Figure 4A). To quanti-

tatively verify that rhythmic activity spatially progressed as traveling waves across sensorimotor cor-

tex, we estimated spatial gradients of instantaneous rhythm phase computed using the Hilbert

transform at each electrode across the recording array. These spatial gradients represent distance-

weighted phase shifts between cortical signals at neighboring recording electrodes, where positive

phase shifts correspond to signals that have covered a greater distance along the unit circle and

thus lead the oscillation. To test whether the spatial gradients behaved like propagating waves at

the single-trial level, we computed the phase-gradient directionality (PGD), a measure of the degree

of phase-gradient alignment across an electrode array (Rubino et al., 2006). As seen through the

small cone-shaped arrows positioned over each corresponding grid-electrode in Figure 4A, both

alpha and beta phase gradients exhibited a higher degree of alignment across sensorimotor cortex

than expected by chance (mean alpha PGD = 0.37, mean beta PGD = 0.35, p<0.001 in each patient

for both alpha and beta, estimated from shuffled data). The traveling waves moved in a consistent

direction across trials and over trial-time (circular histograms in Figure 4A; Rayleigh test of unifor-

mity, p<10�18 in 5 out of 6 patients for alpha, p<10�91 in each patient for beta). Across participants,

mean propagation speeds of the sensorimotor waves ranged between 5 and 9 cm/s for alpha and

between 11 and 21 cm/s for beta (Figure 4B), consistent with previous reports of traveling beta

waves in motor cortex (Rubino et al., 2006) and in the lower range of traveling alpha waves

observed in posterior cortex (Bahramisharif et al., 2013; Halgren et al., 2017; Zhang et al., 2018).

These observations corroborate and extend previous studies by showing that both alpha- and beta-

band rhythms are organized in waves traveling across the sensorimotor cortex (Halgren et al., 2017;

Takahashi et al., 2015; Zhang et al., 2018).

A novel finding of this study is that alpha and beta traveling waves propagate independently

across sensorimotor cortex, as indicated by the distribution of propagation directions in individual

participants (Figure 4A, Videos 1 and 2) and by the mean probability distribution over participants

(Figure 4C; mean Kullback-Leibler divergence = 0.10, p<0.001 in each patient, estimated from shuf-

fled data). Alpha waves propagated in a caudo-rostral direction, while beta waves advanced in a ros-

tro-caudal direction (Figure 4C, Figure 4—figure supplement 1). This analysis also revealed that

electrodes sampling alpha- or beta-band rhythms with larger amplitudes were not sources or sinks

of the alpha- or beta-traveling waves: Previously identified local maxima in alpha- and beta-band

activity did not have a systematic phase advantage or delay in relation to other electrodes across

the sensorimotor cortex (Figure 4A). Nevertheless, traveling-wave-like activity at these cortical sites
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was task-relevant, as indicated by an increase in directional consistency (DC) of those waves during

movement imagery. Directional consistency measures the degree of consistency across trials in the

phase-gradient direction (Zhang et al., 2018). As seen in Figure 4D, alpha rhythms propagated in a

more consistent direction during imagined movement of the ipsilateral arm, while the propagation

Figure 4. Dissociation of sensorimotor alpha and beta traveling waves. (A) Propagation of alpha and beta rhythmic activity during imagined movement

in two representative individuals. Example cortical signals are of the same data segment in each participant but filtered at individual alpha and beta

frequencies. Red and blue markers indicate electrodes previously identified as alpha- and beta-band local maxima, respectively. Cortical phase maps

indicate the average phase at each cortical site relative to a central sensorimotor reference electrode. Small cone-shaped arrows indicate the mean

propagation direction at each stimulation-positive electrode, with arrow size weighted by the local phase gradient magnitude. Large arrows indicate

the mean propagation direction across sensorimotor cortex, with arrow size weighted by the alignment of sensorimotor gradients (phase gradient

directionality, PGD). (B) Mean propagation speeds of traveling alpha and beta waves over participants. (C) Mean probability distribution of traveling

wave direction over participants. Alpha rhythm propagation is maximal in a caudo-rostral direction (red distribution), while beta rhythms predominantly

moved in a rostro-caudal direction (blue distribution). Dashed black circle represents a uniform distribution of propagation directions, for reference. (D)

Alpha traveling waves propagated more consistently through alpha-band local maxima during imagined movement of the ipsilateral arm (directional

consistency, DC). In contrast, beta waves traveled more consistently through beta-band local maxima during imagined movement of the contralateral

arm. Colored bars along the x-axes indicate time intervals of statistically significant DC changes from baseline levels for the effector involved in the

imagined movement.

