
This is the accepted version of the article:

Navarro-Urrios D., Gomis-Bresco J., Alzina F., Capuj N.E.,
García P.D., Colombano M.F., Chavez-Angel E.,
Sotomayor-Torres C.M.. Self-sustained coherent phonon
generation in optomechanical cavities. Journal of Optics
(United Kingdom), (2016). 18. 094006: - .
10.1088/2040-8978/18/9/094006.

Available at:
https://dx.doi.org/10.1088/2040-8978/18/9/094006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/231955725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Self-sustained coherent phonon generation in optomechanical cavities 

D. Navarro-Urrios1, J. Gomis-Bresco1,2, F. Alzina1, N. E. Capuj3, P. D. García1, M. F. Colombano1, 

E. Chavez-Angel1,4, C. M. Sotomayor-Torres1,5 

1  Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona 

Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain 

2 ICFO-Institut de Ciencies Fotoniques and Universitat Politécnica de Catalunya, 

Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain 

3 Depto. Física. Universidad de la Laguna. 38206. Spain 

4 Institute of Physics, University of Mainz, Staudinger Weg 7, 55128 Mainz, Germany 

5 Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, 

Spain 

Abstract 

Optical forces can set tiny objects in states of mechanical self-sustained oscillation, 

spontaneously generating periodic signals by extracting power from steady sources. 

Miniaturized self-sustained coherent phonon sources are interesting for applications such as 

mass-force sensing, intra-chip metrology and intra-chip time-keeping among others.  In this 

paper, we review several mechanisms and techniques that can drive a mechanical mode into 

the lasing regime by exploiting the radiation pressure force in optomechanical cavities, namely 

stimulated emission, dynamical back-action, forward stimulated Brillouin scattering and self-

pulsing.  

Introduction 

Phonon or mechanical lasing can be defined as a regime in which the mechanical oscillations 

are self-sustained, monochromatic, coherent and of high-amplitude [1]. Just as for 

conventional lasers, phonon lasers display a power threshold above which the passive 

mechanical losses are compensated and the overall damping rate becomes negative. 

Oscillations thus grow exponentially until a steady-state regime is reached when non-linear 

losses compensate gain. Above the threshold, the mechanical signal displays linewidth 

narrowing that could be described by a Schawlow-Townes-type limit [2]. Contrary to 

conventional lasers, mechanical gain does not have to originate necessarily from a stimulated 

emission mechanism. In this work we present several strategies for achieving this regime in 

optomechanical (OM) cavities using the radiation pressure as the driving force of the motion. 



 

 

In the phonon lasing regime, the micro/nano-mechanical resonator can be used as an 

integrated photonic clock or a reference oscillator [3]. The latter could eventually become part 

of a network of oscillators to spread a common clock signal by exploiting synchronization 

among several oscillators [4]. Indeed, there are already experimental evidences of 

synchronization of two OM phonon lasers in the classical regime, using optically coupled 

microdisks [5], as well as in an optical racetrack cavity integrated with two mechanical 

oscillators [6]. More recently, a larger array of up to seven optically coupled microdisks were 

used to demonstrate phase noise reduction due to synchronization [7]. However, a note of 

caution has been sounded regarding the previous systems [8] as they rely on strong optical 

coupling, thus being unclear the difference between synchronization of individual oscillators 

and the excitation of a single coupled mode. Further applications of phonon lasers can be also 

found in mass sensing, since at room temperatures (RT) and/or in fluidic environments, 

micro/nano-mechanical resonators suffer from very low quality factors and the devices must 

be driven to reduce frequency noise. 

High-amplitude coherent phonon signals have been generated by introducing an external 

positive feedback, in a manner akin to that reported in Ref. [9] for electromechanical systems 

or directly phase-modulating the input laser light resonantly with a mechanical mode [10]. 

However, in the latter case, the resonator is treated as a passive one, characterized by a 

damped response to impulsive stimuli. Here we focus on active resonators, i.e., those in which 

the self-sustained regime is spontaneously activated by extracting energy from continuous 

wave laser sources. 

