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Abstract

Systemic inflammation and hypoxia frequently occur simultaneously in critically ill patients, and
are both associated with platelet activation and coagulopathy. However, human in vivo data on
the effects of hypoxia on platelet function and plasmatic coagulation under systemic inflamma-
tory conditions are lacking. In the present study, 20 healthy male volunteers were randomized to
either 3.5 h of hypoxia (peripheral saturation 80–85%) or normoxia (room air), and systemic
inflammation was elicited by intravenous administration of 2 ng/kg endotoxin. Various para-
meters of platelet function and plasmatic coagulation were determined serially. Endotoxemia
resulted in increased circulating platelet–monocyte complexes and enhanced platelet reactivity,
effects which were attenuated by hypoxia. Furthermore, endotoxin administration resulted in
decreased plasma levels of platelet factor-4 levels and increased concentrations of von
Willebrand factor. These endotoxemia-induced effects were not influenced by hypoxia. Neither
endotoxemia nor hypoxia affected thrombin generation. In conclusion, our data reveal that
hypoxia attenuates the endotoxemia-induced increases in platelet–monocyte formation and
platelet reactivity, while leaving parameters of plasmatic coagulation unaffected.
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Introduction

Systemic inflammation is a commonly observed phenomenon in
critically ill patients, for instance, in sepsis or following trauma.
Systemic inflammation induces the activation of platelets and
coagulation, ultimately resulting in coagulopathy, organ dys-
function, and worse outcome [1]. Hypoxia is also frequently
encountered in these patients, possibly due to the fact that
tissue hypoxia can be one of the consequences of systemic
inflammation, and is associated with adverse outcome as well.
Hypoxia has also implied to directly activate coagulation. For
instance, it has been associated with an increased risk of
thrombotic events [2], and was shown to increase platelet reac-
tivity in rats [3] and to enhance procoagulant activity of human
endothelial cells in vitro [4]. Therefore, next to systemic
inflammation, hypoxia may also contribute to altered platelet

function and coagulopathy in critically ill patients, thereby
increasing their risks for organ dysfunction. Human in vivo
data on the effects of hypoxia on platelet function and plas-
matic coagulation during systemic inflammation are currently
lacking. In the present study, we describe the effects of hypoxia
on platelet function and plasmatic coagulation during experi-
mental human endotoxemia, an in vivo model of systemic
inflammation.

Methods

Study Design, Population, and Procedures

Data were obtained from healthy male volunteers participating in
a randomized intervention study (registered at ClinicalTrials.gov:
#NCT01978158) aimed at investigating the effects of oxygenation
during systemic inflammation on immunologic (primary out-
come) and many other parameters (provided at https://clinical-
trials.gov/ct2/show/NCT01978158). The primary outcomes have
been published elsewhere and are freely accessible [5]. The trial
was approved by the local ethics committee and carried out
according to GCP standards and the Declaration of Helsinki,
including current revisions. Detailed methods are provided else-
where [5]. Briefly, after providing written informed consent,
subjects were randomized to normoxia (room air) or hypoxia
(titration of fraction of inspired oxygen to a peripheral oxygen
saturation of 80–85%) for 3.5 h using an airtight respiratory
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helmet. One hour after initiation of hypoxia or normoxia, at time
point t = 0, 2 ng/kg E. coli-derived endotoxin was administered
intravenously. Blood was collected in 3.2% citrate-containing
vacutainers at several time points.

Assays

Platelet counts were determined using an automated hematology
cell counter. Platelet monocyte complexes (PMCs) were flow
cytometrically analyzed after incubating whole blood with PE-
labeled anti-CD14 (BD Biosciences) and FITC-labeled anti-CD
42b (Bio-Legend). PMCs were defined as CD14+ cells positive
for CD42b. Platelet reactivity was determined by measuring
membrane expression of CD62P (P-selectin) in unstimulated
whole blood and after ex vivo stimulation with seven increasing
concentrations of adenosine diphosphate (ADP; Sigma-Aldrich)
for 20 min. Antibodies used were PE-labeled anti-CD62P (Bio-
Legend) and PC7-labeled anti-CD61 (Beckman Coulter). The
mean fluorescent intensity of CD62P on CD61-postive platelets
was determined by flow cytometry for each ADP concentration,
and the area under the ADP-response curve was used as
a measure for platelet reactivity. Thrombin generation was deter-
mined by means of calibrated automated thrombography, as
described elsewhere [6]. Plasma concentrations of von
Willebrand factor (vWF), platelet factor-4 (PF4), and throm-
bin–antithrombin (TAT) complexes were measured using
ELISA, as described previously [7].

