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Abstract
The congenital disorders of glycosylation (CDG) are inborn errors of metabolism

with a great genetic heterogeneity. Most CDG are caused by defects in the N-

glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence

of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-

mannose (DPM) synthesis remains unexplained. To deepen our understanding of

the tissue-specific characteristics of defects in the DPM synthesis pathway, we

investigated N-glycosylation and O-mannosylation in skeletal muscle of three

DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation

of serum transferrin in only two of them. In the three patients, O-mannosylation of

alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-

dystroglycan (βDG) N-glycosylation revealed a consistent lack of one N-glycan in

skeletal muscle. Recently, defective N-glycosylation of βDG has been reported in

patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B

(GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-

glycosylation of βDG in skeletal muscle is indicative of a defect in the DPM syn-

thesis pathway. Further studies should address to what extent hypo-N-glycosylation

of βDG or other skeletal muscle proteins contribute to the phenotype of patients

with defects in DPM synthesis. Our findings contribute to our understanding of the

tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis

pathway.
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1 | INTRODUCTION

The congenital disorders of glycosylation (CDG) are inborn
errors of metabolism characterized by aberrant glycoprotein
and glycolipid glycan synthesis. CDG-I phenotypes are due
to defects in the assembly of the lipid-linked oligosaccharide
(LLO) in the ER, leading to a lack of complete N-glycans.

Since LLO synthesis is essential for protein N-glycosylation
in all tissues, patients with CDG-I present with multisystem
phenotypes comprising developmental disability, hypotonia,
skin and skeletal abnormalities, hepatopathy, and neurologic
involvement.1,2 Defects in the synthesis of the sugar donor
dolichol-phosphate-mannose (DPM) results in CDG-I with
tissue-specific disease (Figure 1). Phosphomannomutase
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FIGURE 1 Defects in the dolichol-phosphate-mannose biosynthesis pathway lead to N- and O-glycosylation disorders. Dolichol-phosphate-
mannose (Dol-P-Man) is the mannose donor for N-glycosylation, O-mannosylation, C-mannosylation, and GPI-anchor biosynthesis. SRD5A3-CDG
patients present with structural and functional eye abnormalities, cerebellar defects, intellectual disability (ID), and muscle hypotonia.3–6

PMM2-CDG patients have characteristic multivisceral symptoms that are associated with generalized N-glycosylation abnormalities. Patients with
mutations in GMPPB have dystroglycanopathy due to reduced O-mannosylation of αDG,7,8 congenital myasthenic syndrome (CMS),9 or pseudo-
metabolic myopathy.10,11 Mutations in DOLK lead to abnormal serum transferrin N-glycosylation and heart αDG O-glycosylation with dilated
cardiomyopathy, muscular hypotonia, neurological involvement, and/or ichthyosis.12–16 The clinical phenotypes associated with mutations in the
DPM synthase subunits DPM1, DPM2, or DPM3 are different: DPM1-CDG patients show multivisceral presentations characteristic for CDG-I and
muscular dystrophy,17–21 DPM2-CDG patients have microcephaly, seizures, developmental delay, and hypotonia,22 and two DPM3-CDG patients
have been reported with muscular dystrophy, of which one patient also presented with cardiomyopathy.23,24 Blue boxes: abnormal serum transferrin
N-glycosylation. Red box: Abnormal O-mannosylation of αDG. Purple boxes: combined serum transferrin N-glycosylation and muscle αDG O-
glycosylation abnormalities. Dashed arrow: alternative pathway suggested by Cantagrel et al3
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2 (PMM2)-CDG (MIM 601785) patients show a very broad
phenotype with involvement of nearly all organs. Steroid
5alpha-reductase type 3 (SRD5A3)-CDG (MIM 611715)
patients mainly present with eye, skin, and central nervous
system involvement,3–6 while dolichol kinase (DOLK) defi-
ciency (MIM 610746) results in dilated cardiomyopathy with-
out obvious skeletal muscle abnormalities.13,14,16 DPM3-CDG
(MIM 605951) and patients with mutations in guanosine-
diphosphate-mannose (GDP-mannose) pyrophosphorylase B
(GMPPB, MIM 615320) can present with muscular dystro-
phy, a symptom of the dystroglycanopathies.7,8,25 These con-
genital muscular dystrophies present with deficient O-
mannosylation of alpha-dystroglycan (αDG), which also
requires DPM. Indeed, reduced O-mannosylation of αDG has
been found in skeletal muscle of DPM3-CDG and GMPPB-
CDG patients, and in heart muscle of DOLK-CDG
patients.14,16,23,24 However, it is unclear whether O-
mannosylation is specifically affected in DPM synthesis disor-
ders, or if N-glycosylation and O-mannosylation are both sim-
ilarly affected, but involve tissue-specific metabolic pathways.
To increase our understanding of the pathophysiology of the
tissue-specific phenotypes of the DPM synthesis disorders, we
studied protein N- and O-glycosylation in muscle tissue of all
three known DPM3-CDG patients.23,24