The manuscript is divided in five sections: the first four review different pumping schemes that 

have been used to reach the phonon lasing regime while the last section addresses passive 

mechanical loss channels of different OM cavity setups. Regarding the first sections, we start 

with a lasing mechanism that rely on population inversion among different optical energy 

levels. The second section deals with, probably, the most common pumping mechanism for 

phonon lasing, namely dynamical back-action. Stimulated forward Brillouin scattering in 

circular microresonators is discussed in the third section. The fourth section is focused on self-

pulsing limit cycles, which are spontaneous dynamical processes that modulate the intracavity 

radiation pressure force. In addition to a literature review, we further analyze two of the 

mechanisms discussed in the manuscript, namely dynamical back-action and self-pulsing, in 

terms of results obtained in the very same OM photonic crystal. 



 

 

Within the wide set of OM cavity setups, along the manuscript we pay special attention to 

circular microresonators and OM photonic crystal cavities. The former were the pioneer setups 

demonstrating phonon lasing action with the first three mechanisms discussed in this review 

while the latter have the advantage of being chip-integrated in a way that allow the 

straightforward connection to phononic waveguides or membranes for out-coupling the 

phonon lasing signal [10].  

Phonon analog of a conventional laser  

In a conventional laser, stimulated emission occurs from upper to lower energy states of atoms 

and ions. The first mechanical analogue to the optical laser was demonstrated on a single 

magnesium ion, held in a linear radio-frequency trap and irradiated by two laser beams tuned 

below (red detuned) and above (blue detuned) an atomic resonance, respectively. For 

appropriate settings of laser detunings and intensities, regenerative oscillations with a stable 

amplitude start from noise [11].  

Inspired by the works done on trapped ions, the phonon analog of a two-level laser system 

using OM cavities was demonstrated by Grudinin et al. [12] based on a compound microcavity 

system coupled to a radio-frequency mechanical mode. The main idea lies in optically coupling 

a pair of nominally equivalent OM cavities in a way that symmetric and antisymmetric optical 

supermodes are created out of the degenerate modes of the isolated cavities. Due to 

unavoidable accuracy limitations in the fabrication stage, identical cavities are difficult to 

realize and the optical resonances of the individual cavities become slightly detuned from each 

other. This is generally solved by heating one of them with an out-of-plane laser, thus 

increasing its refractive index thanks to thermo-optic (TO) effects. With this method it is 

possible to control the coupling strength between both cavities, enabling the fine tuning of the 

frequency difference of the two optical supermodes until it is resonant with a mechanical 

eigenfrequency (m) of either one of the cavities. Population inversion is achieved by 

resonantly exciting the upper optical level with another laser, from where the system relaxes 

down to the lower optical level by emitting a resonant phonon (Fig. 1). Population inversion 

produces mechanical gain, causing phonon laser action above a pump power threshold, which 

in the case of Ref. [12] was a few W.  

This kind of systems features a continuously tunable gain spectrum to amplify selectively 

mechanical modes from radio frequency to microwave rates. In a Brillouin scattering picture, 

the system accesses a regime in which the phonon plays the role of the Stokes wave. For this 



 

 

reason, it should also be possible to switch in a controlled way between phonon and photon 

laser regimes.  

 

Fig. 1. Two-level phonon laser energy level diagram including schematics of the photonic 

symmetric (w+) and antisymmetric (w-) modes. The phonon frequency is denoted by m. 

As stated in the introduction, a similar scheme of optically coupled cavities has been recently 

realized to activate the mechanical lasing regime in up to seven coupled microdisks that 

synchronize their oscillations [5,7]. However, in those works, the OM cavities are driven by 

blue-detuned continuous wave lasers, i.e., the energy of the laser photons is higher than that 

of the cavity resonance. Therefore, the self-sustained mechanical oscillations are generated via 

the dynamical back-action between optical and mechanical modes, which is discussed in the 

following section. 

It is worth to mention here that a direct analog to an optical laser based on a three-level 

system has been demonstrated recently on an electromechanical system [13]. The device 

relies on a purely mechanical architecture, where three phononic states are involved in 

addition to the phonon thermal bath, which act as the first level. The energy difference 

between the two higher energy modes is resonant with a lower energy mode, which is the one 

displaying the phonon lasing features. 

