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It is well-known that convolutional codes are linear systems when they are defined over a finite field. A fundamental
issue in the implementation of convolutional codes is to obtain a minimal state representation of the code. In comparison
to the literature on one-dimensional (1D) time-invariant convolutional codes, there exists only relatively few results on
the realization problem for the time-varying 1D convolutional codes and even fewer if the convolutional codes are two-
dimensional (2D). In this paper we consider 2D periodic convolutional codes and address the minimal state space realization
problem for this class of codes. This is, in general, a highly nontrivial problem. Here, we focus on separable Roesser models
and show that in this case it is possible to derive, under weak conditions, concrete formulas for obtaining a 2D Roesser
state space representation. Moreover, we study minimility and present necessary conditions for these representations to be
minimal. Our results immediately lead to constructive algorithms to build these representations.
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1. Introduction

Since the sixties it has been widely known that
convolutional codes and linear systems which are
defined over a finite field are mathematically identical
(Rosenthal, 2001). In the last decades there has
been a new and increased interest in this connection
and many advances have been derived from using
the system-theoretical framework when dealing
with convolutional codes. This approach has led to
broad advances in fundamental issues in the area
(Gluesing-Luerssen and Schneider, 2007; Rosenthal
and York, 1999; Rosenthal, 2001; Kuijper and
Polderman, 2004).

Multi-dimensional convolutional codes (nD convolutional
codes where n stands for the dimension) are a natural
generalization of one-dimensional (1D) convolutional
codes. Standard 1D convolutional codes deal with
the transmission and storage of data that evolve over
time. Instead, nD convolutional codes are suited for
dealing with n dimensional data, e.g., pictures, storage
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media, etc. (see (Basu and Swamy, 2002)). However,
while the 1D convolutional codes have been thoroughly
understood, little research has been done in the area
of nD convolutional codes and much more needs to
be done to make it attractive for applications. The
literature about nD convolutional codes is limited
but some important fundamental results have been
already obtained. The algebraic theory of 2D and nD
convolutional codes has been laid out by Fornasini
and Valcher in (Valcher and Fornasini, 1994; Fornasini
and Valcher, 1998; Fornasini and Valcher, 1994),
Gluesing-Luerssen et al. (Gluesing-Luersen et al., 2000),
Lobo et al. (Lobo et al., 2012) and Weiner (Weiner, 1998),
see also the references therein. They introduced the
general theory for the study of nD convolutional
codes constituted by sequences indexed on Zn or Nn,
and discussed issues such as the characterization of such
codes in terms of their internal properties and input-output
representations. A fundamental issue that arises in this
context is the so-called minimal realization problem: how
to derive a state-space representation of the code with the
minimal dimension (properly defined below), see (Napp
et al., 2010; Fornasini and Pinto, 2004; Jangisarakul
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and Charoenlarpnopparut, 2011; Charoenlarpnopparut
and Bose, 2001). This representation is essential as
it represents a blueprint for an actual physical device,
typically built from shift registers. These representations
are also of paramount importance for deriving efficient
decoding algorithms using trellis diagrams, e.g., the
Viterbi decoding algorithm.

The minimal state space realization problem play
a particularly important role in the analysis and
design of multi-dimensional convolutional codes
because of the large amount of data involved.
However, the general problem of minimal state
space realization of multidimensional systems has
not been solved even for 2-dimensional systems.
Nevertheless, for some special cases minimal state
space realization methods have been derived, see
(Zerz, 2000; Pinho et al., 2014; Pinho, 2016; Napp
et al., 2010; Galkowski, 1996; Galkowski, 2001) and the
references therein.

The state space formulation of convolutional codes
can easily be extended to the time-varying case. The
system matrices describing the convolutional code are
typically considered to be constant over time. However,
one can also consider time-varying linear systems in
which the matrices representing the code also depend on
time. The idea of considering 1D time-varying, and in
particular, periodically time-varying convolutional codes,
has attracted considerable attention of many researchers.
After Costello conjectured in (Costello, 1974) that
time-varying convolutional codes can achieve better
properties than the time-invariant ones, many researchers
have investigated such codes. The research in this area
has focused on finding concrete encoders that yield
1D periodic convolutional codes with good distance
properties (Mooser, 1983; Palazzo, 1993; Felstrom
and Zigangirov, 1999; Guardia, 2018) and on
state space representations of time-varying systems
(Napp et al., 2018; Climent et al., 2009; Aleixo
et al., 2011; Kuijper and Willems, 1997).

In this paper we continue this thread of research by
considering periodic 2D convolutional codes and the
corresponding minimal state space realization problem.
Although some results have been obtained in the
context of time-invariant 2D convolutional codes (Pinho
et al., 2014; Fornasini et al., 2015) and 1D periodic
convolutional codes (Climent et al., 2009), this problem
remains unexplored in the context of periodic 2D
convolutional codes. Here we aim at deriving state
Roesser 2D state space representations (Aleixo and
Rocha, 2017; Kaczorek, 2001) from a (2,2)-periodic
two-dimensional generator matrix. This is, in general,
a highly nontrivial problem and one needs to assume

additional conditions to be able to build minimal state
space representations. In this work we study the case
of separable (2,2)-periodic two-dimensional generator
matrices, i.e., the encoders G(z1, z2) that can be
decomposed as G(z1, z2) = V (z2)H(z1), where V (z2)
and H(z1) are polynomial matrices with periodically
time-varying coefficients of period 2. More concretely,
both V (z2) and H(z1) are constructed based on two
alternating invariant encoders V0(z2) and V1(z2), and
H0(z1) and H1(z1), respectively. We first show that
one cannot expect to obtain a realization of the periodic
2D convolutional code by realizing independently the
time-invariant encoders on which V (z2) and H(z1) are
based. However, we provide certain conditions that
allow to obtain a minimal state Roesser 2D state space
representation. Moreover, our results are constructive
in the sense that we provide explicit formulas for the
realization and a concrete methodology for obtaining such
representations.

