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Highlights 
 

1. We investigate the spread of awareness and risk on multiplex networks considering the 
heterogeneity of firm. 

2. Threshold is affected by the cooperation intensity but not the local risk propagation 
prevalence.  

3. The global awareness has two-stage effects on threshold ignoring the local awareness.  
4. Threshold lies in three different areas by the common effects of the global awareness and the 

local awareness. 

 

*Highlights (for review)
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The impact of firm heterogeneity and awareness in modeling 

risk propagation on multiplex networks  
Hui Liua , Naiding Yanga,* , Zhao Yangb , Jianhong Linb , Yanlu Zhanga  

a. School of Management, Northwestern Polytechnical University, Xi’an 710072, PR China 

b. URPP Social Networks, University of Zürich, Andreasstrasse 15, CH-8050 Zürich, Switzerland. 

Abstract: Growing interest has emerged to understand the coupled awareness-epidemic 

dynamics in multiplex network. However, most previous studies usually assume that all the 

infected nodes have the same influence on the susceptible neighbors, without considering node’s 

heterogeneity. In this paper, with the similarity between epidemic spreading and risk propagation, 

we apply the UAU-SIS model to investigate the interplay between awareness and risk propagation 

in R&D networks considering firms’ heterogeneity. Here, the risk triggering probabilities are 

heterogenous and depend on two factors: cooperation intensity and local risk prevalence. The 

results reveal that the cooperation intensity can increase the risk propagation prevalence and 

decrease the risk propagation threshold, while the local risk prevalence can only increase the risk 

propagation prevalence. Moreover, we find that the risk propagation threshold undergoes an 

abrupt transition with a certain point of the local awareness ratio (the global awareness ratio) 

ignoring the global awareness (the local awareness ratio), which includes two-stage effects on risk 

propagation threshold. Furthermore, threshold lies in three different areas when considering both 

the global and local awareness. These results could provide a basis for managerial professionals to 

improve the robustness of interdependent R&D networks under risk propagation by taking 

effective measures. 
Keywords: Risk propagation; Global awareness; Local awareness; Node heterogeneity; MMCA 

method.  

1. Introduction 
Research and Development (R&D) network [1] is a representation of the research and 

development alliances formed by formal joint ventures or more informal research agreements 
between firms in one or more industrial sectors within a given period, where nodes are firms and 
links represent R&D cooperation. R&D network has been an effective cooperative form that helps 
firms to gain advantages, e.g. obtaining the complementary resources, shortening the period of 
R&D project and sharing the risk [2-5]. It is thus not surprising that the number of R&D networks 
has grown very rapidly in recent decades [6], especially in high-tech industry. Although 
enterprises can benefit a lot from joining R&D networks, risk still exists in R&D network. Some 
researches [7-10] have shown that when firms occur risk, they might trigger the potential risk of 
their neighbors just like reaction chains. This phenomenon, which can be called risk propagation, 
might cause the majority of firms to fail and lead to the collapse of the R&D network. It is very 
meaningful to study risk propagation in R&D networks in order to provide theoretical basis for the 
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efficient risk management of R&D network. 
Many researches [11-13] have studied risk propagation in inter-firm networks. However, to 

our knowledge, most of them are mainly concentrated on supply chain networks or financial 
networks, and there exist only a few literatures on risk propagation in R&D networks. The 
literatures about risk propagation in R&D networks can be divided into two categories: the spread 
of firms’ risk state and the cascading failures induced by overload at firms. For the first research 
stream, the core idea of these studies [14-16] is the similarity between the risk diffusion among 
firms and the spread of epidemic. These researches show that by reducing risk transmission rate, 
shorting the cycle of risk appeared or reducing the heterogeneity of the network, one can eliminate 
risk propagation between firms. For the second stream, previous researches [7-10,17] are mainly 
applying the idea of load-capacity model by assuming that each firm has risk capacity and risk 
load. Only if the risk load exceeds risk capacity, the firm occurs risk and is removed from the 
network. Some interesting results are obtained from these researches, e.g. the uniform distribution 
of firms’ capacities could improve the invulnerability of R&D networks, and the robustness of 
R&D network is more sensitive to the negative deviation than to the positive deviation from attack 
information.  

