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Although it is possible to construct recursive descent parser very elegantly us-
ing parser combinators, this is not often done in practise. This is a pity since the 
combinator approach to construct parsers has a number of clear advantages: like 
the availability of full power of the high level functional languages to manipu-
late parsers and their results, arbitrary look ahead, and context sensitivity. Using 
continuations enables us to implement parsers efficiently. Remaining problems 
are the error handling, the use of efficient data structures in the parse state, and 
for some applications the lack of a separate scanner level. In this paper we show 
how all these problems are solved using a set of parser combinators that is 
based on a multi parameter type class. All existing advantages of combinator 
parser are preserved. 

1. Introduction 

In the literature a rather large number of approaches is described to construct parsers 
in functional programming languages. We can distinguish two approaches in the con-
struction of parsers. 

The first approach uses a program generator [??, ??]. The generator is feed with 
some description of the syntax of the language to be parsed and generates an appro-
priate parser. The advantage of this approach is that it is relative easy for the genera-
tor to check properties of the syntax, like left-recursion and LL(1), and to manipulate 
the syntax. 

The second method to construct parsers uses a library of functions [??, ??]. The 
functions in such a library are usually called parser combinators. The drawback of 
this methodology is that it becomes the responsibility of the programmer to enforce 
constraints, like not left-recursive, on the syntax. However, there are also some big 
advantages associated with using a library of parser combinators. For instance, there 
is no separate language needed to describe the syntax. The main benefit however, is 
that the full power of the high level functional language can be used to construct pars-
ers and handle the parsed objects. For instance parsers can be produced by other func-
tions, be stored in data-structures, and combined like any other functions in the lan-
guage. As a result it becomes very easy to write context sensitive parsers with a look 
ahead as big as is required. The constructed parsers usually combine the work classi-
cally done by a scanner, recognising tokens, and a conventional parser, combining 



tokens to sentences. As shown earlier [??] these parsers can be made also efficient by 
an appropriate implementation and restricting the non-determinism to the spots where 
it is really needed. Swierstra describes some sets of parser combinators that are able to 
detect and correct errors in the language accepted by the constructed parser [??]. 

Despite of the advantages mentioned, combinatory parsers are not heavily used for 
real world programs. We think there are a couple of reasons for this. One of the main 
problems is that error handling remains cumbersome. For languages with a rich input 
syntax and few keywords, like functional programming languages, suitable error 
correction is next to impossible. Further more we need possibilities to maintain parse 
tables and other data structures efficiently. In Clean1 this implies that the parser 
should have a unique state. In such a unique state we can store heaps, updateable 
arrays and the like to construct efficient syntax trees and files to contain generated 
messages. Finally, on occasions it is convenient to introduce a separate scanner, for 
instance to implement an offside rule. The scanner and parser perform very similar 
tasks on a different sequence of input symbols, characters for the scanner and tokens 
for the parser. It is very desirable that the same set of combinators can be used for the 
scanner and the parser. 

In this paper we present a set of parser combinators that is by default deterministic, 
has a unique state and can have multiple levels. It combines the advantages of existing 
combinators approaches and removes some hindrances for large-scale applications. 
The possibilities for error reporting and recovery are significantly improved, but error 
recovery is not yet automatically derived from the syntax description. 

In section 2 we recapitulate the conventional parser combinators. In section 3 we 
present a quick overview of uniqueness in Clean. Section 4 explains the architecture 
of our parser combinatory system. The next section shows how a set of basic opera-
tions can be implemented which can read input from a unique file. In section 7 we 
show how parser combinators are defined and used. In section 8 we add a new level to 
the constructed parser. The combinators defined on the previous level can be applied 
in this level as well. Error handling is discussed in section 9. Finally, we show how 
non-determinism can be introduced if it is desired, and we draw some conclusions. 

2. Conventional Parser Combinators 

In the conventional approach parser combinators are non-deterministic. A parser takes 
a list of symbols as input and produces a list of results. Each element in the list repre-
sents a successful way to parse the current input. Such a success consists of the re-
maining input and the result produced by the parser. 

