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Abstract
In order to study the cognitive processes underlying speech
comprehension, neuro-physiological measures (e.g., EEG and
MEG), or behavioural measures (e.g., reaction times and re-
sponse accuracy) can be applied. Compared to behavioural
measures, EEG signals can provide a more fine-grained and
complementary view of the processes that take place during the
unfolding of an auditory stimulus.

EEG signals are often analysed after having chosen spe-
cific time windows, which are usually based on the temporal
structure of ERP components expected to be sensitive to the ex-
perimental manipulation. However, as the timing of ERP com-
ponents may vary between experiments, trials, and participants,
such a-priori defined analysis time windows may significantly
hamper the exploratory power of the analysis of components
of interest. In this paper, we explore a wide-window analysis
method applied to EEG signals collected in an auditory repeti-
tion priming experiment.

This approach is based on a bank of temporal filters ar-
ranged along the time axis in combination with linear mixed
effects modelling. Crucially, it permits a temporal decomposi-
tion of effects in a single comprehensive statistical model which
captures the entire EEG trace.
Index Terms: EEG, ERP analyses, speech comprehension,
time window analysis, linear mixed effects models

1. Introduction
Neurological measurements such as EEG signals play an impor-
tant role in present-day psycholinguistic research. Especially in
combination with behavioural data, EEG signals can provide
a fine-grained and complementary view of the cognitive pro-
cesses taking place during the unfolding of an auditory stimu-
lus.

EEG differs from behavioural measures in at least two im-
portant ways. First, it registers processes much earlier in time
(namely, directly and on-line compared to behavioural overt
effects hundreds of milliseconds later). This is advantageous
given that effects of cognitive processes may manifest long
before a participant’s overt response. Event Related Poten-
tial (ERP) components distinguish earlier from later process-
ing stages during the presentation of a stimulus, which may be
cancelled out or minimally detectable afterwards in behavioural
measures. This is especially relevant when a stimulus itself un-
folds over time, such as with auditory input. Second, where
behavioural responses are the outcome of an accumulation of
processes, including the motor processes required for making
an overt response, EEG signals may tap into a single processing
stage. As such, the EEG method is considered to offer a closer
estimate of processes related to perception. Moreover, specific
ERP components have been functionally associated with dis-
tinct stages of spoken word recognition, which makes it possi-

ble to draw conclusions about which stages of processing are
affected by experimental manipulations. For instance, the N400
component has been used to probe semantic match [1] as well
as lexical processing, going from activation of a set of word
candidates to the selection of the target word [2].

The motivation for our original study is the use of EEG
signals to unravel subtle types of cognitive processing differ-
ences that take place during the auditory presentation of words.
In addition, we used EEG to probe processing advantages of a
word token after having heard another token of the same word
recently, and differences therein depending on the degree of
acoustic similarity between these tokens (‘exemplar’ or ‘speci-
ficity’ effects, previously established in ERPs by [3, 4]). Specif-
ically, we investigated whether such processing advantages are
task-dependent, as behavioral work suggests [5].

In this paper, we will investigate the role of the position of
the EEG analysis window during the unfolding of target words
using the data of our auditory long-term priming experiment.
Each experimental word occurred as prime (first occurrence)
and as target (second occurrence), and prime and target could
be uttered by the same (‘matching’) or a different (‘mismatch-
ing’) speaker (see Table 2). Listeners either had to perform
old-new judgments or semantic judgments. Specifically, we hy-
pothesized that prime-target matching is more important in the
old-new judgment task (in which participants need to specifi-
cally use the memory trace of the prime) than in the semantic
classification task.

In classical EEG studies, researchers often focused on spe-
cific time windows for the EEG analysis. These windows are
chosen based on the significance of effects in specific windows
reported in the literature. However, as the profile of some ef-
fects and/or components may vary in time between experimen-
tal paradigms, participants, and trials (as discussed by [6]), this
window-based approach may not be optimal in all cases. This
problem is amplified if the literature provides no clear time win-
dow precedent for a given effect. One solution to this problem
is cluster-based permutation tests [7], but this approach is not
applicable to data involving different participant groups, as in
our experiment. Other types of EEG analyses are based on
wavelets [8, 9], which allow the simultaneous use of different
time-frequency scales, given the choice of an analysis window.

In this paper, we propose a method that can be applied to
different participant groups while specifically circumventing a-
priori time-window dependency. This is done by introducing
an interaction by means of a window ‘bank’ specified along the
time axis as a predictor in interactions, and by investigating the
significance of this interaction as a function of time.

The next sections will present the data, methods and results,
after which a discussion and conclusion section follows.
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2. Experimental data
2.1. Participants

The dataset contained data from 46 right-handed Dutch native
participants, 22 randomly assigned to the old-new judgment
task (6 male, 18-30 years old, mean: 21 years old), and 24 to the
semantic classification task (3 male, 19-30 years old, mean: 22
years old). All were highly educated, were paid for their partic-
ipation, reported good hearing, and had no known neurological
disorders. They gave their written informed consent.

