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Abstract

In this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we

study the Lp-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion

operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional

analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate

their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu

formula based on a time-fractional Stokes’ formula. This tool in hand allows us to present a Hodge-type

decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative

in the time coordinate. The obtained results exhibit an interesting duality relation between forward and

backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We

round off this paper by giving a direct application of the obtained results for solving time-fractional boundary

value problems.
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1 Introduction

Nowadays, one of the most studied fractional partial differential equation is the time-fractional diffusion equation

due to its wide range of applications (see [8, 17, 22, 23, 25, 30] and the references therein indicated). In the

context of physics-mathematics this equation is connected with the non-Markovian diffusion processes with

memory (see [23]), while in probability theory it is related to jumping processes (see [8]). In the classical case,

the diffusion equation describes the heat propagation in a homogeneous medium. The time-fractional diffusion

equation models the anomalous diffusions exhibiting sub-diffusive behavior, due to particle sticking and trapping

phenomena (see e.g. [24]).

The multi-dimensional time-fractional diffusion equation case was studied in several papers, e.g. [3,4,10,12,13,

19–21,32]. In [32] the fundamental solution of this equation was deduced in terms of H-functions. In [12,13] the

author studied several properties of the fundamental solutions of multi-dimensional time, space, and space-time
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fractional diffusion-wave equations. In [3,4,19–21] Luchko and his collaborators used the representation in terms

of Mellin-Barnes type-integrals to study some properties of the multi-dimensional space-time-fractional diffusion-

wave equation. Explicit series representations for the fundamental solution of the diffusion-wave operator and

the so-called time-fractional parabolic Dirac operator were obtained in [10], for arbitrary dimension.

During the last decades, Clifford analysis proved to be a good tool to study partial differential equations

of mathematical-physics. In particular, we have the work of Gürlebeck and Sprößig based on a Borel-Pompeiu

formula and on an orthogonal decomposition of the underlying function space where one of the components

is the kernel of the corresponding Dirac operator [11]. This theory was successfully applied to a large type of

equations, e.g., Lamé equations, Maxwell equations, and Navier-Stokes equations. Fractional versions of these

equations has been attracting recent interest (cf. [5, 18,27,31]).

The aim of this paper is to continue ideas introduced in [10] and use the fundamental solution of the

time-fractional diffusion-wave and parabolic Dirac operators to develop, in the context of fractional Clifford

analysis, a time-fractional operator calculus related to the time-fractional parabolic Dirac operator defined

via left Caputo time-fractional derivative. In order to do that we initially study the Lp-integrability of the

fundamental solutions of the time-fractional diffusion and the time-fractional parabolic Dirac operators deduced

in [10]. Then, we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators and

we investigate some important mapping properties. Moreover, we present a Hodge-type decomposition for the

Lp-space with respect to the time-fractional parabolic Dirac operator. The results exhibit an interesting “double

duality” between forward and backward time-fractional parabolic Dirac operators, and between Caputo and

Riemann-Liouville time-fractional derivatives. This double duality appears in a non-trivial generalization of the

Stokes’ formula as well as in the time-fractional Borel-Pompeiu formula and in the Hodge-type decomposition.

Throughout the paper we show that we can always recover the results of the classical function theory for the

parabolic Dirac operator when considering the limit case of β = 1. Possible applications of our fractional integro-

differential hypercomplex operator calculus are the study of boundary value problems with time-fractional

derivatives such as the time-fractional Navier-Stokes equation and the time-fractional Scrödinger equation. For

integer time derivatives these equations had been already study in the context of Clifford analysis (see [6, 7]).

The structure of the paper reads as follows: in the Prelimaries’s section we recall some basic facts about

Clifford analysis, fractional derivatives and their main properties. In Section 3, we recall the fundamental

solution of the n-dimensional time-fractional diffusion operator deduced in [10] and some estimates for this

function and its derivatives deduced in [17]. In Section 4 we study the conditions that ensure the Lp-integrability

of the fundamental solution of the time-fractional diffusion operator and of the fundamental solution of the

time-fractional parabolic Dirac operator. In the following section, we study the time-fractional Teodorescu and

Cauchy-Bitsadze operators in a cylindrical domain. Finally, in Section 6 we present a Hodge-type decomposition

for the Lq-space, where one of the components is the kernel of the time-fractional parabolic Dirac operator.

This represents the main result of the paper, apart from the time-fractional Borel-Pompeiu formula. We round

off this paper by giving an immediate application to the resolution of time-fractional boundary value problems.

2 Preliminaries

2.1 Hypercomplex analysis

We consider the n-dimensional vector space Rn endowed with an orthonormal basis {e1, · · · , en}. The universal

real Clifford algebra C`0,n is defined as the 2n-dimensional associative algebra which obeys the multiplication

rule

eiej + ejei = −2δij , i, j = 1, . . . , n. (1)

A vector space basis for C`0,n is generated by the elements e0 = 1 and eA = eh1 · · · ehk , where A =

{h1, . . . , hk} ⊆ M = {1, . . . , n}, for 1 ≤ h1 < · · · < hk ≤ n. Each element x ∈ C`0,n can be represented by

x =
∑
A xAeA, with xA ∈ R. The Clifford conjugation is defined by x =

∑
A xAeA, where eA = ehk · · · eh1

, and

ej = −ej , for j = 1, . . . , n, and e0 = e0 = 1. We introduce the complexified Clifford algebra Cn as the tensor
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product

Cn := C⊗ C`0,n =

{
w =

∑
A

wAeA, wA ∈ C, A ⊆M

}
,

where the imaginary unit i of C commutes with the basis elements, i.e., iej = eji for all j = 1, . . . , n. To avoid

ambiguities with the Clifford conjugation, we denote the complex conjugation by ], in the sense that for a

complex scalar wA = aA + ibA we have that w]A = aA− ibA. The complex conjugation can be extended linearly

to whole of the Clifford algebra and leaves the elements ej invariant, i.e., e]j = ej for all j = 1, . . . , n.