2 | MATERIALS AND METHODS

2.1 | Subjects

Plasma and fibroblasts were obtained for diagnostics of
CDG in the Radboudumc Expertise Center for Disorders of
Glycosylation. Muscle biopsies were obtained at the Univer-
sity of Athens. All procedures followed were in accordance
with the Helsinki Declaration of 1975, as revised in 2000.
Informed consent was obtained from all patients for being
included in this study or from their legal representatives.

2.2 | CDG diagnostics

Isoelectric focusing of serum transferrin and electrospray
ionization mass spectrometry (ESI-MS) of immunopurified
serum transferrin were performed as described.26,27

2.3 | Immunohistochemistry on muscle
biopsies

Immunohistochemistry on muscle biopsies was performed
according to standard procedures. The VIA41 antibody
(Santa Cruz Biotechnology) was used to assess the presence
of functional O-mannosyl glycans on αDG.

2.4 | DPM synthase assay

Skin fibroblasts were cultured in M199 medium (Lonza)
supplemented with 10% Fetal Calf Serum (Gibco) and 1%
Penicillin Streptomycin (Gibco) at 37�C and 5% CO2. Pel-
lets were collected and sonicated in 7 mM Tris-HCl
(pH 7.2), and 7 mM MgCl2; 0.1% Nonidet P-40 was added.
Protein concentrations were determined using BCA assay
(Pierce). The DPM synthase activity assay was performed as
described previously.22

2.5 | SDS-PAGE and immunoblotting

Skeletal muscle homogenates were used for SDS-PAGE on
10% polyacrylamide gels and proteins were transferred to
nitrocellulose membranes. Immunoblotting was performed
using primary antibodies against glycosylated αDG
(IIH6C4, 1:2500, Merck 05-593), βDG (1:250, Novacastra),
Desmin (Y66, 1:20000, Abcam ab32362), GAPDH
(1:10000, Abcam ab8245), and with secondary antibodies
HRP-conjugated polyclonal goat anti-rabbit or HRP-
conjugated polyclonal goat anti-mouse (1:5000, DAKO).

2.6 | Enzymatic deglycosylation with
PNGase F

Muscle homogenates were incubated with PNGase F (New
England Biolabs) or MilliQ water (negative control) for
4 hours at 37�C to the manufacturer's protocol. PNGase F was
inactivated by heating the samples for 15 minutes at 95�C and
glycosylation of βDG was assessed with immunoblotting.

