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Abstract.  
A common issue that is shared among android smartphones users was and still related to saving 

their batteries power and to avoid the need of using any recharging resources. A big number of 

researches were conducted in the general field of "Saving Energy in Android Smartphones". 

Another big number of researches were also conducted in the subfield of "Saving Energy in 

Android Smartphones at the Application Layer". Both fields did generate a good amount of 

proposed methodologies, models, frameworks and algorithms that were provided as market 

products or approaches. However, this review will focus only on the applications layer and the 

main role of this layer in saving the power of an android smartphone’s battery. A review of the 

relevant existing literature is provided herein specifically covering various energy-saving 

techniques and tools proposed by various authors for Android smartphones.  

Keywords: Android smartphones, Android applications, Power-saving, Android 
Application Lifecycle, energy efficiency 

 

1. Background 

Smartphones have grown to become constant companions to humans as they are considered to 

offer indispensable help in easing the daily life of individuals.  

They are largely supported by numerous and diverse applications which help in for instance, 

directing us to our destinations, storing tickets when we travel, facilitate communications with 

friends and family, and entertain with videos or music. Due to the underlying importance of these 

mobile smart devices, there have been increasing concerns, particularly from users, regarding 

battery-drain which puts limitations on their usage.  

Based on the existing literature, a significant share of power consumption in these smart devices 

is largely caused by applications that are installed on the devices (Taleb et al, 2013; Li, Tran & 



Halfond, 2014). Depending on the applications’ functionality, they entail activities such as data 

downloading, content display, and use of built-in-sensors such as GPS (Global Positioning System) 

related sensors. There are various components of mobile smart devices that facilitate the above 

activities including; GPS sensors, device’ display, the CPU, and network interfaces among others.  

Consequently, activities/functions of different Android smartphone applications increase the 

energy consumption of any of the above-mentioned components. As a result, there has been a lot 

of effort in the existing literature geared towards identifying and investigating the underlying 

potential for energy savings in relation to these smartphone applications at applications layer and 

OS layer levels (Moamen & Jamali, 2015; Zhang, et.al., 2010).  

 

2. Pre-requisites of the Review 

2.1 Identify the Average Android-Application Lifecycle 

In order to demonstrate the main issues with current power-saving approaches, first we proposed 

creating a lifecycle that shows the main average stages of an average android application. The 

proposed cycle is shown in Figure.1: 



 
Figure .1 Average Android-Application Lifecycle 

 

 

2.2 List the Concerned Parties and Identify their Involvement 

Following the previous step In order to demonstrate the main issues with current power-saving 

approaches, we list the parties which are involved in our android application lifecycle as shown in 

figure.2:  

 
Figure .2 Parties Involved in an Android Application Lifecycle 



The next item to demonstrate is the involvement of the parties among the different stages of our 

android application lifecycle. The involvement is described in figure.3: 

 

 
Figure .3 Involvement of Parties Among the Different Stages of an Android Application Lifecycle. 

 

2.3 Identify the Status of  an Android Application Among Different Stages of an Android 

Application Lifecycle 

Following the above, we need to List the main statuses of an android application in terms of 

its presence in an android smartphone also among the different stages of our android 

application lifecycle, the two main statuses were Outside the End-User’s Phone (Under 

development or Available on Google Play) or Inside the End-User’s Phone (Installed & 

Running). Figure.4 will map the above statuses to the different stages of our android 

application lifecycle: 



 

 

Figure .4 Status of an Android Application among Different Stages of an Android Application Lifecycle 

 

2.4 Identify the Main Current Power-Saving Approaches 

In order To summarize the current power saving approaches that are used in today’s 

smartphones the following classification were made: Approach 1, follows the philosophy of 

“Simulate and estimate” the power consumption of and android application before making it 

available for end-user(s) by using techniques that may include but not limited to green coding, 

energy-aware designs, smartphone batteries simulators, historical analytical data..etc. 

Approach 2, follows the “Monitor, detect and control” philosophy, so it applies this on the 

behavior of an android application while it is running on an end-users phone and optimizing 



the power consumption. Approach 3, is more about Sacrifice smartphones technology or 

performance by switching off a number of features for the sake of saving power philosophy. 