However, the above-mentioned researches ignore the risk perception of firm. Risk perception 
[18] refers to those ambiguities, as perceived by alliance partners, about the future events that may 
have negative impacts on the performance of the alliance, which can also call risk awareness. Risk 
awareness is very common in our daily life: When people are aware of the flu, they could reduce 
outdoor activities or take antiviral drugs to avoid getting it. The same happens to firms: When 
enterprise are aware of risks, they will take certain measures and countermeasures to avoid being 
triggered by these firms that have already occurred risk. In recent years, there is a growing interest 
in studying the dynamical interplay between epidemic spreading and awareness diffusion [19-26], 
which is typically modeled as two competing spreading in multiplex networks. Two diffusive 
processes are interacting with each other in a two-layer network, where the epidemic spreads on 
one layer and the awareness propagates on another one. Following this thought, Granell et al. 
proposed a UAU-SIS model to study the interplay of epidemic spreading and diffusion of 
awareness, and found that the spreading of awareness is able to control the onset of epidemic [19]. 
Different models have been proposed in order to extend the coupled awareness-epidemic 
dynamics corresponding to diverse realistic scenarios by considering other various factors, such as 
local awareness [20], individual heterogeneity [21,25,27], self-initiated awareness [22], global 
awareness [25,28], etc. 

However, most studies assume that the susceptible individuals get infected by the infected 
individual with the same infection rate, and ignore the effect of individual heterogeneity. Although 
there exist a few researches that consider the individual heterogeneity, they are mainly focusing on 
the heterogeneous of aware individual precautions. In reality, there exists much heterogeneity in 
firms’ influence on others in R&D network. This is because, on the one hand, when firms occur 
risk, they cannot continue to perform their own R&D tasks. Thus, the more cooperative firms 
occur risk, the more likely a firm will be triggered risk. On the other hand, a firm is usually 
influenced by those firms with the high intensity of cooperation than those with low cooperation 
intensity. Motivated by the above reasons, we explore the interplay between risk propagation and 
awareness in the R&D networks, considering the heterogeneity of firms.   

The rest parts of this paper are as followings: In the second part, we describe our modelling 
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approach to the risk propagation in R&D network. In the third part, we conduct theoretical 
analysis by using microscopic Markov chain approach (MMCA). In the fourth part, we show the 
simulations of our risk propagation models, and in the last part we discuss about our findings.  

2. Model 
In this part, by taking the heterogeneity of firms, we model the dynamical process of risk 

propagation and awareness spreading in multiplex network. A sketch of the model is shown in Fig. 
1. The two layers contain the same nodes (firms) but with different connections (relationship 
between firms). The upper layer is the information network. It has more links, because there are 
other inter-firm relationships expect for the R&D relationships, e.g. supply relationship or 
historical cooperation relations, etc. This layer is the network where the awareness spreading 
happens. The lower layer is the R&D network (contact network), where risk propagation happens. 
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Fig. 1. Example of the description of multiple network used in our work. The upper layer corresponds to the 

network which supports the spreading of awareness. Nodes are awareness (A) and unawareness (U) on this layer. 

The lower layer is the network where risk propagation happens and nodes also have two states: susceptible (S) and 

infected (I). Only three kinds of states can exist in the multiple network, namely unaware and susceptible (US), 

aware and susceptible (AS) and aware and infected (AI). In addition, the spreading models for the upper layer and 

the lower layer are different, with threshold model defined by the global information and local information for the 

awareness spreading, while the contagion model for risk propagation, respectively.  