:: Parser      s r :== [s] -> ParseResult s r 
:: ParseResult s r :== [([s],r)] 

The simplest parser combinator is yield. It takes a result as argument and pro-
duces a parse result independent of the form of the input. 

                                                        
1 In this paper we will use Clean 2.0 since we need multi parameter type classes, although it is 

not yet public available. 



yield :: r -> Parser s r 
yield r = \ss = [(ss,r)] 

The basic combinatory to recognize a given symbol in the input is symbol. 
symbol :: s -> Parser s r | == s 
symbol sym = p 
where p [s:ss] | s==sym = [(ss,sym)] 
      p _               = [] 

The non-deterministic or-combinator combines the results of two parsers. Note that 
the input is distributed over both parsers. Therefore the input is shared and cannot 
have a unique type, see section 3, in this approach. 

(<||>) infixr 4 :: (Parser s r) (Parser s r) -> Parser s r 
(<||>) p1 p2 = \ss = p1 ss ++ p2 ss 

In many situations one is only interested in a single successful parse of the input. In 
this situation we only apply p2 to the input if P1 fails. The corresponding or-
combinator is: 

(<|>) infixr 4 :: (Parser s r) (Parser s r) -> Parser s r 
(<|>) p1 p2 = \ss = case p1 ss of 
                      []  = p2 ss 
                      res = res 

Using this version of the or-combinator can reduce the complexity of the parser 
from polynomial to linear [??]. 

There are many variations of the and-combinator. This combinator receives two 
parsers as argument. The first parser is applied to the input and the second parser is 
applied to the rest of the input. Here we supply the result of the first parser as argu-
ment to the second parser. This is sometimes called the monadic style. 

(<&>) infixr 4 :: (Parser s r) (r->Parser s t) -> Parser s t 
(<&>) p1 p2 = \ss1 = [  tuple 
                     \\ (ss2,r1) <- p1 ss1 
                     ,  tuple    <- p2 r1 ss2 
                     ] 

As a very simple example we implement a parser that accepts the symbol 'a' fol-
lowed by a 'b' or a 'c'. Since it is obvious that we can only recognize a 'c' if there 
was no 'b', we use <|> as or-combinator. 

a_and_b_or_c :: Parser Char (Char,Char) 
a_and_b_or_c =  symbol 'a'                 <&> \r1 = 
               (symbol 'b' <|> symbol 'c') <&> \r2 = 
                yield (r1,r2) 

We have used the conventional implementation of parser combinators here, al-
though it is much slower than an implementation using continuations. This implemen-
tation is very simple and makes it easy to grasp the idea. 

3. Uniqueness 

The lazy functional programming language Clean has since many years a uniqueness-
type-system [??]. An object is said to be unique if it can be assured at compile-time 
that there is always at most one single reference to that object. This is used to enforce 



the single threaded use of real world objects that cannot be copied, like files and win-
dows. If large data-structures, like arrays, are known to be unique the can be updated 
destructively without compromising referential transparency. In Clean it is only pos-
sible to update an array if it is known to be unique. 
We notate uniqueness by prepending the type with an asterisk. For instance File is 
the ordinary type for files. Since reading does not change a file we can read from 
objects with type File. In order to define the sequence of write operations on a file 
we have to guarantee that the file is used in a single threaded way. In Clean this is 
done by requiring an object of type *File. This object is unique, hence there are no 
other references to it, and so it is impossible to apply multiple write operation to the 
same object. The write operation yields a new unique file. This new file can be used 
for the next write operation. In Haskell, the required single threaded use of the file is 
achieved by using a special monad. 

The type of the function to write a single character to a file is: 
fwritec :: !Char !*File -> *File 

Using this function we implement a function that writes a list of characters to a file. 
writeList :: [Char] *File -> *File 
writeList []    file = file 
writeList [c:r] file = writeList r (fwritec c file) 

Some functions are polymorphic in uniqueness. When they receive a unique argu-
ment they produce the unique result. However, they can also have a non-unique ar-
gument and, the result will than also be non-unique. We notate this by prefixing the 
type by a dot. The best-known example is the identity function. 

id :: .t -> .t 
id x = x 

Unique elements can also be part of data-structures. It is obvious that elements of a 
data-structure can only be unique if the encapsulating structure is unique. If the sur-
rounding structure is not unique, it is always possible to create additional reference 
via this surrounding structure. Such an additional reference spoils uniqueness. 

