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Bitcoin mining is becoming an increasingly energy-intensive process1,2,3 whose future implications for 

energy use and CO2 emissions remain poorly understood.  This is in part because—like many IT 

systems—its computational efficiencies and service demands have been evolving rapidly. Therefore, 

scenario analyses that explore these implications can fill pressing knowledge gaps, but they must be 

approached with care.  History has shown that poorly constructed scenarios of future IT energy use—

often due to overly-simplistic extrapolations of early rapid growth trends—can do more harm than good 

by spreading misinformation and driving ill-informed decisions.4,5,6  Indeed, the utility of an energy 

demand scenario is directly proportional to its credibility, which is typically demonstrated through 

careful attention to technology characteristics and evolution, analytical rigor and transparency, and 

designing scenarios that align with plausible future outcomes.  

Regrettably, the Bitcoin CO2 emissions scenarios presented in the recent Mora et al. article7 lack such 

credibility and should not be taken seriously by the research and policy communities.  We arrived at this 

conclusion by replicating in detail Mora et al.’s methods, which revealed numerous flaws in the design 

and execution of their analysis as documented in the Supplementary Information.  We describe the five 

most significant issues below. 

First, the use of transactions as the driver of future Bitcoin emissions is questionable, given the tenuous 

correlation between transactions and mining energy use.  It is well established that energy use is driven 

by the computational difficulty of blocks mined1-3, whereas the number of transactions per block has no 

effect on block mining difficulty. Indeed, the authors themselves calculate 2017 Bitcoin energy use and 

emissions based on block difficulty, not number of transactions (Supplementary Eq. 1).  Without 

explanation or justification, the authors switch to transactions as the driver for projecting emissions in 

all future years, undermining the consistency of their calculations and the integrity of their projections. 

Second, all three Bitcoin adoption scenarios designed by Mora et al. represent sudden and highly 

improbable departures from historical trends in Bitcoin transactions, whose annual growth ranged from 

1.3x-2.3x over the preceding five years.8 Specifically, Mora et al. assume that Bitcoin transactions—

which totaled 104 million in 2017, representing a mere 0.03% of global cashless transactions—would 

abruptly leap to 78 billion by 2019 in the fast scenario (a 750x increase in only 2 years), to 11 billion by 

2020 in the median scenario (a 108x increase), and to 8 billion by 2023 in the slow scenario (a 76x 

increase).  All three adoption scenarios follow steep logarithmic growth trajectories thereafter, which 

are conspicuously inconsistent with historical trends (Supplementary Fig 4), and which mathematically 

can only lead to large near-term emissions increases. The authors base their scenarios on adoption rates 



of 40 “broadly used” technologies whose social utilities vary widely and bear little resemblance to that 

of Bitcoin. The authors never explain why such comparisons are valid, nor do they justify the plausibility 

of the very abrupt changes in Bitcoin transaction levels and growth trajectories associated with their 

resulting scenarios.  Hence, these scenarios should not be taken seriously. 

Third, Mora et al. applied outdated values for mining rig efficiencies and electric power carbon 

intensities, which inflated their estimated 2017 Bitcoin energy use and CO2 emissions values 

considerably. When estimating the direct electricity use of Bitcoin mining, the authors erroneously 

included many old and inefficient rigs in their selection pool that were no longer economically viable in 

2017 (Supplementary Fig 5), betraying a lack of understanding of current mining equipment and 

economics.  Furthermore, Mora et al provided equal weighting when selecting a rig from their pool as 

the sole rig type to mine a block, thus over-representing slower inefficient rigs and creating scenarios 

that require physically impossible rig counts.  When we excluded unprofitable rigs in our replicated 

analysis, Mora et al.’s model produced an estimate of 28 TWh in 2017 (Supplementary Fig 6), which is 

one fourth of their original estimate of 114 TWh.  Furthermore, they applied 2014 carbon intensities (g 

CO2/kWh) to calculate 2017 emissions, ignoring non-negligible grid decarbonization improvements in 

the intervening years (Supplementary Fig 7),9  even though sufficient data existed at the time of their 

study for reasonable estimates of 2017 carbon intensities.10,11  Applying more reasonable 2017 

electricity use and carbon intensity values in their model produced an estimate of 15.7 MtCO2e, far 

lower than their original estimate of 69 MtCO2e.    

Fourth, by analytical design, Mora et al. applied 2017 per-transaction energy use and CO2 emissions 

values in all future years, multiplied by annual transactions (Supplementary Eq 2). This decision 

effectively held both mining rig efficiency and grid carbon intensities constant for the next 100 years 

(Supplementary Fig 7).  This dubious choice ignores the dynamic natures of mining rig and power grid 

technologies and violates the widely-followed practice of accounting for technological change in 

forward-looking energy technology scenarios.  In acknowledging their static grid intensity assumption, 

they point to at least one reference containing credible grid intensity outlooks10 but failed to utilize 

them.  Estimating the future energy efficiency of mining is certainly difficult, but the authors never 

explain why they simply ignored this important scenario consideration, nor do they justify how assuming 

static mining efficiency for 100 years—when mining rigs have evolved monthly1— can lead to any useful 

insights.  



Fifth, in constructing their slow, median, and fast adoption scenarios, Mora et al. committed key errors 

when analyzing adoption rates within their 40-product comparison pool.12  Namely, when replicating 

their analysis, we discovered that, for many comparison products, they designated the first available 

data point as the first year of product usage.  For example, the authors designate the first year of usage 

for electric power as 1908, at which point U.S. household adoption had climbed to 10% (Mora et al. Fig. 

1b).  Yet Thomas Edison began offering electric power to (far fewer) U.S. households in Manhattan in 

1882, over two decades earlier.13 By omitting the initial low-adoption years of US market availability for 

numerous technologies, their scenarios were biased toward inaccurately steep near-term adoption 

trajectories in all three cases.  When we replicated their analysis using more reasonable estimates of the 

first year of technology usage, their own methods produced slower adoption curves, particularly in the 

median and slow growth scenarios (Supplementary Fig 8).  

To assess how these last three analytical flaws affected Mora et al.’s projections, we replicated their 

original scenario analysis (Fig 1a), and then applied reasonable corrections in stepwise fashion.  We first 

applied the 2017 per-transaction Bitcoin carbon intensity we obtained by excluding unprofitable rigs (Fig 

1b). We then utilized weighted-average grid intensities based on mining locations assumed by the 

authors, including grid intensity evolution based on IEA outlooks that reflect current and announced 

national power policies in mining locations (Supplementary Fig 7) (Fig 1c).  Finally, we applied our 

calculated adoption curves in all three scenarios (Fig 1d).   

The results show that, had the authors avoided the key errors we described above, their own study 

design would have yielded much different, and far less alarming, projections of future Bitcoin carbon 

emissions.  That said, we find the study design itself sufficiently flawed—e.g., use of transactions as 

driver, comparisons to 40 unrelated technologies, ignoring rig evolution—that such corrections alone 

are not enough to salvage the authors’ approach. On these bases, we argue that the Mora et al. 

scenarios are fundamentally flawed and should not be taken seriously by researchers, policymakers, or 

the public.     

Given the highly dynamic and unpredictable nature of Bitcoin markets and mining demand—e.g., Bitcoin 

transactions and exchange values dropped steeply in 2018—developing credible scenarios of 

cryptocurrency emissions remains an important challenge for the research community.  While Mora et 

al. likely had the right motivations, to be useful, such scenarios must be approached with more rigor and 

greater analytical care.   



 

Figure 1:  Comparison of Bitcoin CO2 emissions projected by the Mora et al. model: (a) our replicated 

analysis showing close agreement with the authors’ results; and the model’s projections after first (b) 

removing unprofitable rigs in the base year (median scenario only), then (c) accounting for evolution 

of the electric power grid in mining locations (median scenario only), and finally (d) correcting errors 

in their stated adoption scenario approach.   
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In this document we show that the analysis by Mora et al., which predicts that Bitcoin mining alone can 

increase global warming by more than 2 C in 11 to 22 years, is fundamentally flawed and should not be 

taken seriously by researchers, policymakers, or the general public. 