Dynamical back-action 

One of the basic consequences of the OM interaction in OM cavities is dynamical back-action, 

which is a result of the retarded response of the radiation pressure force to mechanical 

deformation. The mechanism can also be understood in terms of a scattering process, where 

Stokes and anti-Stokes sidebands appear as a consequence of the OM interaction. If the laser 

is detuned with respect to the cavity resonance by an amount equal to in frequency units, 

one can obtain an asymmetric spectrum to allow a net energy transfer from light to the 

mechanical mode or vice versa. In order to achieve effective mechanical amplification or 

cooling, the cavity needs to be within the sideband-resolved regime (m> being the overall 



 

 

radiative damping rate) and the laser has to be blue-detuned (heating) or red-detuned 

(cooling), respectively. The general expression for the OM damping rate (OM) under the 

linear approximation of a strong coherent laser driving tonecan be derived from the Langevin 

equations associated to the OM Hamiltonian [1]: 

   

2

2 22 2

4 4

OM m o,OM o

m m

( ) g n
 

 

 
    

       

 ,      (1) 

, where go,OM is the single-particle OM coupling rate, and no is the number of intracavity 

photons. In Fig. 2 we have plotted OM according to Eq. 1 as a function of the normalized 

detuning (/m) and the normalized mechanical frequency (m/ The overall mechanical 

damping rate (m) is given by the accumulation of the intrinsic damping rate (m,i) and OM, 

i.e., m=m,i+OM.  Hence, it is possible to achieve phonon lasing, i.e., compensation of the 

intrinsic mechanical losses (m=0), only when m,i=-OM. Inspecting Eq. 1, it is clear that the 

latter condition is fulfilled more easily at =m. In particular, for systems well within the 

sideband-resolved regime (m>>the contribution of the first term of Eq. 1 can be neglected 

and phonon lasing is achieved if the field-enhanced cooperativity, defined as
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is equal to unity [14]. Phonon lasing by means of dynamical back-action was first reported 

using microtoroidal cavities [15], demonstrating that in a blue-detuned finite spectral range 

the linewidth of the mechanical resonance vanished, i.e., a feature of lasing action. Since then, 

the regime of mechanical lasing has been achieved on a large variety of OM systems such as 

OM crystals [16], microwave circuits [17], micromirrors [18] or nanostrings [19] among others. 

https://www.researchgate.net/publication/41483301_Cavity_optomechanics_in_photonic_and_phononic_crystals_engineering_the_interaction_of_light_and_sound_at_the_nanoscale?el=1_x_8&enrichId=rgreq-d83eb180017d00d14c2824f24a194e3e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjI3NTc0ODtBUzozOTY0NjkyMjA3MjQ3MzZAMTQ3MTUzNzAzNjMwNg==


 

 

 

Fig. 2. OM damping rate as a function of normalized detuning and normalized mechanical 

frequency for a fixed number of intracavity photons and a given OM coupling rate.  Red and 

blue colors denote negative and positive values, respectively). 

The dynamical back-action mechanism in a blue-detuned pumping scheme can also be 

exploited for achieving other functionalities. One example is the amplification of a probe 

microwave signal in an on-chip microwave cavity parametrically interacting with a 

micromechanical resonator operating close to the quantum limit [17].  In this proof-of-

principle device the pump power controls the gain for the input signal via the tailoring of the 

effective mechanical damping rate and is kept below the mechanical lasing threshold to avoid 

instabilities of the coupled system. Another example is the “anomalous cooling” of competing 

mechanical modes in a multimode mechanical resonators [20]. Indeed, just as in a photon 

laser, a phonon laser can exhibit mode competition. All of the modes within the gain 

bandwidth initially experience mechanical gain, and those for which the gain exceeds the 

losses start to oscillate. For sufficiently large oscillations, one of the modes prevail and the gain 

of the other modes switches sign and becomes damped. 

At large oscillation amplitudes, non-linear OM interactions start playing a role. In fact, 

theoretical predictions of a more complex, multistable attractor diagram [21] have been 

recently verified experimentally [22], giving rise, for instance, to stable self-sustained 

oscillations in a red-detuned configuration.  



 

 

In order to illustrate the requirements for achieving efficient dynamical back-action effects in 

ambient conditions of pressure and temperature, we have investigated this mechanism in one-

dimensional OM crystals fabricated using state-of-the-art silicon (Si) nanofabrication 

techniques [23,24]. We have studied a mechanical mode at m/2=5.5 GHz, which is sideband-

resolved (mand exhibits an experimental single-particle OM coupling rate of 

|go,OM|=1.8 MHz (|go,OM|/2=0.3 MHz) when coupled to the first optical mode supported by 

the OM cavity. It is worth noting that the latter value is only a factor of 3-4 below the state-of- 

the-art in OM crystals [25].  The input laser power was the maximum provided by our tunable 

laser, i.e., about 1.3mW. 

