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Abstract. Finite element method is probably the most popular numerical method used in different fields of applications nowadays.
While approximation properties of the classical finite element method, as well as its various modifications, are well understood,
stability of the method is still a crucial problem in practice. Therefore, alternative approaches based not on an approximation of
continuous differential equations, but working directly with discrete structures associated with these equations, have gained an
increasing interest in recent years. Finite element exterior calculus is one of such approaches. The finite element exterior calculus
utilises tools of algebraic topology, such as de Rham cohomology and Hodge theory, to address the stability of the continuous
problem. By its construction, the finite element exterior calculus is limited to triangulation based on simplicial complexes. However,
practical applications often require triangulations containing elements of more general shapes. Therefore, it is necessary to extend
the finite element exterior calculus to overcome the restriction to simplicial complexes. In this paper, the script geometry, a recently
introduced new kind of discrete geometry and calculus, is used as a basis for the further extension of the finite element exterior
calculus.

INTRODUCTION

The Finite Element Method (FEM) is probably the most popular numerical method used nowadays. The reason for
such a popularity comes from several facts: (i) possibility to work with realistic geometries; (ii) flexibility to adopt
the method to a specific problem by choosing an appropriate mesh and a desired regularity; (iii) a well-established
mathematical basis for the classical version FEM, see [1]. The solution procedure with the FEM starts with the weak
or variational formulation of a given boundary value problem, then a discretised problem is constructed by using a
projection onto a finite-dimensional subspace. The finite-dimensional subspace is typically constructed based on the
triangulation established over domain with the specific aim to obtain basis functions with smallest possible supports.

As most of approximation methods, the FEM approximates the continuous boundary value problem leading to
the necessity of proving not only approximation quality by the FEM, but the stability of discretised problem as well.
To overcome the stability issues, alternative approaches based on a direct work with discrete structures have become
popular in recent years. By working on the discrete level, all important physical quantities, e.g. conservation laws,
are satisfied directly on the discrete level. For example, methods based on finite differences, such as discrete potential
theory [2], discrete function theory [3], theory of discrete analytic functions [4], and discrete Clifford analysis [5],
have been the main object of interest for a long time. However, a discrete formulation of the FEM has been introduced
quite recently with the development of the finite element exterior calculus.

Finite element exterior calculus has been introduced recently in works [6, 7]. The main idea of the finite element
exterior calculus is to utilise tools of algebraic topology, particularly de Rham cohomology and Hodge theory. Using
the simplicial complexes as starting point, differential forms are utilised to formulate the continuous problem on the
discrete level. As the result, the well-posedness of the discrete problem can be easily proved.

Despite of obvious advantages of the finite element exterior calculus, it still has some limitations coming from
its restriction to simplicial complexes. Particularly, elements of more general shapes are often required in practical
engineering applications, especially in the applications where a high accuracy of approximation of the geometry is
needed, e.g. applications in aerospace engineering. To allow elements of more general shapes, the classical FEM has
been extended in recent years, and so called, isogeometric analysis has been introduced [8]. Additionally, elements
with curved boundaries appear in the case of a continuous coupling between the FEM and the analytical solution based
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on function-theoretic methods, see for example works [9, 10]. The need for curved-side elements arise naturally in
this case, since function-theoretic methods allow to construct explicit solutions only for problems given in canonical
domains, such as disks in 2d and balls in 3d. Thus, further development of the finite element exterior calculus requires
its extension to more general types of triangulations.

The objective of this paper is to present first steps in the extension of the finite element exterior calculus. Fol-
lowing the classical theory of FEM [1], at first it is necessary to introduce a more general geometrical setting than
simplicial complexes. For this we are going to use ideas from a new kind of discrete geometry and calculus called
script geometry, see [11].