Hereafter we refer to Mora et al. as “the authors.” We first document our replication of the authors’ 

original methods and results in Sections I, II, and III, elaborating on several methodological problems we 

encountered during the process.  Next, in Sections IV-VIII, we discuss in depth five major flaws related to 

the authors’ study design and execution.  As part of these discussions, we apply our replicated model to 

demonstrate that, had the authors avoided some key analytical errors, their own model would have 

produced significantly lower carbon emissions trajectories that invalidate their original alarmist 

predictions. 

I. Replication of 2017 CO2 emissions estimate 

We first replicated the authors’ 2017 Bitcoin CO2 emissions estimate, based on the R script they 

provided as their model.  We generalize their calculation approach as follows (using our own notation): 

𝐶2017 =  ∑
𝐸𝑖𝐻𝑖𝐺𝑖

3.6∗106
𝑛
𝑖=1     (1) 

The variable C2017 is Bitcoin’s global carbon emissions quantity in 2017, expressed in units of grams of 

CO2 equivalents (g CO2e). Ei is the energy efficiency of the mining rig assigned to solve block i, expressed 

in units of joules of direct electricity use per hash (J/H). The authors assign rigs randomly (i.e., with equal 

probability) to each block from a list they provide in their Supplementary Information (SI) Table 1. Hi is 

the expected number of hashes required to solve block i, which is calculated by multiplying its difficulty 

by 232. Gi is the regional CO2 intensity of grid electricity generation (g CO2e/kWh), which the authors 

assign depending on which pool solved block I as documented in their SI Table 2.  The denominator 

mailto:eric.masanet@northwestern.edu
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converts direct electricity use from joules into kWh (1 kWh = 3.6*106 joules). The results are summed 

over n = 55,864 blocks, the total number solved in 2017.   

Our replication of the authors’ code generated an expected 2017 global Bitcoin CO2 emissions value 

(C2017) of 69 Mt CO2e (18.8 Mt C), which is identical to the authors’ result, and an expected 2017 global 

Bitcoin direct electricity use value of 114 TWh. The latter value was not reported by the authors. 

II. Replication of future CO2 emissions projections 

Next we attempted to replicate the authors’ future projections of Bitcoin CO2 emissions. The authors did 

not provide code or explicit formulae for replicating their projections. Therefore, we had to rely on the 

authors’ qualitative methodological descriptions and their results graphs to generalize their projection 

approach mathematically as follows (using our own notation): 

𝐶𝑗 =  𝑇2017𝑓𝑗𝐶̂2017   (2) 

The variable Cj is Bitcoin’s global CO2 emissions quantity in future year j (g CO2e).  T2017 is the total 

number of global cashless transactions in 2017 (314.2 billion), which the authors assume will remain 

constant for all future years j.  The variable fj is the authors’ assumed fraction of global cashless 

transactions attributable to Bitcoin in year j.  Ĉ2017 is Bitcoin’s average per-transaction carbon emissions 

intensity (g CO2e/transaction) associated with solving all blocks in 2017.   

We note that the authors calculate Cj each year by randomly selecting combinations of blocks that had 

already been solved in their estimation of 2017 Bitcoin CO2 emissions (as described in Section I) until 

total Bitcoin transactions in year j are fulfilled.  This procedure is repeated 1,000 times. This approach 

effectively delivers an expected per-transaction CO2 intensity in each year j that is very similar to the 

simple quotient of 2017 expected carbon emissions (69 Mt CO2e) and 2017 total Bitcoin transactions 

(103.7 million).  This quotient has a value of Ĉ2017 = 665 kg CO2e/trans (181 kg C/trans).   

Therefore, we use this constant Ĉ2017 value for analytical efficiency in our results replication, given that 

the authors use transactions as their future emissions driver (i.e., activity variable) in Eq. 2.  In doing so, 

we arrive at very similar CO2 emission projections to those of the authors, as discussed below. 

The authors construct three different scenarios for fj, which they provide over a 100-year projection 

period, based on their adoption rate analysis of 40 different “broadly adopted” technologies. Our 

replication of the authors’ Bitcoin CO2 emissions projections, which were generated using Eqs. (1) and 

(2) and the authors’ values for fj, are shown in Supplementary Fig. 1.   

Before comparing our replicated results to those of the authors, three caveats are required: 

1. The authors’ lack of transparency prevents precise comparisons.  The authors did not provide 

their numerical projection results; instead, they only provided one projection results figure with 

coarse axis scales (their Fig. 1c).  This lack of transparency makes exact replication impossible.  

Therefore, we checked the general accuracy of our replication by comparing our results to their 

Figure 1c and to the number of years stated by the authors until cumulative Bitcoin CO2 

emissions would exceed 231.4 Gt C (the authors’ lower 2 C warming threshold).   

 

2. The authors’ base year, and its associated cumulative CO2 emissions, are unclear.  Without 

explanation or explicit acknowledgement, the authors appear to have chosen 2020 as the base 
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year for projections in their Fig. 1c, even though they had earlier estimated 2017 Bitcoin CO2 

emissions.  Furthermore, and again without explanation, the authors appear to have assumed a 

cumulative global anthropogenic CO2 emissions value of around 585 Gt C in 2020 (which we 

estimated via direct measurement of Fig. 1c), to which they cumulatively add projected Bitcoin 

CO2 emissions over time in each scenario.  Yet, in their paper, the authors also state that 

cumulative global anthropogenic carbon emissions had already reached 584.4 Gt C in 2014, six 

years earlier.  This is a glaring analytical inconsistency that we could not reconcile when 

replicating the authors’ projections. 

 

3. The authors’ Bitcoin adoption values are opaquely labeled and incongruous. We encountered 

several difficulties interpreting the authors’ data for Bitcoin adoption (fj), which they provided in 

a downloadable file for three different scenarios: median, lower25, and upper75.  These three 

scenarios are represented in the paper as typical, slow, and fast adoption pathways, 

respectively.  The authors label the year of each adoption value (fj) ordinally, starting with a 

value of 2, while their emissions projection results are labeled by calendar year starting in 2020.  

They do not explain which ordinal year corresponds to which calendar year in their results, nor 

do they provide an ordinal year 1.  Furthermore, the authors provide several negative values of 

Bitcoin adoption (fj)—specifically, for ordinal year 2 in the median scenario and for ordinal years 

2-5 in the lower25 scenario—which are physical impossibilities and incongruous with current 

(albeit small) Bitcoin adoption levels.  They do not explain these negative adoption values, which 

are also clearly visible in their Fig 1b, which appears to start in ordinal year 2.  In light of these 

documentation deficiencies, we attempted to establish correspondence between their Figs 1b 

and 1c (via Eqs 1 and 2) and concluded that the authors most likely assigned ordinal year 3 to 

calendar year 2020 in their analysis and simply ignored years with negative Bitcoin adoption 

values in each scenario, even though Bitcoin currently has a positive (albeit small) market 

penetration and will continue emitting CO2 until 2020 in any scenario.  The authors’ failure to 

provide numerical results and explanations of ordinal years and negative values make it 

impossible to verify our conclusions about the authors’ intentions in these figures.  However, 

these conclusions do enable us to replicate the authors’ results quite accurately. 

With these caveats in mind, our replicated results in Supplementary Fig. 1 show similar carbon emissions 

trajectories for all three scenarios compared to the authors’ Fig 1c.  Our results also replicate the 

authors’ calculations indicating that cumulative Bitcoin CO2 emissions cross the 231.4 Gt C threshold in 

2028, 2033, and 2039 in the Upper75, median, and Lower25 scenarios, respectively. However, the 

aforementioned methodological issues already raise serious questions about the credibility of the 

authors’ analysis. 
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Supplementary Figure 1. (a) Our replicated Bitcoin CO2 emissions projections using the authors’ data 

and model; (b) the authors’ Bitcoin CO2 emissions projections, as shown in their Figure 1c. 