 

2.5  Show the usage of current power-saving approaches among the stages of the android 

application lifecycle 

The next stage is to show the usage of the above approaches among the stages of the android 

application lifecycle and from the above, Approach 1 is used in stage 2 of our android 

application lifecycle and involves the app inventor(s), the app developer(s) and the Android 

Development Platform(s), while Approaches 2 and 3 are used in stage 5 of our android 

application lifecycle and involve Google Play, The End-user(s) and The End-user's phone(s). The 

usage is shown more clearly in Figure .5 



 

Figure .5 Usage of Current Power-Saving Approaches among the Stages of the android application lifecycle 

 

3. The Review 

3.1 Estimate and simulate power consumption approach  

Westfield & Gopalan (2016) contribute towards finding a solution towards power saving 

techniques in smartphones through proposing an approach called Orka. According to Westfield & 

Gopalan (2016), the Orka approach works by providing feedback to developers of software used 

in smartphones. The proposed approach is designed to provide feedback on the basis of API usage 
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by an application as well as providing feedback on the usage of energy of the application, down to 

the level of the method used (Westfield & Gopalan, 2016).  

The authors of the study believe that it is relatively important that energy usage of software is not 

disassociated from energy usage of the hardware, hence Orka is designed to generally provide 

feedback on the consumption of energy as a result of usage of hardware (Westfield & Gopalan, 

2016). Orka carries out tests on the app through using an execution trace that is dynamically 

created and generated through a test script that is provided by the developer of the application. 

In addition, the authors suggest that the proposed Orka performs the analysis on the hardware 

running on emulators instead of running on physical devises (Westfield & Gopalan, 2016). Orka 

pulls estimations of internal energy from the emulator, after running the application, in order to 

provide feedback on the basis of the different components utilised.  

Using the energy consumption data/metrics provided by the Orka approach, the developer of the 

application can make adjustments to their code in order improve the energy efficiency of their 

application. According to Westfield & Gopalan (2016), Orka was designed specifically for 

applications installed on the Android Operating System (OS). Despite the fact that Orka appears to 

operate in a similar manner as energy profiling solutions presented in the existing literature, 

Westfield & Gopalan (2016) suggest that Orka’s independence from the hardware makes it 

different from other energy profiling systems/solutions. However, it is worth noting that, the 

approach used in the study does not necessarily make readings on the basis of battery discharge 

and it does not attempt to estimate accurately an application’s energy usage.  

Wang, et.al., (2017) are concerned with the energy testing stage of the app development as they 

believe that applications developers ought to understand both, the rate of energy consumption of 

their applications and the underlying reason why energy is consumed by the application. In their 

paper, Wang, et.al., (2017) propose E-Spector as a potential online based tool/method the 

inspects energy usage, visualises the application’s energy consumption online in a manner that is 

instant, and it can also inform the developer what happened behind each hotspot of energy on an 

energy curve. According to Wang, et al., (2017), E-Spector mainly relies on static analysis and the 

instrumentation of the application to collect the underlying activities in real time from the 

execution of an application.  

These activities are then presented on an instant energy curve in such a way that the user is able 

to recognise what actually took place behind each spike in energy usage (Wang, et al., 2017). The 

authors believe that their proposed solution is particularly more beneficial because it does not 

require hardware meters like many other solutions in order to calculate instant the power figures 

for each application at runtime since it is an online-based software solution/power model (Wang, 

et.al., 2017). Furthermore, Wang, et.al., (2017) suggest that E-Spector provides detailed 

breakdowns of energy for each running process on the device, including applications running both 



background and foreground services. In their study, Wang, et.al., (2017) evaluated and tested the 

overhead and accuracy of E-Spector and the results indicate that using E-Spector has the ability of 

providing an estimation of energy within a less than 10% error, as well as providing an estimation 

of energy overhead within a less than 4% error. However, tests energy model used by the authors 

only considers three hardware consumers of energy including; network (both cellular and WiFi 

network), the screen and the CPU, instead of considering all energy consumers thus presenting a 

key limitation to the study.  

Moamen & Jamali (2015) are concerned with finding a solution that to sensor dependent 

applications that demand a lot of the phone’s energy in order to continuously use sensor feed to 

provide services. The authors of the study believe applications that simultaneously monitor 

multiple sensors tend to amplify the problem as they consume significant amounts of the phone’s 

battery (Moamen & Jamali, 2015). In their paper, Moamen & Jamali (2015) propose ShareSens as 

a potential solution to the above problem. ShareSens is an approach to merge applications’ 

independent sensing requirements.  