As for the awareness spreading, firms are either aware (A) or unaware (U) in the information 

layer. A firm needs enough information to become aware of the risk, before it will take any risk 

control actions. Thus, in this layer, we adopt a threshold model to describe awareness spreading. A 

firm can usually obtain information from the two sources: communication with the aware 

neighbors or gathering information from other aware firms. In this situation, an unaware firm 

becomes aware when its proportion of aware neighbors (local awareness) exceeds a certain point 

denoted by 1 , or the ratio of all aware firms in R&D network is larger than a certain point 

denoted by 2  . In addition, an aware firm might return to unawareness state with rate  . 
The lower layer is the R&D network where risk propagation happens. In this layer, we apply 

the susceptible-infected-susceptible (SIS) model to mimic the risk propagation process. A firm is 
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either infected (I) or susceptible (S) in the layer. That is, a firm either occurs risk or not. The 
infected enterprises will take certain measures to mitigate risk, so that they can recover to 
susceptible state with probability  . Differ from the epidemic spreading, susceptible firms can be 
influenced differently by different infected firms. Obviously, a firm might be more likely to be 
triggered risk by those cooperative firms with high cooperation intensity. Besides, the more 
neighbors are infected, the easier the firm to be infected. Here, we assume that the heterogeneity 
of firm depends on the cooperation intensity and the local risk prevalence. Then each susceptible 
firm will be triggered risk with a triggering rate that is defined as:  

 
1...

(1 ( ))
( ) ,     ( 0, 0)

max 1 ( )
ij i

ij
lk ll N

w a t
t a

w a t




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
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            (1) 

Where the heterogeneity factor is defined as follows: 
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(1 ( ))
max 1 ( )
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ij

lk ll N

w a t
w a t















                             (2) 

Where ijw  is the intensity of cooperation between firm i  and firm j , i  is the fraction of 

infected firm among i’s neighbors.   and a  stand for the impact strength of cooperation and 
local risk propagation prevalence on one’s triggering rate, respectively.  

The interplay of the UAU-SIS process is as follows: once a firm occurs risk, it will certainly 
become awareness. Moreover, these susceptible enterprises in awareness state will take measures 
to reduce their susceptibility. To distinguish the protective behaviors between aware enterprises 
and unaware enterprises, we assume that the risk propagation rates in aware state and unaware 
state are A

i  and U
i , and A

i  and U
i  are linearly correlated [19,29], i.e. A U

i i  ( 0 1  ), 
0   means that when firms are aware of risk, they are totally immune to it.  

3. Theoretical analysis using the MMCA 
In this section, the theoretical analysis of our model is based on MMCA approach, as it has a 

high accuracy in solving the interplay spreading in the multiplex networks [19, 28-33]. Defining 

ija  and ijb  as the adjacency matrices of the information communication network and the R&D 

network, respectively. According to the proposed model, at time t , the probability of firm i  in 
one of the three states is denoted by ( )AI

ip t  , ( )AS
ip t  and ( )US

ip t . Here, assuming that the 
transition probability of unaware firm i  not becoming aware by the information obtained from 

their aware neighbors (the global aware firms) is ( )ir t  ( ( )im t ) , and unaware (aware) susceptible 

firm i  not being infected is ( )U
iq t ( ( )A

iq t ), which are described as the following equations:   
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          A AI A
,( ) [1 ( ) ( )]i j j i ji

j

q t p t b t   

U AI U( ) [1 ( ) ( )]i j ji ji
j

q t p t b t                    (3) 

Note that H( )x  is a Heaviside step function. If 0x  , H( ) 1x  , else H( ) 0x  . In 

other words, the values of ( )ir t  ( ( )im t ) can either be 0 when the fraction of its aware neighbors 

(the global aware nodes) surpasses the aware ratio 1  ( 2 ), or 1 if the fraction of its aware 

neighbors (the global aware nodes) is less than the aware ratio 1  ( 2 ).  

Therefore, for each firm i , the transition probability trees for the three possible states are 
illustrated in Fig. 2.  
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Fig. 2. Transition probability trees for the three states (AI, AS and US) of the UAU_SIS dynamics in the multiplex 

per time step. The denotation of ir , im , U
iq  and A

iq  are given in Eq. (3). Each time step is subdivided into 

two phases: awareness spreading (UAU process) and risk propagation (SIS process).  
According to the scheme in Fig. 2, together with equations (3), we can develop the coupled 

processes for each node i  by using MMCA method as: 

US U US U( 1) ( ) ( ) ( )+ ( ) ( ) ( ) ( )AS
i i i i i i i ip t p t m t q t p t r t m t q t   

AS AI AS A A
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AI AI AS U A A
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i i i i i i i i

i i i i i i i i i

p t p t p t m t q t m t q t q t

p t r t m t q t r t m t q t r t q t

             

       
    

(4) 

Where AI AS US( ) ( ) ( ) 1i i ip t p t p t   . 