III. Replication of Bitcoin adoption scenarios 

To better understand the basis for the authors’ steep growth trajectories in all three scenarios they 

considered, we also replicated their derivation of Bitcoin adoption values in each scenario based on 

their stated comparison to 40 “broadly adopted” technologies.  To do so, we obtained the same source 

data used by the authors1,2 and replicated their comparative analysis, first by normalizing all adoption 

data in the same manner as the authors, then by constructing regression curves for the median, 25th 

percentile, and 75th percentile of the technology adoption ranges each year.  Our replicated median, 

lower25, and upper75 adoption curves are shown in Supplementary Fig. 2, which are in close agreement 

with those of the authors in their Fig 1b (repeated below for convenience).   

Our replication also revealed a likely error in the authors’ representation of data contained in their Fig. 

1b. Namely, the rapidly rising trendline labeled “credit card” appears to be based on adoption data for 

debit cards in the original source2, not credit cards.   

This error is notable, in that many readers of the Mora et al. paper may look to credit cards as the most 

appealing comparison product among the 40 in the authors’ pool—given that early credit cards 

represented a disruptive new transaction technology—and form opinions about Bitcoin’s future 

adoption potential on this basis.  However, credit card usage in the United States followed a more 

gradual adoption path than that shown in the authors’ Fig. 1b.  Specifically, the first universal U.S. credit 

card (Diner’s Club) was introduced in 19503 and by 1970 (20 years later) the fraction of U.S. families 

holding credit cards had risen to 50%4, whereas the authors’ (mislabeled) adoption curve implies that 

credit cards grew much faster, penetrating around 80% of U.S. households in a similar time period.   
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Supplementary Figure 2. (a) Our replication of the authors’ Bitcoin adoption scenarios; (b) the 

authors’ original Bitcoin adoption scenarios as shown in their Figure 1b. 

Next, we discuss two major study design flaws that became apparent to us during the process of 

replicating Mora et al.’s methods and results.   

IV. The use of transactions as an energy demand driver is questionable 

As summarized in Eq. 2, the authors project Bitcoin’s future CO2 emissions in each scenario using 

transactions as the emissions driver—i.e., the activity variable— in all future years. We consider this 

approach as a fundamental study design flaw, since it is well known that the electricity consumed, and 

hence the CO2 emitted, by Bitcoin mining does not depend on the number of transactions but, rather, 

on the difficulty and number of blocks mined. 5,6,7  

The pace at which blocks are mined is kept constant at around 6 blocks per hour. The difficulty 

parameter in the mining algorithm is adjusted every 14 days to maintain this pace. An increasing 

number of transactions will therefore not cause an increase in the number of blocks. Instead, this will 

cause that individual blocks will include more transactions. The effort to mine a block is however 

independent of the number of transactions in the block. 

Indeed, the authors themselves calculate 2017 Bitcoin energy use and emissions based on block 

difficulty, not number of transactions (Eq. 1).  Without explanation or justification, the authors switch to 

transactions as the driver for projecting emissions in all future years, undermining the consistency of 

their calculations and the integrity of their projections. 

To illustrate this flaw, let’s assume that all 314.2 billion cashless transactions in 2017 would be Bitcoin 

transactions. Then in the authors’ approach this takes about 159 million blocks (considering that one 

block contained on average about 1,974 transactions in 2017).8 This implies mining at a pace of 18,170 

blocks per hour—three orders of magnitude greater than the established fixed pace of 6 blocks per 

hour—which betrays a lack of understanding of how real-world mining works. In contrast, in the above 

example, transactions would be increased on average to 5,977,930 per block, keeping the pace nearly 
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constant at 6 blocks mined per hour. Hence, blocks will become much larger, which will cause scalability 

issues, mainly in communication latency, but it would not necessarily increase mining effort. 

V. The authors’ Bitcoin adoption scenarios are implausible 

As evident in Eq. (2), the authors’ future Bitcoin CO2 emissions estimates are sensitive to their design of 

adoption scenarios (fi).  The authors’ typical, slow, and fast adoption scenarios are plotted in 

Supplementary Fig 1b, which paints a seemingly unavoidable future of sudden and rapid Bitcoin 

adoption.  Mathematically, the authors’ use of steep logarithmic growth curves in all scenarios can only 

result (see Eq. 2) in large near-term increases in Bitcoin’s carbon emissions, even in the slowest adoption 

scenario.   

The authors implicitly justify steep future growth by pointing to rapid historical (2009-2017) growth in 

global Bitcoin transactions (the authors’ Supplementary Figure 1), which they model using a power 

function.  However, 2018 data (most of which were available prior to publication of the authors’ study) 

expose the well-documented danger of simply extrapolating past trends into the future: global Bitcoin 

transactions fell by 22% in 20189. Therefore, in 2018, as shown in Supplementary Fig. 3, the authors’ 

power model already overestimates global Bitcoin transactions by a factor of 2.  This discrepancy 

underscores why readers should be wary of any future energy/carbon emission projections based on 

simple extrapolation of early rapid growth trends, especially for information technology (IT) systems, 

whose efficiencies and service demands can evolve quickly. 10,11,12  

 

Supplementary Figure 3. Annual global Bitcoin transactions (2009-2018) with the authors’ historical 

(2009-2017) power model extended to 2018. 
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Upon initial observation, the steep upward slope of the authors’ historical power model (Supplementary 

Fig. 3) might seem visually coherent with the steep initial upward slopes of the authors’ future adoption 

scenarios (authors’ Fig 1b).  However, when these data series are plotted together on the same scale—

i.e., billions of transactions—major inconsistencies emerge.  As shown in Supplementary Fig. 4, the 

authors’ own historical power model follows a much flatter future trajectory in the near-term compared 

to the Bitcoin transactions assumed by the authors in their scenarios, all three of which abruptly switch 

to significantly steeper trajectories at their outsets.   

 

 

Supplementary Figure 4. Comparison of historical (2009-2017) Bitcoin transactions and the future 

Bitcoin transactions associated with the authors’ power model and their three adoption scenarios.  

Note: Due to negative initial values and missing data for 2018 (see Section II), the authors’ three 

scenarios have different start years and are represented here with different styles than in previous 

graphs for clarity. 

Moreover, in the first year of each of the authors’ scenarios, implausibly massive jumps in Bitcoin 

transactions would be required to bridge the gaps compared to present-day totals.  In 2017, global 

Bitcoin transactions totaled 104 million, or a mere 0.03% of global cashless transactions.13   In the 

authors’ scenarios, however, the following must happen: 

 by 2019 (i.e., only 2 years later), Bitcoin adoption must jump to: 

o 78 billion transactions in the fast scenario, which represents a: 

 750x increase compared to 2017, and a 

 280x increase compared to their power model extrapolated to 2019 

 by 2020 (3 years later), Bitcoin adoption must jump to: 

o 11 billion transactions in the median scenario, which represents a: 
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 108x increase compared to 2017, and a 

 29x increase compared to their power model extrapolated to 2020 

 By 2023 (5 years later), Bitcoin adoption must jump to: 

o 8 billion transactions in the slow scenario, which represents a: 

 76x increase compared to 2017 

 9x increase compared to their power model extrapolated to 2023 

The authors do not address the above numerical disconnects that exist between present-day Bitcoin 

transactions, those implied by their power model, and those required in the first years of each future 

scenario.  Nor do the authors justify the plausibility of the very abrupt changes in adoption trajectories 

and transaction levels associated with their scenarios.  Implicitly, the authors require the reader to 

“suspend disbelief” in accepting scenarios that are numerically inconsistent and historically implausible, 

yet they provide no evidence why one should do so.   