According to the authors of the report, this is achieved through utilising sensing schedulers for the 

sensors that would essentially determine the underlying lowest sensing rate which would mainly 

satisfy all the existing requests (Moamen & Jamali, 2015). Custom filters are then used to only 

send out the required data to each application on the device. Based on the report, any sensing 

requests that are made through the authors’ proposed ShareSens API are generally sent to the 

respective schedulers that determine the overall optimum rates for sensing in order to satisfy all 

the prevailing requests.  

Based on the experimental tests carried out on the ShareSens’ capabilities, the authors found that 

there is significant power savings that can be attained when the ShareSens solution is used 

particularly when overlapping sensing requests exist (Moamen & Jamali, 2015). However, the 

current form of the ShareSens approach does not allow programmers to opportunistically choose 

sampling rates that are higher once they available, at a relatively low marginal cost. 

In their study paper, Min, et.al., (2015) address the various factors that significantly impact phone 

batteries to the point of making their existing battery models become outdated and they further 

explore the initial approach that was aimed at helping phone users to understand the underlying 

cause and effect between the life of a phone’s battery their physical activity. Min, et.al., (2015) 

proposed Sandra, a battery information adviser for smartphones that is designed to be mobility-

aware. Sandra was designed with various key features including; a forecaster that provides 

estimates of battery life under different conditions of the user’s future mobility, and an archive 

that is designed to provide past battery drain rates retrospective summary categorised by different 

conditions of mobility (Min, et al., 2015).  



Based on the tests carried out the proposed approach, Sandra was found particularly helpful to 

smartphone users (Min, et al., 2015). However, the tool that Min, et.al., (2015) presented is 

neither an omniscient battery predictor nor a reconfiguration tool that extends batter’s life like 

Power monitor v2. According to Min, et.al., (2015), Sandra’s main goal is user enlightenment 

regarding new causal factors of their changes in mobility that impact the standby life of the phone 

batteries. 

Besides choosing between network interfaces, the strength of the device signal has an influence 

on the consumption of the device’s network. In their study, Schulman, et.al., (2010), proposed a 

scheduling algorithm that is designed to make use of a network signal with high strength. Their 

philosophy is that applications have to preferentially communicate when there is a strong network 

signal in order to realise energy savings, either through deferring communications that are not 

urgent or through advancing communications that are anticipated in order to coincide with strong 

signal periods (Schulman, et.al., 2010). To take advantage of a strong signal, Schulman, et al., 

(2010) developed a scheduling algorithm that focused on two specific kinds of applications, 

including streaming applications on one hand and sync applications on the other.  

For streaming applications, the algorithm that the authors developed modulates the traffic stream 

in order to match with characteristics of radio energy while for sync applications the algorithm 

utilises flexible synchronisation intervals (Schulman, et.al., 2010). Their proposed energy-aware 

scheduling algorithm thereby takes into account tail energy as well as communication energy. 

Through their simulations and tests, Schulman, et.al., (2010) show that energy savings of up to 

60% for on-demand streaming and up to 10% for synchronisation of email were attainable.  

In a study conducted by, Zhang, et.al. (2010), the authors proposed the use of an online power 

estimation tool and a model generation framework in their contribution towards improving 

power-saving capabilities of Android smartphones on both the applications layer and the OS layer. 

Zhang, et.al. (2010) proposed a tool called the PowerTutor which was designed as an online power 

estimation system for the Android platform smartphones. The tool provides real-time, accurate 

power consumption estimates for components of the smartphone that are power intensive such 

as display, the CPU, cellular interfaces, GPS, and Wi-Fi interfaces (Zhang, et.al., 2010).  

The PowerTutor was designed to be used by both application developers and smartphone users. 

Applications developers use to conveniently, accurately and rapidly determine the overall impact 

of changes in software design on power consumption while smartphone users can use the tool to 

determine the underlying power consumption characteristics the relate to competing mobile 

applications thus facilitating informed decision-making for both parties (Zhang, et.al., 2010). 