The Clean system is able to derive and verify uniqueness properties of functions. 

4. System Architecture 

As explained in the introduction we require that the parser combinators are able to do 
error handling, which can be used in a multi-level approach. We also require that the 
parsers are able to handle unique objects, like symbol tables. 

In order to generate proper error messages the parser should have a notion of loca-
tion, i.e. what is the input and what is the current position inside this input. Further-
more, we want to have a file available to write messages to. This is achieved by re-
placing the list of input symbols by a more elaborated input state. This state contains 
at least the actual input, a notion of position inside this input and the messages file. 
Since the input is usually stored in a file it might be worthwhile to see if it is possible 
to avoid the construction of a list of input characters. This parse state contains a 
unique object, the messages file, and hence has to be unique. The fact that we want to 



be able to handle unique objects in the parser is another reason to make the parse state 
unique. 

Since we want to be able to have a multi-level approach we model the parse state 
by a type constructor class rather than a direct class. Although parsers of more than 
two levels are rare, there is no reason to restrict us to two levels. Using a type con-
structor class also enables us to use one and the same parser on different types of 
input. The input can modelled for instance by a list of characters, a string (an unboxed 
array of characters in Clean), or a file. 

This results in the following approach: 
• A type constructor class represents the parser state. 
• We define instances of this class to handle different kinds of input. In this paper we 

will start with a parser state where the input come form a unique file. 
• The parser combinators are defined in terms of the manipulation functions of the 

type constructor class. 
• Parsers are as usual defined in terms of the parser combinators. 
• A second level of the parser is defined by a new instance of the type constructor 

class that contains the lower level parser, the scanner. 
We will threat these topics in separate sections. 

5. Parser State 

The parser state is a type constructor class that is parameterised by the type of sym-
bols it contains. In order to have an extendable parser state we will provide a second 
type argument that represents a user-defined extension of the parse state. In this paper 
we will use this extension to hold the offside-administration and the hashtable for 
symbols. This field will be used to hold unique symbol tables and the like. Hence, this 
field and the whole state are unique. Due to this requirement we will need multi-
parameter type classes and hence version 2.0 of Clean.  

The basic function for the parse state is to read a new symbol. 
class PSread ps sym st :: (*ps sym *st)-> (sym,*ps sym *st) 

It appears to be convenient to have the current input symbol always easily avail-
able. This is achieved by the uniform use of the tuple (symbol,*ps symbol 
*state) instead of a state *ps symbol *state that contains the current symbol. 

The next three functions are intended to make a branch in the parsing process, to 
return to that point as required by the or-operator and to remove the bracng. Due to 
the uniqueness of the state we cannot simply copy the current state to both branche. 

class PSsplit ps sym st :: (sym,*ps sym *st) -> (sym,*ps sym *st) 
class PSback  ps sym st :: (sym,*ps sym *st) -> (sym,*ps sym *st) 
class PSclear ps sym st :: (sym,*ps sym *st) -> (sym,*ps sym *st) 

Applying the function PSsplit indicates that it is possible to return to the current 
spot in the input. Applying the function PSback indicates that the parser wants to 
return to the earlier indicated spot in the input. It is obvious that splitting and going 
back in the input can be nested to arbitrary depth. 