Statistical Analysis

Within-group changes over time were analyzed using one-way
analysis of variance, and p-values are reported in the figure
legends. Between-group differences over time were analyzed
using general linear mixed models, and p-values are indicated
in the figures. Data were analyzed with SPSS version 22
(IBM). A p-value of <0.05 was considered significant.

Results

As published elsewhere [5], endotoxin administration resulted
in transient flu-like symptoms (i.e., fever, headache, muscle
ache, nausea) and increased plasma cytokines levels in all
subjects. Hypoxia enhanced plasma concentrations of the anti-
inflammatory cytokine interleukin-10 by 230%, whereas levels
of pro-inflammatory mediators – tumor necrosis factor-α, inter-
leukin (IL)-6 and IL-8 – were attenuated by 41%, 39%, and
37%, respectively [5].

Platelet-Associated Parameters

Platelet counts decreased slightly, but significantly, in nor-
moxic endotoxemia subjects, an effect which was less pro-
nounced in hypoxic subjects (Figure 1a). Percentages of
circulating PMCs increased following endotoxin administra-
tion in both groups, but to significantly lesser extent in
hypoxic subjects (Figure 1b). In both groups, platelet reactiv-
ity showed a very similar pattern as PMCs (Figure 1c).
Plasma levels of PF4 in normoxic subjects tended to decrease
and normalize afterward, and hypoxia did not modulate this
effect (Figure 1d).

vWF Levels and Plasmatic Coagulation

Endotoxemia resulted in increased plasma concentrations of the
endothelial activation marker vWF, with a trend toward slightly

higher levels in the hypoxia group (Figure 1e). Plasmatic
coagulation was evaluated by measuring thrombin generation
and TAT complexes. Thrombin generation was unaffected fol-
lowing endotoxin administration (Figure 1f), while TAT com-
plex concentrations gradually increased (Figure 1g). Both
measures of plasmatic coagulation were not influenced by
hypoxia.

Discussion

In the present study, we demonstrate that hypoxia mitigates the
effects of systemic inflammation on platelet-associated para-
meters, as endotoxemia-induced decreases in platelet counts,
and increases in PMCs and platelet reactivity were attenuated
in hypoxic subjects. Hypoxia did not significantly influence the
endotoxemia-induced increase in plasma levels of vWF and
TAT complexes. Furthermore, concentrations of the platelet
degranulation marker PF4 and ex vivo thrombin generation,
a measure of plasmatic coagulation, were also unaffected by
hypoxia.

In accordance with our results, previous work has consis-
tently demonstrated that experimental human endotoxemia
results in decreased platelet counts [8], and increased PMCs
[9], platelet reactivity [10], and plasma levels of vWF [8,10]
and TAT complexes [11]. Correspondingly, increases in platelet
activation markers are observed in sepsis patients [12].
Thrombin generation has not been previously assessed during
endotoxemia, and our data reveal that it is not relevantly
influenced by either systemic inflammation or hypoxia. The
discrepancy between TAT complexes and thrombin generation
may indicate that endotoxemia induces enhanced in vivo throm-
bin production, but that this does not result in a functional
tendency toward hypercoagulation [13].

The few human studies that have investigated the influence
of hypoxia on platelets under noninflammatory conditions
reported no effects of either 8 h of mild hypoxia [14] or
7 min of deep hypoxia [15] on soluble P-selectin levels,
PMCs, and platelet reactivity. In contrast, deeply hypoxic rats
displayed increased platelet activation and aggregation [3].
Previous studies on the effects of hypoxia on plasmatic coagu-
lation have yielded conflicting results. Some have reported
increased concentrations of prothrombin fragments 1 + 2
(F1+2) and TAT complexes (both markers of thrombin forma-
tion) during hypoxia [16], whereas others found no effects on
either F1+2, TAT complexes, endogenous thrombin-generating
potential, or several other measures of plasmatic coagulation
[14,15,17]. Taken together, most studies have not demonstrated
procoagulant effects of hypoxia in humans in vivo, which is
consistent with our current findings. Therefore, the assumption
that hypoxia per se results in a procoagulant state is not
supported by experimental data.