2. Prelimiaries
2.1. Time-invariant convolutional codes. Let F be a
finite field and let F[z] be the polynomial ring. In a module
theoretic point of view, we define a convolutional code as
follows.

Definition 1. Let F be a finite field and n, k be positive
integers with k < n. A time-invariant convolutional code
C of rate k/n is a submodule Fn[z] described as

C = {w(z) ∈ Fn[z] : w(z) = G(z)u(z), u(z) ∈ Fk[z]}

where G(z) ∈ Fn×k[z] is a full column rank n × k
polynomial matrix over F, called the encoder, u(z) taking
values in Fk[z] is the information vector and w(z) is the
codeword.
The encoders of a code C are not unique; however they
only differ by right multiplication by unimodular matrices
over F[z]. An encoder G(z) is called column reduced if
the sum of its column degrees attains the minimal possible
value among all the encoders of the same code. If G(z) ∈
Fn×k[z] has column degrees ν1, . . . , νk, it can be written
as

G(z) = Ghc

 zν1 zν2 . . .
zνk

+Grem(z)

whereGrem(z) is a polynomial matrix such that the degree
of column i is less than νi, i = 1, . . . , k, and Ghc ∈ Fn×k
is a matrix whose i-th column contains the coefficients of
zνi in the i-th column of G(z). Ghc is called the leading
column coefficient matrix and G(z) is column reduced if
and only if Ghc is full column rank.

We define the degree δ of a convolutional code as the sum
of the column degrees of one, and hence any, column
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reduced encoder. Note that the list of column degrees
(also known as Forney indices) of a column reduced
encoder is unique up to a permutation. A code C of rate
k/n and degree δ is said to be an (n, k, δ) code.

2.2. Periodically time-varying 1D convolutional
codes. In this section we consider 1D convolutional
codes C with 2-periodic encoders. The definition of such
encoders (or encoding maps) is introduced next together
with the definition of the corresponding 2-periodic
(time-varying) convolutional codes, see (Costello, 1974;
Palazzo, 1993).

Definition 2. Given two polynomial matrices G0(z),
G1(z) ∈ Fn×k[z], the periodic encoding map induced by
G0 and G1 is defined as

ΦG0,G1 : Fk[z] −→ Fn[z]
u(z) 7−→ w(z)

where w(z) =

+∞∑
i=0

wiz
i and w2`+t =

(
Gt(z)u(z)

)
2`+t

,

t= 0, 1, ` ∈ N0, and, moreover,
(
Gt(z)u(z)

)
2`+t

repre-
sents the (2`+t)-coefficient of the polynomialGt(z)u(z).

The corresponding periodic convolutional code Cp is

Cp = {w(z) ∈ Fn[z] : w(z) = ΦG0,G1(u(z)),
u(z) ∈ Fk[z]}. (1)

Such codes will be called 2-periodic convolutional codes.

2.3. State-space realizations. In systems theory,
input-state-output models are mainly used to describe
the time evolution of the system signals, which, in
the discrete-time case, are time sequences. Therefore,
in the sequel, we sometimes identify an element
a(z) =

∑N
i=0 aiz

i ∈ F[z] with the finite support sequence
a0 = (a(z))0, a1 = (a(z))1, . . . , aN = (a(z))N formed
by its coefficients, and also use the notation a(`) to
denote a` = (a(z))`. The same applies for vectors with
components in F[z].

A state-space system{
x(`+ 1) = Ax(`) +Bu(`)

w(`) = Cx(`) +Du(`)
, ` ∈ N0,

denoted by (A,B,C,D), where A ∈ Fδ×δ, B ∈
Fδ×k, C ∈ Fn×δ and D ∈ Fn×k, is said to be a
state-space realization of the time-invariant (n, k, δ)
convolutional code C if C is the set of codewords
w(z) ∈ Fn[z] identified with the finite support output
sequences w corresponding to finite support input

sequences u (i.e., to information sequences u(z) ∈ Fk[z])
and zero initial conditions, i.e., x(0) = 0.

If G(z) ∈ Fn×k[z] is an encoder of C, (A,B,C,D) is a
state-space realization of G(z) if

G(z) = C(I −Az)−1Bz +D.

If G(z) =
∑
i∈NGiz

i, with Gi ∈ Fn×k, then

G0 = D, Gi = CAi−1B, i ≥ 1. (2)

Note thatG(z) admits many realizations. It is well-known
that a state-space realization (A,B,C,D) of G(z) is
minimal, i.e., has minimal dimension among all the
realizations of G(z), if (A,B) is controllable and
(A,C) is observable, i.e., the polynomial matrices[
z−1I −A | B

]
and

[
z−1I −A

C

]
have, respectively,

right and left polynomial inverses (in z−1). The minimal
dimension of a state-space realization of G(z) is called
the McMillan degree (Kailath, 1980) of G(z) and it is
represented as µ(G).
The next proposition, adapted from (Fornasini and Pinto,
2004; Gluesing-Luerssen and Schneider, 2007), provides
a state-space realization for a given (not necessarily
column reduced) encoder. Moreover, it states that
state-space realizations of a code can be obtained from
minimal realizations of column reduced encoders.

Proposition 1. Let G(z) ∈ Fn×k[z] be a polynomial
matrix with rank k and column degrees ν1, . . . , νk. Con-
sider δ̄ =

∑k
i=1 νi. Let G(z) have columns gi(z) =∑νi

`=0 g`,iz
`, i = 1, . . . , k where g`,i ∈ Fn. For i =

1, . . . , k define the matrices

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Fνi×νi , Bi =


1
0
...
0

 ∈ Fνi ,

Ci =
[
g1,i · · · gνi,i

]
∈ Fn×νi .