PowerTutor, according to Zhang, et.al. (2010) has a power model that includes six different 

components including: GPS, LCD display, CPU, audio interfaces, Wi-Fi and cellular interfaces. Based 

on the experiments that authors carried out, it was found that PowerTutor was accurate within an 



average of 0.8% with at most 2.5% error for intervals of 10 seconds. In addition to the PowerTutor 

tool, Zhang, et.al. (2010) also proposed the PowerBooster tool which was designed an automatic 

state of battery discharge on the basis of a technique called the power model generation 

technique. According to Zhang, et.al. (2010), the experimental tests carried for 10-second intervals 

indicated that PowerBoost was accurate within 4.1%. 

 

3.2 Monitor, detect and control app behaviour approach  

Dao, et al., (2017) are concerned with the difficulty in identifying applications that are heavy power 

consumers on a smartphone as well as understanding why these applications are heavy power 

consumers. The authors believe that there is real need for phone users to be aware of applications 

on their smartphones that are heavy power consumers so that they are able to take appropriate 

action quickly enough be prevent their phone batteries being completely drained (Dao, et.al., 

2017). In their study, Dao, et.al., (2017) propose TIDE, a tool that they believe can identify 

applications that are heavy energy consumers and provide an understanding of the reasons why 

an application is consuming a lot of energy on the phone. TIDE, according to Dao, et al., (2017) 

operates as user-centric tool which can be installed on a user’s phone and it continuously the 

performed lightweight monitoring tasks on the application usage of the user as well as monitoring 

the resources that the application consumes.  

Dao, et al., (2017) conduct an evaluation of their proposed tool using emulation of usage pattern 

traces from seventeen volunteer users and the results indicate that TIDE correctly estimated the 

energy consumption level for 225 applications out of 238. However, the tool does not provide a 

breakdown of the screen consumed energy in relation to individual applications yet the screen 

consumers the most amount battery power in most cases. Hence the results that the TIDE tool 

provide do not show the full picture of energy consumption. 

Jabbarvand, et.al., (2015) were concerned with the fact that application repositories lack 

information regarding the relative energy cost of applications based on app categories which 

forces the user to install applications without appropriate understanding of the energy 

implications of these applications.  

Wang, et.al., (2016) are concerned about the difficulty in the diagnosing energy inefficiency of 

applications that often use sensors to operate. In their study, Wang, et al., (2016) propose the 

GreenDroid approach that is designed to systematically diagnose problems associated with energy 

inefficiency among applications used in smartphones particularly those running on the Android 

platform. The proposed approach leverages the Application Execution Model (AEM) to realistically 

simulate the runtime behaviours of an application and it is also designed to have the ability of 

automatically analysing the sensory utilisation data of an application reporting the resulting 



information to the application’s developers (Wang, et al., 2016). Wang, et.al., (2016) evaluated 

the E-GreenDroid approach using 13 real applications on Android in two separate experiments 

and the results from the tests indicated that the tool was effective in executing its intended 

mandate. However, E-GreenDroid does not support concurrency of Android applications as it 

simply places all the execution into a single thread.  

A solution presented in the existing literature that provides attempts to cover all areas of a 

smartphone’s energy consumption is the Power monitor v2 that was proposed by Datta, Bonnet 

& Nikaein (2013). In their study, Datta, Bonnet & Nikaein (2013) suggest that the power monitor 

v2 is an Android application that works by employing a monitoring module to collect data which 

relates to all features of the smart device’s (smartphone or tablet).  

There are various modules, each collecting data on a specific feature including; the application 

monitor – collects data on running applications and their CPU load; battery monitor – collects data 

on battery status; CPU monitor – collects data on CPU operating frequency and load; the context 

monitor – collects data on system time, date and coarse location; the network monitor – collects 

data on the status of the mobile data, WiFi, network traffic used by applications and GPS status; 

and the display monitor – collects data on the screen timeout, level of brightness and devise 

interaction time (Datta, Bonnet & Nikaein, 2013). Based on their paper, Datta, Bonnet & Nikaein 

(2013) suggest the Power monitor v2 app monitors Android devices it is installed on continuously, 

stores the collected data locally for seven days and deploys a learning engine that is designed to 

generate various usage patterns that may exist within the smart device.  