The mechanical quality factor (Qm,i) of that mode at RT is Qm,i=1600, which corresponds to an 

intrinsic damping rate m,i=21 MHz. On Ref. 24 we reported that, by decreasing  there is an 

associated decreasing of the damping rate measured to be  m=49 KHz at GHz (Fig. 

3). This represents a reduction of almost three orders of magnitude with respect to the 

intrinsic value and is consistent with the calculated value using Eq. 1. However, although the 

mechanical motion associated to this mode has been greatly amplified and its coherence 

increased, m,I was not totally compensated. This is in part because of the spontaneous 

activation of a self-pulsing (SP) mechanism [33], discussed in the fourth section, which 

prevented achieving the resonance condition of Eq. 1. If the resonance condition for optimum 

energy transfer had been achieved, the maximum value of OM calculated with Eq. 1 would just 

be few tens of KHz above the intrinsic value.  

 



 

 

Fig. 3. Mechanical mode at 5.5GHz optically amplified through a dynamical back-action 

process. Different curves correspond to different values of laser-cavity detuning .  

The previous case of study illustrates that m,I can be compensated by means of dynamical 

back-action mechanism only if the specific optical and mechanical modes of the eventual OM 

cavity have excellent characteristics in terms of quality factors and OM coupling rates. There 

are at least two strategies to reduce the power threshold for lasing in OM cavities: (i) 

fabricating samples with extreme levels of perfection and surface control to lower the intrinsic 

optical damping rates and (ii) lowering the operational temperature to decrease the intrinsic 

mechanical damping rate. However, both strategies impact on the degree of applicability of 

the eventual phonon source.   

When the system is within the sideband-resolved regime, only one sideband can lie inside the 

cavity linewidth. In this regime, only one phonon is exchanged between the optical field and 

the resonator. On the contrary, if the width of the cavity spectrum is much larger than the 

mechanical frequency, many sidebands can lie inside the cavity linewidth. In this unresolved 

sideband regime, more than one phonon can be excited in a blue-detuned configuration (the 

optimum detuning is a multiple fraction of the mechanical frequency). This feature was 

exploited in Ref. [34] to experimentally drive a nanomechanical resonator into a regime of 

oscillation amplitudes equivalent to more than 1012 phonons. Given that the oscillator has two 

stable configurations at rest and can be controllably cooled afterwards towards each of the 

relaxed states, it behaves as a non-volatile optical memory element [34]. However, since the 

multiphonon scattering process is a quite unlikely event, energy cost of each data operation is 

still significantly higher than for modern CMOS devices (~10 μJ compared with ~1 pJ) [35].  

We have already shown that producing high-quality optical cavities to exploit radiation 

pressure back-action is quite challenging. In spite of this, it is still possible to observe OM 

effects of retarded radiation forces in OM setups where the forces are of photothermal origin.  

In this scheme, absorption of light can heat the structure and deform it, effectively leading to 

effects equivalent to those of a force. Optical quality factors are less important here since the 

thermal relaxation time of the structure replaces the cavity photon lifetime when evaluating 

the back-action effect. Indeed, self-induced mechanical oscillations have been reported as a 

consequence of photothermal forces in different OM setups [36-38], which are not necessarily 

optical cavities. 

There are other types of dynamical back-action mechanisms in OM systems that do not require 

an optical cavity to reach the lasing regime. For instance, in ref. [39], an n-GaAs=i-GaAs bilayer 



 

 

microcantilever exhibits mechanical self-oscillations in response to carrier excitation with near-

band-gap photon energies, the OM coupling being based on the piezoelectric effect that is 

generated by photoinduced carriers.   