We find these implausible scenarios to be another fundamental study design flaw. 

VI. Use of outdated mining rig efficiency and grid carbon intensity values 

When replicating the authors’ 2017 Bitcoin energy use and CO2 emissions estimate (see Section I), we 

found that they applied outdated values for mining rig efficiencies and electric power carbon intensities, 

which inflated their 2017 energy and emissions results considerably.  

When estimating the direct electricity use of Bitcoin mining, the authors erroneously included many old 

and inefficient rigs in their selection pool that were no longer economically viable in 2017, betraying a 

lack of understanding of current mining equipment and economics.  Supplementary Table 1 lists the 

pool of mining rigs constructed by the authors, from which they randomly assigned rigs (i.e., with equal 

probability) to solve blocks in 2017 via Eq. 1.  The authors claim they have included “only hardware that 

is economically profitable by modern standards;”13 however, they offer no explicit definition of what 

they mean by “economically profitable” or “modern standards.”  

Here we demonstrate that the authors included in their pool many old, computationally-slow, and 

energy-inefficient rigs that had little chance of being “economically profitable” in 2017.  To aid in our 

assessment, we first compiled best available estimates of the release date for each of the 62 models in 

the authors’ mining rig pool.24-54  Our estimated release dates are shown in Supplementary Table 1, 

which indicates that the authors included models released as early as January 2013, or five years prior to 

the end of the authors’ reference year (2017).   

Next, we compiled historical data on the number of daily blocks solved, their associated difficulty levels, 

the Bitcoin award per solved block, the transaction fees collected, and the average Bitcoin market value 

for the period 1-Jan-2013 to 30-Nov-2018.8,14   

Using these historical data, we then computed the nominal value of daily mined blocks as follows: 

 𝑉𝑘 =  𝑁𝑘(𝑇𝑘 + 𝐵𝑘)𝑀𝑘   (3) 

The variable Vk is the total value of blocks mined in day k (nominal USD $), Nk is the number of blocks 

mined that day, Tk is daily average transaction fee (BTC/block), Bk is the daily mining reward (BTC/block), 

and Mk is the daily average Bitcoin market value ($/BTC).  
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Supplementary Table 1. The authors’ mining rig pool with our best estimates of rig release dates 1 

Bitcoin computing 
hardware 

Hashrate 
(GH/s) 

Energy efficiency 
(GH/J) 

Estimated rig release 
date (mm:dd:yy) 

TerraHash Klondike 16 5 0.156 01/01/13 

Avalon Batch 1 66 0.106 01/19/13 

Avalon Batch 2 82 0.117 01/30/13 

Avalon Batch 3 82 0.117 01/30/13 

Bitmine Avalon Clone 85 GH 85 0.131 05/25/13 

Metabank 120 0.706 05/31/13 

TerraHash DX Mini (full) 90 0.141 06/17/13 

BFL 500 GH/s Mini Rig SC 500 0.185 06/18/13 

TerraHash DX Large (full) 180 0.141 06/18/13 

TerraHash Klondike 64 18 0.142 06/18/13 

BFL SC 25Gh/s 25 0.167 06/26/13 

BFL SC 50 Gh/s 50 0.167 06/26/13 

HashFast Baby Jet 400 0.909 09/13/13 

HashFast Sierra 1200 0.909 09/13/13 

KnCMiner Mercury 100 0.400 10/01/13 

BFL Single 'SC' 60 0.250 10/10/13 

KnC Saturn 250 0.833 10/11/13 

BPMC Red Fury USB 2.5 1.000 10/19/13 

KnC Jupiter 500 0.833 10/26/13 

BFL SC 5 Gh/s 5 0.167 11/21/13 

HashBuster Micro 20 0.870 12/08/13 

AntMiner S1 180 0.500 12/30/13 

KnC Neptune 3000 1.429 01/01/14 

Spondooliestech SP30 4500 1.500 01/01/14 

ROCKMINER R3-BOX 450 1.000 01/01/14 

CoinTerra TerraMiner IV 1600 0.762 01/29/14 

HashFast Sierra Evo 3 2000 0.909 03/07/14 

NanoFury NF2 4 0.800 03/23/14 

AntMiner S2 1000 0.909 05/21/14 

BTC Garden AM-V1 310 
GH/s 

310 0.957 05/23/14 

ROCKMINER R-BOX 32 0.711 05/28/14 

ROCKMINER Rocket BOX 450 0.938 06/15/14 

Spondooliestech SP10 1400 1.120 08/18/14 

ROCKMINER R-BOX110G 110 0.917 09/09/14 

Black Arrow Prospero X-1 100 1.000 09/23/14 

BFL Monarch 700 GH/s 700 1.429 09/25/14 

AntMiner S4 2000 1.429 09/25/14 
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Bitcoin computing 
hardware 

Hashrate 
(GH/s) 

Energy efficiency 
(GH/J) 

Estimated rig release 
date (mm:dd:yy) 

AntMiner S3 441 1.297 09/27/14 

Black Arrow Prospero X-3 2000 1.000 10/08/14 

Klondike 5 0.156 10/15/14 

ROCKMINER R4-BOX 470 1.000 10/20/14 

ROCKMINER T1 800G 800 0.800 12/03/14 

AntMiner S5 1160 1.966 12/22/14 

Spondooliestech SP20 1700 1.545 12/22/14 

Spondooliestech SP35 5500 1.507 01/01/15 

Twinfury 5 1.305 02/19/15 

AntMiner S5+ 7720 2.247 08/14/15 

AntMiner S7 4730 3.909 08/30/15 

Avalon6 3500 3.241 02/08/16 

Spondooliestech SP31 4900 1.633 04/01/16 

Avalon 721 6000 6.000 11/01/16 

AntMiner R4 8700 10.296 02/01/17 

Avalon741 7300 6.348 03/01/17 

Ebit E9+ 9000 6.923 09/08/17 

Ebit E9 6300 7.143 09/14/17 

WhatsMiner M3 12500 5.682 11/14/17 

Avalon761 8800 6.667 12/13/17 

Avalon821 11000 9.167 12/20/17 

Ebit E9++ 14000 10.526 01/01/18 

AntMiner S9 14000 10.448 11/01/17 

Antminer T9+ 10500 7.332 01/01/18 

Ebit E10 18000 11.111 02/01/18 

2 
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Next, for each of the 62 rigs in the authors’ selection pool, we calculated the electricity use that would 3 

be necessary if that rig were assigned to solve the blocks in each day k, following the mathematical 4 

approach in Eq. 1.  Finally, we divided the nominal mined block value (Vk) by the electricity use that 5 

would have been required for a given rig to solve those blocks (kWh), and did so for all days in our 6 

analysis period. 7 

Supplementary Fig. 5 plots our computed nominal mined block value per kWh expended ($/kWh) for all 8 