Several potential mechanisms may explain the effects of
hypoxia on the endotoxemia-induced changes in platelet counts
and coagulation parameters observed. Although platelets express
Toll-like Receptor-4, the archetypal receptor for endotoxin, it is
debated whether it can be directly activated by endotoxin [12].
Therefore, it is plausible that the endotoxemia-induced effects on
platelets are mediated by secondary mechanisms, for example,
through the release of cytokines. In this context, it is important to
emphasize that the hypoxic subjects in this study exhibited
approximately 40% lower circulating levels of pro-inflammatory
mediators [5], which may explain the attenuated effects on plate-
lets. Clearly, our work is limited by the fact that the experimental
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human endotoxemia model does not fully represent the inflam-
matory response observed in critically ill patients. Nevertheless,
given the paucity of human in vivo data on this subject, our study
does provide valuable insights into the complex interactions
between inflammation, hypoxia, platelets, and coagulation. We
report that hypoxia does not augment, but rather attenuates sys-
temic inflammation-induced increases in PMC formation and

platelet reactivity in humans in vivo, whereas it does not affect
parameters of plasmatic coagulation.
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Figure 1. Time course of platelet function and coagulation parameters during experimental endotoxemia in normoxic and hypoxic healthy volunteers. (a)Whole
blood platelet counts. Changes over time: normoxia p<0.0001, hypoxia p<0.0001. (b) Percentage of platelet–monocyte complexes (PMCs). Changes over time:
normoxia p= 0.0006, hypoxia p= 0.03. (c) Platelet reactivity expressed as the change from baseline of the area under the adenosine diphosphate dose-response
curve. Changes over time: normoxia p < 0.0001, hypoxia p = 0.41. (d) Plasma concentrations of platelet factor-4 (PF4). Changes over time: normoxia p = 0.08,
hypoxia p=0.001. (e) Plasma concentrations of vonWillebrand Factor. Changes over time: normoxia p< 0.0001, hypoxia p< 0.0001. (f) Endogenous thrombin
generation. Changes over time: normoxia:p=0.08, hypoxia p=0.10. (g) Plasma concentrations of thrombin–antithrombin (TAT) complexes. Changes over time:
normoxia p = 0.03, hypoxia p = 0.007.
The gray box indicates the period during which subjects were exposed to hypoxia. Endotoxinwas administered intravenously at t= 0 h. Data are expressed as the
estimated mean with error obtained from the mixed linear model, and p-values reported in the panels express the difference between the normoxic and hypoxic
endotoxemia model.

DOI: https://doi.org/10.1080/09537104.2018.1557617 Platelets and coagulation in hypoxic inflammation 929



Funding

This work was supported by the Radboudumc Centre for Infectious
Diseases [PhD Grant 2012]; Dutch Society of Anesthesiology [Young
Investigator Grant].

Statement of contribution

DK, PP, QdM, and MK designed the experiments. DK, RT, and RB
performed the experiments. GJS, PGG, RTU, and AJV supervised the
experiments. DK drafted the manuscript. PP, QdM, and MK supervised
the experiments and critically revised the manuscript.

ORCID

Dorien Kiers http://orcid.org/0000-0002-4829-6643

References

1. Levi M, Schultz M, Van Der Poll T. Sepsis and thrombosis. Semin
Thromb Hemost 2013;39(5):559–566. doi:10.1055/s-00000077.

2. Liak C, Fitzpatrick M, Dabsm F. Coagulability in obstructive sleep
apnea. Can Respir J 2011;18(6):338–348. doi:10.1155/2011/924629.

3. Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, Chatterjee
T, Bajaj N, Sengupta S, Ganju L, et al. Altered expression of platelet
proteins and calpain activity mediate hypoxia-induced prothrombo-
tic phenotype. Blood 2014;123(8):1250–1260. doi:10.1182/blood-
2013-05-501924.

4. Gertler J, Weibe D, Ocasio V, Abbott W. Hypoxia induces procoa-
gulant activity in cultured human venous endothelium. J Vasc Surg
1991;13:428–433. doi:10.1067/mva.1991.25767.

5. Kiers D, Wielockx B, Peters E, Eijk LT Van, Gerretsen J, John A,
Janssen E, Groeneveld R, Peters M, Damen L, et al. Short-term
hypoxia dampens inflammation in vivo via enhanced adenosine
release and adenosine 2B receptor stimulation. EBioMedicine
[Internet]. 2018;33:144–156. doi:10.1016/j.ebiom.2018.06.021.

6. Hemker HC, Giesen P, Al Dieri R, Regnault V, De Smedt E,
Wagenvoord R, Lecompte T, Béguin S. Calibrated automated
thrombin generation measurement in clotting plasma. Pathophysiol
Haemost Thromb 2003;33(1):4–15. doi:10.1159/000071636.

7. Snoep JD, Roest M, Barendrecht AD, De Groot PG, Rosendaal FR,
VanDer Bom JG. High platelet reactivity is associated withmyocardial
infarction in premenopausal women: a population-based case-control

study. J. Thromb. Haemost. [Internet]. 2010;8(5):906–913. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20128867

8. Li N, Soop A, Sollevi A, Hjemdahl P. Multi-cellular activation in vivo
by endotoxin in humans - limited protection by adenosine infusion.
Thromb Haemost 2000;84(3):381–387. doi:10.1055/s-0037-1614032.