DOI: https://doi.org/10.7554/eLife.48065.010

The following figure supplements are available for figure 4:

Figure supplement 1. Cross-correlation functions of alpha and beta rhythmic activity at rostro-caudal electrode pairs on the sensorimotor cortex of two

representative individuals.

DOI: https://doi.org/10.7554/eLife.48065.011

Figure supplement 2. As in Figure 4D, but with directional consistency of wave propagation for high demand trials (solid lines, cylinder orientations

that afforded both overhand and underhand grasping) and for low demand trials (dashed lines, cylinder orientations that afforded grasping in a single

manner only).

DOI: https://doi.org/10.7554/eLife.48065.012
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direction of beta rhythms became more consis-

tent during imagined movement of the contra-

lateral arm, as compared to baseline levels (see

Figure 4—figure supplement 2 for the effects

of task demand). Together, these observations

indicate that the broader spatiotemporal con-

text in which rhythmic cortical signals are

embedded constitute an important component

of the movement selection demands evoked by

motor imagery, and that this spatiotemporal

organization differs for alpha and beta rhythms.

Discussion
This ECoG study qualifies the spatiotemporal

dynamics of alpha- and beta-band rhythms and

their effects on the local excitability of sensori-

motor neuronal ensembles during movement

imagery. Rhythmic signals in the alpha- and

beta-band were prominent in the patients’ sen-

sorimotor cortex, sustained across each trial,

motorically relevant, and organized in spatially

consistent waves of phase relationships traveling

along opposite directions. In line with previous

reports (Brinkman et al., 2014; Crone et al.,

1998; de Lange et al., 2008; Miller et al.,

2010), this study shows that the power envelopes of those two rhythms differentiated between

imagined movements involving the contralateral or the ipsilateral arm. This study also confirms his-

torical accounts by showing that alpha- and beta-band rhythms arise from anatomically and function-

ally distinct neuronal ensembles (Berger, 1938; Jasper and Penfield, 1949; Salmelin and Hari,

1994). Local maxima of alpha-band power were distributed on the postcentral gyrus, and electrical

stimulation of those electrodes yielded somatosensory sensations of the upper limb. Sensorimotor

beta was strongest at electrodes placed over the central sulcus, with electrical stimulation yielding

both movements and somatosensory sensations. This study provides a novel piece of empirical evi-

dence showing that sensorimotor alpha and beta rhythms have different neurophysiological proper-

ties, (dis)inhibiting dissociable sensorimotor neuronal ensembles. Namely, beta rhythmic activity

closely tracked task-related modulations of the 1/f slope of the power-spectrum, an index of excita-

tion/inhibition balance (Gao et al., 2017). The relation between beta and 1/f slope held across the

spatial extent of the sensorimotor cortex, and within trials as well as across trials. When the 1/f slope

transiently increased in somatomotor cortex during movement imagery, indicating a shift in balance

from relative inhibition to excitation, beta rhythmic activity showed a focal reduction in signal

strength. These findings suggest that imagery-related reduction in beta-band power, predominant

over the somatomotor cortex contralateral to the selected arm, is associated with a relative disinhibi-

tion of somatomotor neuronal populations. This beta-band movement-related disinhibition was

embedded within traveling waves moving along a rostro-caudal direction across the fronto-parietal

cortex. There was also a relative increase in alpha-band power in the somatosensory cortex ipsilat-

eral to the selected arm, an effect that was associated with a spatially unspecific inhibition of the

sensorimotor cortex. This alpha-band inhibition was embedded within traveling waves along a

caudo-rostral direction across the parieto-frontal cortex. We draw two main conclusions from these

human neurophysiological observations. First, the evidence points to the relevance of both disinhibi-

tion and inhibition mechanisms for precise spatiotemporal coordination of movement-related neuro-

nal populations. Second, the evidence points to the dramatically different neurophysiological

properties of sensorimotor alpha and beta rhythms, questioning the practice of aggregating those

rhythms when studying cerebral function.

These findings emphasize how increased excitability of the sensorimotor cortex goes hand in

hand with increased (and spatially widespread) inhibition. Speculatively, the spatiotemporal profile

Video 1. Time-lapse video of concurrent traveling

alpha and beta waves in participant S1 during

movement imagery. Cortical phase maps indicate the

average phase at each cortical site relative to a central

sensorimotor reference electrode. Small cone-shaped

arrows indicate the mean propagation direction at

each stimulation-positive electrode, with arrow size

weighted by the local phase gradient magnitude.