To calculate the risk propagation threshold, we need to explore the steady solution of the 

system constituted by the equations (4). When the system is in the stationary state, it satisfies the 

conditions AI AI AI( 1) ( )i i ip t p t p   , AS AS AS( 1) ( )i i ip t p t p   and US US US( 1) ( )i i ip t p t p   . Noting 

that near the threshold, the infected probability of firm i  can be assumed as AI 1i ip   , 

Consequently, U ( )iq t  and A ( )iq t  can simply approximate as U U1i i ji jj
q b    and

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

A A1i i ji jj
q b    . Inserting these approximation in Eqs. (3), we obtain,                             

US US AS
i i i i i ip p rm p m   

AS AS US(1 ) (1 )i i i i i ip p m p rm                         (5) 

U US A AS( )i i i i i ji jj
p p b       

Then, with A U
i i  , A AI AS AI

i i i ip p p p   , U US
i ip p , A U 1i ip p   and Eq. (1), we get  
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Therefore, 
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Where ji  is the element of the identity matrix.  

Then, defining matrix H  with elements 

A1 (1 )
max( | 1,2,..., )

ij
ij i ji

lk

w
h p b

w l N





   
          

               (8) 

the non-trivial solution of Eq. (8), that is the risk propagation threshold, reduces to an eigenvalue 
problem for the matrix H . The risk propagation threshold is the minimum value of   
stratifying Eq. (8), which can be written as: 

max ( )c H


 


                             (9) 

Here, max ( )H  is the largest eigenvalue of matrix H . According to Eq. (8), the risk propagation 

threshold depends on risk recovery rate  , the structure of the R&D network ( ijb ) , the 

parameter  , the dynamics in the virtual communication networks ( A
ip )  and the cooperation 

intensity ( ).  

4 Simulations 
After obtaining the analytic solution of risk propagation threshold c , we explore the 

vulnerability of the R&D network under risk propagation using numerical simulations. Previous 
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studies have shown the degree distribution of the real R&D network follows a power-law [1,34]. 
Since BBV model is with the properties as many real networks, e.g. power-law distribution of 
degree and weight, Thus, we first use BBV model [35] to generate the R&D network with N=300, 

and other related parameters are fixed with 3.0  , 0 1.0w  and 3m  . The virtual 

communication network is generated by adding 500 extra random links (nonoverlapping with the 
previous) in the R&D network, which is an unweighted network and the average degree is 7.3. 

Then, we use I AI

1
/

N

i
i
p N



 and A AI AS

1
( ) /

N

i i
i

p p N


   to represent the fraction of occurred risk 

firms and aware enterprises when risk propagation in the multiplex networks reaches the steady 
state.  

In the following parts, we mainly investigate the effects of awareness ratios and the 
heterogeneity of firms on the interplay between awareness and risk propagation in multiplex 
networks.  

From the above model, we know that the critical awareness ratios 1  (local awareness) and 

2  (global awareness ) control the threshold of firms becoming aware in information layer. The 

effect of critical awareness ratio 1  on epidemic spreading has been studied without considering 

the nodes heterogeneity and global awareness. The research [20] shows that the critical awareness 

ratio has two-stage effect on epidemic threshold, and the corresponding transition point called c  

is approximately 0.5. Thus, firstly, we explore how the firms’ heterogeneity and global awareness 

2  affect the effect of the local awareness 1  on risk propagation.  

In Fig. 3 and Fig. 4, we plot the full phase diagrams 1( )   of I and A , together 

with 2( )   of I and A respectively. The results reveal that the density of infected firms 
I  decreases with the decreasing of either the local awareness ratio 1  or the global awareness 

ratio 2 . This is because that awareness is more likely to spread with a smaller awareness ratio. 