62 rigs. This metric expresses the maximum mining value that could be extracted per kWh expended 9 

during mining; when operating costs per kWh expended ($/kWh) exceed this value, mining cannot be 10 

profitable.  Operating costs include the costs of electricity, equipment depreciation, labor, and other 11 

costs incurred during mining. While empirical data on operating costs are scarce, several published 12 

estimates suggest that $0.05/kWh is a reasonable current minimum value, with electricity typically 13 

comprising the largest share of operating costs.7,15   14 

In Supplementary Fig. 5, we color code rigs of different efficiency classes, indicate the numbers of rigs 15 

that fall into each class in the authors’ selection pool, and start each rig’s data series on its estimated 16 

release date. We also indicate the typical $0.05/kWh threshold on the plot; rigs whose data series fall 17 

below this threshold in a given time period would not be considered profitable, because nominal mined 18 

block value earned per kWh expended would not exceed operating costs.   19 

It can be seen that many of the older, less energy-efficient rigs that were included in the authors’ 20 

selection pool—while profitable when first introduced several years ago—by 2017 would be profitable 21 

only at implausibly low operating cost levels.  For example, in 2017, many of the lowest efficiency rigs 22 

included by the authors (i.e., the blue-shaded rigs with efficiencies less than 0.3 GH/J) could have only 23 

been profitable with operating costs less than $0.01/kWh, which is much lower than even the cheapest 24 

documented rates for mining electricity costs alone.15,16,17 25 

In other words, many of the rigs included in the authors’ selection pool were not “economically 26 

profitable by modern standards” in the authors’ own reference year (2017), and should, therefore, have 27 

been excluded from their analysis.   In Supplementary Fig. 6, we plot the effects of excluding old, energy-28 

efficient rigs from our replicated analysis at different assumed levels of operating cost.  For each 29 

monthly period in 2017, we reran our original replication but excluded any rigs from the selection pool 30 

that would not have been profitable at various operating cost levels. We summed these monthly results 31 

to arrive at total direct Bitcoin electricity use estimates in 2017.   32 

It is clear from Supplementary Fig. 6 that inclusion of old, energy-efficient rigs in the authors’ analysis 33 

resulted in an inflated 2017 direct electricity use estimate.  Even if the authors had excluded rigs that 34 

were not profitable at implausibly low operating costs of $0.01/kWh, their 2017 electricity use estimate 35 

would have dropped nearly in half, from 114 TWh to 62 TWh, while their 2017 CO2 emissions estimate 36 

would have dropped from 69 Mt CO2e to 38 Mt CO2e.  At the generally-accepted minimum operating 37 

cost level of $0.05/kWh, the authors’ 2017 electricity use and CO2 emissions estimates would have 38 

dropped much further, to 28 TWh and 17 MtCO2e, respectively.  These latter values are more consistent 39 

with other published estimates of Bitcoin’s 2017 direct electricity use and related carbon emissions, 40 

which include only the newer, faster, and more energy-efficient rigs that were likely to be profitable in 41 

2017.5-7 Indeed, looking at Supplementary Fig. 6 from left to right, one can clearly see how, as rigs get 42 

older, they are invariably pushed out of profitability as newer, more efficient rigs emerge. 43 



12 
 

 

 

Supplementary Figure 5. Nominal mined block value per kWh expended for the 62 mining rigs included in the authors’ selection pool 
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 1 

Supplementary Figure 6. Mora et al. model estimates of 2017 Bitcoin electricity use and CO2 emissions 2 

when unprofitable rigs were excluded from their selection pool, at different operating cost 3 

assumption levels. 4 

Furthermore, the authors applied 2014 carbon intensities (g CO2/kWh) to their 2017 electricity use 5 

estimates, ignoring non-negligible grid decarbonization improvements in their assumed mining locations 6 

during the intervening years (Supplementary Fig 7). This was done even though sufficient data existed at 7 

the time of their study for reasonable estimates of 2017 carbon intensities.18,19,20   Supplementary Fig. 7 8 

plots the location-weighted average grid CO2 emissions intensity from 2000-2016 (historical), with 9 

forward-projections from 2017 to 2060 from the IEA’s central outlook (based on current and announced 10 

national policies in assumed mining locations).  From this figure, it’s clear that, by using 2014 carbon 11 

intensities, the authors arrived at a higher 2017 CO2 emissions value than if they had used available data 12 

for 2017 carbon intensities.   13 

To assess the effects of the authors’ use of outdated rig efficiencies and grid carbon intensities, we 14 

applied our replicated Mora et al. model to estimate 2017 Bitcoin CO2 emissions using more reasonable 15 

assumptions.  Based on the assumption that $0.05/kWh represents the global average minimum Bitcoin 16 

mining operating cost—and excluding rigs that did not yield nominal mining revenues per kWh 17 

expended exceeding $0.05/kWh in 2017—the authors’ model yielded an estimate of 28 TWh 18 

(Supplementary Fig. 6).  We then multiplied this value by a location-weighted carbon intensity that was 19 

9% lower than the authors’ 2014 value, to capture the technological progress that occurred between 20 

2014 and 2017 (Supplementary Fig. 7).  We arrived at a 2017 Bitcoin CO2 emissions estimate of 15.7 21 

MtCO2e, which is far lower than the authors’ original estimate of 69 MtCO2e.    22 
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Therefore, we determined that, had the authors not erroneously included outdated rig efficiencies and 23 

grid carbon intensities, their own model would have estimated substantially lower 2017 energy use and 24 

CO2 emissions values, invalidating their original results. 25 

 26 

Supplementary Figure 7. Location-weighted average electric power direct carbon intensity using 27 

historical (2000-2016) and projected (2017-2060) data available at the time of the authors’ study.  Also 28 

shown is the level of direct carbon intensity locked into the authors’ estimates by assuming static 29 

2014 carbon intensity values.  Location-weighted average assumes the following percentages of 2017 30 

Bitcoin electricity use by region, according to the locations assigned by the authors to each solved 31 

block: China (62.2%),  U.S./China average (9.3%), U.S. (3.9%), global average (17%), Georgia, Finland, 32 

and Iceland (5.3%), U.S./E.U. average (0.1%), India (2.3%), and Sweden (0.1%). 33 

 34 

VII. Holding both mining rig efficiency and grid carbon intensity constant in all future years 35 

As evident in Eq. 2, the authors applied their 2017 per-transaction CO2 emissions values in all future 36 

years, multiplying them by annual transactions to obtain future CO2 emissions trajectories for each 37 

scenario.  This was done by sampling solved blocks from their 2017 analysis until the required 38 

transactions in each future year were fulfilled. In other words, they did not vary the mining rig pool 39 

options in future years; for example, the pool of rigs they used to solve blocks in 2050 was the same 40 

pool of rigs they used to solve blocks in 2017.  Moreover, the authors state explicitly that they did not 41 

consider any changes over time to the power grids in each assumed mining location.  These decisions 42 

effectively held both mining rig efficiencies and grid carbon intensities constant for the next 100 years.  43 
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This dubious choice ignores the dynamic natures of mining rig and power grid technologies and violates 44 

the widely-followed practice of accounting for technological change in forward-looking energy 45 

technology scenarios.   46 

Estimating the future energy efficiency of mining is certainly difficult, but the authors never explain why 47 

they simply ignored this important scenario consideration, nor do they justify how assuming static 48 

mining efficiencies for 100 years—when, historically, mining rigs have evolved monthly with respect to 49 

their hashrates and energy efficiencies— can lead to any useful insights.  And, in acknowledging their 50 

static grid intensities assumption, they point to at least one available reference containing credible grid 51 

intensity outlooks,20 but failed to utilize these data.  The fallacy in keeping grid carbon intensities 52 

constant at 2014 levels can clearly be seen in Supplementary Fig. 7, which shows a widening gulf over 53 

time between the authors’ static assumption (in red) and that of the prevailing outlook (the IEA’s ETP 54 

2017 Reference Technology Scenario, in green) for the authors’ assumed mining locations. 55 

We consider the authors’ decisions to hold both mining rig efficiencies and grid carbon intensities 56 

constant to be fatal flaws of their analysis, and conspicuously out of step with established best practices 57 

for IT energy analysis and long-term energy scenario modeling.21   And, because the authors significantly 58 

overestimated 2017 Bitcoin energy use and CO2 emissions by using outdated rig and carbon intensity 59 

data, it follows that their decision to lock in these 2017 values in all future years led to inflated CO2 60 

emissions projections as well.  61 

Therefore, we assessed how the authors’ own model would have yielded different results had they: (a) 62 

at least excluded unprofitable rigs from their 2017 pool; and (b) used available data sources to account 63 

for projected changes in grid carbon intensities in their assumed mining locations.  We applied our 64 

replicated model to first generate scenarios assuming 2017 CO2 emissions of 15.7 MtCO2e (based on a 65 

global average minimum operating cost of $0.05/kWh, as discussed in Section VI), as shown in 66 