Large arrows indicate the mean propagation direction

across sensorimotor cortex, with arrow size weighted

by the alignment of sensorimotor gradients (phase

gradient directionality, PGD). Time is in seconds after

cylinder appearance.

DOI: https://doi.org/10.7554/eLife.48065.013
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of increased excitability observed in the contra-

lateral sensorimotor cortex might support the

coordination of multiple sensorimotor cortical

ensembles toward a movement-effective neural

subspace (Elsayed et al., 2016; Shenoy et al.,

2013), possibly implemented as dynamic modu-

lations in direction- and frequency-dependent

spatial arrangements of neuron receptor fields

(Heitmann et al., 2013). Accordingly, beta

waves in the motor cortex carry most move-

ment-related information during the preparatory

phase of a movement (Rubino et al., 2006). The

spatially unspecific inhibition of the ipsilateral

sensorimotor cortex suggests that coordinating

complex movements also requires suppression

of task-irrelevant movements and in particular inhibition of their somatosensory correlates. It seems

unlikely that this alpha inhibitory effect was driven by somatosensory attention to the hand used dur-

ing imagery since there were no lateralized power changes in the prestimulus baseline period, dur-

ing which participants knew which hand they would use.

Interpretational issues
Previous micro-ECoG studies in non-human primates have shown systematic phase relationships

between motor cortical signals less than a millimeter apart (Rubino et al., 2006; Takahashi et al.,

2015). Here, we add to those findings by showing that alpha- and beta-band traveling waves propa-

gate across the human sensorimotor cortex, independently. High-density laminar recordings of alpha

and beta rhythmic activity might be able to test whether those rhythms propagate through different

cortical layers (van Kerkoerle et al., 2014). Another possibility is that different cortico-thalamo-corti-

cal and cortico-striatal-thalamo-cortical circuits lead to different alpha and beta traveling waves

across the sensorimotor cortex (Bastos et al., 2014; Schreckenberger et al., 2004; West et al.,

2018). The latter possibility could accommodate the observation that sources/sinks of the traveling

waves were independent from electrodes sampling rhythms with larger amplitudes, and that there

were no obvious phase-shifts between neighboring electrodes spanning a cortical fold. Large-scale

corticothalamic recordings of alpha and beta waves might be able to define the precise mechanisms

supporting those traveling waves over human sensorimotor cortex (Halgren et al., 2017).

Alpha- and beta-band rhythms are embedded within (but physiologically different from) arrhyth-

mic broadband 1/f components of the signal, and their spectral distributions differ between individu-

als (a case in point is participant S7 lacking a rhythmic component in the alpha frequency range).

Supplementary analyses indicate that ignoring those facts, as standard analytical pipelines do, led to

strong but spurious correlation between alpha and beta power envelopes. Furthermore, the spatial

separation between alpha- and beta-band cortical sources might prove too subtle for many non-

invasive electrophysiological recordings (Brinkman et al., 2014; Fransen et al., 2016). These consid-

erations might help to understand why the two sensorimotor rhythms are often aggregated into the

same (mu-) rhythm category (Cuevas et al., 2014; Hari, 2006). Having shown that alpha and beta

rhythms are anatomically and functionally distinct phenomena, it becomes relevant to know whether

the two rhythms can also be systematically differentiated in other frontal brain regions

(Bastos et al., 2018; Johnston et al., 2019).

The neural effects measured in this study did not always have a clear behavioral correlate beyond

effector-specificity. By contrast, a previous MEG study using the same task showed clear and oppo-

site relationships between alpha/beta effects and imagery demands (Brinkman et al., 2014). This

ECoG study involved individuals undergoing presurgical monitoring, a relatively rare clinical proce-

dure with limited opportunities for experimentally controlled observations. The direction of neural

effects related to task demand was consistent with the previous observations, yet statistical power

might have been too low for effects based on a subset of trials. Accordingly, this study refrained

from in-depth explorations of the effects of task demand, focusing on the ECoG recordings’ anatom-

ical precision and signal-to-noise ratio to provide a clear neurophysiological characterization and dif-

ferentiation of alpha and beta rhythmic activity in the human sensorimotor system.

Video 2. As in Video 1, for participant S2.

DOI: https://doi.org/10.7554/eLife.48065.014
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Conclusions
The current findings indicate that alpha- and beta-band rhythms, besides having different anatomical

distributions and traveling along opposite directions across the sensorimotor cortex, have different

effects on cortical excitability. Increased alpha rhythmic activity in the somatosensory cortex ipsilat-

eral to the arm selected for motor imagery is associated with spatially-unspecific cortical inhibition,

whereas a reduction in beta rhythmic activity over contralateral motor cortex is associated with a

spatially-focal shift in excitation/inhibition balance toward excitation. These findings increase our

understanding of how cortical rhythms can mechanistically support the precise spatiotemporal orga-

nization of neuronal ensembles necessary for coordinating complex movements in humans.