2.2. Materials

The experimental words were 64 inanimate Dutch bisyl-
labic nouns (e.g., gieter ‘watering can’) with an average log-
transformed frequency of occurrence of 2.2 (SD = 0.8, counts
obtained from [10]). The experiment also contained 64 animate
filler words that were matched to the experimental words in fre-
quency of occurrence (e.g., kikker ‘frog’). We recorded primes
with a male and female native speaker of Dutch, and targets and
fillers with the male speaker. The loudness of all stimuli was set
to 70 dB.

2.3. Experimental set-up

The experiment consisted of two parts, each consisting of a fa-
miliarization and a test phase (see also Table 1). During each
familiarization phase, we presented 32 experimental words as
primes. During each test phase, we presented the 32 experimen-
tal words from the familiarization phase as targets, in addition to
32 fillers. The division of the experiment into two parts served
to keep primes and targets close together, as previous research
has shown that a separation of primes and targets by too many
intervening trials (i.e., > 100 trials) diminishes the chances of
finding exemplar effects [11].

Half of the primes were presented in the voice of the male
speaker, and half in the voice of the female speaker. All targets
were presented in the voice of the male speaker (see also Table
2). Primes and targets were always different tokens. To not
stand out from the targets, fillers (occurring in the test phases
alongside the targets) were also all uttered by the male speaker.

Each participant received a counterbalanced list of trials
in which no more than three consecutive primes in the same
speaker voice occurred, and no more than three consecutive tar-
gets or fillers occurred. All primes and targets were separated
by no more than 100 trials.

2.4. Procedure

We tested participants individually in a sound-attenuating
booth, and presented auditory stimuli via closed headphones
at a comfortable listening level using Presentation software
(Version 16.4, Neurobehavioral Systems, Inc., Berkeley, CA,
www.neurobs.com).

In the familiarization phases, all participants engaged in the
same task, which focused their attention to perceptual aspects of
the primes (beneficial for observing exemplar effects on the tar-
gets [12]). For the test phases, participants were divided among
two groups. The participants in one group were instructed to
indicate as quickly and accurately as possible whether the word
they heard had occurred previously in the experiment or not
(‘old’-responses with the dominant hand). Participants in the
other group were instructed to indicate as quickly and accu-
rately as possible whether the word referred to a living or a non-
living object (‘non-living’-responses with the dominant hand).

Table 1: Overview of tasks and stimuli used in the familiariza-
tion and test phases of the two parts of the experiment. Old-new
denotes the old-new judgment task, sem. class. the semantic
classification task.

Part 1

Fam. phase 1 Test phase 1
task: loudness judgment task: old-new or sem. class.

32 primes tafel ‘table’ 32 targets tafel ‘table’
32 fillers oma ‘grandmother’

Part 2

Fam. phase 2 Test phase 2
task: loudness judgment task: old-new or sem. class.

32 primes anker ‘anchor’ 32 targets anker ‘anchor’
32 fillers vlinder ‘butterfly’

Table 2: Experimental conditions and speaker gender of primes
and targets in the experiment.

Condition Prime Target

Speaker match male male
Speaker mismatch female male

2.5. EEG recording and preprocessing

We collected EEG data from 64 Ag-Ag CI active electrodes
with the 10-20 actiCAP system (Brain Products GmbH, Mu-
nich; 8 midline and 50 lateral electrodes). We kept electrode
impedances below 50 kΩ. The EEG was recorded continuously
with a 0.02 - 100 Hz band-pass filter, and resampled with a 500
Hz sampling frequency. Using FieldTrip [13], data were offline
re-referenced to the mastoids, and band-filtered with 35 Hz cut-
off. Noisy trials were manually rejected, and ocular artefacts
were removed via ICA.

2.6. Analyses

The conventional time window-based analysis, using data based
on an a-priori time window (data[timewindow]), can be repre-
sented by a linear mixed effects model of the following type
(model-I):

model-I =
lmer(amplitude ˜ task * match
+ sample + (1 | participant) +
(1 | word),
data = data[time window])

in which task and match (both 2-level categorical predictors) de-
note the participants’ task, and the prime-target matching with
respect to speaker voice, respectively. The dependent variable
(amplitude) refers to the mean over time of each individual EEG
trace; the mean is taken over the time window specified. The
predictor sample denotes the sample id (its range depends on
the time window used). Participant and word serve as random
factors. Here, the slopes are not shown for brevity: their in-
clusion was taken into account depending on the dataset. The
dataset is specified as data[time window] to make clear that it
depends on the specific window chosen (e.g., 100-300 ms, 300-
400 ms, 400-800 ms from word onset).
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Figure 1: Example of a time window bank. The figure shows
the first 8 time windows of a bank used as predictor in a three-
way interaction with task and match. Time is displayed along
the horizontal axis. Each single plot corresponds to a column
in the matrix tw in regression model model-II. T = 0 refers to
word onset. Here, time window spacing is 20 ms.