Supplementary Fig. 9b.  To these results, we then applied changes in the location-weighted grid carbon 67 

intensity from 2017 to 2060, using available data from the IEA’s central outlook based on current and 68 

announced national policies in each mining location (Supplementary Fig. 9c).   69 

The results show that, had the authors applied more reasonable values in their analysis—even 70 

maintaining the flawed assumption of holding 2017 mining rig efficiencies constant, but at more 71 

economically plausible levels—their own model would have delivered much different projections 72 

compared to their original results.   73 

VIII. Improper execution of the 40-product comparison analysis 74 

Lastly, our replication of the authors’ 40 technology comparison (see Section III) revealed errors that 75 

biased their results in favor of steep initial growth trajectories.  While the scientific community may be 76 

justified in questioning the authors’ comparison of Bitcoin to a seemingly arbitrary mix of technologies 77 

that vary widely in their social utility, here we focus only on errors committed by the authors executing 78 

their own stated methods.   79 

In constructing their scenarios, the authors state that “the first year of usage for each technology was 80 

set to one, to allow comparison of trends among technologies,” which is the approach we followed in 81 

our replicated analysis (Supplementary Fig. 2).  For each technology, the authors equated “first year of 82 

usage” with “first year since introduction,” as evident in their Fig 1b.  However, in our replicated 83 
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analysis, we discovered that, for many technologies, the authors erroneously assumed that the first 84 

nonzero value available in the source data represented the first year of actual technology use.   85 

For example, the authors designate the first year of usage for the automobile as 1915, at which point US 86 

household adoption was already 10%.  However, the modern automobile was invented in the late 87 

1890s, with mass production starting in the United States around 1901.22  Similarly, the authors 88 

designate the first year of usage for electric power as 1908, at which point US household adoption had 89 

also climbed to 10%.  Yet Thomas Edison began offering electric power to customers in Manhattan over 90 

two decades earlier, in 1882.23  We found similar discrepancies for other technologies in the authors’ 91 

comparison pool, which are documented in Supplementary Table 2.   92 

By erroneously assuming that the first available adoption number in the source data represented the 93 

first year of technology availability, the authors omitted the initial low-adoption years of US market 94 

availability for numerous technologies.   Mathematically, these omissions biased the authors’ scenarios 95 

toward inaccurately steep near-term adoption trajectories in all three cases. 96 

To illustrate this point, we repeated the authors’ approach using more realistic values for the first year 97 

of technology usage obtained from the literature,55-83 as summarized in Supplementary Table 2.  98 

Adoption rates in the initial years were estimated using linear interpolation.  We also removed three 99 

duplicative entries from the authors’ 40 product comparison pool (computers, refrigerators, and 100 

washing machines) and NOx controls (the rapid adoption of which was driven by regulatory mandates, 101 

not market demand), as noted in the table.   102 

Our adjusted median, lower25, and upper75 curves are shown in Supplementary Fig. 8, which were 103 

based on the best-fitting regression models for each data series.  It can be seen that more realistic 104 

estimates for the first year of technology use, and a more coherent comparison pool drawn from the 105 

same data sources, would result in a fast scenario (i.e., upper75) with less aggressive logarithmic growth 106 

and median and slow (i.e., lower25) scenario curves that are demonstrably less steep in the near term 107 

than those constructed by the authors. 108 

To assess how the authors’ errors in their own scenario derivations affected their results, we reran our 109 

replicated emissions projection once again using the adjusted Bitcoin adoption scenarios in 110 

Supplementary Fig. 8.  The results are plotted in Supplementary Fig. 9d.  By correcting the authors’ own 111 

scenario analysis as the last step in the cascade of corrections we discuss, we show that their model 112 

would have now projected CO2 emissions trajectories that would not have crossed the 2oC threshold 113 

until between 2075 to 2110.  114 

  115 
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 116 

Supplementary Figure 8.  The authors’ Bitcoin adoption scenarios based on more realistic first year of 117 

usage estimates within the technology comparison pool. 118 

 119 

 120 
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 121 

 122 

Supplementary Figure 9:  Comparison of Bitcoin CO2 emissions projected by the Mora et al. model: (a) 123 

our replicated analysis showing close agreement with the authors’ results; and the model’s 124 

projections after first (b) removing unprofitable rigs in the base year, then (c) accounting for evolution 125 

of the electric power grid in mining locations, and finally (d) correcting errors in their stated adoption 126 

scenario approach.   127 
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Supplementary Table 2. Authors’ selected versus more reasonable first year of usage values for 

comparative technologies 

Technology 

Authors’ assigned 
first year of usage 
(YSI = 1) 

Actual first year 
of usage (YSI = 
1) 

Initial years of 
availability omitted 
by the authors 

Automatic transmission 1951 1939 12 

Automobile 1915 1901 14 

Cable TV 1968 1948 20 

Cellular phone 1994 1984 10 

Central heating 1920 1892 28 

Colour TV 1966 1954 12 

Computer 1992 Duplicate - 

Dishwasher 1922 1922 - 

Disk brakes 1966 1963 3 

Dryer 1950 1938 12 

Ebook reader 2009 1998 11 

Electric Range 1933 1908 25 

Electric power 1908 1882 26 

Electronic ignition 1977 1963 14 

Flush toilet 1860 1860 - 

Freezer 1950 1947 3 

Home air conditioning 1957 1931 26 

Household refrigerator 1931 Duplicate - 

Internet 1993 1991 2 

Landline 1903 1885 18 

Microcomputer 1984 1984 - 

Microwave 1975 1955 20 

Nox pollution controls 1990 1990 - 

Podcasting 2006 2003 3 

Power steering 1951 1951 - 

RTGS adoption 1970 1970 - 

Radial tires 1972 1967 5 

Radio 1925 1921 4 

Refrigerator 1925 1918 7 

Running water 1890 1833 57 

Shipping container port inf. 1964 1955 9 

Smartphone usage 2011 2000 11 

Social media usage 2005 1997 8 

Stove 1900 1900 - 

Tablet 2010 1992 18 

Vacuum 1922 1908 14 

Washer 1920 1907 13 

Washing machine 1930 Duplicate - 

Water Heater 1933 1904 29 

Debit card 1995 1984 11 



20 
 

References 

 

1 Our World in Data. Technology adoption by households in the United States. (2019). 
https://ourworldindata.org/grapher/technology-adoption-by-households-in-the-united-
states?time=1903..2016 
 
2 Consumer Credit and Payment Statistics (Federal Reserve Bank of Philadelphia); 
https://www.philadelphiafed.org/consumer-finance-institute/statistics 
 
3 Encyclopaedia Brittanica, The Credit Card. https://www.britannica.com/topic/credit-card 
 
4 U.S. Federal Reserve. Credit Cards: Use and Consumer Attitudes, 1970–2000. (2000). 
https://www.federalreserve.gov/Pubs/Bulletin/2000/0900lead.pdf  
 
5 Vranken, H. Sustainability of bitcoin and blockchains. Current Opinion in Environmental Sustainability 
28, 1-9, doi:https://doi.org/10.1016/j.cosust.2017.04.011 (2017). 
 
6 Krause, M. J. & Tolaymat, T. Quantification of energy and carbon costs for mining cryptocurrencies. 
Nature Sustainability 1, 711-718, doi:10.1038/s41893-018-0152-7 (2018). 
 
7 Bevand, M. Op Ed: Bitcoin Miners Consume A Reasonable Amount of Energy — And It's All Worth It, 
<https://bitcoinmagazine.com/articles/op-ed-bitcoin-miners-consumereasonable- amount-energy-and-
its-all-worth-it/> (2017). 
 