Then these aware firms will take actions to suppress risk propagation. In addition, we notice that 

the value of I  is even smaller with a larger  than a smaller  . This is because A  

suddenly increases with the increasing of   for some values of 1  or 2 , which result in I  

abruptly decreases. In essence, it is a result of the coupled risk-awareness spreading processes. On 

the one hand, the increasing of   promotes risk spreading, which will promote awareness 

diffusion due to these occurred risk firms will automatically become aware. In return, the aware 

firm will take risk control measures to suppress risk propagation. Thus, when the effect of 

promoting awareness spreading overwhelms the effect of promoting risk propagation, the density 

of infected firms will be reduced. These results imply that promoting the awareness spreading 

among firms is an effective way to decrease risk propagation in R&D network. 
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Fig. 3. The full phase diagram 1( )   of A or I  for the same multiplex network described before. 

Where 0.4  , 2 1.1  , 0.2  and 0.5a  . (a)-(b) 0.4  , 0.6  ; (c)-(d) 0.6  ,

0.4  . The simulations are averaged by 100 realizations. 
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Fig. 4. The full phase diagram 2( )   of A or I  for the same multiplex network described before. 

Where 0.4  , 1 1.1  , 0.2   and 0.5a  . (a)-(b) 0.4  , 0.6  ; (c)-(d) 

0.6  , 0.4  . The simulations are averaged by 100 realizations.  

Secondly, we explore how the awareness ratios influence on the risk propagation threshold 

with considering the heterogeneity of nodes. In Fig. 5 (a), one can see that there is a good 

agreement between the MMCA approach and MC simulations in calculating the risk propagation 

threshold c . Thus, we have decided to only use MMCA in Fig. 5 (b) and Fig 6. As can be seen 

in Fig 5 (a), the risk propagation threshold c  has a sudden transition at a certain value of local 

awareness ratio denoted as 1c  without considering the effect of global awarenss. Obviously, 

when the local awareness ratio 1  is smaller (bigger) than 1c , c  is with a larger (smaller) 

value. The two values of c  are denoted as H
c  (higher c ) and L

c (lower c ), 

respectively. In addition, from Fig.5 (b), we could conclude that the global awareness also has the 

two-stages effects on the risk propagation threshold c , ingoring the effect of local awareness. 

Moreover, we can find that the transition point 1c  and 2c  are not always 0.5 when 

considering the heterogeneity of firms and global awareness. 

  

Fig. 5 (a). The comparison of risk propagation threshold c  using the MMCA approach and Monte Carlo (MC) 

simulations as a function of 1 , the blue square is using the MMCA and the red circle is obtaining by MC 

simulations, where 2 1.1  , 0.4  , 0.6   , 0.5a  , 0.4   and 0.2   (b). The risk 

propagation threshold c  as a function of 2 . Here  1 1.1  , 0.4  , 0.6   , 0.5a  , 

0.4   and 0.2   Jo
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Fig. 6. The full phase diagram 1 2( )   of c  for the same multiplex network described before. Here 

0.4  , 0.6  , 0.5a  , 0.4   and 0.2  . 

Thirdly, we explore how the local awareness and global awareness influence on the risk 

propagation threshold. From Fig. 6, we can see that the threshold c  lies in three different areas 

with considering both the effects of 1  and 2 . Here, we use two groups of four numbers of 1  

and 2  to describe the three areas, which are denoted as 11 , 12 , 21  and 22 . Obviously, 

when 1 11  ( 2 21  ), the threshold is always the same with a larger value, no matter what 

values of 2 ( 1 ) is, this is because that the awareness will spread all over the network. In 

addition, when 1 12   and 2 22  , no matter what values of 1  and 2  are, the values of 

threshold are still the same but with a smaller value. The reason is that the onset of risk 

propagation is independent of awareness spreading in this situation and remains at a lower level. 

In the other cases, the values of the threshold are not always the same, which is influenced by the 

coupled interplay between 1  and 2 . The general trend is that when 1  ( 2 ) is fixed, c  

decreases with the increasing of 2  ( 1 ).  