The drawback of a model-I approach is the a-priori choice
of a time analysis window. In addition, this approach may lead
to issues concerning multiple comparisons in several time win-
dows. To circumvent this, we take model-I as starting point but
extend it to include an additional predictor time window (de-
noted tw). This predictor is positioned in interaction with our 2-
way interaction of interest (task * match). This inclusion leads
to the extended type of regression model (model-II) (using R-
syntax and nomenclature):

model-II =
lmer(amplitude ˜ task * match * tw
+ ave + sample + (1 | participant)
+ (1 | word),
data = data[wide time window]

The predictor tw must be constructed in such a way that multi-
ple different applications of model-I on different time windows
of interest can be replaced by a single coherent application of
model-II on a larger time window, that covers all windows of
interest.

In model-II, tw consists of a rectangular matrix. Its num-
ber of rows matches the length of the EEG signals (which is
the length of the chosen overall time window, here chosen to
be −199ms to +800ms relative to word onset). Its number of
columns equals the number of time windows used. Each col-
umn represents one time window, consisting of half a period of
a squared cosine with lowest value 0 and peak value equal to 1
(see Figure 1 for an example showing a few of these time win-
dows aligned). The whole matrix tw consists of systematically
shifted versions of a column, with the time window peak loca-
tion regularly shifted across columns, determined by the win-
dow spacing (20 ms in Figure 1), between −199 and 800 ms
after onset.

The inclusion of ave in model-II allows this model to at-
tribute deviations from the average EEG trace to specific pre-
dictors, and in particular, to investigate the significance of the
interaction of task and match (that we are after) as a function of
time.

3. Results
In all analyses, models were applied in two ways: to both all
trials, and to the subset of trials that received correct responses.
These results were highly similar; here, we only report the mod-
els applied to the trials that received correct responses. In all
reported models, outlier data (i.e., data points with standardized
residuals exceeding 2.5 standard deviation units) were removed,
after which we refitted the models.

3.1. Analysis with predefined time windows

Previous studies showed exemplar effects in ERPs on differ-
ent components: the N100/P200 (associated with early acous-
tic processing) [14], P350 (associated with lexical identifica-
tion) [15, 14], and N400 (associated with lexical selection)
[3, 14]. In our original study, we therefore tested for exem-
plar effects in type model-I analyses on three pre-defined time
windows and scalp topographies corresponding to these compo-
nents: 100-300 over posterior electrodes, 300-400 over poste-
rior electrodes, and 400-800 over all electrodes. These analyses
(reproduced in Table 3) yielded the clearest task-driven exem-
plar effects in the 100-300 window: the task * match interaction
was highly robust in that window. In the 300-400 window, we
also observed a statistically significant task * match interaction,
albeit less robust. In the 400-800 window, the interaction was
not statistically significant.

Table 3: Results of model-I for three windows (ms from on-
set). For the sake of clarity, only the fixed effects of interest are
shown. The intercept represent the old-new judgment task and
speaker mismatch, ’Sem. class. task’ stands for the semantic
classification task. A dash indicates no significance.

100-300 300-400 400-800

Fixed effects β̂ t β̂ t β̂ t

Intercept -1.07 -3.6 -1.93 -5.4 -5.64 -17.4
Sem. class. task 0.35 0.9 0.60 1.3 - -
Match -0.36 -4.8 -0.17 -1.9 - -
Sem. class. task * match 0.56 5.8 0.28 2.4 - -

3.2. Analysis using a time window bank

The time window bank integrates the results of different time
windows. We therefore keep the EEG amplitudes, without av-
eraging them as is done for the model-I analyses. The depen-
dent variable in model-II type regressions is a stretch of an EEG
trace, instead of the averaged EEG amplitude within a window.
The advantage is that amplitudes changing over time are treated
in one model that takes all effects into account, without infor-
mation loss due to averaging. It also improves approaches based
on individual t-tests per sample as were frequently used in the
more classical EEG studies, since the comprehensive model
does not require correction for multiple comparisons.

Figure 2 shows the result of model-II. The thin red solid
line, in combination with the transparent confidence interval,
reflects the significance levels of the 3-way interaction task *
match * tw, as provided by model-II, for electrode Cz. The t
values positioned are at the center point (ms) of the correspond-
ing tw-column.