Then a state-space realization of G is given by the matrix
quadruple (A,B,C,D) ∈ Fδ̄×δ̄ × Fδ̄×k × Fn×δ̄ × Fn×k
where

A =

A1
. . .

Ak

 , B =

B1
. . .

Bk

 ,

C =
[
C1 · · · Ck

]
, D =

[
g0,1 · · · g0,k

]
= G(0).

In the case where νi = 0, the ith block of A and C are
void and in B a zero column occurs.

In this realization (A,B) is controllable and if G(z) is a
column reduced encoder, (A,C) is observable and there-
fore the realization of G(z) is minimal. Thus, the McMil-
lan degree of a column reduced encoder is equal to the
sum of its column degrees.
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2.4. State-space realizations of 1D periodic convolu-
tional codes.

Definition 3. Let Σi = (Ai, Bi, Ci, Di), i = 0, 1, be two
state-space systems with the same dimension. We define
a periodic state-space system Σp as{

x(`+ 1) = A(`)x(`) +B(`)u(`)

w(`) = C(`)x(`) +D(`)u(`)
, ` ∈ N0 (3)

where A(·), B(·), C(·), D(·) are periodic functions with
period 2, such that(

A(2j), B(2j), C(2j), D(2j)
)

= (A0, B0, C0, D0)

and (
A(2j + 1), B(2j + 1), C(2j + 1), D(2j + 1)

)
= (A1, B1, C1, D1), j ∈ N0.

The dimension of Σp is defined as the dimension of the
state vector x. In this case we say that Σp is obtained
from Σ0 and Σ1.
Moreover, Σp is a realization of a periodic encoding map
ΦG0,G1 if the output of Σp that corresponds to an input
u(z) is equal to ΦG0,G1(u(z)), for all u(z) ∈ Fk[z].

Let Σ0 and Σ1 be two state-space realizations (of the
same dimension) of two encoders G0(z) and G1(z). It is
possible to show that the 2-periodic system Σp obtained
from Σ0 and Σ1 is not always a state-space realization of
ΦG0,G1 .

However, in the next theorem (Napp et al., 2018) we
provide a sufficient condition for a periodic state-space
system to be a realization of a periodic encoding map.

Theorem 1. Consider two encoders G0(z) ∈ Fn×k[z]
and G1(z) ∈ Fn×k[z] with the same column degrees and
let Σi be the realizations of Gi(z), i = 0, 1 obtained by
Proposition 1. Then, the periodic state-space system Σp
obtained from Σ0 and Σ1 is a realization of the periodic
encoding map ΦG0,G1 .
When the encoders given in the previous theorem are
column reduced then the realization of the corresponding
encoding map is minimal, as stated next (Napp et al.,
2018).

Theorem 2. Let G0(z), G1(z) ∈ Fn×k[z] be two column
reduced encoders with the same column degrees and let Σi
be the realizations ofGi(z), i = 0, 1 obtained by Proposi-
tion 1. Then, the 2-periodic state-space realization of the
periodic encoding map ΦG0,G1 obtained from Σ0 and Σ1

is minimal.

3. 2D (2,2)-periodic convolutional codes
In this paper we consider 2D convolutional codes C with
(2,2)-periodic encoders. Analogously to the 1D case we
introduce the definition of periodic encoding map.

Definition 4. Given four 2D polynomial matrices
G00(z1, z2), G10(z1, z2), G01(z1, z2), G11(z1, z2) ∈
Fn×k[z1, z2], the (2,2)-periodic encoding map induced by
G00, G10, G01 and G11 is defined as

ΦG00,G10,G01,G11 : Fk[z1, z2] −→ Fn[z1, z2]
u(z1, z2) 7−→ w(z1, z2)

where w(z1, z2) =
∑

(i,j)∈N2

wi,jz
i
1z
j
2 and

w2`+i,2m+j =
(
Gij(z1, z2)u(z1, z2)

)
2`+i,2m+j

,

i, j = 0, 1, `,m ∈ N0,

and, moreover,
(
Gij(z1, z2)u(z1, z2)

)
2`+i,2m+j

represents the (2` + i, 2m + j)-coefficient of the
polynomial Gij(z1, z2)u(z1, z2).

The corresponding 2D (2,2)-periodic convolutional code
Cp is

Cp = {w(z1, z2) ∈ Fn[z1, z2] :
∃u(z1, z2) ∈ Fk[z1, z2] s.t. (4) holds}

w(z1, z2) = ΦG00,G10,G01,G11(u(z1, z2)). (4)

Such codes will be called 2D (2,2)-periodic convolutional
codes.
We consider a special class of 2D polynomial matrices
Gij(z1, z2) that can be factored as:

Gij(z1, z2) = V j(z2)Hi(z1),

where Hi(z1) ∈ Fq×k[z1] and V j(z2) ∈ Fn×q[z2] are 1D
polynomial matrices, i = 0, 1.

Therefore the previous 2D (2,2)-periodic convolutional
code Cp can be defined as

Cp = {w(z1, z2) ∈ Fn[z1, z2] :
∃u(z1, z2) ∈ Fk[z1, z2] s.t. (5) holds}

w(z1, z2) = ΦV 0H0,V 0H1,V 1H0,V 1H1(u(z1, z2)). (5)

4. 2D State space realizations
Here we focus on the state space realizations of the special
class of 2D periodic convolutional codes introduced in
the previous section by means of 2D periodic Roesser
models. In general, this is a nontrivial matter, mainly
due to the fact that a 2D periodic state space realization
cannot be obtained by independently realizing each of
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the invariant polynomial operators Gij = V jHi, (Aleixo
and Rocha, 2017). However, in this paper we show
that under certain conditions this problem does not arise,
i.e., combining independent realizations of the invariant
operators Gij does yield a 2D periodic realization of the
corresponding 2D periodic convolutional code. Before
presenting our result, we first consider the invariant 2D
case.
As in section 2.3, we sometimes identify an element

a(z1, z2) =

N1∑
i=0

N2∑
j=0

ai,jz
i
1z
j
2 ∈ F[z1, z2] with the

finite support sequence a0,0 = (a(z1, z2))0,0, a1,0 =
(a(z1, z2))1,0, . . . , aN1,N2

= (a(z1, z2))N1,N2
formed by

its coefficients, and also use the notation a(`,m) to denote
a`,m = (a(z1, z2))`,m. The same applies for vectors with
components in F[z1, z2].