BASICS OF SCRIPT GEOMETRY

Following [11], we recall in this section the basic notions of the script geometry, while all of necessary results related
to the finite element exterior calculus will be introduced directly on the way of its extension to tight scripts in Section
3. We start with the notion of a script:

Definition 1 A script is a collection S := {S−1,S0,S1, . . . ,Sk, . . . ,Sm} of sets Sk, the elements of which are
called k-cells. In particular,

S−1 := {∞} , S0 :=
{
p1, . . . , p j, . . . , pn0

}
, S1 :=

{
l1, . . . , l j, . . . , ln1

}
,

S2 :=
{
v1, . . . , v j, . . . , vn2

}
, Sk :=

{
ck

1
, . . . , ck

j, . . . , c
k
nk

}
.

Traditionally 0, 1 and 2-cells are called points, lines and planes, respectively.

Definition 2 A linear combination over Z of k-cells is called a k-chain:

Ck :=
∑

j

λ jck
j, λ j ∈ Z,

and we denote the module of k-chain by Ck. The boundary map ∂ from Sk into Ck−1, the module of (k − 1)-chains, is
defined by:

∂ck
j :=
∑

s

λk,s
j ck−1

s ,

which naturally extends to the module Ck, and it is subject to ∂2 = 0.

Definition 3 A k-chain Ck for which ∂Ck = 0, it is generally called a k-cycle. A k-chain

Ck =
∑

j

λk
jc

k
j

for which λk
j = ±1 is called an oriented surface, or simply a surface. A surface Ck for which ∂Ck = 0 is a closed

surface.

Definition 4 A script S for which every cell boundary ∂ck
j is a closed surface is called a geoscript.

Definition 5 A closed surface Ck is called tight if and only if for every closed surface C
′
k with supp C

′
k ⊂ supp Ck,

it follows that C
′
k = ±Ck, i.e. Ck is the only closed surface, up to sign, with support inside supp Ck.

Definition 6 A geomap G:S→ S′ between two tight geoscriptsS andS
′
is a collection of linear maps gk:Sk →

S
′
k with the following two properties:

(i) the image of every k-surface Ck ∈ Sk is a k-surface C
′
k ∈ S

′
k, e.g. on a k-cell ck

k we have:

gk(ck
j) =
∑
μk,s

j c
′k
s , μk,s

j ∈ {−1, 1} .
(ii) for each k, the natural extension of gk to a set of k-chains fulfills the relation ∂gk(Ck) = gk−1(∂Ck)

Moreover, gk is called tight if it maps tight surfaces to tight surfaces.
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FINITE ELEMENT METHOD WITH SCRIPTS

Since our goal is to extend the finite element exterior calculus to script geometry, it is necessary to start from very
basics of the finite element method. Thus, following [1] we start with a general description of a finite element space.
Let us consider a domain Ω ⊂ Rn. Moreover, we assume that a mesh of tight scripts Fh is established over the set
Ω̄, i.e. the set Ω̄ is subdivided into a finite number of tight scripts K, called finite elements, in such a way that the
following properties are satisfied:

(i) Ω̄ = ∪
K∈Fh

K, where each K ∈ Fh is a tight script.

(ii) Finite elements are not intersecting, and any face of a finite element K1 is either a face of another finite element
K2, in which case the finite elements K1 and K2 are said to be adjacent, or a portion of the boundary Γ of the
set Ω.

(iii) For each K ∈ Fh the boundary ∂K is a closed surface.

Additionally, we denote now by S0(K) and Sd(K) the 0-cells and n-cells of a specific element K, respectively, i.e.
the set of vertices and the set of faces of dimension d. Moreover, we also define S(Fh) := ∪0≤d≤nSd(K), the set of all
faces in the mesh of tight scripts Fh.

We would like to make an important remark: in contrast to the finite element exterior calculus [6, 7], where
only elements of a polyhedral shape are allowed, we consider here the finite elements of a more general shape: any
shape allowed by a tight script, i.e. any shape allowed by definitions in Section 2. Moreover, by the construction, the
elements are not required to be convex, and the only restriction is the absence of self-intersecting shapes, which is
controlled by the restriction to tight scripts.