A Cn-valued function defined on an open set U ⊆ Rn has the representation f =
∑
A fAeA with C-valued

components fA. Properties such as continuity, differentiability, and integrability of a Cn-valued function need

to be understood componentwise. For instance f ∈ Lp(U,Cn), or shortly f ∈ Lp(U), means that {fA} ⊂ Lp(U)

or, equivalent, that
∫
U
|f(x)|p dx < +∞. L2(U) can be turned into a Cn-module, with the following Clifford

inner product

〈f, g〉 :=

∫
U

f(x) g(x) dx. (2)

Next, we introduce the Euclidean Dirac operatorDx =
∑n
j=1 ej∂xj , which factorizes the n-dimensional Euclidean

Laplacian, i.e., D2
x = −∆x = −

∑n
j=1 ∂

2
xj . A Clifford valued C1-function f is called left-monogenic if it satisfies

Dxf = 0 on U (resp. right-monogenic if it satisfies fDx = 0 on U).

In order to define the parabolic Dirac operator we need to introduce a Witt basis. We start considering the

embedding of Rn into Rn+2 and two new elements e+ and e− such that e2
+ = +1, e2

− = −1, and e+e− = −e−e+.

Moreover, e+ and e− anticommute with all the basis elements ej , j = 1, . . . , n. Hence, {e1, . . . , en, e+, e−} spans

Rn+1,1. With the elements e+ and e− we construct two nilpotent elements f and f† given by

f =
e+ − e−

2
and f† =

e+ + e−
2

. (3)

These elements satisfy the following relations

(f)2 = (f†)2 = 0, ff† + f†f = 1, fej + ejf = f†ej + ejf
† = 0, j = 1, . . . , n. (4)

The extended basis {e1, . . . , en, f, f
†} allow us to define the parabolic Dirac operator as Dx,t := Dx + f∂t + f†,

where Dx stands for the Dirac operator in Rn. The operator Dx,t acts on Cn-valued functions defined on

time dependent domains Ω × I ⊆ Rn × R+, i.e., functions in the variables (x1, x2, . . . , xn, t) where xj ∈ R for

j = 1, . . . , n, and t ∈ R+. For the sake of readability, we abbreviate the space-time tuple (x1, x2, . . . , xn, t)

simply by (x, t), assigning x = x1e1 + · · · + xnen. For additional details on Clifford analysis, we refer the

interested reader for instance to [7, 9, 11].

2.2 Fractional derivatives and special functions

Now we recall the definitions of the fractional integrals and fractional derivatives that will be used in the paper.

Let a, b ∈ R with a < b and let β > 0. The left and right Riemann-Liouville fractional integrals Iβa+ and Iβb− of

order β are given by (see [15]) (
Iβa+f

)
(t) =

1

Γ(β)

∫ t

a

f(w)

(t− w)1−β dw, t > a, (5)

(
Iβb−f

)
(t) =

1

Γ(β)

∫ b

t

f(w)

(w − t)1−β dw, t < b. (6)

By RLDβ
a+ and RLDβ

b− we denote the left and right Riemann-Liouville fractional derivatives of order β > 0 on

[a, b] ⊂ R, which are defined by (see [15])(
RLDβ

a+f
)

(t) =
(
DmIm−βa+ f

)
(t) =

1

Γ(m− β)

dm

dxm

∫ t

a

f(w)

(t− w)β−m+1
dw, t > a, (7)

(
RLDβ

b−f
)

(t) = (−1)m
(
DmIm−βb− f

)
(t) =

(−1)m

Γ(m− β)

dm

dxm

∫ b

t

f(w)

(w − t)β−m+1
dw, t < b, (8)
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where m = [β] + 1 and [β] means the integer part of β. Let CDβ
a+ and CDβ

b− denote, respectively, the left and

right Caputo fractional derivative of order β > 0 on [a, b] ⊂ R, which are defined by (see [15])(
CDβ

a+f
)

(t) =
(
Im−βa+ Dmf

)
(t) =

1

Γ(m− β)

∫ t

a

f (m)(w)

(t− w)β−m+1
dw, t > a, (9)

(
CDβ

b−f
)

(t) = (−1)m
(
Im−βb− Dmf

)
(t) =

(−1)m

Γ(m− β)

∫ b

t

f (m)(w)

(w − t)β−m+1
dw, t < b. (10)

Throughout the paper, ACm([a, b]) denotes the class of functions g which are continuously differentiable on

[a, b] up to the order m − 1 and g(m−1) is supposed to be absolutely continuous on [a, b]. Now, we recall an

important result about the boundedness of the fractional integrals Iβa+ and Iβb− (see Theorem 3.5 in [29]).

Theorem 2.1 If 0 < β < 1 and 1 < p < 1
β , then the operators Iβa+ and Iβb− are bounded from Lp(a, b) into

Lq(a, b), where q = p
1−βp and [a, b] ⊂ R.

The previous theorem will play an important role in the study of the mapping properties of the time-fractional

integral operators introduced in Section 5.2.

The fundamental solution presented in [10, 17] is represented in terms of a Fox H-function. The Fox H-

function Hm,n
p,q is defined via a Mellin-Barnes type integral in the form (see [16])

Hm,n
p,q

[
z

(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

]
=

1

2πi

∫
L

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1− ai − αis)∏p

i=n+1 Γ(ai + αis)
∏q
j=m+1 Γ(1− bj − βjs)

z−s ds, (11)

where ai, bj ∈ C, αi, βj ∈ R+, for i = 1, . . . , p and j = 1, . . . , q, and L is a suitable contour in the complex plane

separating the poles of the two factors in the numerator. A detailed study of the properties and convergence of

the Fox H-function can be seen in [16].

3 Estimates of the fundamental solution of the time-fractional diffusion-

wave equation and its derivatives

We consider the multi-dimensional time-fractional diffusion-wave equation defined by(
C∂β0+ − c2∆x

)
u(x, t) = 0, (12)

where (x, t) ∈ Rn × R+, β ∈]0, 2[, and c > 0. Here, C∂β0+ is the left Caputo time-fractional derivative of order

β (see (9)), and ∆x is the Laplace operator in Rn. The first fundamental solution of (12) satisfying the initial

conditions u(x, 0) = δ(x) if 0 < β < 1, and u(x, 0) = δ(x) and ∂tu(x, 0) = 0 if 1 < β < 2 was deduced by several

authors (see e.g. [10, 15,19,20]). In [10] the authors obtained the fundamental solution Gβn(x, t) in the form