9. Kälsch T, Elmas E, Nguyen XD, Suvajac N, Klüter H, Borggrefe M,
Dempfle CE. Endotoxin-induced effects on platelets and monocytes in
an in vivo model of inflammation. Basic Res Cardiol [Internet] 2007
Sep;102(5):460–466. [cited 2016 Feb 9]. Available: http://www.ncbi.
nlm.nih.gov/pubmed/17624488

10. Reitsma PH, Branger J, Van Den Blink B, Weijer S, Van Der Poll T,
Meijers JCM. Procoagulant protein levels are differentially increased
during human endotoxemia. J Thromb Haemost 2003;1(5):1019–1023.
doi:10.1046/j.1538-7836.2003.00237.x.

11. Derhaschnig U, Schweeger-Exeli I, Marsik C, Cardona F, Minuz P,
Jilma B. Effects of aspirin and NO-aspirin (NCX 4016) on platelet
function and coagulation in human endotoxemia. Platelets [Internet]
2010 Jan;21(5):320–328. [cited 2016 Jan 13]. Available: http://
www.ncbi.nlm.nih.gov/pubmed/20608787

12. de Stoppelaar SF, van ’T Veer C, van der Poll T. The role of platelets in
sepsis. Thromb Haemost 2014;112(4):666–677. doi:10.1160/TH14-02-
0126.

13. Al Dieri R, De Laat B, Hemker HC, Thrombin generation: what
have we learned? Blood Rev [Internet]. 2012;26(5):197–203.
doi:10.1016/j.blre.2012.06.001.

14. Toff WD, Jones CI, Ford I, Pearse RJ, Watson HG, Watt SJ,
Ross JA, Gradwell DP, Batchelor AJ, Abrams, KR, et al. Effect
of hypobaric hypoxia simulating conditions during long-haul air
travel, on coagulation, fibrinolysis, platelet function and endothe-
lial activation. JAMA 2015;295(19):2251–2262. doi:10.1001/
jama.295.19.2251.

15. Mäntysaari M, Joutsi-Korhonen L, Siimes MA, Siitonen S, Parkkola K,
Lemponen M, Lassila R. Unaltered blood coagulation and platelet func-
tion in healthy subjects exposed to acute hypoxia. Aviat Sp EnvironMed
2011;82(7):699–703. doi:10.3357/ASEM.3012.2011.

16. Bendz B, Rostrup M, Sevre K, Andersen TO, Sandset PM.
Association between acute hypobaric hypoxia and activation of
coagulation in human beings. Lancet [Internet]. 2000;356
(9242):1657–1658. Available: http://www.ncbi.nlm.nih.gov/pubm
ed/11089830

17. Hodkinson P, Hunt B, Parmar K, Ernsting J. Is mild normobaric
hypoxia a risk factor for venous thromboembolism? J Thromb
Haemost 2003;1:2131–2133. doi:10.1046/j.1538-7836.2003.00407.x.

930 D. Kiers et al. Platelets, 2019; 30(7): 927–930

https://doi.org/10.1055/s-00000077
https://doi.org/10.1155/2011/924629
https://doi.org/10.1182/blood-2013-05-501924
https://doi.org/10.1182/blood-2013-05-501924
https://doi.org/10.1067/mva.1991.25767
https://doi.org/10.1016/j.ebiom.2018.06.021
https://doi.org/10.1159/000071636
http://www.ncbi.nlm.nih.gov/pubmed/20128867
https://doi.org/10.1055/s-0037-1614032
http://www.ncbi.nlm.nih.gov/pubmed/17624488
http://www.ncbi.nlm.nih.gov/pubmed/17624488
https://doi.org/10.1046/j.1538-7836.2003.00237.x
http://www.ncbi.nlm.nih.gov/pubmed/20608787
http://www.ncbi.nlm.nih.gov/pubmed/20608787
https://doi.org/10.1160/TH14-02-0126
https://doi.org/10.1160/TH14-02-0126
https://doi.org/10.1016/j.blre.2012.06.001
https://doi.org/10.1001/jama.295.19.2251
https://doi.org/10.1001/jama.295.19.2251
https://doi.org/10.3357/ASEM.3012.2011
http://www.ncbi.nlm.nih.gov/pubmed/11089830
http://www.ncbi.nlm.nih.gov/pubmed/11089830
https://doi.org/10.1046/j.1538-7836.2003.00407.x

	Abstract
	Introduction
	Methods
	Study Design, Population, and Procedures
	Assays
	Statistical Analysis

	Results
	Platelet-Associated Parameters
	vWF Levels and Plasmatic Coagulation

	Discussion
	Disclosure Statement
	Funding
	Statement of contribution
	References