3 | RESULTS

3.1 | Clinical description of a newly identified
DPM3-CDG patient

Patient 1 is a Greek female born following an uneventful
pregnancy to healthy, consanguineous parents. At
24 months, she was able to walk independently. Her medical
history is unremarkable except for subclinical hypothyroid-
ism (serum TSH: 7.95 μIU/mL; normal range 0.5-5 μIU/mL)
and elevated transaminases (serum SGOT: 146 U/L, normal
range 8-42 U/L; SGPT: 150 U/L, normal range 8-41 U/L) at
the age of 9 years, found during a laboratory investigation
for maternal hypothyroidism. One week later, TSH was 8.6
μIU/mL and FT4 was 16.7 pg/mL (normal range
8-20 pg/mL), and she received replacement therapy with
thyroxine (T4). Transaminases remained elevated (SGOT:
76 U/L, SGPT: 80 U/L) and markedly increased creatine
kinase levels (2680 U/L, normal 140 U/L) were found with-
out obvious muscle symptoms. There was no family history
of a neuromuscular disorder.
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On admission at the age of 9.5 years, physical examina-
tion revealed a mild bilateral gastrocnemius
pseudohypertrophy without any dysmorphic features or
hepatosplenomegaly. The values of serum TSH, FT4, anti-
thyroglobulin, anti-thyroperoxidase (under treatment with
T4), vitamin D, PTH, plasma and urine amino acids, and uri-
nary organic acids were within normal ranges. Gowers test
was negative and neurological examinations, Doppler echo-
cardiography, ECG, brain MRI, ophthalmoscopy, and X rays
of chest and hips did not show any abnormalities. CK levels
were further monitored and ranged from 1800 to 2600 U/L
with a concomitant raise of aminotransferases (SGOT

68 U/L, SGPT 65 U/L), lactate dehydrogenase (324 U/L,
normal range 120-300 U/L), and lactic acid (30 mg/dL nor-
mal range 5.7-22 mg/dL). A quadriceps muscle biopsy
showed a myopathic pattern with a considerable number of
regenerating fibers and a significantly increased number of
internal nuclei, and a loss of functional O-mannosyl glycans
on αDG (Figure 2A). One year after the initial diagnosis the
patient developed dilated cardiomyopathy with decreased
contractility of the left ventricle. Her impaired systolic func-
tion (ejection fraction 57%; normal >60%) was treated with
captopril and furosemide. Due to episodes of hypotension,
the treatment of furosemide was discontinued. The patient
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FIGURE 2 Molecular and genetic characterization of DPM3-CDG patients. A, Immunohistochemistry of skeletal muscle biopsies.
Hematoxylin and eosin (HE) staining of control (×10) and patient (×20). Patient skeletal muscle HE staining shows atrophic muscle fibers,
increased central nuclei, and a regenerating muscle fiber. VIA41 staining showing loss of functional O-mannosyl glycans of αDG in patient skeletal
muscle (×10). B, Schematic outline of the 92 amino acid DPM3 protein with two transmembrane domains and the C-terminal coiled-coil domain.28

The mutations in DPM3 of the patients are indicated.23,24 C, Nucleotide and amino acid conservation analysis of Leu85 (red box). D, Dolichol-
phosphate-mannose (DPM) synthase activity in fibroblast lysates of DPM3-CDG patients. Relative production of dolichol-phosphate-[14C]-mannose
is expressed as a percentage of control. Error bars present SD of duplicates
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now only receives captopril and her cardiac function has
remained stable.

An alpha-glucosidase activity assay excluded Pompe dis-
ease, and further molecular studies excluded Limb Girdle
Muscular Dystrophy 2A (CAPN3 gene) and dystro-
phinopathy (DMD gene). Further metabolic testing included
serum transferrin isoelectric focusing (TIEF), which showed
a type 1 pattern. In view of the clinical symptoms, DPM3
was sequenced, and a homozygous missense mutation
Chr1GRCh38:g.155139987A>G; NM_153741.1(DPM3):
c.254T>C; p.Leu85Ser was found. The same mutation has
been reported in a patient originating from the same island.23

The mutation affects the C-terminal coiled-coil domain of
DPM3 (Figure 2B), which is essential for DPM synthase
activity via interaction with the catalytic subunit DPM1.28

This domain of DPM3 is strongly conserved from Homo
sapiens to Drosophila melanogaster (Figure 2C). A sum-
mary of the clinical and genetic data of patient 1 and the two
previously described patients is presented in Table 1.