Materials and methods

Key resources table

Reagent
type (species)
or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

FieldTrip FieldTrip Stolk et al., 2018 Integrated analysis
of human
intracranial data

Software,
algorithm

FreeSurfer FreeSurfer Dale et al., 1999 Cortical
surface extraction

Participants
Eleven participants (7 males, 14–45 y of age) were implanted subdurally with grid and strip electrode

arrays on the cortical surface to localize the seizure onset zone for subsequent surgical resection

(Figure 1A). The electrode arrays (10 mm inter-electrode spacing, 2.3 mm exposed diameter; Ad-

Tech, Racine, USA) were placed at the University Medical Center Utrecht, The Netherlands, on either

right or left (eight cases) hemisphere. The number and anatomical location of the electrodes varied

across participants, depending on the clinical considerations specific to each case (mean number of

electrodes ± SEM: 81.3 ± 11.2). The sample size was determined by the availability of participants

with (partial) electrode coverage of the central sulcus during the funding period of the project (four

years). All participants had normal hearing and normal vision, and gave informed consent according

to institutional guidelines of the local ethics committee (Medical Ethical Committee of the University

Medical Center Utrecht), in accordance with the declaration of Helsinki. No seizures occurred during

task administration. Two participants had difficulties adhering to the task instructions and frequently

confused left- and right-hand conditions of the study. One of these participants had cavernous mal-

formations in temporoparietal and frontal cortex. The other participant had experienced medical

complications prior to task performance, leaving nine participants for analysis of the behavioral data.

Two participants had no electrode coverage of upper-limb sensorimotor areas as indicated by elec-

trocortical stimulation, leaving seven participants for analysis of the neural data.

Movement imagery task
Participants were positioned in a semi-recumbent position in their hospital bed and performed up to

three sessions of a movement imagery task (mean number of sessions ± SEM: 2 ± 0.2). In this task,

participants imagined grasping the middle-third of a black-white cylinder with either their left or

right hand (Figure 1B). The cylinder, tilted according to 1 of 15 possible orientations (24˚ apart, pre-

sented pseudo-randomly, size 17.5 � 3.5 cm), was presented on a gray background at the center of

the computer screen that was placed within reaching distance in front of the participant. The dura-

tion for which the cylinder stayed on the screen was adjusted for each participant (2–5 s) such that

they could comfortably perform the task at a pace that suited their current physical and mental state.

Next, a response screen appeared where the participants indicated whether their thumb was on the

black or the white part of the cylinder at the end of the imagined movement. The response screen

consisted of two squares on the horizontal plane (one black and one white), where participants indi-

cated ’black’ or ’white’ by pressing the corresponding button (left or right button) using the left or

right thumb on a button box that they held with both hands. The order of the squares (black - left,
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white - right, or vice versa) was pseudo-random across trials to prevent the preparation of a

response during the simulation of the grasping movements. After the response, a fixation cross

appeared on the screen for 3 to 4 s (drawn randomly from a uniform distribution), after which the

next trial started (intertrial interval). A single session consisted of 60 trials (10 min). The hand used to

imagine the movement alternated every ten trials, prompted by a visual cue. The task exploited the

fact that certain cylinder orientations afforded both overhand and underhand grasping, whereas

other orientations afforded grasping in a single manner only, due to biomechanical constraints of

the hand (Figure 1C). This task manipulation provided a test of participants’ imagery performance

as to whether their preferred manner for grasping the cylinder (thumb on black or white part) was

modulated by biomechanical constraints, varying as a function of cylinder orientation and differing

for the left and right hand.

Eight out of nine participants whose behavioral data are reported (5 out of 6 participants whose

neural data are reported), completed a control task that used the same visual input and response

contingencies, but where no imagery was required. In the control task, participants reported which

side of the black-white cylinder was larger. That is, the surface areas differed slightly across trials,

for example 54% black and 46% white, or vice versa. This allowed controlling for neural changes

unrelated to the movement imagery process, such as those evoked by visual input during task

performance.

ECoG acquisition and analysis
Electrophysiological data were acquired using the 128-channel Micromed recording system (Treviso,

Italy, 22 bits), analog-filtered between 0.15 and 134.4 Hz, and digitally sampled at 512 Hz. During

the recordings, participants were closely monitored for overt movements or distracting events.