Forward Stimulated Brillouin Scattering 

As discussed in the previous section, dynamical back-action can be described in terms of a 

sideband-assisted scattering process in which the pump laser is blue shifted from the 

resonance. A different path for cavity optomechanics to reach the phonon lasing regime is by 

means of a forward stimulated Brillouin scattering (FSBS). Contrary to dynamical back-action, 

through FSBS the pump is scattered to only one Stokes sideband since the travelling acoustic 

resonance acts as a grating continuously moving away from the pump. This was demonstrated 

for the first time in silica microspheres of few hundreds m diameter [40]. The stimulated 

mechanical whispering gallery modes generated by this mechanism are surface acoustic waves 

of the form typically excited using metal electrodes on piezoelectric substrates.  In this case, 

however, the electrodes are virtual, and are written by light traveling with the mechanical 

mode. The FSBS process involves two optical modes whose energy differs by the acoustic 

resonance frequency. Suppression of anti-Stokes scattering is obtained by exploiting the 

aperiodic spacing between high transverse order optical modes in the resonator, i.e., the 

scattering mechanism occurs between modes having different radial and/or polar mode 

number. A similar scheme was used in a contemporary work by Savchenkov et al. [41] using 

LiTaO3 and MgF2 resonators. In that case the large magnitude of the generated acoustic waves 

resulted in nonlinear generation of mechanical frequency combs, leading to effects akin to 

those associated to the Kerr non-linearity in optics. 

Self-pulsing mechanisms 

In this section we discuss self-pulsing (SP) mechanisms in optical cavities. These are 

spontaneous processes triggered within the optical cavity that can modulate the effective 

refractive index of a localized optical mode and, in turn, the intracavity radiation pressure 

forces. In optical resonators, when several optical non-linear mechanisms contribute to the 

effective refractive index of a mode, the long-term solution is, in most of the cases, a stable 

fixed point. If the involved physical magnitudes (free carrier population, cavity temperature, 

etc.) are driven away from that point, the system settles down to equilibrium through 

exponentially damped oscillations. However, for specific values of the parameters governing 

the non-linear dynamical equations, the stable fixed point may undergo a supercritical Hopf 

bifurcation, mutating to an unstable fixed-point surrounded by a stable SP limit-cycle. In this 



 

 

case, the SP limit-cycle regime is the asymptotic solution towards which the non-linear system 

settles down.  

When a SP limit-cycle is active, the light within the cavity is modulated in a strongly 

anharmonic way, creating an "optical frequency comb" with multiple frequency peaks 

spectrally located at integers of the main SP frequency (SP). The dynamic behavior of the 

intracavity photon number is then equivalent to what could be reached by externally 

modulating the laser input [42]. Thus, this feature can be exploited to pump resonantly a 

mechanical mode of an OM cavity. Stable SP regimes operating at RT have been reported in 

optical resonators as a consequence of fast-slow mechanisms of different origins. For instance, 

Baker et al. [43] reported limit-cycles with periodicity ranging from hundreds of milliseconds to 

hundreds of seconds as a consequence of the interplay between the thermo-optic effect (fast 

mechanism) and a thermo-mechanic nonlinearity (slow mechanism) in a Si Nitride microdisk. A 

similar SP behavior caused solely by the TO nonlinearity in fused silica microspheres was also 

observed and analyzed in Ref. [44]. In Ref. [45], self-sustained gigahertz electronic oscillations 

were reported resulting from coupled electron-photon dynamics in ultrahigh-Q Si microdisk 

resonators with continuous wave pumping.  

Another type of SP limit-cycle, which is the one involved along the rest of this section, derives 

from a stable dynamic competition between Free-Carrier Dispersion (FCD) and thermo-optic 

(TO) effects [46]. In the case of FCD, the excess of free-carriers leads to a reduction of the 

material refractive index and therefore a blue-shift of the optical cavity mode [47]. On the 

other hand, the TO effect results in an increase of the refractive index of the material with 

increasing temperature [48]. Since the main source of heating is Free-Carrier Absorption (FCA), 

the dynamics of free-carrier density (N) and the temperature increase (ΔT) are linked by no. SP 

limit-cycles of a similar kind have been observed in various photonic structures, such as 

microdisks and photonic crystals [46,49-52].  

The coupling between SP limit-cycles and mechanical degrees of freedom through radiation 

pressure forces was first tackled in Ref. [33], where phonon lasing was demonstrated in a 

photonic OM crystal cavity in response to a frequency-tuneable SP limit-cycle. Indeed, as 

briefly state above, when the SP limit-cycle is active, the radiation pressure optical force (Fo) is 

modulated in the same way as the no, since they are related in a linear way, i.e.,
o OM oF g n . 