Then, we explore how the parameter   and parameter a  that control the heterogeneity of 

firm influence the risk propagation. As can be seen in Fig 7, we analyze the impact of   on the 

stationary risk propagation layer as a function of  . The results in Fig. 5 show that the density of 

infected firms I  decreases effectively with the increasing of  , while the threshold c  

augments as well. Since max/ 1ijw w  , the smaller the parameter   is, the more quickly risk 

propagates. Besides, when 0  , the risk propagation network degenerates to unweighted 

network. This also implies that risk diffuse more quickly on unweighted scale network than that 

on the weighted network under the same conditions, which is consistent with the results in single 

network [36]. Furthermore, the impact of   on risk spreading threshold c  has been also 
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explored and shown in Fig. 8. We find that the risk spreading threshold increases with the 

parameter  . 

 

  

Fig. 7. I  as a function of   for different values of  . Here, 0.4  , 0.4  , 0.5a  and 

0.6  . (a) 1 0.1  , 2 0.9  ; (b) 1 0.9  , 2 0.1  ; (c) 1 0.4  , 2 0.6  ; (d) 1 0.6  , 

2 0.4  . Each curve is obtained by average 100 realizations.  

 
Fig. 8. c  as a function of the parameter   for different values of 1  and 2 . Other parameters are: 
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0.4  , 0.4  , 0.5a   and 0.6  . 

Finally, the stationary risk prevalence as a function of   under different values of a  is 

shown in Fig. 9. The results indicate that I  slightly decreases with the increasing of parameter 

a , while the threshold c  is not influenced by the changing of a . This is because that the 

prevalence of risk is 0 near the threshold c . In sum, the risk propagation threshold is not 

affected by the prevalence of the infected neighbors. The result is consistent with the theoretical 

analysis, which we can see that a  absents from the Eqs. (8) and (9) to determine the risk 

propagation threshold.  

 

 

Fig. 9 I  as a function of   for different values of a . Other parameters are fixed with 0.4  , 

0.4  , 0.6  , 1 0.5   and 2 0.5  ; (a) 0  ; (b) 0.2  ; (c) 0.6  ; (d) 

1  . Each curve is obtained by average 100 realizations. 

5 Conclusion 

The interrelation between epidemic spreading and awareness diffusion in multiplex network 
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has drawn a lot of attention. However, the heterogeneity of nodes has been ignored in many 

previous studies. In this paper, by taking firm’s heterogeneity into account, we have investigated 

the interplay between the spreading of risk and the diffusion of awareness. The results reveal that 

the local awareness ratio 1  and the global awareness ratio 2  both can lead to the different 

risk propagation sizes, while the local awareness ratio 1  has the two-stage effects on risk 

propagation threshold c  without considering of global awareness no matter what values of 

other parameters. While the global awareness ratio 2  has the same phenemon on the effects of 

threshold c  ingnoring the local awareness. However, when considering both the effects of 

global awarenss and local awarenss, three different areas exsit accoring to two gropus of different 

values of 1  and 2 .  

By assuming that the level of firm’s risk triggering probability increases with cooperation 

intensity and local risk prevalence, our simulations show that the cooperation intensity can 

decrease the risk propagation threshold and promote the final risk propagation size effectively. 

However, the local risk prevalence can only augment the final risk propagation size, which cannot 

alter the risk propagation threshold c . Furthermore, our results could provide some useful 

suggestions on the prevention and control risk propagation. For instance, encouraging information 

communication between neighbors and developing a shared-information platform to realize 

information in whole R&D network are effective ways to decrease local (global) awareness ratio.  

There are some limitations in this research. Frist, only the heterogeneity of firm in risk 

propagation layer has been considered in the model. However, heterogeneity also exists in the 

awareness perception, thus the heterogeneity in information layer should consider in the future 

research. Secondly, since some firms might join or quit R&D network over time, which causes the 

changing of topology structure. In this situation, considering temporal networks could serve as a 

good point in the future direction.    
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