Thereafter power saving patterns for each pattern are generated dynamically. The collection of 

the usage data of the smart device raises various privacy related questions for the tool, however, 

Datta, Bonnet & Nikaein (2013) suggest that their approach preserves privacy of data since all the 

data collected stored and computations generated done locally. The evaluation tests carried out 

on the Power monitor v2 indicate that the application increased battery life of a Samsung GT-

19100 running Android 2.3.4 OS by 8.2 hours while it increased the battery life of the Nexus 7 

running Android 4.2.1 OS by 10 hours (Datta, Bonnet & Nikaein, 2013). Overall, the Power monitor 

v2 was found to increase the battery life of the devices it was installed on by 82% (Datta, Bonnet 

& Nikaein, 2013).  

In their study, Dong & Zhong (2012) analysed the underlying influence of the content displayed on 

the overall energy-usage for displays whose design is based on the OLED technology. Through their 

research, the authors found that energy usage largely depends on the content displayed as 

different content contains different colours and for the devise to display different colours a certain 

amount of energy would be consumed (Dong & Zhong, 2012). Hence, Dong & Zhong (2012) 

concluded that designers of graphical user interface generally have a significant impact on the 

device’s energy consumption. In this regard, Dong & Zhong (2012) proposed different energy 



models which were designed to estimate the display content’s power consumption. Dong & Zhong 

(2012) also proposed different transformation methods such as the utilisation of a lighter 

foreground colour and a dark background colour. Dong & Zhong (2012) used the transformation 

methods to evaluate the overall influence of their methods and found that energy usage can be 

reduced by approximately 75% hence saving the smartphone battery from draining.  

Li, Tran & Halfond, (2014) used a similar idea to that presented by Dong & Zhong (2012) as they 

concentrated on the idea of reducing the consumption of energy by device-displays that use OLED 

technology. However, Li, Tran & Halfond, (2014) proposed a different approach in which they 

suggested that it is necessary to change the source code of the applications as a way of reducing 

the power consumption of the applications. They developed a tool they called Nyx which they 

suggested was capable of performing colour schemes transformations for applications (Li, Tran & 

Halfond, (2014). According to Li, Tran & Halfond, (2014), the test on their proposed solution found 

that battery savings of up to 40% for such modified applications were possible but only if users are 

willing to accept colour transformations in the name of saving battery.  

Pathak, Hu & Zhang (2012) were concerned with the energy spent by mobile applications with the 

aim of finding ways to the reduce such energy consumption. In their study, Pathak, Hu & Zhang 

(2012) presented an energy profiler tool for Android smartphone applications called the Eprof. 

According their study, Eprof is an energy profiler that adopts the last-trigger accounting policy to 

capture intuitively the asynchronous modern smartphone components’ power behaviour in 

mapping of energy activities to respective program smartphone entities (Pathak, Hu & Zhang, 

2012). The tool was designed to be concerned with energy consumption profiling which is not 

linear as time and it has the capability of measuring intra-app consumption of energy including 

providing insights into the overall energy breakdown per application routine and per thread 

(Pathak, Hu & Zhang, 2012).  

Their tool was also designed to be a general-purpose energy profiler that is fine grained works by 

assisting an application developer for Android smartphones to optimise the application’s energy 

consumption. Pathak, Hu & Zhang (2012) carried out an experimental test which involved the 

profiling the energy consumption of six Android popular smartphone applications including; 

Facebook, Angry-Birds, and the Android Browser application among others. Their tests showed 

that Eprof shed light on the applications’ internal energy dissipation and it further exposed 

surprising findings such as 65%-75% free applications’ energy is consumed third-party advisement 

modules of the applications (Pathak, Hu & Zhang, 2012). Eprof also revealed numerous “wakelock 

bugs” (a family of smartphone applications energy bugs) and it efficiently pinpoints their location 

within the application’s source code for to inform decision-making. Based on the experiments 

conducted by Pathak, Hu & Zhang (2012), their proposed accounting presentation of application 

1/O energy (bundles) helped to reduce the consumption of energy of four applications involved in 

the test by 20% to 65%. 