The current position in the input can be obtained by applying: 



class PSpos ps sym st :: (sym,*ps sym *st)->(Pos,(sym,*ps sym *st)) 

:: Pos = {pos_inp::String, pos_col::Int, pos_line::Int} 

The error message m can be written to the output file inside the parser state by: 
class PSerror ps sym st::m (sym,*ps sym *st)->(sym,*ps sym *st)|<<= m 

There are two higher order functions to apply functions to the user-defined state 
within the parser state. The first is used to apply functions that produce a result and a 
new local state. The second just applies a function to the local state. 

class PSacc ps sym st 
 :: (*st->(r,*st)) (sym,*ps sym *st)->(r,(sym,*ps sym *st)) 

class PSapp ps sym st::(*st->*st)(sym,*ps sym *st)->(sym,*ps sym *st) 

In order to produce better error messages we supply a stack of strings that is used 
to indicate the current parsing context. This context is used during the production of 
error messages. 

class PSpush ps sym st 
 :: String (sym,*ps sym *st) -> (sym,*ps sym *st) 

class PSpop  ps sym st :: (sym,*ps sym *st) -> (sym,*ps sym *st) 

The actual library contains some additional operations, but for the purpose of this 
paper we define the parser state as: 

class ParserState ps symbol state 
    | PSread, PSsplit, PSback, PSerror, PSacc, PSapp, 
      PSpush, PSpop ps symbol state  

6. File Input 

The first instance of ParserState that we define contains a unique file used to read 
characters from. For efficiency reasons we read a whole line of charters at a time 
instead of reading characters one by one. This line of charters from the file is stored as 
a string in the parser state. We maintain in index in this string to indicate the current 
character. Due to the existence of tabs the index is not necessary equal the column in 
the position. 

For this parser state we assume that we never need to go back to a previous line. If 
the parser needs to go back in the input it will always remain on the current line. 
Since this parser state corresponds to a scanner this is a very realistic approach. Note 
however, that this is not a restriction of the system, but a restriction of this implemen-
tation of the parser state. Using seeks it is possible to go arbitrary far back in the input 
file without having to store a huge part of the file. 

:: *FileInput symbol state = 
        { fi_file  :: *File 
        , fi_pos   :: Pos 
        , fi_line  :: String 
        , fi_index :: Int 
        , fi_hist  :: [(Index,Column)] 
        , fi_error :: ErrorState 
        , fi_cont  :: [String] 



        , fi_state :: state 
        } 

The manipulations functions of the class ParserState are implemented for 
FileInput. The implementations are all rather straight forward. We show some 
illustrative examples. 

instance PSpos FileInput Char state 
where PSpos (c,fi=:{fi_pos}) = (fi_pos, (c,fi)) 

instance PSsplit FileInput char state 
where PSsplit (c,fi=:{fi_index,fi_hist}) 
       = (c,{fi&fi_hist=[(fi_index-1,fi.fi_pos.pos_col-1):fi_hist]}) 

instance PSback FileInput Char state | PSread FileInput Char state 
where PSback (c,fi=:{fi_hist})  
       = case fi_hist of 
          [(index,col):t] 
           = PSread {fi & fi_index = index 
                        , fi_hist = t 
                        , fi_pos={fi.fi_pos&pos_col=col} 
                    } 

7. Parser Combinators 

The parser combinators are built on the parser state type class. In order to prevent the 
construction of unnecessary intermediate data structures we equip the parsers with 
two continuations. 

The first continuation determines what should be done if the current parser suc-
ceeds. It receives the result of the current parser, the fail continuation and the tuple 
containing the current input symbol and the parser state as arguments. 

The second continuation determines what should be done when the current parser 
fails. This continuation has only the current input tuple as argument. 

The final argument of each parser is the current input tuple. 
:: *Tuple   sym ps st   :== *(sym,ps sym st) 
:: FailCont sym ps st r :== *(Tuple sym ps st)->*(r,*Tuple sym ps st) 
:: SuccCont sym ps st t r 
 :==t (FailCont sym ps st r)*(Tuple sym ps st)->*(r,*Tuple sym ps st) 

:: Parser sym ps st tmp r  
   :==  (SuccCont sym ps st tmp r) 
        (FailCont sym ps st r) 
       *(Tuple sym ps st)  ->  *(r,*Tuple sym ps st) 

We show some simple parser combinators corresponding to combinators shown in 
section 2. The simplest combinator is yield. It succeeds with the given value. A 
parser succeeds by applying the success continuation to its result, the fail continuation 
and the input. 