Epochs were these occurred were excluded from the analysis (6 ± 2% of the total amount of trials).

Anatomical images were acquired using preoperative T1-weighted Magnetic Resonance Imaging

(MRI, Philips 3T Achieva; Best, The Netherlands) and post-implantation Computerized Tomography

(CT, Philips Tomoscan SR7000).

Data were analyzed using the open-source FieldTrip toolbox (Oostenveld et al., 2011), perform-

ing an integrated analysis of anatomical and electrophysiological human intracranial data. The proce-

dure for the precise anatomical registration of the electrophysiological signal in each patient is

described in detail elsewhere (Stolk et al., 2018). In brief, electrode locations in relation to the

brain’s anatomy and the electrophysiological signal were obtained through identification of the elec-

trodes in a post-implantation CT fused with the preoperative MRI. To correct for any displacement

following implantation, the electrodes were projected to individually rendered neocortical surfaces

along the local norm vector of the electrode grid (Hermes et al., 2010). We used FreeSurfer to

extract anatomically realistic neocortical surfaces from each participant’s MRI (Dale et al., 1999).

FreeSurfer also allows registering the surfaces to a template brain on the basis of their cortical gyrifi-

cation patterns (Greve et al., 2013). Using these surface registrations, we linked the electrodes from

all participants to their template homologs, preserving the spatial relationship between cortical fold-

ing and electrode positions in each participant. This allowed for anatomically accurate comparison of

local maxima in neural activity across participants.

The electrophysiological signals were visually inspected to ensure that they were free of epileptic

activity or other artifacts (2 ± 2% of the total amount of trials excluded). Next, the data were digitally

filtered (1–200 Hz bandpass, Butterworth, zero-phase forward and reverse), removed from power

line noise components (50 Hz and harmonic band stop), and re-referenced to use an average refer-

ence. This produced cortical signals removed from activity common to all channels. We focused the

analysis on the trial epochs during which the participants imagined a movement, preceded by the

appearance of the black-white cylinder. Using time-resolved Fourier analysis, we calculated spectral

power with 1000 ms rolling Hanning-tapered windows at 50 ms increments. This produced time-fre-

quency estimates up to 200 Hz with a 1 Hz spectral and a 20 Hz temporal resolution. Inter-session

offsets in absolute spectral power were compensated for using linear regression analysis considering

mean power across all time-frequency estimates in a session. For temporal dynamics analysis, the

spectral data were expressed as percentage changes from bootstrapped spectral power during a

pre-cylinder baseline interval (�750 to �500 ms to cylinder onset) and resampled to identical dura-

tion across participants (2 s, after anti-aliasing). Differences in spectral power between the left- and

right-hand conditions were evaluated using nonparametric cluster-based permutation statistics (two-
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sided dependent samples t-tests, p<0.05, 10,000 randomizations; Maris and Oostenveld, 2007),

considering electrodes containing local maxima in neural activity as the unit of observation.

Spectral features extraction from sensorimotor cortex
Alpha and beta spectral and anatomical distributions were defined on a participant-by-participant

basis, using a four-step procedure. First, electrodes covering cortical regions supporting sensorimo-

tor components of movement were identified using Electrocortical Stimulation Mapping (ESM,

Micromed IRES 600CH), a standard clinical practice involving the pairwise electrical stimulation of

adjacent cortical electrodes (typically at 50 Hz for 1–2 s, with a 0.2–0.5 ms pulse duration and 1–4

mA intensity). Intensity of the stimulation was individually tailored, maximizing effect size while mini-

mizing the occurrence of after-discharges. For each participant, we selected electrodes that were

part of a stimulation electrode pair yielding motor or somatosensory responses of the upper limb

contralateral to the cortical grid (twitches, movements, tingling of either fingers, hand, wrist, arm or

shoulder).

Second, we used irregular-resampling auto-spectral analysis (IRASA, Wen and Liu, 2016) of the

signal recorded at the stimulation-positive electrodes, allowing distinguishing rhythmic activity from

concurrent power-spectral 1/f modulations. This technique virtually compresses and expands the

time-domain data with a set of non-integer resampling factors prior to Fourier-based spectral

decomposition, redistributing rhythmic components in the power-spectrum while leaving the

arrhythmic 1/f distribution intact. Taking the median of the resulting auto-spectral distributions

extracts the power-spectral 1/f component, and the subsequent removal of the 1/f component from

the original power-spectrum offers a power-spectral estimate of rhythmic content in the recorded

signal. It should be noted that the extracted spectral components no longer contain phase informa-

tion and that their estimated magnitudes are susceptible to any phase relationships between the

two components, as indicated by Equation 9 in the original paper (cf. two opposite-phase oscilla-

tions canceling out one another in the summed signal). As a consequence, power in the rhythmic

component is negative at frequencies where the arrhythmic 1/f component exceeds power of the

original power-spectrum. In cases where this happened (never at spectral peaks), we set power to

zero to accommodate spectral curve fitting with exponential models in the next step.