The outcome of model-II result can be validated through
comparison with the outcome of model-I as ran on the same
electrode (Cz). To validate model-II in this way for a time point
t, model-I can be applied on a time window centered around
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t. The outcomes of model-I are shown as blue symbols in Fig-
ure 2. For example, the blue symbols at t = 0 are determined
by applying model-I using the time windows with lengths spec-
ified in the legend. In this way, the outcome of model-II can be
validated for each t between -200ms to 800ms.

The figure shows that model-II does fairly well in predict-
ing the outcomes of model-I for various time points t. The fig-
ure might suggest that model-I can safely be applied repeatedly
using a shifting window. That would be incorrect, however, as
statistical issues with multiple comparisons should be avoided.
The blue symbols only serve to validate the outcome of model-
II across the entire time window. The blue symbols also show
that the t-values depend slightly on the size of the window cho-
sen. Most importantly, however, the figure indicates that the
model-II regression can be used to explain the results obtained
via the a-priori window approach (as used in the models in Ta-
ble 3).

Figure 2: This plot combines the significance levels of the in-
teraction task * match for model-I (separate sliding windows;
blue symbols) and model-II (by the time window bank; solid line
and transparent confidence interval). The legend specifies the
window lengths in the sliding window approaches.

4. Discussion and conclusion
In this paper, we focused on the role of the position of the EEG
analysis window during the unfolding of target words in an au-
ditory priming study, and we proposed a time bank-based sta-
tistical method to enable a statistical model to perform one co-
herent time course analysis within a large time window. To that
end, we compared two types of linear mixed effect regression
models: model-I based on separate individual time windows,
and model-II using an integrative bank of time windows.

Figure 2 shows a good agreement (correlation ≈ 0.86)
between the t values obtained using different windows from
model-I, and the t values obtained from the single application
of model-II on the larger time window. The model-II results
are in agreement with the observation that the model-I results in
the second time window (300-400 ms) were less robust than in
the first window (100-300 ms). In combination with the confi-

dence intervals, model-II does more: it also explains why in the
model-I approach, the time window 400-800 ms leads to weak
or absent significance levels for the interaction of interest. The
effect of interest may be highly significant in certain narrow
time intervals (here, seemingly around 500 ms), but may dis-
appear when larger time windows are applied, in which critical
but local patterns get lost.

Since the t values specify the significance levels of the task
* match interaction (under the usual assumption that the residu-
als obey a t distribution), the plots show that significance levels
can reliably be estimated using a regularly spaced time bank.
As a consequence, model-II provides, in combination with the
confidence intervals, a more consistent, statistically better de-
fensible analysis of the time course. To avoid fishing, a model-II
analysis should not be used for steering a window-based model-
I analysis.

The construction of the time windows in the bank is rele-
vant. Here, a squared cosine was chosen, since this allows the
sum of neighbouring shifted versions to equal unity for the en-
tire window −200-800 ms.

It is interesting to note that a similar analysis using the
bam() function in R with trial as a smooth yielded virtually
the same t values. With gam()/bam() functions, warped ver-
sions of predictors can be included into the model, which al-
lows for local compression and stretching of, e.g., the time axis.
In the current model-II analysis, however, the statistical trends
over time can be made explicit per time interval. This might be
relevant for the close examination of early and late processes:
previous auditory and cross-modal studies established ERP ex-
emplar effects in early as well as late time windows relative
to word onset. These effects were related to the N100/P200
complex (around 100-300 ms), P350 (around 300-400 ms), and
N400 components (around 400-800 ms). Often, effects of in-
terest arising on different ERP components change in polarity
over the course of the trial. The time point of components and
polarity changes can often not be predicted exactly; analyses
based on a-priori chosen analysis time windows may therefore
not adequately capture them.

Importantly, the current analysis does not make any a-priori
assumptions about polarity changes of effects over time. Fig-
ure 2 shows polarity patterns, but they relate to the t values,
rather than to the underlying EEG traces. Patterns we observed
in the 300-400 ms window may have the opposite polarity from
those in the 100-300 ms time window, probably due to the up-
coming N400 component, which is among other things related
to lexical processing. The change of polarity of exemplar ef-
fects over time as expressed on different components is topic
for future research.

This paper contributes to the study of the effect of the time
window in EEG analyses. The EEG research field is rather com-
plex, with many effects and factors playing a role simultane-
ously and/or consecutively in a rich data space. Chopping the
problem into smaller sub-problems is therefore essential for a
better grip on the underlying processes. We restricted the cur-
rent analysis to the variation of effects over time, while leaving
aside the variation of effects over electrode sites (which, in turn,
is likely to interact with effects’ variation in time).

Another topic for future investigation is therefore the use
of the electrode sites. In this paper, we took Cz in model-II as
representing the different multiple electrode sets used in model-
I. The inclusion of multiple electrode sites often leads to quite
complex statistical models, which do not always converge. The
choice in this paper was taken as a reasonable and defensible
starting point for further investigation.
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