yield :: tmp -> Parser sym *ps .st tmp result 
yield r = \succ fail tuple = succ r fail tuple 

The counter part of the parser that always succeeds is the parser that always fails. It 
is much less useful, but illustrative. 



failComb :: Parser sym *ps st tmp result 
failComb = \succ fail tuple = fail tuple 

A more serious parser primitive checks whether the first symbol in the input is 
equal to the given symbol. 

symbol::sym->Parser sym *ps st sym r | == sym & ParserState ps sym st 
symbol wanted = p 
where p succ fail t=:(sym,ps) 
          | sym == wanted 
          = succ wanted fail (PSread ps) 
          = fail t 

If you look at this function you recognise the yield function in the first alternative 
of symbol and the fail combinator in its second alternative. 

There are two basic combinators to combine parsers. The first one denotes a se-
quence of parsers that should be applied. The second one denotes a choice. Both 
parser combinators are implemented by inserting the other parser at the correct place 
in the continuations of the first one. 

For the sequence combinator we insert the second parser in the success continua-
tion of the first parser. The second parser should be invoked to the remaining input if 
the first parser succeeds. The standard monadic parser combinator is: 

(<\>) infixl 6 :: (Parser sym *ps .st a r) 
                  (a->Parser sym *ps .st b r)->Parser sym *ps .st b r 
(<\>) p1 p2 = \succ fail t = p1 (\a = p2 a succ) fail t 

It appears that it is often more convenient to have a sequence combinator where the 
first parser yields a function that takes the result of the next parser as argument. This 
reduces the number of lambda functions needed significantly. 

(<+>) infixl 6 :: (Parser sym *ps .st (a->b) r) 
                  (Parser sym *ps .st a r) -> Parser sym *ps .st b r 
(<+>) p1 p2 = \succ fail t -> p1 (\f = p2 (\x = succ (f x))) fail t 

To parse syntax elements, like keywords and parentheses, that does not contribute 
to the syntax tree conveniently, we also introduce the operators <+ en +> that yield 
only the result of the first and second parser respectively. 

We choose to have deterministic parsers. For a choice combinator this implies that 
the second parser is only invoked if the first one fails. For the choice combinator we 
insert the second parser in the fail continuation of the first one. 

(<|>) infixr 4 :: (Parser sym *ps .st t r) 
                  (Parser sym *ps .st t r) -> Parser sym *ps .st t r 
                  | ParserState ps sym st 
(<|>) p1 p2 = \succ fail tuple -> p1 (\r f t=succ r fail (PSclear t)) 
              (\t2 -> p2 succ fail (PSback t2)) (PSsplit tuple) 

Using these combinators we define equivalent of the simple parser from section 2 
that recognises an 'a' followed by a 'b' or a 'c'. 

a_and_b_or_c 
 =     yield (\x y=(x,y)) 
   <+> symbol 'a' 
   <+> (symbol 'b' <|> symbol 'c') 

For convenience a rich set of operators is defined in the library. We define the fol-
lowing operator as a frequently used special case of this combinator. It constructs a 
list element combining the results of the parsers p1 and p2. 



(<:>) infixl 6 
(<:>) p1 p2 :== yield (\h t=[h:t]) <+> p1 <+> p2 

It is often needed to insert a function as starting point of a sequence of parsers. In 
the example above we did this by yield (\x y=(x,y)). It is worthwhile to intro-
duce a special infix operator. 

(@>) infixl 7 :: (a->b) (Parser s *ps .st a r)-> Parser s *ps .st b r 
(@>) f p = yield f <+> p 

A cousin of this operator applies a function to the parsed item. 
(<@) infixl 5 :: (Parser s *ps .st a r) (a->b)-> Parser s *ps .st b r 
(<@) p f = \succ fail tuple = p (\r -> succ (f r)) fail tuple 

Another relative applies a function to the parse state if the parser succeeds. 
(<<@@) infixl 5 
(<<@@) p f = \succ fail t = p (\x fail t = succ x fail (f t)) fail t 