Gβn(x, t) =
1

2π
n
2 |x|n

H0,2
2,1

 2c t
β
2

|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)
(

0, β2

)
 , (x, t) ∈ Rn × R+, (13)

where Hm,n
p,q (z) is the Fox H-function. Asymptotic behaviour of this fundamental solution and its derivatives

were studied in [17]. Therein, the authors studied the multi-dimensional space-time-fractional diffusion-wave

equation given by (
C∂β0+ −∆α

x

)
u(x, t) = 0, (14)

where β ∈]0, 2[, α ∈]0,+∞[, and ∆α
x is the fractional Laplacian. We remark that we changed the roles of α and

β in [17], in order to have the same fractional parameter in the time-fractional derivative. In [17] was introduced

the following auxiliar function

pσ,γ(x, t) :=
22γ

π
n
2
|x|−n−2γ t−σ Hσ,γ

(
|x|2α t−β

22α

)
, (x, t) ∈ Rn × R+, γ ∈ R+

0 , σ ∈ R, (15)
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where Hσ,γ corresponds to the following H-function

Hσ,γ(r) := H2,1
2,3

 r
(1, 1) , (1− σ, β)(

n
2 + γ, α

)
, (1, 1) , (1 + γ, α)

 , r ∈ R+. (16)

Moreover, the function p(x, t) := p0,0(x, t) is the first fundamental solution of (14). From now on we consider

c = 1 in (12) and (13), and α = 1 in (14), (15) and (16), which implies that p(x, t) = Gβn(x, t). Therefore, the

results presented in [17] for p(x, t) are the same for Gβn(x, t). Since we want to prove the Lp-integrability of Gβn
and its derivatives, we consider the following particular cases of Theorems 5.1 and 5.5 presented in [17] (note

again the change of the roles of α and β in [17]).

Theorem 3.1 (cf. [17, Thm.5.1]) Let β ∈]0, 2[, σ ∈ R, and n ∈ N. Then for |x|2t−β ≥ 1

|pσ,0(x, t)| . |x|−n t−σ (17)

and for |x|2t−β ≤ 1

|pσ,0(x, t)| .


t−σ−

β
2 if n = 1

t−σ−β
(
1 +

∣∣ln (|x|2t−β)∣∣) if n = 2

|x|−n+2t−σ−β if n > 2

. (18)

Before we present the particular case of Theorem 5.5, we introduce, for each multi-index a = (a1, . . . , an) and

k ∈ N, the following notation:

Dk
x := {Da

x : |a| = k} , Da
x = Da1

1 · · ·Dan
n , Di =

∂

∂xi
. (19)

Theorem 3.2 (cf. [17, Thm.5.5]) Let β ∈]0, 2[, σ ∈ R, n ∈ N and k ∈ N0. Then for |x|2t−β ≥ 1∣∣Dk
x pσ,0(x, t)

∣∣ . |x|−n−k t−σ e−(|x|2t−β)
1

2−β
(20)

and for |x|2t−β ≤ 1 ∣∣Dk
x pσ,0(x, t)

∣∣ . |x|−n−k+2 t−σ−β . (21)

We end this section with a short remark about the notation used in the previous theorems and in the remaining

parts of the paper (see [17] for more details). We write f . g for |z| ≤ ε (resp. |z| ≥ ε) if there exists a positive

constant κ independent of z such that f(z) ≤ κ g(z) for |z| ≤ ε (resp. |z| ≥ ε).

4 Lp-integrability of the fundamental solution and its derivatives

4.1 The case of the time-fractional diffusion operator

In this section we prove the Lp-integrability of Gβn and its derivatives only for β ∈]0, 1[, which corresponds to

the diffusion case. Let us start with the Lp-integrability of Gβn.

Theorem 4.1 The fundamental solution Gβn belongs to Lp(Rn×]0, T ]), T ∈ R, whenever p and β satisfy the

following conditions:

(i) If n = 1 then p ∈
]
1, 2−β

β

[
and β ∈ ]0, 1[;

(ii) If n = 2 then p ∈
]
1, 1+β

β

[
and β ∈ ]0, 1[;

(iii) If n > 2 then p ∈ ]1, p1[, where

p1 =


n

n− 2
if β ∈

]
0,
n− 2

n

[
2 + βn

βn
if β ∈

[
n− 2

n
, 1

] .
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Proof: The proof is quite long and technical, however the calculations are straightforward. Considering

x = r ω, with r > 0 and ω ∈ Sn−1, we obtain

∥∥Gβn∥∥pLp(Rn×]0,T ])
=

∫ T

0

∫
Rn
|p0,0(x, t)|p dx dt

=

∫ T

0

∫ +∞

0

∫
Sn−1

|p0,0(rω, t)|p rn−1 dω dr dt

= A
(
Sn−1

) ∫ T

0

∫ +∞

0

|p0,0(r, t)|p rn−1 dr dt

= A
(
Sn−1

) (∫ T

0

∫ t
β
2

0

|p0,0(r, t)|p rn−1 dr dt︸ ︷︷ ︸
I

+

∫ T

0

∫ +∞

t
β
2

|p0,0(r, t)|p rn−1 dr dt︸ ︷︷ ︸
II

)
,

where A(Sn−1) denotes the surface area of Sn−1. Let us start with the analysis of I, which corresponds to the

integral over the region |x|2t−β ≤ 1. Taking into account the estimates (18) in Theorem 3.1 we need to consider

separately the cases when n = 1, n = 2, and n > 2. Hence, by (18) we have

• Case n = 1:

I .
∫ T

0

∫ t
β
2

0

t−
βp
2 dr dt =

2T 1− β2 (p+1)

β(p+ 1)− 2
,

provided that

p ∈
]
1,

2− β
β

[
and β ∈]0, 1[. (22)

• Case n = 2:

I .
∫ T

0

∫ t
β
2

0

t−βp
(
1 +

∣∣ln (r2t−β
)∣∣)p r dr dt.

Considering the change of variable s = r2t−β in the integral with respect to r, we obtain

I .
1

2

∫ T

0

∫ 1

0

t−β(p−1) (1 + |ln (s)|)p ds dt =
e T 1+β(1−p) Γ(1 + p, 1)

2 (1 + β(1− p))
,

where Γ(a, z) denotes the incomplete gamma function (see [2]). The previous result is valid only under

the conditions

p ∈
]
1,

1 + β

β

[
and β ∈]0, 1[. (23)

• Case n > 2:

I .
∫ T

0

∫ t
β
2

0

r−p(n−2) t−βp rn−1 dr dt.