To confirm that the DPM3 mutation in patient 1 is patho-
genic, DPM synthase activity was assessed in patient fibro-
blasts and compared with control and previously published
DPM3-CDG patients. We incubated fibroblast lysates of all
three patients with isotopically labeled GDP-[14C]-mannose
and measured the incorporation in dolichol-P-[14C]

mannose. DMP synthase activity in all patient cells was
reduced by more than 70% (Figure 2D). Reduction was more
severe in patients 1 (12.7%) and 2 (2.8%) that harbor the
Leu85Ser mutation in the coiled-coil domain of DPM3.

3.2 | Serum transferrin is hypoglycosylated in
two of the three DPM3-CDG patients

Serum TIEF analysis of the three DPM3-CDG patients
showed a type 1 pattern in patients 1 and 2 (Figure 3A).
Subsequent analysis of immunopurified serum transferrin
with ESI-MS confirmed a significant increase of dis-
ialotransferrin in patients 1 and 2 (respectively 30% and
16%, normal 4%) (Figure 3B). The serum transferrin glyco-
sylation profile of patient P3 (disialotransferrin 3%) was nor-
mal. Taken together, serum transferrin is not
hypoglycosylated in all three DPM3-CDG patients.

3.3 | Alpha-dystroglycan and β-dystroglycan
are hypoglycosylated in DPM3 skeletal muscle

To investigate both O-glycosylation and N-glycosylation in
skeletal muscle, we performed immunoblotting of glyco-
sylated αDG and βDG from skeletal muscle homogenates of
all three DPM3-CDG patients. IIH6 labeling was strongly

TABLE 1 Clinical data summary of DPM3-CDG patients

Patient 1 Patient 2 Patient 3a

Gender Female Female Female

Zygosity Homozygous Homozygous Homozygous

Nucleotide change
Chr1GRCh38
NM_153741.1

g.155139987A>G
c.254T>C

g.155139987A>G
c.254T>C

g.155140200A>G
c41T>C

Protein change p.Leu85Ser p.Leu85Ser p.Leu14Pro

Age at presentation (years) 10 36 60

Age at onset (years) 9 11 30

Brain imaging Normal Normal Normal

Gower's sign Negative Negative Positive

Serum creatine kinase
(U/L, normal <140 U/L)

1800-2680 1500-3000 2732-4310

Dilated cardiomyopathy Yes Yes No

Muscle biopsy findings Myopathy, multiple internal nuclei.
αDG hypoglycosylation

Myopathy, fiber-size variation,
multiple internal nuclei,
rimmed vacuoles, fiber splitting,
interstitial fibrosis. αDG
hypoglycosylation

Mild myopathy, dystrophic pattern,
αDG hypoglycosylation.

Serum transferrin IEF Increased disialotransferrin Increased disialotransferrin Normal

Serum transferrin ESI-MS Increased disialotransferrin Increased disialotransferrin Normal

Described in This paper Lefeber et al23 Van den Bergh et al24

aIn Van den Bergh et al24 the mutation is reported as c.131T>C p.Leu44Pro, this is the position on transcript variant 1 (NM018973.3).
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reduced, in agreement with dystroglycanopathy (Figure 3C).
In addition, we observed that the mobility of skeletal muscle
βDG was altered in all three patients compared to controls.
We hypothesized that patient βDG is not properly N-
glycosylated due to limited availability of DPM, thereby
affecting the mobility of the protein. To investigate this, we