4.1. The invariant 2D case. As is well-known, in the
2D invariant case, a separable Roesser model realization
for a code

C={w(z1, z2) ∈ Fn[z1, z2] :
w(z1, z2)=G(z1, z2)u(z1, z2), u(z1, z2) ∈ Fk[z1, z2]}

where
G(z1, z2) = V (z2)H(z1)

can be obtained as the series connection of the
1D state space realizations of H and V . Indeed,
if (Ah, Bh, C̃h, Dh) and (Av, B̃v, Cv, Dv) are
respectively state space realizations of H (z1)
and V (z2), then the separable Roesser model
Σ = (Ah, Av, Avh, Bh, Bv, Ch, Cv, D):


xh(i+ 1, j) =Ahxh(i, j) +Bhu(i, j)

xv(i, j + 1) =Avhxh(i, j) +Avxv(i, j) +Bvu(i, j)

w(i, j) =Chxh(i, j) + Cvxv(i, j) +Du(i, j)
(6)

with Avh = B̃vC̃h, Bv = B̃vDh, Ch = DvC̃h, and
D = DvDh, is a realization of C in the sense that
the codewords w in C coincide with the outputs of (6)
produced by the same input u with zero initial conditions,
i.e., xh(0, j) = 0 and xv(i, 0) = 0, i, j ∈ N0. Moreover,
we consider that the dimension of the horizontal and
vertical states, xh(i, j) and xv(i, j), are δh and δv ,
respectively.

In the sequel the minimality of separable Roesser models
will be studied. We start with some preliminary
definitions and results.

Definition 5. The horizontal and vertical controllability
matrices of the separable Roesser model (6) are defined,
respectively, as:

Ch=
[
Bh AhBh · · ·

(
Ah
)δh−1

Bh
]
∈ Fδh×kδh (7)

Cv=
[
Bδh AvBδh · · · (A

v)δv−1 Bδh
]
∈ Fδv×δvk(δh+1)

(8)
with Bδh =

[
Bv AvhCh

]
∈ Fδv×k(δh+1).

Definition 6. The vertical and horizontal observability
matrices of the separable Roesser model (6) are defined,
respectively, as:

Ov=
[

(Cv)> (CvAv)> · · ·
(
Cv (Av)δv−1

)> ]> ∈ Fnδv×δv

(9)

Oh=
[(
Cδv

)> (
Cδv

Ah
)> · · · (Cδv(Ah)δh−1

)>]>∈Fδhn(δv+1)×δh

(10)

with Cδv =

[
Ch

OvAvh

]
∈ Fn(δv+1)×δh .

The following proposition is well-known1.

Proposition 2.

1. The pair (Ah, Bh) is controllable if and only if
rank Ch = δh.

2. The pair (Av, Bδh) is controllable if and only if
rank Cv = δv .

3. The pair (Av, Cv) is observable if and only if
rank Ov = δv .

4. The pair (Ah, Cδv ) is observable if and only if
rank Oh = δh.

For separable Roesser models, separable controllability
and separable observability are defined as follows

Definition 7. The 2D separable Roesser model (6) is said
to be:

1. Separately locally controllable if (Ah, Bh) and
(Av, Bδh) are controllable.

2. Separately locally observable if (Av, Cv) and
(Ah, Cδv ) are observable.

In (Hinamoto, 1980), Hinamoto presented a necessary
and suficient condition for the minimality of a separable
Roesser model, that we state in the next result using the
language of codes.

Theorem 3. Let G(z1, z2) ∈ Fn×k[z1, z2] be an en-
coder of a convolutional code C. Then the separable
Roesser model Σ = (Ah, Av, Avh, Bh, Bv, Ch, Cv, D)
given by (6) is a minimal realization of the encoder
G(z1, z2) if and only if is separately locally controllable
and separately locally observable.
In the next theorem we provide a simpler characterization
for the minimality of a separable Roesser model.

1Note that previously (before stating Proposition 1) we have given an
alternative definition of controllable and observable pair.
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Theorem 4. Let G(z1, z2) ∈ Fn×k[z1, z2] be an en-
coder of a convolutional code C. Then the separable
Roesser model Σ = (Ah, Av, Avh, Bh, Bv, Ch, Cv, D)
given by (6) is a minimal realization of the encoder
G(z1, z2) if and only if the following conditions hold:

1. (Ah, Bh) and
(
Av,

[
Bv Avh

])
are controllable.

2. (Av, Cv) and
(
Ah,

[
Ch

Avh

])
are observable.

The next two auxiliary lemmas immediately prove the
previous theorem.

Lemma 1. The 2D separable Roesser model (6) is sep-
arately locally controllable if and only if (Ah, Bh) and(
Av,

[
Bv Avh

])
are controllable.

Proof. “Only if” part. By definition of separately locally
controllable we have that the matrices Ch and Cv have full
row rank. Defining the matrices

M =
[
Bv Avh

]
, Ch =

[
Iδv 0
0 Ch

]
and

Ch =

 Ch 0
. . .