The mechanical modes of the OM system can be described as damped linear harmonic 

oscillators driven by Fo. Finally, the nonlinear resonance position has to include now the effect 

of the mechanical motion, which is just the OM coupling.  



 

 

The SP/OM-cavity non-linear system is thus an indecomposable system coupled through no. 

Much more complex trajectories than those derived from isolated SP can now arise, opening 

the way to chaotic trajectories within a basin of attraction in the phase space [53]. The most 

significant feature in the context of this review is that self-sustained mechanical oscillations 

are achieved if one of the low harmonics of the SP main peak at SP is resonant with a 

mechanical eigenstate (𝜐𝑠𝑝 = Ω𝑚/𝑀, where M ∈ ℤ). In fact, the coherence of the mechanical 

oscillation is maintained since the mechanical mode lifetime is much longer than1 𝑀𝜐𝑠𝑝⁄ .  

In the following, we focus on a flexural mode of the very same one-dimensional OM crystal 

reported in the previous section, whose characteristics are m=54 MHz, go,OM=0.3 KHz and 

m,i=700 KHz. The optical mode used in this case had a damping rate of =56 GHz. In Figure 4, 

we report the temporal behavior of the inverted transmitted signal for three different laser 

wavelengths above the threshold for SP. In those, a coherent mechanical oscillation at m is 

superimposed on a SP trace at frequencies SP=m /2, SP =m /3 and SP =m/4 (bottom, 

medium and top panel respectively), the two systems being locked both in frequency and 

phase. The sinusoidal-like oscillations correspond to the mechanical coherent oscillation while 

the strongly asymmetric peaks are mostly associated to the SP, with a smaller contribution 

from the mechanical oscillation as well. Here it becomes evident that the mechanical oscillator 

is not only pumped resonantly using the Mth harmonic of Fo, but also that the large amplitude 

of the coherent mechanical motion acts as a feedback that stabilizes and entrains the SP and 

the mechanical oscillator. Since m is much more robust than sp, the SP mechanism adapts its 

frequency to the mechanical one. When the resonant condition with the mechanical oscillation 

is not fulfilled the conventional SP limit-cycle is recovered and the mechanical states are 

populated only thermally.  



 

 

 

 Fig. 4. Dynamic behavior of the inverted transmitted optical signal for three different values of 

sp. In the three cases, the SP is frequency-entrained with the coherent mechanical oscillation 

of a flexural mode at m=54 MHz, which was activated by the anharmonic modulation of the 

intracavity radiation pressure force. The bottom, medium and top panels correspond to M=2, 

M=3 and M=4 situations. 

The SP/OM-cavity non-linear system described above must not be confused with that behind 

the observed thermo-mechanical oscillations in optical resonators [54, 55]. In those works, the 

mechanical oscillations are of much smaller frequency (up to tens of KHz) and are associated 

to the thermal expansion of the cavities, i.e., contrary to what illustrated in Fig. 4, they are not 

related to the coherent population of a specific mechanical mode of the structure. 

It is instructive to substitute the parameters corresponding to the mechanical mode studied in 

this section in Eq. 1 to estimate the maximum OM gain at RT that could be obtained by means 

of dynamical back-action. Since the system is deeply in the unresolved regime, the calculated 

damping rate is only OM=-2x103 Hz at =m. This is more than two orders of magnitude lower 

than I, the overall damping rate being thus barely modified with respect to the intrinsic value.  

On the contrary, we have demonstrated in this section that a SP pumping mechanism achieves 

phonon lasing at RT despite the modest characteristics of the pair of optical and mechanical 

modes under study. However, in spite of being more efficient, the current drawback of SP 

mechanism used in Ref. [33] with respect to dynamical back-action is found on its relatively 

low operation frequency (tens of MHz), which currently limits the frequency of the mechanical 

modes susceptible to reach the lasing regime to few hundreds of MHz.  Further speeding up of 



 

 

the SP dynamics could be reached by increasing the heat outflow and/or the free-carrier 

recombination rates. With the same goal in mind, it would also be possible to exploit faster SP 

mechanisms, such as that reported by Soltani et al. in Ref. [45].   