incubated muscle lysates with PNGase F, an enzyme that
cleaves the linkages between N-Acetylglucosamine moieties
of N-glycans and asparagine residues. After PNGase F treat-
ment, the mobility of βDG in control and patient material
was similar, showing that the difference in mobility of
skeletal muscle βDG in DPM3-CDG was due to a
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N-glycosylation defect (Figure 3D). However, PNGase
F treatment lowered the molecular weight of βDG in skeletal
muscle of patients with mutations in DPM3 even further,
demonstrating that βDG is partly N-glycosylated in
DPM3-CDG. Previously, a N-glycosylation defect of βDG
was consistently found in skeletal muscle from patients car-
rying mutations in GMPPB.7,33 The findings presented
above suggest the presence of more than one N-glycan on
processed βDG. Using the dystroglycan preprotein sequence,
we used the NetNGlyc tool to predict potential N-
glycosylation sites in Asn-Xaa-Ser/Thr sequons.29 Aspara-
gines at positions 661 and 833 on βDG were predicted to be
glycosylated (Figure 3E), in agreement with our findings.

4 | DISCUSSION

Here, we show that patients with DPM3 deficiency have
deficient O-mannosylation of alpha-dystroglycan and
reduced N-glycosylation of beta-dystroglycan in skeletal
muscle. These findings contribute to our understanding of
the tissue-restricted phenotype of DPM3-CDG and facilitate
subtyping of the dystroglycanopathies.

DPM is required for both N- and O-glycosylation. The
DPM biosynthesis pathway consists of seven genes and
mutations in any of these genes have been associated with a
genetic glycosylation disorder (Figure 1, Table 2). However,
the phenotypic presentations are remarkably different. First,
SRD5A3-CDG patients have specific structural and func-
tional eye defects.3–6 Cantagrel et al3 suggested the existence
of an alternative pathway for dolichol synthesis, because
residual dolichol was found in SRD5A3-deficient cells with
early truncating mutations. Thus, tissue-specific dolichol
synthesis (or polyprenol accumulations) could explain the
eye phenotype of SRD5A3-CDG patients. DOLK-CDG
results in a CDG-I profile and abnormal O-mannosylation of
αDG in the heart, explaining the dilated cardiomyopathy.14

The two DPM3-CDG patients carrying the p.Leu85Ser
mutation also developed dilated cardiomyopathy. Thus,
patients presenting with dilated cardiomyopathy should be
screened for DOLK and DPM3 deficiency, and vice versa.
Whereas DPM3-CDG patients show aberrant O-
mannosylation of αDG in skeletal muscle and have muscular
dystrophy, there are no indications that αDG in skeletal mus-
cle is abnormal in DOLK-CDG. This suggests that there are
alternative routes in skeletal muscle for dolichol-phosphate
synthesis.

Recently, more progress has been made to understand the
molecular pathogenesis of these disorders. For PMM2-CDG,
it has been proposed that LLO degradation due to the accu-
mulation of mannose 6-phosphate causes the N-
glycosylation defect, rather than a limited synthesis of
DPM,34,35 potentially explaining the different phenotypes
between PMM2-CDG and GMPPB deficiency. Of the DPM
synthesis disorders, GMPPB deficiency, DPM1-CDG,
DPM2-CDG, and DPM3-CDG are all associated with mus-
cular dystrophy caused by aberrant O-mannosylation of skel-
etal muscle αDG.8,21–23 One of the three DPM3-CDG
patients had normal serum transferrin glycosylation and a
relatively mild phenotype without cardiomyopathy, with the
first myopathic changes detected at 30 years of age.24 The p.
Leu14Pro mutation of this patient is located in the first trans-
membrane domain on the N-terminal side, which has been
considered not to be essential for DPM synthase activity and
is not responsible for the interaction with the catalytic sub-
unit DPM1.28 In line with the late-onset of the disease, the
mild clinical phenotype and the location of the mutation, we
found there was high residual activity of DPM synthase
(30%), showing that relatively mild mutations in DPM3 can
eventually lead to disease.