0 Ch


we have that

Bδh =
[
Bv AvhCh

]
= MCh,

and, in turn,

Cv =
[
Bδh AvBδh · · · (Av)

δv−1
Bδh

]
= Cv Ch

with

Cv =
[
M AvM · · · (Av)

δv−1
M
]
.

Since Ch has full row rank, clearly both matrices
Ch and Ch also have full row rank. Moreover, by
hypothesis, Cv has full row rank which implies that
Cv must also have full row rank. This means that
(Av,M) =

(
Av,

[
Bv Avh

])
is controllable.

“If” part. Assuming the hypothesis, it suffices to prove
that the pair (Av, Bδh) is controllable, i.e., that the matrix
Cv has full row rank. Adopting the notations of the “Only
if” part, we have that

Cv = Cv Ch.

Since
(
Av,

[
Bv Avh

])
is controllable then Cv has full

row rank. Furthermore, Ch has full row rank because Ch
also has by the hypothesis of controllability of (Ah, Bh),
and the result follows. �

Lemma 2. The 2D separable Roesser model (6) is
separately locally observable if and only if (Av, Cv) and(
Ah,

[
Ch

Avh

])
are observable.

Proof. The proof is analogous to the one of the previous
lemma. �

4.2. The periodic 2D case. Analogously to the
invariant 2D case, under certain conditions, in the
2D periodic case, a periodic separable Roesser model
realization can be obtained as a series connection of two
1D periodic state space realizations of periodic operators
H2k+i ≡ Hi and V 2`+j ≡ V j , i, j = 0, 1, k, l ∈ Z.
Consider the (2,2)-periodic encoding map

ΦV 0H0,V 0H1,V 1H0,V 1H1 ,

and let further Σhi = (Ahi , B
h
i , C̃

h
i , D

h
i ) and Σvj =

(Avj , B̃
v
j , C

v
j , D

v
j ) be state space realizations of the

invariant operators Hi and V j , i, j = 0, 1, respectively.
Assume that Σh0 and Σh1 have the same state dimensions
and that the same happens for Σv0 and Σv1 . Combining
these realizations yields the following (2,2)-periodic 2D
separable Roesser state space system Σ2D

p :

[
xh(2`+ i+ 1, 2m+ j)

xv(2`+ i, 2m+ j + 1)

]
=

 Ahi 0

Avhij Avj

[xh(2`+ i, 2m+ j)

xv(2`+ i, 2m+ j)

]

+

Bhi
Bvij

u(2`+ i, 2m+ j)

w(2`+ i, 2m+ j) =
[
Chij Cvj

] [xh(2`+ i, 2m+ j)

xv(2`+ i, 2m+ j)

]
+Diju(2`+ i, 2m+ j)

(11)

with Avhij = B̃vj C̃
h
i , Bvij = B̃vjD

h
i , Chij = Dv

j C̃
h
i , and

Dij = Dv
jD

h
i .

Note that for each pair of fixed values of i and j this
periodic 2D system is an invariant separable 2D state
space system

Σ(i,j) =
(
Ahi , A

v
j , A

vh
ij , B

h
i , B

V
ij , C

h
ij , C

v
j , Dij

)
.

Similar to what happens in the 1D case, we say that Σ2D
p

is obtained from Σ(0,0), Σ(1,0), Σ(0,1) and Σ(1,1) and
write Σ2D

p =
(
Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)

)
.

As shown in the following example the 2D
(2,2)-periodic Roesser state space system Σ2D

p =(
Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)

)
is not necessarily a

realization of the (2,2)-periodic encoding map

ΦV 0H0,V 0H1,V 1H0,V 1H1 .
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Example 1. Consider the (2,2)-periodic encoding map

ΦV 0H0,V 0H1,V 1H0,V 1H1

with

H0 (z1) = H0
0 +H0

1z1 +H0
2z

2
1

=


1 + z2

1 1 0
z2

1 1 + z1 1
1 + z1 1 1

1 1 1 + z1

 ,

H1 (z1) = H1
0 +H1

1z1 +H1
2z

2
1

=


1 + z1 1 0
1 + z2

1 1 + z1 1
1 1 + z2

1 1
0 1 1

 ,

V 0 (z2) = (1 + z2) I4 and V 1 (z2) = (1 + 2z2) I4.

Realizing H0 (z1) as in Proposition 1 we obtain the
state-space realization Σh0 = (Ah0 , B

h
0 , C̃

h
0 , D

h
0 ) with

Ah0 =

[
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
Bh0 =

[
1 0 0
0 0 0
0 1 0
0 0 1

]

C̃h0 =

[
0 1 0 0
0 1 1 0
1 0 0 0
0 0 0 1

]
Dh

0 =

[
1 1 0
0 1 1
1 1 1
1 1 1

]
.

Proceeding in the same way, we obtain a state-space
realization Σh1 = (Ah1 , B

h
1 , C̃

h
1 , D

h
1 ) for H1 (z1) with

Ah1 =

[
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

]
Bh1 =

[
1 0 0
0 0 0
0 1 0
0 0 0

]

C̃h1 =

[
1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

]
Dh

1 =

[
1 1 0
1 1 1
1 1 1
0 1 1

]
.

As for V 0 (z2) and V 1 (z2), it is easily seen that they
can be realized by Σv0 = (Av0, B̃

v
0 , C

v
0 , D

v
0) and Σv1 =

(Av1, B̃
v
1 , C

v
1 , D

v
1) with

Av0 = 04, B̃
v
0 = Cv0 = Dv

0 = I4

and
Av1 = 04, B̃

v
0 = Dv

0 = I4, C
v
0 = 2I4,

where 04 denotes the 4× 4 zero matrix.

Let us consider, for every t2 ∈ N0,

u(0, t2)=

[
0
0
1

]
, u(1, t2)=

[
0
0
0

]
, u(t1, t2) = 0, t1 ≥ 2.