Third, mean and full-width at half-maximum of alpha and beta spectral distributions were defined

for each participant using a two-term or three-term Gaussian model, depending on the presence of

a third low-frequency phenomenon in the rhythmic component of the power-spectrum (<5 Hz in two

participants, see power-spectra in Figure 2—figure supplement 1). This adaptive approach

(Source code 1) avoids having to rely on canonical frequency bands that due in part to their narrow-

ness may not accurately capture the neural phenomena of interest in each individual

(Haegens et al., 2014; Szurhaj et al., 2003). On average, alpha and beta rhythmic activity were cen-

tered on 7.4 ± 0.7 and 16.9 ± 1.1 Hz, respectively. High-frequency neural activity was defined as

activity within a broad 60–120 Hz range (Lachaux et al., 2012). Because of its hypothesized relation-

ship with non-oscillatory population-level firing rate (Manning et al., 2009; Miller et al., 2009;

Ray and Maunsell, 2011), we estimated high-frequency activity using the arrhythmic 1/f component

obtained above (see also Figure 3—figure supplement 2 for an empirical argument). We addition-

ally considered the slope of the arrhythmic 1/f component, in log-log space. Computational model-

ing and local field potential recordings from rat hippocampus suggest that the slope between 30

and 50 Hz is a power-spectral correlate of synaptic excitation/inhibition balance, such that a steeper

slope corresponds to greater inhibition in a neuronal ensemble measured by the recording elec-

trode. Notably, electrocorticography recordings in the non-human primate brain indicate that the 1/

f slope closely tracks the increase of inhibition induced by propofol across space and time

(Gao et al., 2017). Furthermore, recent intracranial recordings in humans find that the slope

between 30 and 50 Hz best predicts the depth of sleep and anesthesia, more so than slow oscillatory

power (Lendner et al., 2019). We here assessed this measure’s potential for capturing movement

initiation and suppression in human sensorimotor cortex. Linear fits were used to estimate the steep-

ness of the slope in the 30–50 Hz range (mean R2 across all slope fits in each

individual = 0.95 ± 0.00).

Fourth, for a fine-grained anatomical characterization, we localized all four sensorimotor neuronal

phenomena (alpha and beta rhythmic activity, high-frequency arrhythmic activity, and the 1/f slope)

by selecting electrodes that exceeded the upper limit of the 99% confidence interval for absolute
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spectral power in the respective frequency band across all stimulation-positive electrodes defined by

the first step (for the 1/f slope we used the lower limit of the confidence interval). This analysis

yielded 4 ± 1.2 alpha, 3.4 ± 0.8 beta, 4.4 ± 0.7 high-frequency, and 5.6 ± 1.4 1/f slope local maxima

in sensorimotor cortex for participants S1 - 5. Due to limited sensorimotor coverage, the number of

electrodes could not be narrowed down for participant S6, and all four stimulation-positive electro-

des were considered for further analysis involving temporal dynamics. Participant S7 lacked a rhyth-

mic power-spectral component in the alpha frequency range and was excluded from further analysis.

We used chi-squared tests of electrode anatomical location and electrical stimulation response

type to assess differential basic sensorimotor properties of alpha and beta rhythms. Anatomical loca-

tion was defined as the electrode’s spatial relationship to the central sulcus (pre vs. postcentral sul-

cus), and response type as the sensorimotor nature of the evoked response following electrical

stimulation (motor response vs. somatosensory sensation).