Mechanical damping mechanisms in OM cavities 

As previously discussed, at the power threshold for phonon lasing the optomechanically 

induced mechanical damping rate compensates the contribution of intrinsic loss mechanisms, 

where we include the passive loss channels (material, geometrical and environmental). Low 

intrinsic rates are obviously leading to low threshold, highly efficient phonon lasers. In this 

section we will briefly discuss the physical origin of the intrinsic rates in the different OM cavity 

setups discussed along the manuscript. It is worth noting before starting that gas damping 

mechanisms are dominant in many OM systems, whose contribution is proportional to the 

ratio meffm/p (meff is the effective mass of the mechanical oscillator and p is the gas pressure) 

and depend on the specific geometry. Therefore, most of the literature deals with OM systems 

embedded within a high vacuum environment.    

Concerning circular microresonators, optically levitated nanospheres provide extreme 

mechanical isolation and ultralow dissipation, which are only limited by gas-molecule collisions 

in high vacuum, potentially reaching mechanical Q-factors of 1012 [56]. In clamped circular 

microresonators, clamping losses are usually the dominating mechanism. The best values in 

this regard are those reported in silica whispering gallery mode microtoroids suspended by 

spokes [57]. Mechanical Q-factors of more than 2x104 were obtained for modes at 80 MHz at 

1K, which were dominated by two-level fluctuators. The damping rate increased by a factor of 

2 rate at room temperature, which was associated to thermo-elastic losses. In any case, for 

this optimized spoke-supported design, clamping losses were mitigated to the level of being 

negligible with respect to the other intrinsic mechanisms. 

Regarding OM crystals, the mechanical Q-factors obtained at RT are of the order of 103, both in 

a Si [26] and in a Si Nitride platform [27]. The dominant damping mechanism in the GHz range, 

even at atmospheric pressures, is likely to be scattering with thermal phonons [28], although 

thermo-elastic damping and clamping effects can also strongly contribute to losses [26]. Gas 

damping is prevailing only for the extended MHz-tens of MHz modes at atmospheric pressures. 

If clamping effects are not dominant, a valid approach to increase Qm,I is to decrease the 

temperature of the cavity. For low enough cavity temperatures (<100K in ref. [26]), either 

clamping or surface damping become the dominant loss mechanism. The former effect can be 

mitigated with a proper geometric design, namely a phononic shield [25] or a unitary cell 



 

 

displaying a full phononic gap [23]. On the other hand, surface damping losses can be greatly 

reduced with proper surface treatments [26], which can be also beneficial for improving the 

optical Q-factor at low temperatures. In fact, it has been elucidated that key elements in 

determining the role of surface scattering are the atomic scale surface morphology and its 

chemical nature [29]. However, in view of producing a practical source, RT operation is 

desirable. In order to deal with the phonon-phonon scattering contribution, a challenging 

strategy would be to modify the lifetime of the thermal phonons by tailoring the thermal 

properties of the devices [28]. Thermoelastic losses could be addressed by using alternative 

materials, such as diamond, which is stiffer than Si. Nevertheless, the few works present in 

literature concerning diamond-based OM devices report values of Qm,I hardly above 104 at RT 

[30-32]. 

Especially remarkable results in what concerns RT operation are those recently obtained on 

high-stress Si nitride membranes [58], where mechanical Q-factors of 108 were measured 

under high vacuum conditions for fundamental modes above 100 kHz. Indeed, those 

specifications would even enable reaching ground state OM cooling from RT and hence, 

opening the way of performing experiments in the quantum regime without passively cooling 

the system 

Conclusions and outlook 

In this work we have reviewed several mechanisms that can drive OM cavities into a phonon 

lasing regime. Those can be versatile sources of coherent acoustic waves over a wide range of 

frequencies that promise applications in imaging, nondestructive evaluation, and medicine, as 

well as in other yet unexplored fields.  

Conventional sources of sound waves, such as piezoelectric transducers, do not operate 

efficiently above few tens of gigahertz, hence chip-integrated phonon lasers able to reach 

those frequencies would be of great interest to the scientific community. In this sense, within 

the variety of OM cavities, we believe that OM crystals are the most promising platforms, 

given that the extraction of the eventual coherent signal is straightforward. Moreover, the 

continuous improvement of nanofabrication techniques reduce the minimum sizes achievable 

on a chip, enabling the up-scaling of the available frequencies. Indeed, state of the art Si-based 

phononic crystals already allows tailoring phononic bands up to the tens of gigahertz, where 

phonons are less sensitive to thermal decoherence.   
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