8 Bitcoinity. Data.bitcoinity.org. (2019). 
 
9 Bitcoinity. Number of transactions - Bitcoinity.org. (2019). 
http://data.bitcoinity.org/bitcoin/tx_count/5y?t=l 
 
10 Koomey, Jonathan G, Chris  Calwell, John A Laitner, Jane  Thornton, Richard E Brown, Joseph H Eto, 
Carrie A Webber, and Cathy  Cullicott. "Sorry, wrong number:  The use and misuse of numerical facts in 
analysis and media reporting of energy issues." Ed. Socolow, Robert H, Dennis Anderson, and John  
Harte. Annual Review of Energy and the Environment 2002 27 (2002) 119-158. LBNL-50499. 
 
11 Koomey, Jonathan, Huimin Chong, Woonsien Loh, Bruce Nordman, and Michele Blazek. 2004. 
"Network electricity use associated with wireless personal digital assistants." The ASCE Journal of 
Infrastructure Systems (also LBNL-54105). vol. 10, no. 3. September. pp. 131-137. 
[http://ascelibrary.org/doi/abs/10.1061/(ASCE)1076-0342(2004)10%3A3(130)] 
 
12 Koomey, J. Turning Numbers into Knowledge: Mastering the Art of Problem Solving. (Analytics Press, 
2017). 
 
13 Camilo Mora, Randi L. Rollins, Katie Taladay, Michael B. Kantar, Mason K. Chock, Mio Shimada & Erik 
C. Franklin. Bitcoin emissions alone could push global warming above 2°C. Nature Climate 
Changevolume 8, pages931–933 (2018) 

                                                           

https://ourworldindata.org/grapher/technology-adoption-by-households-in-the-united-states?time=1903..2016
https://ourworldindata.org/grapher/technology-adoption-by-households-in-the-united-states?time=1903..2016
https://www.britannica.com/topic/credit-card
https://www.federalreserve.gov/Pubs/Bulletin/2000/0900lead.pdf
http://data.bitcoinity.org/bitcoin/tx_count/5y?t=l


21 
 

                                                                                                                                                                                           
 
14 Smartbit. Bitcoin chart - Transaction fees per block. (2019). https://www.smartbit.com.au/ 
 
15 Digiconomist. Bitcoin Electricity Consumption: An Economic Approach. Digiconomist (2017). 
 
16 Roberts, P. This Is What Happens When Bitcoin Miners Take Over Your Town. Politico Magazine 
(2018). 
 
17 Massena Electric. MED - For Our Business Customers. (2019). 
http://www.massenaelectric.com/businesscustomer/businesscustomer.htm. 
 
18 International Energy Agency. Power - Tracking Clean Energy Progress. (IEA, 2019). 
https://www.iea.org/tcep/power/ 
 
19 International Energy Agency. Energy Technology Perspectives 2017. (IEA, 2017). 
 
20 International Energy Agency. World Energy Outlook 2017. (IEA, 2017). 
 
21 Shehabi, A. et al. United States Data Center Energy Usage Report. (2016). 
 
22 Robert Domm. Michigan Yesterday & Today. Voyageur Press. (2009) 
 
23 Ania Monaco. Edison's Pearl Street Station Recognized With Milestone: IEEE honors the world's first 
central power station. 27 July 2011. (2011). http://theinstitute.ieee.org/tech-history/technology-
history/edisons-pearl-street-station-recognized-with-milestone810 
 

24 Amazon. Technical Details: KNCminer Jupiter. (2013). https://www.amazon.com/Jupiter-
KNCminer/dp/B00GXA08E4/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
25 Amazon. Technical Details: Butterfly Labs Jalapeno BitForce 5 GH/s SC. (2013). 

https://www.amazon.com/Butterfly-Labs-Jalapeno-BitForce-
Bitcoin/dp/B00GTB2ZR0/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
26 Amazon. Technical Details: Antminer S1 Dual Blade 180 Gh/s. (2013). 

https://www.amazon.com/d/Networking-Products/Antminer-S1-Blade-Bitcoin-
Miner/B00HL4MEG6/ref=sr_1_5?s=electronics&ie=UTF8&qid=1540840622&sr=1-
5&keywords=AntMiner+S1.  

 
27 Bitcoin Wiki. Comparatie hardware minat. (2019). 

https://ro.bitcoin.it/wiki/Comparatie_hardware_minat.  
 

28 Fargo, S. Review and Interview: Spondoolies-Tech SP30 Yukon 4.5 th/s Bitcoin ASIC Miner. 
(2014). https://www.ccn.com/review-interview-spondoolies-tech-sp30-yukon-4-5-ths-bitcoin-
asic-miner.  

 
29 Fargo, S. Review: Rockminer R3-Box 470 gh/s+ Bitcoin ASIC Miner. (2014). 

https://www.ccn.com/review-rockminer-rk3-470-ghs-bitcoin-miner.  
 

https://www.smartbit.com.au/
http://www.massenaelectric.com/businesscustomer/businesscustomer.htm
https://www.iea.org/tcep/power/
http://theinstitute.ieee.org/tech-history/technology-history/edisons-pearl-street-station-recognized-with-milestone810
http://theinstitute.ieee.org/tech-history/technology-history/edisons-pearl-street-station-recognized-with-milestone810


22 
 

                                                                                                                                                                                           
30 Amazon. Technical Details: Bitmain AntMiner S2 1000 Gh/s. (2014). 

https://www.amazon.com/Bitmain-AntMiner-1000-SHA-256-Miner/dp/B00KH9339O.  
 

31 Amazon. Technical Details: RockMiner R-BOX 32 -37 GH/s. (2014). 
https://www.amazon.com/RockMiner-R-BOX-SHA-256-Miner-
ASICMiner/dp/B00KLQHSM6/ref=sr_1_1?ie=UTF8&qid=1540842856&sr=8-
1&keywords=rockminer+r-box&dpID=51zHZy9%252BbSL&preST=_SX300_QL70_&dpSrc=srch.  

 
32 Amazon. Technical Details: Rockminer Rocket RK-Box 420 - 480 Gh/s. (2014). 

https://www.amazon.com/Rockminer-Rocket-RK-Box-420-
Bitcoin/dp/B00LM00D4U/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
33 Amazon. Technical Details: Spondoolies-Tech SP10 Dawson - 1.4 TH/s ASIC Bitcoin Miner. (2014). 

https://www.amazon.com/Spondoolies-Tech-SP10-Dawson-Bitcoin-
Miner/dp/B00MTXNSZA/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
34 Amazon. Technical Details: RockMiner NEW R-BOX 100 -110 GH/s. (2014). 

https://www.amazon.com/RockMiner-R-BOX-SHA-256-ASICMiner-100-
135/dp/B00NFBBN16/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
35 Amazon. Technical Details: Blackarrow Prospero X-1: 100 Gh/s. (2014). 

https://www.amazon.com/Blackarrow-Prospero-X-1-Bitcoin-
Miner/dp/B00NUF2XWK/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
36 Amazon. Technical Details: AntMiner S4. (2014). https://www.amazon.com/AntMiner-2000Gh-

0-69W-Bitcoin-Miner/dp/B00NWHT18A.  
37 Amazon. Technical Details: AntMiner S3 441Gh/s. (2014). https://www.amazon.com/AntMiner-

S3-441Gh-0-77W-SHA-256/dp/B00NZDBWKG.  
 

38 Amazon. Technical Details: Blackarrow Prospero X-3. (2014). 
https://www.amazon.com/Blackarrow-Prospero-X-3-0-50W-
Bitcoin/dp/B00R50RDR6/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
39 Amazon. Technical Details: Klondike K16. (2014). https://www.amazon.ca/Klondike-Miner-

Avalon-5-7Gh-Mining/dp/B00O2HYQV6.  
 

40 Amazon. Technical Details: RockMiner Ti-Box 800 GHs. (2014). 
https://www.amazon.com/RockMiner-Ti-Box-800-Bitcoin-ASIC/dp/B00QJ8CFJ6.  