 

3.3  Switching off features approach 

Petander (2009) proposed an energy-aware algorithm that was based on measurements of energy 

consumption in relation to 802.11 WLAN and UMTS networks on smartphones running on an 

Android operating system. The proposed algorithm generally utilises application traffic size 

estimations in order to determine the overall alternative of the minimum energy-cost through 

comparing the cost associated with the utilisation of UTMS with the underlying cost associated 

with performing a downward vertical opportunistic handoff back to WLAN, while utilising WLAN 

for data transfer (Petander, 2009). The authors show in their study that the proposed solution has 

the ability of predicting how much data will be transferred as a result of actions taken by the user. 

Based on experimental tests, Petander (2009) found that energy consumption of the smartphone 

increases by 18.3% whenever WiFi and UTMS are both powered on simultaneously, compared to 

powering on UTMS alone at any one time. 

In their study, Taleb et al (2013) propose a technique that involves dynamic switching between 

WiFi and 3G communication on the smartphones. Taleb et al (2013) aim at achieving the ability to 

effectively switch to an alternative Wi-Fi connection from a primary cellular network. Taleb et al, 

(2013) conducted a set of experimental measures in relation to various network scenarios with 

the aim of identify the key components which affect consumption of energy within smart devices 

while they are connected to WiFi and 3G networks. The authors then used the measurement 

results to derive at generic analytical model for energy as a function of effective download bit rate 

and download data size (Taleb et al, 2013).  

They developed an Android-based mobile application whose intended design is to test, in real 

scenarios, the overall performance of the algorithm for dynamic switching between WiFi and 3G 

connections. The results of the tests showed that it was possible to dynamically switch between 

WiFi and 3G communications and, when 3G only and WiFi only connections were compared, it 

was found that energy savings of 30% and 18% respectively were possible (Taleb et al, 2013). This 

particular study highlights the underlying potential benefits that intelligent switching within 

heterogeneous networks can provide.  

In a study conducted by Cai et.al., (2015), the authors were focused on power wastage in mobile 

devices with 3G/4G networking that resulted from ‘tail time’ where the device’s radio is kept 

running despite the fact that no communication is taking place. Cai et.al., (2015) proposed 

DelayDroid as a framework which would provide a developer with the capability to add the 

required policies for reducing such energy wastage to existing Android application that are 

unmodified without any ‘human’ effort. The tool that Cai et.al., (2015) proposed uses bytecode 

refactoring and static analysis in order to identify method calls which send network related 

requests and modify the calls in order to detour them to the run-time of the DelayDroid.  



The tool’s runtime then batches them by applying a pre-defined policy, hence avoiding energy 

waste related to tail time hence improving energy efficiency. The universality and correctness of 

the DelayDroid mechanisms were evaluated and tested using 14 popular applications for Android 

and results indicated that DelayDroid was capable of reducing energy-waste related to 3G/4G tail 

time by 36% (Cai et.al., 2015). However, it is worth noting here that while the test results indicate 

that DelayDroid was effective in reducing the energy waste, it only reduces waste related 3G/4G 

tail time but not from screen and CPU usage which account for a large portion of the phone battery 

drain. 

 

4. Conclusion 

This report has provided a review of the existing literature regarding the different solutions, 

techniques and tools that have been proposed by different authors in response to battery energy 

consumption problems of mobile applications for smart devices running on the Android OS. The 

literature review covers studies that provide solutions based on three key approaches, including; 

approach 1 estimating and simulating power consumption of android applications, approach 2 

monitoring, detecting and controlling the android applications’ behavior, and approach 3 

switching off smartphone features when not in use in order to reduce power consumption. Based 

on the review of the literature, solutions presented by prior studies in relation to approach 1 reveal 

that the average estimations that the proposed tools/techniques provide tend to conflict the 

actual usage habits of device and the accuracy of the power consumption measurements and 

simulators remains an issue of debate. The review of the existing literature in relation to the 

approach 2 reveals most solutions that monitor and control app behavior also consume power 

from the devise’ battery for instance E-GreenDroid, Eprof, and among others.  

Prior studies that propose solutions in the line of approach 3 reveal that the proposed techniques 

use predefined saving plans that provide a one-size-fits-all approach which does not necessarily 

provide customized/personalized solutions for users. Therefore, while the techniques presented 

herein provide some potential solutions for reducing energy consumption by mobile applications 

on Android-based smart-devices, they are limited in their usage. 
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