From (5) it follows that, for m ∈ N0, j = 0, 1,

w(1, 2m+j) =
(
V j(z2)H1(z1)u(z1, z2)

)
(1, 2m+j)

=
(
V j(z2)ū(z1, z2)

)
(1, 2m+j)

where

ū(1, 2m+ j) = H1
0u(1, 2m+ j) +H1

1u(0, 2m+ j)

=

[
1 1 0
1 1 1
1 1 1
0 1 1

] [
0
0
0

]
+

[
1 0 0
0 1 0
0 0 0
0 0 0

] [
0
0
1

]
=

[
0
0
0
0

]

thus

w(1, 2m+ j) =

[
0
0
0
0

]
,m ∈ N0, j = 0, 1

or simply

w(1, t2) =

[
0
0
0
0

]
, for t2 ∈ N0.

On the other hand, using (11), we have

w(1, 0) =
[
Ch10 Cv0

] [xh(1, 0)

xv(1, 0)

]
+D10u(1, 0)

Note that, due to the fact that the initial conditions
must be zero (according to our definition of realization),
xv(1, 0) = 0 and xh(0, 0) = 0. Moreover,

xh(1, 0) = Ah0x
h(0, 0) +Bh0u(0, 0)

=

[
1 0 0
0 0 0
0 1 0
0 0 1

] [
0
0
1

]
=

[
0
0
0
1

]
.

Hence

w(1, 0) = Ch10x
h(1, 0) = Dv

0C̃
h
1 x

h(1, 0)

= I4

[
1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

][
0
0
0
1

]
=

[
0
0
1
0

]
,

i.e., the output w of the 2D (2,2)-periodic Roesser state
space system Σ2D

p corresponding to v is different from
the trajectory w corresponding to u according to (5). �

However, in the next theorem is shown that it is possible to
obtain periodic 2D separable Roesser model realizations
for 2D periodic encoding maps (5), by independently
realizing the operators V 0, V 1, andH0,H1, provided that
V 0 and V 1 have the same column degrees and the same
happens for H0 and H1.

Theorem 5. Consider the polynomial matrices
H0 (z1) , H1 (z1) ∈ Fq×k [z1], and assume that they have
the same column degrees. Let Σhi be the realizations
of Hi (z1) , i = 0, 1, obtained by Proposition 1. Con-
sider further the polynomial matrices V 0 (z2) , V 1 (z2) ∈
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Fq×n [z2], and assume that they have the same column de-
grees. Let Σvj be the realizations of V j (z2) , j = 0, 1, ob-
tained by Proposition 1. Define the 2D periodic Roesser
separable model Σ2D

p obtained from Σhi and Σvj as in (11).
Then Σ2D

p is a state space realization of the 2D periodic
encoding map given by (5).

Proof. Note that since H0(z1) and H1(z1) have the
same column degrees it follows that the corresponding
realizations Σhi = (Ahi , B

h
i , C̃

h
i , D

h
i ), i = 0, 1, are

such that Ah0 = Ah1 and Bh0 = Bh1 . Let us consider
Ah := Ah0 = Ah1 and Bh := Bh0 = Bh1 . By the
same reason the realizations Σvj = (Avj , B̃

v
j , C

v
j , D

v
j ),

j = 0, 1, are such that Av0 = Av1 and B̃v0 = B̃v1 . Let
Av := Av0 = Av1 and B̃v := B̃v0 = B̃v1 .

Then, after simple, but cumbersome computations,
one concludes that the output w of Σ2D

p =
(Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)), with

Σ(i,j) =
(
Ah, Av, Avhij = B̃vC̃hi , B

h, Bvij = B̃vDh
i ,

Chij = Dv
j C̃

h
i , C

v
j , Dij

)
that corresponds to the input u and zero initial conditions(
xh(0, t2) = 0, xv(t1, 0) = 0

)
is such that, for `,m ∈ N0,

i, j = 0, 1,

w(2`+ i, 2m+ j) = D
v
jD

h
i v(2`+ i, 2m+ j)

+
∑
t1≥1 C

h
ij(A

h)t1−1Bhu(2`+ i− t1, 2m+ j)

+
∑
t2≥1

C
v
j (A

v
)
t2−1

B
v
ijv(2`+ i, 2m+ j − t2)

+
∑

t1,t2≥1

C
v
j (A

v
)
t2−1

A
vh
ij (A

h
)
t1−1

B
h
v(2`+ i− t1, 2m+ j − t2).

Let us now show that the codeword

w̃ =
(
V j(z2)Hi(z1)

)
u

equals w. For that, note that since Σh0 =
(Ah, Bh, C̃h0 , D

h
0 ) is a realization of H0 we have that

H0(z1) = Dh
0 +

∑
t1≥1

C̃h0 (Ah)t1−1Bhzt11 .

In the same way

H1(z1) = Dh
1 +

∑
t1≥1

C̃h1 (Ah)t1−1Bhzt11 ,

V 0(z2) = Dv
0 +

∑
t2≥1

Cv0 (Av)t2−1B̃vzt22 .

and

V 1(z2) = Dv
1 +

∑
t2≥1

Cv1 (Av)t2−1B̃vzt22 .

Thus

w̃(2`+i, 2m+j) =
∑

0 ≤ t1 ≤ 2k + i
0 ≤ t2 ≤ 2l + j

G(i, j)u(2`+i−t1, 2m+j−t2)

where G(i, j) is the coefficient of zi1z
j
2 of the polynomial

matrix in z1 and z2, V j(z2)Hi(z1). It is not difficult to
check that

V
j
(z2)H

i
(z1) = D

v
jD

h
i +

∑
t1≥1

D
v
j C̃

h
i (A

h
)
t1−1

B
h
z
t1
1

+
∑
t2≥1 C

v
j (Av)t2−1B̃vDhi z

t2
2

+
∑
t1,t2≥1 C

v
j (Av)t2−1B̃vC̃hi (Ah)t1−1Bhz

t1
1 z

t2
2 .