Making s = r2t−β in the integral with respect to r, we obtain

I .
1

2

∫ T

0

∫ 1

0

s−
n(p−1)−2p+2

2 t−
βn(p−1)

2 ds dt =
2T 1− βn(p−1)

2

(2− βn(p− 1)) (2p− n(p− 1))
,

under the conditions

p ∈ ]1, p1[ , with p1 =


n

n− 2
if β ∈

]
0,
n− 2

n

[
2 + βn

βn
if β ∈

[
n− 2

n
, 1

] . (24)
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Now, let us study II, which corresponds to the integral over the region |x|2t−β ≥ 1. Taking into account (17)

in Theorem 3.1 and applying the same change of variables s = r2t−β , we have, for any n ∈ N

II =

∫ T

0

∫ +∞

t
β
2

r−np rn−1 dr dt =
1

2

∫ T

0

∫ +∞

1

s−
n(p−1)+2

2 t−
βn(p−1)

2 ds dt =
2T 1− βn(p−1)

2

(2− βn(p− 1)) (n(p− 1))
.

The previous result is only valid under the conditions

p ∈
]
1,

2 + βn

βn

[
and β ∈]0, 1[. (25)

Finally, combining the conditions (22), (23), (24), and (25) we obtain

(i) Case n = 1: Taking into account (22) and (25), we get

p ∈
]
1,min

{
2− β
β

,
2 + β

β

}[
∧ β ∈]0, 1[ ⇔ p ∈

]
1,

2− β
β

[
∧ β ∈]0, 1[.

(ii) Case n = 2: Taking into account (23) and (25), we get

p ∈
]
1,

1 + β

β

[
and β ∈]0, 1[.

(iii) Case n > 2: Taking into account (24) and (25), we conclude that p ∈ ]1, p1[, with

p1 =


min

{
n

n− 2
,

2 + βn

βn

}
=

n

n− 2
if β ∈

]
0,
n− 2

n

[
2 + βn

βn
if β ∈

[
n− 2

n
, 1

] .

�

4.2 The case of the time-fractional parabolic Dirac operator

In [10] the authors studied the so-called time-fractional parabolic Dirac operator, which is a first-order differential

operator that factorizes the time-fractional diffusion operator, and obtained its first fundamental solution. This

operator is defined in the Clifford algebra setting by

CDβ
x,0+ := Dx + f C∂β0+ + f†, (26)

where Dx =
∑n
j=1 ej∂xj is the Euclidean Dirac operator, C∂β0+ is the left Caputo fractional partial derivative of

order β ∈]0, 1[ given by (9), and
{
f, f†

}
are the Witt basis elements defined in (3). This operator satisfies the

following factorization property (see [10])(
CDβ

x,0+

)2

=
(
Dx + f C∂β0+ + f†

)(
Dx + f C∂β0+ + f†

)
= −∆x + C∂β0+ .

Applying CDβ
x,0+ to Gβn we obtain the representation of the fundamental solution of CDβ

x,0+ in terms of H-

functions (see [10])

CGβ
+

(x, t) =
(
Dx + f C∂β0+ + f†

)
Gβn(x, t) (27)

=
x

2π
n
2 |x|n+2

H1,2
3,2

 2 t
β
2

|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)
, (−n, 1)

(1− n, 1) ,
(

0, β2

)


+ f
1

2π
n
2 |x|n tβ

H0,2
2,1

 2 t
β
2

|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)
(
β, β2

)


+ f†
1

2π
n
2 |x|n

H0,2
2,1

 2 t
β
2

|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)
(

0, β2

)
 .
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Taking into account (27), (19), and the fact that Gβn(x, t) = p0,0(x, t), we get the following relation between
CGβ

+
and the derivatives of p0,0:

CGβ
+

(x, t) =
(
Dx + f C∂β0+ + f†

)
p0,0(x, t)

= Dx p0,0(x, t) + f pβ,0(x, t) + f† p0,0(x, t), (28)

where the time-fractional derivative was calculated via the following relation proved in [17]

C∂β0+ pσ,γ(x, t) = pσ+β,γ(x, t). (29)

Making use of (28), Theorem 3.1, Theorem 3.2, and proceeding in a very similar way as it was done in the proof

of Theorem 4.1, we obtain to the following result.

Theorem 4.2 The fundamental solution CGβ
+

belongs to Lp(Rn×]0, T ]), T ∈ R, whenever p and β satisfy the

following conditions:

(i) If n = 1 then p ∈
]
1, 2−β

3β

[
and β ∈

]
0, 1

2

[
;

(ii) If n = 2 then p ∈ ]1, p2[, with

p2 =


2 if β ∈

]
0,

1

3

[
1 + β

2β
if β ∈

[
1

3
, 1

[ ;

(iii) If n > 2 then p ∈ ]1, p3[, where

p3 =


n

n− 1
if β ∈

]
0,

2n− 2

5n

[
2 + βn

β(n+ 2)
if β ∈

[
2n− 2

5n
, 1

[ .

Proof: The steps of the proof are similar to those in Theorem 4.1. We have∥∥∥CGβ
+

∥∥∥p
Lp(Rn×]0,T ])

=

∫ T

0

∫
Rn

∣∣Dx p0,0(x, t) + f pβ,0(x, t) + f† p0,0(x, t)
∣∣p dx dt

≤
∫ T

0

∫
Rn

(
|Dx p0,0(x, t)|p + |pβ,0(x, t)|p + |p0,0(x, t)|p

)
dx dt

= A
(
Sn−1

) ∫ T

0

∫ t
β
2

0

(
|Dx p0,0(x, t)|p + |pβ,0(x, t)|p + |p0,0(x, t)|p

)
|x|n−1 d|x| dt︸ ︷︷ ︸

I

+A
(
Sn−1

) ∫ T

0

∫ +∞

t
β
2

(
|Dx p0,0(x, t)|p + |pβ,0(x, t)|p + |p0,0(x, t)|p

)
|x|n−1 d|x| dt︸ ︷︷ ︸

J

.