The Kleene star operator applies a given parser as often as possible to the input. 
The results of applying the parser are collected in a list. 

star :: (Parser sym *ps .st a r) -> Parser sym *ps .st [a] r 
        | ParserState ps sym st 
star p = p <:> star p <|> yield [] 

The final operator shown here is token, it recognises a sequence of symbols. 
token :: [s] -> Parser sym *ps .st [s] r | == s & ParserState ps s st 
token []       = yield [] 
token [s:rest] = symbol s <:> token rest 

Using the given parser combinators we can define a scanner for a simple functional 
programming language elegantly. The tokens are represented by an algebraic data-
type. We use a data-type called OffsideState for the administration of offside 
positions. The function setOffside adds the current column as offside position. An 
offside token is generated by generateOffsideToken if the current position is in 
the input is offside. This function also takes care about removing offside positions. 

scanner :: Parser Char FileInput OffsideState Token Token 
scanner 
 =      skipSpace +> 
    (   generateOffsideToken 
    <|> (token ['of']  <@ K OfToken)  <+ skipSpace <<@@ setOffside 
    <|> (token ['let'] <@ K LetToken) <+ skipSpace <<@@ setOffside 
    <|> satisfy isAlpha 
        <:> star (satisfy isAlphanum) <@ check_reserved o toString 
    <|> plus (satisfy isDigit)        <@ IntToken o to_number 0 
    <|> symbol '='                    <@ K EqualToken 
    <|> symbol '('                    <@ K OpenToken 
    <|> symbol ')'                    <@ K CloseToken 
    ) 

8. Token Input 

The next step is to construct a parser that is able to parse the tokens constructed by the 
scanner. The token input is very similar to the file input. Since it is the second layer of 



the parser, the first layer is a component of this parser state. The state of the scanner 
and the scanner itself are fields in the record representing the token input. Here we do 
maintain a list of tokens to go back in the input of the high level parser. 

:: *TokenInput symbol state 
 =  { ti_fi      :: *(Char,*FileInput Char OffsideState) 
    , ti_scanner :: *(Char,*FileInput Char OffsideState) ->  
                    *(symbol,*(Char,*FileInput Char OffsideState)) 
    , ti_buffer  :: [symbol] 
    , ti_history :: [[symbol]] 
    , ti_state   :: state 
    } 

Note that we can stack parsers to arbitrary height if we do not give a concrete type 
for the lower level state and parser function. We use an existentional type for the 
variables in the state and lower level parse function. 

:: *TokenInput token state 
 = E. ps s st: 
    { ti_fi      :: *(s,*ps s st) 
    , ti_scanner :: *(s,*ps s st) -> *(token,*(s,*ps s st)) 
    , ti_buffer  :: [token] 
    , ti_history :: [[token]] 
    , ti_state   :: state 
    } 

Implementing the access functions of the class ParserState is a simple exercise. 

9. Error handling 

In practise a parser is most of the time applied to incorrect programs. This makes 
error handling necessary. Although these parser combinators can be used to construct 
any parser, they are constructed initially for a functional programming language. Such 
a language is characterised by a very rich syntax and small number of keywords. This 
makes a general form of error correction unfeasible. Hence, we will limit ourselves to 
proper error messages and some rudimentary error correction. 

The infix operator ::> is used to assign a name to a parser. The name is pushed on 
the context stack before the parser starts and removed when it is finished. 

(::>) infix 1 :: String (Parser s *ps .st t r)->Parser s *ps .st t r 
                 | ParserState ps s st 

Due to the stack of parsing environments and the current position maintained by 
the parser state it is possible to generate error messages like: 

Error [t.icl,20,[Case_alt,Expression]]: ) expected instead of <<EOD>> 

This indicates that the parser discovered an error in the file t.icl on line 20 while 
parsing an expression in side a case alternative. This error is produced by the function 

parseError :: e a -> Parser s *ps st a t  
              | ParserState ps s st & toString e & toString s 

The first argument is the expected value, the second argument is the value used as 
result placeholder. Using this function we can define parser combinators that accepts 
the given token or languages construction if it is present, if the current symbol is not 



the desired symbol an error message is generates and the parser continues as if the 
symbol was recognised: 

wantSymbol sym = symbol sym <|> parseError sym sym 
want p message default = p <|> parseError message default 

The wantSymbol combinator appears useful for symbols like equal signs in func-
tion definitions and closing parenthesis. The combinator want is used for instance to 
recognise right hand side of function definitions. 