 
41 Amazon. Technical Details: AntMiner S5 ~1155Gh/s. (2014). 

https://www.amazon.com/AntMiner-S5-1155Gh-0-51W-
Bitcoin/dp/B00RCTIY4G/ref=sr_1_5?s=electronics&ie=UTF8&qid=1540840694&sr=1-
5&keywords=AntMiner+S5.  

 
42 Amazon. Technical Details: Spondoolies-Tech SP20. (2014). 

https://www.amazon.com/Spondoolies-Tech-Jackson-1-3-1-7TH-Bitcoin-
Miner/dp/B00RC288E4/ref=sr_1_1?s=electronics&ie=UTF8&qid=1540841967&sr=1-
1&keywords=Spondoolies-Tech+SP20&dpID=41QqaKBeHsL&preST=_SX300_QL70_&dpSrc=srch.  



23 
 

                                                                                                                                                                                           
 

43 Spondooliestech. Spondooliestech SP35 User Guide. (2015). 
https://cdn.shopify.com/s/files/1/0389/3233/files/SP35_User_Guide.pdf.  

 
44 Amazon. Technical Details: Twin fury miner 5+GH/s usb. (2015). 

https://www.amazon.co.uk/d/USB-Flash-Drives/Twin-fury-miner-Bitcoin-basic/B00HR5Z1EQ.  
 

45 Amazon. Technical Details: AntMiner S5+ ~7.722TH/S. (2015). 
https://www.amazon.com/AntMiner-7-722TH-0-445W-Bitcoin-
Miner/dp/B013WWTAV2/ref=cm_cr_arp_d_product_top?ie=UTF8.  

 
46 Amazon. Technical Details: Antminer S7. (2015). https://www.amazon.com/Antminer-4-73TH-

Fans-Bitcoin-Miner-x/dp/B014OGCP6W.  
 

47 Amazon. Technical Details: Spondoolies-Tech SP31. (2016). 
https://www.amazon.com/dp/B01DQ1NU24.  

 
48 Bitman. Bitmain Antminer R4 profitability. (2017). 

https://www.asicminervalue.com/miners/bitmain/antminer-r4.  
 

49 Amazon. Technical Details: Ebit E9 Plus 9THs. (2017). https://www.amazon.com/Ebit-E9-Plus-
9THs-bitcoin/dp/B075H99QQW.  

 
50 Amazon. Technical Details: 6.3 TH/s Bitcoin miner. (2017). https://www.amazon.com/6-3-TH-

Bitcoin-miner-Ebit/dp/B075MWKX3S.  
 

51 Ebang. Ebang Ebit E9i profitability | ASIC Miner Value. (2018). 
https://www.asicminervalue.com/miners/ebang/ebit-e9i.  

52 Amazon. Technical Details: Antminer S9 ~14.0TH/s. (2018). 
https://www.amazon.com/Antminer-S9-14-0TH-Bitcoin-
Supply/dp/B0792S9PZ8/ref=sr_1_3?s=electronics&ie=UTF8&qid=1540868994&sr=1-
3&keywords=AntMiner+S9.  

53 Amazon. Technical Details: AntMiner T9+ 10.5TH/s. (2018). 
https://www.amazon.com/AntMiner-T9-10-5TH-0-136W-
Bitcoin/dp/B079G8LH46/ref=sr_1_fkmr1_2?s=electronics&ie=UTF8&qid=1540869190&sr=1-2-
fkmr1&keywords=antminer+t9+plus.  

54 Amazon. Technical Details: Ebang EBIT E10. (2018). https://www.amazon.com/E10-Ebang-EBIT-
18TH/dp/B07BLGLPJ2. 

55 AT&T Corporation. Wikipedia (2019). https://en.wikipedia.org/wiki/AT%26T_Corporation 
56 Bryant, M. 20 years ago today, the World Wide Web was born. TNW Insider (2011). 
57 California Cable & Telecommunications Association. History of Cable. (2019). 

https://www.calcable.org/learn/history-of-cable/ 
58 Disc brake. Wikipedia (2019). https://en.wikipedia.org/wiki/Disc_brake#Mass_production 
59 Electric stove. Wikipedia (2018). https://en.wikipedia.org/wiki/Electric_stove 
60 Electrolux. Electrolux Intl Company History. (2019). http://www.frigidaire-intl.com/company-history 
61 Frizzell, N. ‘I felt like Morse tapping his first code’ – the man who invented the podcast. The Guardian 

(2016). 
62 Ganapati, P. Oct 25, 1955: Time to Nuke Dinner. Wired (2010). 

https://www.wired.com/2010/10/1025home-microwave-ovens/ 

https://www.amazon.com/E10-Ebang-EBIT-18TH/dp/B07BLGLPJ2
https://www.amazon.com/E10-Ebang-EBIT-18TH/dp/B07BLGLPJ2


24 
 

                                                                                                                                                                                           
63 Hydramatic. Wikipedia (2019). https://en.wikipedia.org/wiki/Hydramatic 
64 Hilpern, K. The Secret History Of: The dishwasher. The Independent (2010). 
65 History of mobile phones. Wikipedia (2019). https://en.wikipedia.org/wiki/History_of_mobile_phones 
66 History of personal computers. Wikipedia (2019). 

https://en.wikipedia.org/wiki/History_of_personal_computers#The_beginnings_of_the_personal_comput
er_industry 

67 Ignition system. Wikipedia (2019). https://en.wikipedia.org/wiki/Ignition_system#Electronic_ignition 
68 Keith. The History of Social Media: Social Networking Evolution! (History Cooperative, 2015). 

https://historycooperative.org/the-history-of-social-media/ 
69 Morris, M. The History of the Clothes Dryer. Hunker (2019). https://www.hunker.com/13410374/the-

history-of-the-clothes-dryer 
70 Nguyen, T. C. The History of Smartphones. ThoughtCo (2018). https://www.thoughtco.com/history-of-

smartphones-4096585 
71 Personal Finance. History of Debit Cards: How Debit Cards Changed the Way We Bank. Bright Hub (2019). 
72 Power steering. Wikipedia (2018). https://en.wikipedia.org/wiki/Power_steering 
73 Real-time gross settlement. Wikipedia (2019). https://en.wikipedia.org/wiki/Real-

time_gross_settlement#History 
74 Roberts, P. This Is What Happens When Bitcoin Miners Take Over Your Town. Politico Magazine (2018). 
75 Rocket eBook. Wikipedia (2018). https://en.wikipedia.org/wiki/Rocket_eBook 
76 Recently Discovered Vintage Water Heaters Reveal Time-Honored Quality and Durability. (2007). 

https://www.rheem.com/about/news-releases/recently-discovered-vintage-water-heaters-reveal-time-
honored-quality-and-durability/ 

77 Smith, W. D. Radial Tires Stir Battle in U.S. Rubber Industry. The New York Times (1972). 
78 Samsung. Center for Computing History - Samsung Pen Master Tablet. (2012). 

http://www.computinghistory.org.uk/det/18733/Samsung-Pen-Master-Tablet/ 
79 Seale, W. The president’s house: a history. (Johns Hopkins University Press, 2008). 
80 Scott, C. The History of the Radio Industry in the United States to 1940. (Economic History Association, 

2008). 
81 Thor washing machine. Wikipedia (2019). https://en.wikipedia.org/wiki/Thor_washing_machine 
82 Varrasi, J. Global Cooling: The History of Air Conditioning. (2019). https://www.asme.org/engineering-

topics/articles/technology-and-society/global-cooling-the-history-of-air-conditioning 
83 William H. Hoover - Ohio History Central. (2019). 

http://www.ohiohistorycentral.org/w/William_H._Hoover 


	COVER Matters_Arising_Final_v3
	Bitcoin - No Numbers
	Bitcoin Supporting Doc - No Numbers