Let us start with the analysis of I, which corresponds to the integral over the region |x|2t−β ≤ 1. This integral

is split in three integrals:

I =

∫ T

0

∫ t
β
2

0

|Dx p0,0(x, t)|p |x|n−1 d|x| dt︸ ︷︷ ︸
I1

+

∫ T

0

∫ t
β
2

0

|pβ,0(x, t)|p |x|n−1 d|x| dt︸ ︷︷ ︸
I2

+

∫ T

0

∫ t
β
2

0

|p0,0(x, t)|p |x|n−1 d|x| dt︸ ︷︷ ︸
I3

. (30)
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Taking into account (21) in Theorem 3.2 and applying the change of variables s = r2t−β with r = |x|, we obtain

I1 .
∫ T

0

∫ t
β
2

0

r−p(n−1) t−βp rn−1 dr dt

=
1

2

∫ T

0

t−
β
2 (n(p−1)+p) dt

∫ 1

0

s−
(n−1)(p−1)+1

2 ds

=
2T 1− β2 (n(p−1)+p)

(2− β (n(p− 1) + p)) (p− n (p− 1))
,

under the conditions

p ∈
]
1,min

{
2 + βn

β(n+ 1)
,

n

n− 1

}[
, β ∈]0, 1], and n > 1. (31)

When n = 1 we have

p ∈
]
1,

2 + β

2β

[
and β ∈]0, 1]. (32)

We pass now to the analysis of I2. From (18) in Theorem 3.1 we conclude that it is necessary to consider three

cases depending on the value of n. Hence, applying the same change of variables already considered, s = r2t−β

with r = |x|, we have

• Case n = 1:

I2 .
∫ T

0

∫ t
β
2

0

t−
3βp
2 dr dt =

2T 1− β2 (1+3p)

2− β (1 + 3p)
,

under the conditions

p ∈
]
1,

2− β
3β

[
and β ∈

]
0,

1

2

[
. (33)

• Case n = 2:

I2 .
∫ T

0

∫ t
β
2

0

t−2βp
(
1 +

∣∣ln (r2t−β
)∣∣)p r dr dt

=
1

2

∫ T

0

t−β(2p−1) dt

∫ 1

0

(1 + |ln(s)|)p ds

=
T 1−β(2p−1) Γ (1 + p, 1)

2 (1− β (2p− 1))
,

where Γ(a, z) denotes the incomplete gamma function and the parameters p and β satisfy the conditions

p ∈
]
1,

1 + β

2β

[
and β ∈ ]0, 1[ . (34)

• Case n > 2:

I2 .
∫ T

0

∫ t
β
2

0

r−p(n−2) t−2βp rn−1 dr dt

=
1

2

∫ T

0

t−
β
2 (p(n+2)−n) dt

∫ 1

0

s−
p(n+2)−n+2

2 ds

=
2T 1− β2 (p(n+2)−n)

(2− β (p (n+ 2)− n)) (n− p (n+ 2))
,

where p and β are such that

p ∈
]
1,min

{
2 + βn

β(n+ 2)
,

n

n− 2

}[
and β ∈]0, 1[. (35)
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Concerning I3 it corresponds to the integral I in the proof of Theorem 4.1. Hence, the convergence conditions

are (22), (23), and (24) when n = 1, n = 2, and n > 2, respectively. We pass now to the analysis of J , which

corresponds to the integral over the region |x|2t−β ≥ 1. Once again this integral is split in three integrals:

J =

∫ T

0

∫ +∞

t
β
2

|Dx p0,0(x, t)|p |x|n−1 d|x| dt︸ ︷︷ ︸
J1

+

∫ T

0

∫ +∞

t
β
2

|pβ,0(x, t)|p |x|n−1 d|x| dt︸ ︷︷ ︸
J2

+

∫ T

0

∫ +∞

t
β
2

|p0,0(x, t)|p |x|n−1 d|x| dt︸ ︷︷ ︸
J3

. (36)

Taking into account (20) in Theorem 3.2 and applying the change of variables s = r2t−β with r = |x|, we obtain

J1 .
∫ T

0

∫ +∞

t
β
2

r−p(n+1) e−p(r
2t−β)

1
2−β

rn−1 dr dt

=
1

2

∫ T

0

t−
β
2 (n(p−1)+p) dt

∫ +∞

1

s−
p(n+1)−n+2

2 e−p s
1

2−β
ds

=
T 1− β2 (p+n(p−1)) (β − 2)

2− β (p+ n (p− 1))
E

1− (β−2)(p+n(p−1))
2

(p),

where Eν(z) is the exponential integral function (see [2]), and the parameters p and β satisfy the following

conditions

p ∈
]
1,

2 + βn

β(n+ 1)

[
and β ∈]0, 1]. (37)

In the case of J2 we consider the estimate (17) in Theorem 3.1 and we apply the change of variables s = r2t−β

with r = |x|, which yields

J2 .
∫ T

0

∫ +∞

t
β
2

r−pn t−βp rn−1 dr dt

=
1

2

∫ T

0

t−
β
2 (p(n+2)−n) dt

∫ +∞

1

s−
n(p−1)+2

2 ds

=
T 1− β2 (p(n+2)−n) (β − 2)

2− β(p(n+ 2)− n)
E

1−n(β−2)(p−1)
2

(p),

where

p ∈
]
1,

2 + βn

β(n+ 2)

[
and β ∈]0, 1[. (38)

Concerning J3 it corresponds to the integral II in the proof of Theorem 4.1. Hence, the convergence conditions

are (25), for any n ∈ N. In order to complete the proof we combine the conditions (22) - (38) in the following

way:

(i) Case n = 1: taking into account (32), (33), (22), (37), (38), (25), we get

p ∈
]
1,min

{
2 + β

2β
,

2− β
3β

,
2− β
β

,
2 + β

3β
,

2 + β

β

}[
∧ β ∈

]
0,

1

2

[
⇔ p ∈

]
1,

2− β
3β

[
∧ β ∈

]
0,

1

2

[
.

(ii) Case n = 2: taking into account (31), (34), (23), (37), (38), (25), we obtain

p ∈
]
1,min

{
2,

1 + β

β
,

1 + β

2β
,

2 + 2β

3β

}[
and β ∈ ]0, 1[

which is equivalent to p ∈]1, p2[, where

p2 =


2 if β ∈

]
0,

1

3

[
1 + β

2β
if β ∈

[
1

3
, 1

[ .
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(iii) Case n > 2: taking into account (31), (35), (24), (37), (38), and (25) we get

p ∈
]
1,min

{
2 + βn

βn
,

2 + βn

β(n+ 1)
,

2 + βn

β(n+ 2)
,

n

n− 1
,

n

n− 2

}[
and β ∈ ]0, 1[

which is equivalent to p ∈]1, p3[ with

p3 =


n

n− 1
if β ∈

]
0,

2n− 2

5n

[
2 + β(n+ 2)

βn
if β ∈

[
2n− 2

5n
, 1

] .