Spatiotemporal relations between spectral features
To assess whether sensorimotor alpha, beta, high-frequency activity, and the 1/f slope shared fea-

tures during task performance, we performed a correlation analysis of their activity patterns across

time, space, as well as time and space combined. First, within-trial correlations of activity dynamics

between �750 and 2000 ms (relative to the onset of the visual stimulus) quantified the temporal sim-

ilarity between the four spectral features. These temporal correlations considered, for each partici-

pant, mean activity across local maxima of each spectral feature (as identified with the procedure

described above). Each pair of spectral features produced a single correlation value per trial. Sec-

ond, a similar procedure was used to assess whether those spectral features involved spatially over-

lapping or distinct neuronal ensembles across sensorimotor cortex. We considered within-trial

correlations of cortical activity patterns across stimulation-positive electrodes. In contrast to tempo-

ral correlation, spatial correlation considered the mean activity per electrode within a trial (converted

into a vector), from visual stimulus presentation onset until the end of the movement imagery inter-

val (0 to 2000 ms). A third correlation analysis quantified the similarity of spatiotemporal activity pat-

terns across all stimulation-positive electrodes during a trial (�750 to 2000 ms). Group-level analysis

considered the average correlation in each participant, where the reliability of these correlations

across the sample population was assessed using one-sample t-tests. We report Bayes Factors (BF01)

for statistical tests evaluating evidence in favor of the null hypothesis. Bayes Factors express the rela-

tive likelihood of the data under the models at hand and were calculated using the JASP statistical

software package (JASP Team, https://jasp-stats.org/).

To assess whether the different neural phenomena were sensitive to the same sensorimotor

demands across individual movements, we performed representational similarity analysis on tempo-

ral, spatial, and spatiotemporal activity patterns (Kriegeskorte et al., 2008). Instead of calculating

correlations between the neural phenomena directly, this approach calculates the similarity in activity

patterns between all possible trial combinations, resulting in a neural similarity matrix for each phe-

nomenon with as many rows and columns as there are trials. Given that the bottom-left and top-right

entries are identical in these matrices, we extracted only the top right entries excluding the diago-

nals containing auto-correlations and converted these entries into vectors. Next, second-order

(Spearman) correlations of these trial-by-trial representational similarity vectors quantified the simi-

larity in sensitivity to sensorimotor demands between all combinations of neural phenomena. This

approach abstracts away from the activity patterns themselves such that similarities in sensitivity to

sensorimotor demands across different movements between temporally or spatially non-overlapping

neural phenomena can still be revealed. As above, the reliability of these representational similarities

across the sample population was assessed using one-sample t-tests.

Traveling wave analysis
Alpha and beta traveling waves were identified as cortical signals showing systematic phase variation

across the electrode array (Ermentrout and Kleinfeld, 2001; Muller et al., 2018). We filtered the

time-domain data with a two-pass third-order zero-phase shift Butterworth at individual alpha and

beta frequency ranges determined using the four-step procedure outlined above. We applied the

Hilbert transform to extract the instantaneous phase of ongoing rhythmic activity at each electrode

and estimated for each instance of time (every ~2 ms) the spatial phase gradient across the
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recording array. These spatial gradients represent distance-weighted phase shifts between cortical

signals at neighboring recording electrodes, where positive phase shifts correspond to signals that

have covered a greater distance along the unit circle and thus lead the oscillation (Berens, 2009). To

quantify traveling wave direction and velocities along the cortical sheet, we projected and interpo-

lated the phase data onto a two-dimensional plane defined by the first two principal axes of the

electrode array. This approach facilitates visualization and interpretation of the subsequent gradient

data and allows aggregating non-equidistant electrodes from adjacent grid and strip arrays. Wave

directionality was then found by calculating the angle between spatial gradients estimated in both

principal directions (1 cm in each direction). Wave velocity was found by the ratio between the mean

frequency of the rhythm and gradient magnitude. To visualize the mean spatial progression of rhyth-

mic activity across the electrode array, we subtracted the instantaneous phase at a central sensori-

motor reference electrode from each electrode before averaging across trials and trial-time. We

visualized the sample mean traveling wave direction by projecting and averaging over each partici-

pant’s probability distribution of traveling wave directions onto the brain sagittal plane.

To assess whether the sensorimotor spatial gradients behaved like propagating waves at the sin-

gle-trial level, we computed the phase-gradient directionality (PGD) across all stimulation-positive

electrodes. PGD measures the degree of phase gradient alignment across an electrode array, taking

a range of values between 0 and 1, and is found by the ratio between the norm of the mean spatial

gradient and the mean gradient norm across the array (Rubino et al., 2006). We assessed the reli-

ability of the propagating waves by finding the mean PGD across trials and trial-time and then com-

paring this value with two separate distributions of PGDs estimated from randomly permuted time-

points and randomly permuted electrode locations within the array. The former redistributes activity

over time, preserving the spatial structure of activity in sensorimotor cortex, whereas the latter redis-

tributes activity over space, preserving the temporal structure of activity in a trial. Rayleigh tests of

uniformity were used to determine whether the traveling sensorimotor waves moved in a consistent

direction across trials and trial-time (Fisher, 1995). To assess the consistency of wave propagation

direction at a given time and electrode, we computed the directional consistency (DC). DC measures

the degree of consistency in phase gradient direction, taking a range of values between 0 and 1,

and is found by the mean resultant vector length across trials (Zhang et al., 2018).