As in DPM3-CDG patient P3, patients with GMPPB-
related dystroglycanopathy have normal N-glycosylation of
transferrin, and share the muscular dystrophy phenotype due
to abnormal O-mannosylation of skeletal muscle αDG. This
suggests that αDG glycosylation is more sensitive to muta-
tions in DPM synthesis, and only more severe mutations
affect the N-glycosylation of serum transferrin, or lead to
structural brain abnormalities as reported in DPM1-CDG
and DPM2-CDG patients.17,19–22 As the availability of DPM
is very important for the O-mannosylation of αDG, it is
highly likely that more severe mutations in DPM3 will also
cause brain abnormalities as have been reported in
DPM1-CDG, DPM2-CDG, and other dystroglycanopathies.

Recently, defective N-glycosylation of skeletal muscle
βDG was reported as a specific marker for GMPPB defi-
ciency, but the N-glycosylation of βDG in other DPM syn-
thesis defects has remained unassessed.7,33 Here, we found
the same shift of βDG in all three DPM3-CDG patients. Sar-
kozy et al33 did not observe this shift in dystroglycanopathy

TABLE 2 Summary of how N-glycosylation and O-glycosylation
are affected in DPM synthesis disorders

N-glycosylation O-glycosylation

CDG Liver Skeletal muscle Skeletal muscle Heart

SRD5A3-CDG + NA NA NA

DOLK-CDG + NA NA +

DPM1-CDG + NA + NA

DPM2-CDG + NA + NA

DPM3-CDG +/− + + NA

PMM2-CDG + NA NA NA

GMPPB-CDG − + + NA

Abbreviations: +, affected, −, not affected, +/−, affected in some patients, NA,
not assessed.
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patients with mutations in POMT1, POMT2, POMGNT1,
B3GALNT2, and FKTN, which encode glycosyltransferases.
These glycosyltransferases synthesize the O-mannosyl gly-
cans on αDG, and are thus not expected to affect N-glyco-
sylation. Taken together, we suggest that hypoglycosylated
βDG in combination with hypoglycosylated αDG is indica-
tive for a defect in the DPM biosynthesis pathway. We
expect that the mobility of skeletal muscle βDG is also
affected in patients carrying mutations in other DPM biosyn-
thesis genes. Experiments in Chinese Hamster Ovary (CHO)
cells treated with the N-glycosylation inhibitor tunicamycin
suggested that N-glycosylation is required for a correct
localization of αDG and βDG36 and further investigations
are required to explore the clinical implications of the N-
glycosylation defect of βDG.

In our study, we found an additional mobility shift of βDG
after we treated DPM3-CDG muscle samples with PNGase F,
suggesting more than one N-glycosylation site on βDG.
Ibraghimov-Beskrovnaya et al37 predicted that βDG has three
potential N-glycosylation sites. However, two of these sites
reside before residues 653/654 where the preprotein is auto-
lytically cleaved into αDG and βDG.30,31 Using the NetNGlyc
tool, we found positions 661 and 833 as potential N-
glycosylation sites. However, position 833 resides in the C-
terminus of βDG predicted to be oriented toward the cytosol,
and is therefore not expected to be N-glycosylated. Further
glycoproteomic studies can shed light on why only a single N-
glycan is lost when DPM pools are limited, thus providing
new insights into the N-glycosylation machinery.

In conclusion, DPM3-CDG and GMPPB deficiency are
characterized by both N-glycosylation and O-glycosylation
defects of skeletal muscle dystroglycan, whereas serum trans-
ferrin N-glycosylation is not necessarily affected. Deficient O-
mannosylation of αDG mostly determines the patients' pheno-
type, but N-glycosylation defects of other skeletal muscle gly-
coproteins could contribute to the clinical outcome. Future
studies are required to complete our understanding of the path-
ophysiology of DPM synthesis disorders.
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