�

It remains to study the Lp-integrability in Rn×]0, T ], T ∈ R, of the derivatives of CGβ
+

, which will be useful in

the next section to establish the mapping properties of the time-fractional Teodorescu operator. Taking into

account (19), (28), and (29) we can write

C∂β0+
CGβ

+
(x, t) = Dx pβ,0(x, t) + f p2β,0(x, t) + f† pβ,0(x, t), (39)

∂xj
CGβ

+
(x, t) = ∂xj Dx p0,0(x, t) + f ∂xj pβ,0(x, t) + f† ∂xj p0,0(x, t), j = 1, . . . , n. (40)

From (39) we have the following theorem.

Theorem 4.3 The time-fractional partial derivative C∂β0+
CGβ

+
belongs to Lp(Rn×]0, T ]), T ∈ R, whenever p

and β satisfy the following conditions:

(i) If n = 1 then p ∈
]
1, 2+β

5β

[
and β ∈

]
0, 1

2

[
;

(ii) If n = 2 then p ∈ ]1, p4[, where

p4 =


2 if β ∈

]
0,

1

5

[
1 + β

3β
if β ∈

[
1

5
, 1

[ ;

(iii) If n > 2 then p ∈ ]1, p5[, with

p5 =


n

n− 1
if β ∈

]
0,

2n− 2

5n

[
2 + βn

β(n+ 4)
if β ∈

[
2n− 2

5n
, 1

[ .

The proof of this theorem follows the same line of reasoning of the proof of Theorem 4.2 and it is omitted.

However, we remark that for the analysis of the first term of (39) we use Theorem 3.2, and for the analysis of

the second and third terms we use Theorem 3.1. Concerning the Lp-boundedness of (40) we have the following

result.

Theorem 4.4 The partial derivatives ∂xj
CGβ

+
, j = 1, . . . , n, belong to Lp(Rn×]0, T ]), T ∈ R, whenever p and

β satisfy the following conditions:

(i) If n = 1 then p ∈
]
1, 2+β

4β

[
and β ∈

]
0, 2

3

[
;

(ii) If n ≥ 2 then p ∈]1, p6[ with

p6 =


n

n− 1
if β ∈

]
0,
n− 1

2n

[
2 + βn

β(n+ 3)
if β ∈

[
n− 1

2n
,

2

3

[ .
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We omit the proof of this theorem due to the similarities with the previous ones. However, we would like to

point out that during the proof are used the estimates in Theorem 3.2 with k = 2. For the case when |x|2t−β ≥ 1

we use the estimate (20) in Theorem 3.2. For the case of |x|2t−β ≤ 1, and in order to guarantee the convergence

of the involved integrals, we need to consider the following improvement of the estimate (21) in Theorem 3.2∣∣Dk
x pτ,0(x, t)

∣∣ . |x|−n−k+4 t−σ−β , n ≥ 2. (41)

The new estimate (41) is obtained applying the inequality |xj | ≤ |x|2 instead of |xj | ≤ |x|, for x ∈ Rn with

n ≥ 2, in the proof of Theorem 5.5 in [17]. We remark that in the previous estimates we need to consider

k = 2 since ∂xj
CGβ

+
= ∂xj Dx p0,0 is a second order derivative of p0,0. When n = 1 we can not use either the

estimates (21) or (41). Therefore, we need to study the Lp-integrability of ∂x
CGβ

+
when n = 1 using the explicit

expression of CGβ
+
. By [10] we have that for n = 1 it is given by

CGβ
+

(x, t) = − x

2 tβ |x|
W− β2 ,1−β

(
−|x|
t
β
2

)
+ f

1

2 t
3β
2

W− β2 ,1−
3β
2

(
−|x|
t
β
2

)
+ f†

1

2 t
β
2

W− β2 ,1−
β
2

(
−|x|
t
β
2

)
.

Since |CGβ
+
| is an even function we can assume x > 0, which implies that x

|x| = 1. By straightforward calculations

we obtain

∂x
CGβ

+
(x, t) =

x

2 t
3β
2

W− β2 ,1−
3β
2

(
−|x|
t
β
2

)
+ f

−1

2 t2β
W− β2 ,1−2β

(
−|x|
t
β
2

)
+ f†

−1

2 tβ
W− β2 ,1−β

(
−|x|
t
β
2

)
, x > 0. (42)

Finally, studying the Lp-integrability of (42) in R×]0, T ], T ∈ R, we obtain the conditions given in (i) of

Theorem 4.4.

5 Time-fractional operational calculus

5.1 Time-fractional Stokes’ theorem

In this section we develop a Stokes’ Theorem for the time-fractional parabolic Dirac operators of Caputo and

Riemann-Liouville types given by

CDβ
x,0+ := Dx + fC∂β0+ + f†, CDβ

x,T− := Dx − fC∂βT− − f†, (43)

and

RLDβ
x,0+ := Dx + fRL∂β0+ + f†, RLDβ

x,T− := Dx − fRL∂βT− − f†, (44)

where Dx =
∑n
j=1 ej∂xj is the Dirac operator in Rn, and C∂β0+ , C∂βT− , RL∂β0+ and RL∂βT− are the Caputo and

Riemann-Liouville time-fractional derivatives with parameter β ∈]0, 1[ given by (9), (10), (7), and (8). Due

to the properties of the Witt basis elements and since D2
x = −∆x we have the following factorizations of the

time-fractional diffusion operators(
CDβ

x,0+

)2

= −∆x + C∂β0+ ,
(
CDβ

x,T−

)2

= −∆x + C∂βT− , (45)(
RLDβ

x,0+

)2

= −∆x + RL∂β0+ ,
(
RLDβ

x,T−

)2

= −∆x + RL∂βT− . (46)

From now on until the end of the paper we consider a cylindrical space time domain C = Ω×]0, T ] ⊂ Rn×(0,+∞).

In the next theorem we present a time-fractional Stokes’ formula involving the operators RLDβ
x,T− and CDβ

x,0+ .