Taking into account that Chij = Dv
j C̃

h
i , Bvij = B̃vDh

i and
Avhij = B̃vC̃hi , this allows to conclude that w̃ = w. �

In order to study the minimality of the 2D state space
realization (11) we start by defining its lifted version.

4.3. Lifted 2D realization. Following the ideas of
(Aleixo and Rocha, 2017; Aleixo and Rocha, 2018),
consider the (2,2)-periodic 2D separable Roesser state
space system Σ2D

p given by (11) and define the lifted
versions of the horizontal and vertical states as:

Xh(`,m) =

[
xh(2`, 2m)

xh(2`, 2m+ 1)

]
and

Xv(`,m) =

[
xv(2`, 2m)

xv(2`+ 1, 2m)

]
,

respectively; define also the lifted versions of the input
and the output, respectively, as

uL(`,m) =


u(2`, 2m)

u(2`+ 1, 2m)
u(2`, 2m+ 1)

u(2`+ 1, 2m+ 1)


and

wL(`,m) =


w(2`, 2m)

w(2`+ 1, 2m)
w(2`, 2m+ 1)

w(2`+ 1, 2m+ 1)

 .
This yields the following 2D invariant separable Roesser
model

[
Xh(`+ 1,m)

Xv(`,m+ 1)

]
= P

[
Xh(`,m)

Xv(`,m)

]
+QuL(`,m)

wL(`,m) = R

[
Xh(`,m)

Xv(`,m)

]
+ SuL(`,m)

(12)
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where the matrices P,Q,R and S are constant and can be
decomposed as follows

P =

[
Ph 0

P vh P v

]
, Q =

[
Qh

Qv

]
, R =

[
Rh Rv

]
(13)

where the dimensions of the blocks are determined by the
dimensions of Xh and Xv and, moreover,

Ph =

[
Ah1A

h
0 0

0 Ah1A
h
0

]
, P v =

[
Av1A

v
0 0

0 Av1A
v
0

]
,

P vh =

[
Av1B̃

v
0 C̃

h
0 B̃v1 C̃

h
0

Av1B̃
v
0 C̃

h
1A

h
0 B̃v1 C̃

h
1A

h
0

]
(14)

Qh =

[
Ah1B

h
0 Bh1 0 0

0 0 Ah1B
h
0 Bh1

]

Qv =

[
Av1B̃

v
0D

h
0 0 B̃v1D

h
0 0

Av1B̃
v
0 C̃

h
1B

h
0 Av1B̃

v
0D

h
1 B̃v1 C̃

h
1B

h
0 B̃v1D

h
1

]
(15)

Rh=


Dv

0 C̃
h
0 0

Dv
0 C̃

h
1A

h
0 0

Cv1 B̃
v
0 C̃

h
0 Dv

1 C̃
h
0

Cv1 B̃
v
0 C̃

h
1A

h
0 Dv

1 C̃
h
1A

h
0

 , Rv=


Cv0 0

0 Cv0

Cv1A
v
0 0

0 Cv1A
v
0


(16)

S =


Dv

0D
h
0 0 0 0

Dv
0 C̃

h
1B

h
0 Dv

0D
h
1 0 0

Cv1 B̃
v
0D

h
0 0 Dv

1D
h
0 0

Cv1 B̃
v
0 C̃

h
1B

h
0 Cv1 B̃

v
0D

h
1 Dv

1 C̃
h
1B

h
0 Dv

1D
h
1


(17)

We denote this 2D invariant lifted model by
ΣL = (P,Q,R, S).

5. Minimality
Theorem 6. Let H0 (z1) , H1 (z1) ∈ Fq×k [z1] be two
column reduced encoders with the same column degrees
and V 0 (z2) , V 1 (z2) ∈ Fq×n [z2] be also two column re-
duced encoders with the same column degrees. Let further
Σhi = (Ah, Bh, C̃hi , D

h
i ) and Σvj = (Av, Bv, Cvj , D

v
j ) be,

respectively, 1D state space realizations of Hi (of dimen-
sion δh) and V j (of dimension δv), i, j = 0, 1, obtained
as in Proposition 1. Define the 2D periodic Roesser sepa-
rable model Σ2D

p obtained from Σhi and Σvj as in (11). If
the matrix

M =

[
C̃h0 Dh

0 0

C̃h1A
h C̃h1B

h Dh
1

]
has full row rank and the matrix

N =

 Dv
0 0

Cv1B
v Dv

1

AvBv Bv


has full column rank, then Σ2D

p is a minimal state
space realization of the 2D periodic encoding map
ΦV 0H0,V 0H1,V 1H0,V 1H1 given by (5).

Proof. The proof of this theorem is a direct consequence
of the next four lemmas. �

The next lemma follows immediately from the definition
of the lifted system.

Lemma 3. Σ2D
p is a minimal state space realization if

and only if ΣL is minimal.
As a consequence of the previous Lemma, to prove
Theorem 6 we just need to prove that the lifted realization
ΣL = (P,Q,R, S) given by (12) is separately locally
controllable and separately locally observable. We start
with the proof of the separate local controllability of ΣL.

Lemma 4. In the conditions of Theorem 6, the realiza-
tion ΣL = (P,Q,R, S) given by (12) is separately locally
controllable.