Data and code availability
Analysis code for spectral features extraction from the electrophysiological data are published as

Source code 1.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.48065.017

Supplemental analyses
Several control analyses were performed to test for alternative interpretations of the findings

obtained with the IRASA technique and the 1/f slope index. First, the main analysis

considering spectral features obtained using the IRASA technique revealed uncorrelated alpha

and beta rhythmic activity in sensorimotor cortex. We performed an additional analysis testing

whether power in the two frequency bands is also uncorrelated when broadband 1/f

components of the signal are not accounted for, that is using the original power-spectra. It can

be seen from the leftmost bars in Figure 3—figure supplement 1 that performing the same

correlation analysis on the original power-spectra yielded strong temporal and spatial

correlations between alpha- and beta-band power. This observation underscores the

importance of accounting for shared variance in alpha and beta power envelopes originating

from broadband 1/f modulations. Second, the main analysis investigating the influence of

rhythmic activity on local excitability found that the slope of the arrhythmic 1/f component had

a differential relationship with alpha and beta rhythmic activity during movement imagery. It

could be argued that the relation between beta rhythmic activity and the 1/f slope was

artificially stronger because of the beta-band being closer than the alpha-band to the 30–50

Hz band of the power-spectrum on which the 1/f slope index is based. Accordingly, we

performed an additional analysis grounded on the idea that a spurious interaction between

beta-band power and the steepness of the 1/f slope should be amplified when both spectral

features are directly based on the same (rhythmic) component of the power-spectrum,

resulting in stronger correlations. As can be seen from Figure 3—figure supplement 2,

correlations between beta-band power and the steepness of the 1/f slope were substantially

reduced with both features based on the same component, compared to the original

correlations shown in Figure 3. This observation indicates that the reciprocal changes between

beta rhythmic activity and the slope of the arrhythmic 1/f component cannot be readily

explained by a spurious relationship between these two spectral features.

Several other control analyses were performed to examine further the robustness and

functional relevance of alpha and beta traveling waves. First, it could be argued that the

traveling wave analyses depended on relatively noise-sensitive instantaneous estimates of

phase and subsequent circular statistics. Accordingly, we performed an additional analysis that

considered the entire time-series of alpha and beta rhythmic activity during movement

imagery. Following insight from our phase-based analyses, showing activity moving along a

rostro-caudal direction across the frontoparietal cortex, we calculated amplitude-based cross-

correlations between electrode pairs aligned with the rostro-caudal axis in two representative

individuals (see the brain insets in Figure 4—figure supplement 1). We rejected electrode

pairs with cross-correlation functions explaining less than 50% of the mean distribution of

cross-correlation in the sensorimotor cortex, based on leave-one-out cross-validation (1 and 3

alpha-band cross-correlation functions were held out in participants S1 and S2, respectively).

This analysis showed that rostral electrodes led caudal electrodes in the alpha frequency range

(red lines in Figure 4—figure supplement 1), consistent with alpha waves traveling in a rostral

direction. Conversely, caudal electrodes led rostral electrodes in the beta frequency range

(blue lines in the same figure), consistent with beta waves traveling in a caudal direction

(p<0.001 for all lags, estimated from shuffled data using one-sample t-tests). This pattern of

directionality is consistent with the instantaneous phase-based representations in Figure 4,

showing concurrent alpha and beta waves traveling along opposite directions during

movement imagery. Second, we examined whether the task-relevant traveling waves were

additionally sensitive to selection demands during movement imagery. To this end, we

examined the directional consistency (DC) of those waves, which measures the degree of

consistency across trials in the phase-gradient direction. In the main analysis, it was found that

alpha waves traveled more consistently through alpha-band local maxima ipsilateral to the
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selected arm during movement imagery, as compared to baseline levels (Figure 4D). As seen

in Figure 4—figure supplement 2, alpha waves propagated even more consistently through

alpha-band local maxima during imagined movement of high demand trials, as compared to

low demand trials. This effect occurred around the same time as alpha-band power increased

during imagined movement of the ipsilateral arm (Figure 2E), particularly when selection

demands were high (Figure 2—figure supplement 3). Taken together, these additional

observations are consistent with the main findings of the study. Alpha and beta rhythm-

dependent (dis)inhibition is task-relevant and propagated in a consistent spatiotemporal

pattern.
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