Theorem 5.1 (Time-fractional Stokes’s theorem) For u, v ∈ AC1(C)∩AC(C) the following time-fractional

Stokes’ formulas hold∫
C

[(
uCDβ

x,T−

)
v + u

(
RLDβ

x,0+ v
)]
dx dt =

∫
Γ1

u dσx,t v +

∫
Γ2

u (−1)n f
(
I1−β
0+ v

)
dx, (47)

∫
C

[(
uCDβ

x,0+

)
v + u

(
RLDβ

x,T− v
)]
dx dt =

∫
Γ1

u dσx,t v +

∫
Γ2

u (−1)n f
(
I1−β
T− v

)
dx, (48)

∫
C

[(
uRLDβ

x,0+

)
v + u

(
CDβ

x,T− v
)]
dx dt =

∫
Γ1

u dσx,t v +

∫
Γ2

(
I1−β
0+ u

)
(−1)n f v dx, (49)

∫
C

[(
uRLDβ

x,T−

)
v + u

(
CDβ

x,0+ v
)]
dx dt =

∫
Γ1

u dσx,t v +

∫
Γ2

(
I1−β
T− u

)
(−1)n f v dx, (50)
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where dσx,t = dσx dt, dσx = Dx c dx =
∑n
j=1(−1)j+1ej dx̂j is the oriented surface element, and dx = dx1 . . . dxn

represents the n-dimensional (oriented) volume element.

Proof: In order to not overload the paper we present only the proof of (47), however, we remark that the

proof for (48), (49), and (50) is analogous. Suppose that u, v ∈ AC1(C)∩AC(C). We start deducing the Stokes’

theorem for the operators CDβ
x,T− and RLDβ

x,0+ , without the f†-component. From (43), (44), and (10) we obtain∫
C

(
u
(
Dx − fC∂βT−

))
v dx dt =

∫
C

(uDx) v dx dt︸ ︷︷ ︸
I

+

∫
C

(
u I1−β

T− ∂
)
f v dx dt︸ ︷︷ ︸

II

. (51)

For the integral I we apply the classical Stokes’ formula for the Dirac operator obtaining∫
C

(uDx) v dx dt =

∫ T

0

∫
Ω

(uDx) v dx dt

=

∫ T

0

∫
∂Ω

u dσx,t v −
∫ T

0

∫
Ω

u (Dxv) dx dt

=

∫
Γ1

u dσx,t v −
∫
C
u (Dxv) dx dt, (52)

where Γ1 = [0, T ]×∂Ω. Concerning integral II, taking into account the definition of I1−β
T− (see (6)) and changing

the order of integration we obtain∫
C

(
u I1−β

T− ∂
)
f v dx dt =

∫
Ω

∫ T

0

(
u I1−β

T− ∂
)

(−1)n f v dt dx

=

∫
Ω

∫ T

0

1

Γ(1− β)

∫ T

t

u′w(x,w)

(w − t)β
dw (−1)n f v(x, t) dt dx

=

∫
Ω

∫ T

0

u′w(x,w) (−1)n f
1

Γ(1− β)

∫ w

0

v(x, t)

(w − t)β
dt dw dx

=

∫
Ω

∫ T

0

u′w(x,w) (−1)n f
(
I1−β
0+ v

)
(x,w) dw dx.

Now, making w = t and applying integration by parts with respect to the time variable, we get∫
Ω

∫ T

0

u′t(x, t) (−1)n f
(
I1−β
0+ v

)
(x, t) dt dx

=

∫
Ω

{[
u (−1)n f

(
I1−β
0+ v

)]t=T

t=0
−
∫ T

0

u (−1)n f
(
∂ I1−β

0+ v
)
dt
}
dx

=

∫
Γ2

u (−1)n f
(
I1−β
0+ v

)
dx−

∫
C
u f
(
RL∂β0+v

)
dx dt, (53)

where ∫
Γ2

u (−1)n f
(
I1−β
0+ v

)
dx =

∫
Ω

[
u (−1)n f

(
I1−β
0+ v

)]t=T

t=0
dx.

Merging (52) and (53) in (51) leads to∫
C

(
u
(
Dx − fC∂βT−

))
v dx dt =

∫
Γ1

u dσx,t v −
∫
C
u (Dxv) dx dt

+

∫
Γ2

u (−1)n f
(
I1−β
0+ v

)
dx−

∫
C
u f
(
RL∂β0+v

)
dx dt.

Rearranging the terms in the previous identity we obtain∫
C

(
u
(
Dx − fC∂βT−

))
v + u

((
Dx + fRL∂β0+

)
v
)
dx dt =

∫
Γ1

u dσx,t v +

∫
Γ2

u (−1)n f
(
I1−β
0+ v

)
dx. (54)
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Adding and subtracting u f† v in the right-hand side of (54) leads finally to the time-fractional Stokes’ formula:∫
C

[(
uCDβ

x,T−

)
v + u

(
RLDβ

x,0+ v
)]
dx dt =

∫
Γ1

u dσx,t v +

∫
Γ2

u (−1)n f
(
I1−β
0+ v

)
dx.

�

We observe that the Stokes’s formula for the time-dependent case in the classical Clifford analysis is given by

(see [7]) ∫
C

[(
uD−x,t

)
v + u

(
D+
x,t v

)]
dx dt =

∫
∂C
u dσx,t v, (55)

∫
C

[(
uD+

x,t

)
v + u

(
D−x,t v

)]
dx dt =

∫
∂C
u dσx,t v, (56)

where D±x,t := Dx + f∂t ± f† are the forward/backward parabolic Dirac operators. However, in the fractional

Clifford analysis setting we obtain a more complicatedly “double duality” relation. On the one hand the formula

involves forward and backward time-fractional parabolic Dirac operators, and on the other hand it also involves

both the Caputo and Riemann-Liouville derivatives. Moreover, in the fractional case the integral over ∂C is

split into two integrals over Γ1 and Γ2, which does not occur in the classical case.

Remark 5.2 When β = 1, we have that the operators CDβ
x,0+ and RLDβ

x,0+ correspond to D+
x,t; the operators

RLDβ
x,T− , CDβ

x,T− correspond to D−x,t; and the operators I1−β
T− , I1−β

0+ reduce to the identity operator. Therefore,

for β = 1 the time-fractional Stokes’ formulae (47) and (50) become equal to the classical Stokes’ formula (55),

and the time-fractional Stokes’ formulae (48) and (49) become equal to the classical Stokes’ formula (56).