To synchronise the parser with the input we define 
skipToSymbol sym 
 =     symbol sym 
   <|> parseError sym sym +> star (satisfy (\s=s<>sym)) +> symbol sym 

This skips symbols until the given symbol is recognised. If some symbols have to 
be skipped an appropriate messages is produced. This is applied to find the end of 
definitions indicated by the automatically generated offside-tokens. 

Using the token parser and this error handling, we can construct a parser that rec-
ognises a simple expression and yields an appropriate syntax tree. 

pExpression :: Parser Token *ps HashTable Expression t 
             | ParserState ps Token HashTable 
pExpression 
 =  "Expression" ::>  
        match mBasicValue <@ BV 
    <|> pIdentifier 
    <|> symbol OpenToken +> pCompoundExpression <+ symbol CloseToken 
    <|>     symbol CaseToken 
        +>  (\e ps d = Case {expr=e, patterns=ps, default=d}) 
        @>  pCompoundExpression 
        <+  wantSymbol OfToken 
        <+> star pCaseAlt 
        <+> opti (symbol EqualToken +> pCompoundExpression) 
        <+  skipToSymbol EndOfGroupToken 

10. Non-deterministic Parsers 

If for some reason we really want to have a parser for a non-deterministic syntax we 
need to implement a new or-combinator. This operator appends all results of the first 
parser to all results of the second parser. A naive implementation just appends the lists 
of successes. Since the parser used here does not yield list of successes we use the 
combinator opt to transform an ordinary parser to a parser producing a list of suc-
cesses. 

(<||>) infix 4::(Parser sym *ps .st t r) (Parser sym *ps .st t r) 
                 -> Parser sym *ps .st [t] r | ParserState ps sym st 
(<||>) p1 p2 = (\x y=x++y) @> opt p1 <+> opt p2 

opt p :== (\x=[x]) @> p <|> yield [] 

A more advanced implementation prevents the construction of intermediate lists by 
employing the existing continuations directly. Also the composition of more than two 
parsers can and should be improved for serious applications. The given implementa-
tion just illustrates the possibilities. 



11. Discussion 

In this paper we introduced a set of parser combinators that inherits the advantages of 
previous developed combinator libraries [??]. The combinators enable us to write 
recursive descent parsers fast and clear. Since the parser combinators are ordinary 
functions the parsers and their results can be manipulated very flexible in a high level 
functional programming language. If desirable the parsers can be context sensitive, 
have an arbitrary look ahead and the syntax can be non-deterministic. 

The library of combinators introduced in this paper offers some additional features. 
A very important contribution to the efficiency of real world parser is the ability to 
handle unique objects like symbol tables in the parse state. Another nice property is 
that a separate scanner level can be introduced if that appears to be desirable, for 
instance to implement an offside rule elegantly. If a separate scanner is not needed we 
do not have to introduce such a level. Moreover, it is possible to create as many levels 
as convenient and the same parser combinators can be used on each level. Also the 
possibilities for error handling are significantly improved. 

The execution time of parsers constructed with these combinators does not differ 
much from ad-hoc written parser/scanner combinations and is very acceptable. De-
pending on the exact input and post-processing we measured up to 3500 lines contain-
ing simple function definition per second on a 1 GHz Windows-ME machine, with an 
AMD processor. The version of the parser constructed with parser combinators is 
much better readable, easier to change and more concise than the ad-hoc parser. In 
order to obtain a similar memory use we have added a combinator that eliminates the 
backtrack administration as soon as the programmer indicates that the current branch 
of the parser should not fail. It appears to be sufficient to use this in some strategically 
chosen top-level parse alternatives. For instance after the double double-colon sym-
bol, ::, in a type. 
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