Establishing of a finite element scheme based on tight scripts requires the notion of the coderivative δ: Xk(Ω)→
Xk−1(Ω), which is defined as follows

�δω := (−1)kd � ω, ω ∈ Xk(Ω),

where� is the Hodge star operator [6]. By application of the Stokes theorem, it is possible to show that the coderivative
operator δ is a formally adjoint of the exterior derivative operator d, i.e. d = δ∗. Now, we can introduce the following
Hilbert spaces:

H∗Xk :=
{
u ∈ L2Xk | δu ∈ L2Xk+1

}
,

and its dual
HXk :=

{
u ∈ L2Xk | du ∈ L2Xk+1

}
,

where L2Xk and L2Xk+1 are spaces of differential k- and (k + 1)-forms on tight scripts with L2 coefficients. These
spaces are related by a well-known relation H∗Xk = �HXk−n. Considering that d = dk is the exterior derivative
operator taking differential k-forms to differential (k + 1)-forms, and all the dk form the L2 de Rham complex

0 −→ HX0 d0

−→ HX1 d1

−→ · · · dn−1

−→ HXn,

as in the finite element exterior calculus case. The dual complex can be written similarly, and essentially contains the
same information. Now, we define a finite element space Xh, which is a finite-dimensional space of differential forms
with L2 coefficients. To characterise the finite element space we have to specify local spaces (spaces over specific
finite elements) and degrees of freedom:

1. Let vh be a set of all functions belonging to the space Xh, then we define the local spaces PK of the functions
(shape functions) over the finite elements K ∈ Fh by the restrictions PK =

{
vh|K : vh ∈ Xh

}
.

2. Let Σ denote the finite set of linearly independent continuous linear functionals Xh → R, called degrees of
freedom, which unisolvent in the sense of P.G. Ciarlet [1], and such that each degree of freedom is associated
to a specific n-cell of s ∈ S(Fh). Moreover, the degrees of freed of two adjacent finite elements K1 and K2 are
in a specific 1-to-1 correspondence.

The notion of affine-equivalent sets plays a crucial role in the finite element method, particularly for the error
analysis. Therefore, it is necessary to introduce a similar notion for the finite element method with script geometry.
Particularly, we extend the definition of a geomap presented in [11] as follows:

Definition 7 Two finite elements K̂ and K, with the corresponding local finite element spaces P̂, P, and the asso-
ciated degrees of freedom Σ̂, Σ, are said to be geomap-equivalent if the following conditions hold:
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(i) the geomap G:S(K̂) → S(K) is an isomorphism between the tight scripts of these elements, i.e. S(K̂) and
S(K);

(ii) K = G(K̂);
(iii) P =

{
p: K → R; p = p̂ ·G−1, p̂ ∈ P̂

}
;

(iv) Σ = G(Σ̂),

where the action of the geomap G on degrees of freedom implies the action on the corresponding cells of the finite
elements.

SUMMARY AND OUTLOOK

In this short paper we have presented first steps in the extension of the finite element exterior calculus to the script ge-
ometry, which is a recently introduced new kind of discrete geometry and calculus. Particularly, meshes of tight scripts
allowing very general shapes of finite elements have been introduced. Moreover, the notion of geomap-equivalence for
finite elements based on tight scripts has been introduced. This equivalence notion is the basis of future work related
to error analysis of the proposed scheme. Additionally, a stable discrete variational formulation in the framework of
the finite element method with script geometry will be discussed in future.
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[6] D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applica-

tions, Acta Numerica, pp. 1-155, 2006.
[7] D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical sta-

bility, Bulletin (New Series) of the American Mathematical Society, 47(2), pp. 281-354, 2010.
[8] Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approxi-

mation, stability and error estimates for h-refined meshes, Mathematical Models and Methods in Applied
Sciences, 16(7), 2006.

[9] K. Gürlebeck, U. Kähler, D. Legatiuk, Error estimates for the coupling of analytical and numerical solutions.
Complex Analysis and Operator Theory, 11(5), pp. 1221-1240, 2017.

[10] K. Gürlebeck, D. Legatiuk, On the continuous coupling of finite elements with holomorphic basis functions.
Hypercomplex Analysis: New perspectives and applications, ISBN 978-3-319-08770-2, Birkhäuser, Basel,
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