
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/207828

 

 

 

Please be advised that this information was generated on 2019-11-08 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/231968117?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/207828


Practical Formal Methods
Jeroen J.A. Keiren

Department of Computer Science
Open University of the Netherlands
Department of Digital Security, ICIS

Radboud University
Nijmegen, The Netherlands

Delft University of Technology
Delft, The Netherlands
Jeroen.Keiren@ou.nl

1 Introduction
Today, we heavily depend on software. We do not only use
the computers on our desktops and the mobile phones in
our pockets. Financial infrastructures and automatic stock
trading are controlled by computers, and computer systems
are embedded in home appliances such as televisions, safety
critical systems such as cars and airplanes, as well as systems
controlling (access to) infrastructure such as bridges and
tunnels.

During the development of software, inevitably, mistakes
are made. In fact, on average, every 1000 lines of code contain
up to 10-16 bugs [? ? ]. Some of these bugs will only show up
once the system is running. At that point, the consequences
can range from being harmless – e.g. needing to restart your
phone because it freezes –, to very severe – such as a car
crashing [? ], hundreds of millions of dollars being lost in in
the stock markets [? ]. Furthermore, a growing reliance on
battery-powered devices and the effects of climate change
have resulted in an increased interest in green computing.
Bugs that lead to quick draining of batteries have gained a
lot of publicity [? ].

To effectively detect or avoid such bugs early (preferably
before software is used) calls for a range of different tools
and techniques. This ranges from exact and exhaustive veri-
fication methods such as (automated) theorem proving and
model checking, to formal testing techniques such as model
based testing, automated testing at the level of graphical user
interfaces, as well as more traditional testing techniques such
as unit- and integration testing. The formal methods and
software engineering communities in the Netherlands have
a long track record in developing such techniques.

When considering, especially, the more formal approaches
such as model checking, theorem proving and model-based
testing, there is a lot of anecdotal evidence that they are
effective in finding and avoiding bugs, for instance [? ? ? ].
However, the techniques typically require experts that are
well-versed in both the application domain as well as in the
formal methods applied. Furthermore, a clear business case
for the application of formal methods is missing.

Besides the mainly theoretical research into the founda-
tions of formal methods based verification and testing tech-
niques, there are three research directions that deserve our
undivided attention.

1. Develop formal methods that can be used by software
engineers that are not formal methods experts.

2. Establish a business case for the industrial application
of formal methods through empirical research.

3. Determine how formal methods can best be integrated
in software engineering and computer science curric-
ula.

I will detail each of these three points in the rest of this
abstract.

2 Bringing formal methods to the masses
The application of formal methods such as model checking
or model based testing to industrial cases is still very much
an expert activity. Tools often rely on models of the software,
instead of the software itself, and the models are specified
in domain-specific languages whose syntax is far from the
the programming languages software engineers are used to.
Throughout the years many applications of such techniques
have been reported as a success, e.g., [? ? ], but large-scale
industrial application has yet to gain traction.
In software model-checking, some successes have been

obtained, e.g., at Microsoft using SLAM1 [? ] and TERMI-
NATOR, continued as T2 [? ], for the verification of C code,
where verifying a limited set of properties on an actual (C-
code) implementation seems to be one of the success criteria.
To bring formal methods to the masses, as a community

we need to invest not just in new techniques, but also in the
engineering of tooling and languages that can be used in
the industrial software engineering process, and recognise
that this step is not “just trivial engineering”. We should
therefore not stop at the development of prototype tools,
but also look at industry needs and invest in making the
tooling mature enough for use in production systems. At
CERN, for example, we went from high-level academic tools,
down to an integration of the verification in the IDE used by
1https://www.microsoft.com/en-us/research/project/slam/, accessed 9 Au-
gust 2018



Jeroen J.A. Keiren

the developers, effectively providing developers with push-
button access to model checking [? ].

3 Empirical evidence for the merits of
formal methods

Industrial application of formal methods are typically re-
ported as succes stories. However, from an industrial per-
spective, it is important to know the effects on applying such
techniques. How does the application of formal methods
affect, for example, time-to-market, number of bugs found
after deployment, etc.

Unfortunately, such information is currently lacking from
the formal methods literature. Some vendors, such as Verum
with its Dezyne toolkit – which is based on mCRL2 [? ] –, do
report benefits such as “50% reduction in development costs,
25% reduction in the cost of field defect and 20% decrease in
time-to-market”2, but the sources and reliability of such data
are unclear. In order to build a successful business case for
the application of formal methods in software engineering
practice, a collaborative effort should be made to collect
data about the application of formal methods. Based on the
collected data, a business case for the application of formal
methods should be developed. One possibility could be the
collection of data in a large number of student projects, such
as [? ].

4 Teaching formal methods
A final advance in the acceptance of formal methods lies in
the way we teach formal methods. It appears commonplace
in software engineering and computer science curricula to
present formal methods more as a research topic than as
a software engineering topic. A typical question one gets
from students is “so, where and how are these techniques
actually applied in industry”. In recent years, I have seen
more critical attitudes of students towards formal methods
courses. Should we do a better job at integrating formal
methods into our curricula, to really show the students what
the can do with formal methods instead of how the formal
methods work?

Note that there is more to the teaching of formal methods.
How can we effectively teach such methods using modern
tools and techniques such as massive open online courses
(MOOCs)? In particular, with (sometimes dramatically) in-
creasing numbers of students, and in the context of distance
learning, we need to find ways of providing feedback in for-
mal methods education that does not rely on expert feedback.
Is it possible to build interactive online tools that present
feedback to students about their solutions? Are there more
effective ways of teaching formal methods than we currently
use in our courses? Can we, in this respect, learn from pro-
gramming education research such as [? ? ]?

2https://www.verum.com, accessed 9 August 2018.