Proof. By Lemma 1, we just have to prove
that the matrices (Ph, Qh) and

(
P v,

[
Qv P vh

])
are

controllable, where the involved matrices are defined
by (14) and (15) with Ah1 = Ah0 = Ah, Av1 = Av0 = Av ,
Bh1 = Bh0 = Bh and Bv1 = B̃v0 = B̃v .
By Proposition 2 we have that

(Ph, Qh) controllable if and only if

rank
[
Qh PhQh · · ·

(
Ph
)2δh−1

Qh
]

= 2δh

which is equivalent to

rank
[ [

AhBh Bh
] [(

Ah
)3
Bh

(
Ah
)2
Bh
]
· · ·

[(
Ah
)4δh−1

Bh
(
Ah
)4δh−2

Bh
] ]

= δh
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and this last equality is true because (Ah, Bh) is
controllable by Proposition 1, (note that the matrix in
the expression contains all the column blocks of the
controllability matrix Ch of (Ah, Bh)).
In order to prove the controllability of(
P v,

[
Qv P vh

])
note that P v , P vh and Qv are

given by

Pv =

[
(Av)2 0

0 (Av)2

]
, Pvh =

[
AvBvC̃h0 BvC̃h0

AvBvC̃h1A
h BvC̃h1A

h

]
,

Qv =

[
AvBvDh0 0 BvDh0 0

AvBvC̃h1B
h AvBvDh1 BvC̃h1B

h BvDh1

]
.

Applying block column permutations and defining the
matrix

M =

[
C̃h0 Dh

0 0

C̃h1A
h C̃h1B

h Dh
1

]
the pair

(
P v,

[
Qv P vh

])
becomes:

([
(Av)2 0

0 (Av)2

]
,

[[
Bv 0

0 Bv

]
M

[
AvBv 0

0 AvBv

]
M

])
.

(18)

Therefore, by Proposition 2 we have that(
P v,

[
Qv P vh

])
is controllable if and only if

rank

[ [
Bv 0

0 Bv

]
M

[
AvBv 0

0 AvBv

]
M

[
(Av)2Bv 0

0 (Av)2Bv

]
M

[
(Av)3Bv 0

0 (Av)3Bv

]
M · · ·

]
= 2δv

or, equivalently,

rank

[[ [
Bv 0

0 Bv

] [
AvBv 0

0 AvBv

] [
(Av)2Bv 0

0 (Av)2Bv

] [
(Av)3Bv 0

0 (Av)3Bv

]
· · ·

]
diag(M)

]
= 2δv ,

which is clearly true since the matrix M has full row rank
and (Av, Bv) is controllable by Proposition 1. �

To prove that the realization ΣL = (P,Q,R, S) given
by (12) is separately locally observable we will first prove
the next auxiliary Lemma.

Lemma 5. Let ν1, ν2, . . . , νk be nonnegative integers and
define the matrix A = diag(A1, A2, . . . , Ak) where

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Fνi×νi .

In the case where νi = 0 the ith block of A is void.

Consider two matrices C0, C1 ∈ Fn×νk , with νj =
j∑
i=1

νi, j = 1, . . . , k, such that

[C0]ν1,ν2,...,νk
and [C1]ν1,ν2,...,νk

have full column rank, where [Ci]ν1,ν2,...,νk
represents the

submatrix of Ci, i = 0, 1, with columns ν1, ν2, . . . , νk.

Then the matrix 
C0

C1A
C0A

2

...
CrA

ν−1

 ,
where ν = max νi, i = 1, . . . , k and r = (ν − 1) mod 2,
has full column rank.

Proof. Define ν(n)
j = νj − n if νj − n ≥ 0 (otherwise

ν
(n)
j is not defined).

By hypothesis, [C0]ν1,ν2,...,νk
has full column rank. Note

that the columns ν1, ν2, . . . , νk of A are zero, which
implies that the columns of the same index of

C1A
C0A

2

C1A
3

...



are also zero. Moreover, [C1A]
ν
(1)
1 ,ν

(1)
2 ,...,ν

(1)
k

=

[C1]ν1,ν2,...,νk
has full column rank.

In the same way, the columns ν1, ν
(1)
1 ν2, ν

(1)
2 . . . , νk, ν

(1)
k

of A2 are also zero and therefore the columns of the same
index of  C0A

2

C1A
3

...


are also zero and

[
C0A

2
]
ν
(2)
1 ,ν

(2)
2 ,...,ν

(2)
k

= [C0]ν1,ν2,...,νk

has full column rank.
Proceeding analogously it is easy to check that

C0

C1A
C0A

2

...
CrA

ν−1


has full column rank. �
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Lemma 6. In the conditions of Theorem 6, the realiza-
tion ΣL = (P,Q,R, S) given by (12) is separately locally
observable.

Proof. By Lemma 2, we just have to prove that the

matrices (P v, Rv) and
(
Ph,

[
Rh

P vh

])
are observable,

where the involved matrices are defined by (14) and (16)
with Ah1 = Ah0 = Ah, Av1 = Av0 = Av , Bh1 = Bh0 = Bh

and Bv1 = B̃v0 = B̃v .
The observability of (P v, Rv) follows immediately by
Proposition 2 and Lemma 5.

In order to prove the observability of
(
Ph,

[
Rh

P vh

])
note that this pair is equal to

[(
Ah
)2

0

0
(
Ah
)2
]
,



Dv
0C̃

h
0 0

Dv
0C̃

h
1A

h 0

Cv1B
vC̃h0 Dv

1C̃
h
0

Cv1B
vC̃h1A

h Dv
1C̃

h
1A

h

AvBvC̃h0 BvC̃h0

AvBvC̃h1A
h BvC̃h1A

h




.

(19)
Applying block row permutations and defining the matrix

N =

 Dv
0 0

Cv1B
v Dv

1

AvBv Bv


that has full column rank, by hypothesis, the pair (19) can
be written as

[(
Ah
)2

0

0
(
Ah
)2
]
,


N

[
C̃h0 0

0 C̃h0

]

N

[
C̃h1A

h 0

0 C̃h1A
h

]


 .

(20)
The rest of the proof is analogous to the final part of the
proof of Lemma 4 taking in account Lemma 5. �
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