In the next section we deduce a time-fractional Borel-Pompeiu formula and we introduce the time-fractional

analogous of the Teodorescu and Cauchy-Bitsadze operator. Before we do that we need to understand the

behaviour of the time-fractional Dirac operator CDβ
y,T− when the arguments of the function u in (47) are

translated and reflected in space and time. Denoting the translation operator by Tθ1,θ2 u(y, w) := u(θ1+y, θ2+w)

and the reflection operator by Ry,w u(y, w) := u(−y,−w), and taking into account the definitions of the time-

fractional parabolic Dirac operators presented in (43), and the definitions of the right and left Caputo fractional

derivatives presented in (10) and (9), we can deduce by straightforward calculations the following relation (where

the derivative is with respect to the variable (y, w) ∈ C):

(u(θ1 − y, θ2 − w))CDβ
y,θ−2

= (Tθ1,θ2 Ry,w u(y, w))CDβ
y,θ−2

= −Tθ1,θ2 Ry,w
(
u(y, w)CDβy,0+

)
= −

(
uCDβy,0+

)
(θ1 − y, θ2 − w). (57)

5.2 Time-fractional Teodorescu and Cauchy-Bitsadze operators

In this section we introduce the time-fractional Teodorescu and Cauchy-Bitsadze operators and study some of

their properties. Replacing u by CGβ
+

in (47) leads to the following time-fractional Borel-Pompeiu formula and

also to the time-fractional Cauchy’s integral formula.

Theorem 5.3 Let v ∈ AC1(C) ∩AC(C). Then the following time-fractional Borel-Pompeiu formula holds

v(x, t) +

∫
C

CGβ
+

(x− y, t− w)
(
RLDβ

y,0+ v
)

(y, w) dy dw

=

∫
Γ1

CGβ
+

(x− y, t− w) dσy,w v(y, w) +

∫
Γ2

CGβ
+

(x− y, t− w) (−1)n f
(
I1−β
0+ v

)
(y, w) dy. (58)

Moreover, if v ∈ ker
(
RLDβ

y,0+

)
, then we obtain the time-fractional Cauchy’s integral formula

v(x, t) =

∫
Γ1

CGβ
+

(x− y, t− w) dσy,w v(y, w) +

∫
Γ2

CGβ
+

(x− y, t− w) (−1)n f
(
I1−β
0+ v

)
(y, w) dy. (59)
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Proof: Note that CGβ
+

(y, w) is the fundamental solution of CDβ
y,0+ satisfying

(
CDβ

y,0+
CGβ

+

)
(y, w) = δ(y, w).

Thus, replacing in (47) u by CGβ
+

(x− y, t−w) = Tx,tRy,w CGβ
+

(y, w) and using (57) with θ1 = x and θ2 = t, we

obtain ∫
C
δ(x− y, t− w) v(y, w) dy dw +

∫
C

CGβ
+

(x− y, t− w)
(
RLDβ

y,0+ v
)

(y, w) dy dw

=

∫
Γ1

CGβ
+

(x− y, t− w) dσy,w v(y, w) +

∫
Γ2

CGβ
+

(x− y, t− w) (−1)n f
(
I1−β
0+ v

)
(y, w) dy,

which leads to the time-fractional Borel-Pompeiu formula (58). Additionally, if v is in the kernel of RLDβ
y,0+

then the second integral of the left-hand side of the preceding expression is equal to zero. Therefore, we arrive

at the time-fractional Cauchy’s integral formula stated in (59).

�

We observe that, as a consequence of the “double duality” mentioned previously, we can also deduce another

three alternative versions of the time-fractional Borel-Pompeiu formula from (48), (49), and (50).

Remark 5.4 When β = 1 the time-fractional Borel-Pompeiu formula and the time-fractional Cauchy’s integral

formula reduce to the corresponding formulae presented in [7].

Based on (58) we introduce the time-fractional Teodorescu and Cauchy-Bitsadze operators and study their

properties.

Definition 5.5 Let g ∈ AC1(C). Then the linear integral operators of convolution type(
CT β

+
g
)

(x, t) = −
∫
C

CGβ
+

(x− y, t− w) g(y, w) dy dw (60)

(
CF β

+
g
)

(x, t) =

∫
Γ1

CGβ
+

(x− y, t− w) dσy,w g(y, w) +

∫
Γ2

CGβ
+

(x− y, t− w) (−1)n f
(
I1−β
0+ g

)
(y, t) dy (61)

are called the time-fractional Teodorescu and Cauchy-Bitsadze operators, respectively.

Remark 5.6 In the case β = 1, the time-fractional operators CT β
+

and CF β
+

coincide with the correspondent

ones defined in [7].

The previous definition allows us to rewrite (58) in the alternative form(
CF β

+
v
)

(x, t) = v(x, t)−
(
CT β

+

RLDβ
y,0+ v

)
(x, t), (x, t) ∈ C.

Before we deduce two operating properties of the fractional integral operators (60) and (61), we need to un-

derstand the behaviour of the time-fractional Dirac operator CDβ
x,T− when the arguments of the function over

which we apply the derivatives is only translated. Taking into account the definition of CDβ
x,T− and the defini-

tion of the left Caputo fractional derivative presented in (9), we can deduce by straightforward calculations the

following relation (where the derivative is with respect to the variable (x, t) ∈ C):

CDβ
x,−θ+2

(u(x+ θ1, y + θ2)) = CDβ
x,−θ+2

(Tθ1,θ2 u(x, t))

= Tθ1,θ2
(
CDβx,0+ u(x, t)

)
=
(
CDβx,0+u

)
(x+ θ1, t+ θ2). (62)

Theorem 5.7 The time-fractional operator CT β
+

is the right inverse of CDβ
x,0+ , i.e., for g ∈ Lp(Ω), with

p ∈
]
1, 1

1−β

[
and β ∈]0, 1], we have (

CDβ
x,0+

CT β
+
g
)

(x, t) = g(x, t).
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Proof: In view of the definition of CT β
+

given in (60), and the relation deduced in (62) with θ1 = −y, θ2 = −w,

and the fact that CGβ
+

is the fundamental solution of CDβ
x,0+ satisfying

(
CDβ

x,0+
CGβ

+

)
(x, t) = δ(x, t), we have

(
CDβ

x,0+
CT β

+
g
)

(x, t) = −
∫
C

CDβ
x,w+

(
CGβ

+
(x− y, t− w)

)
g(y, w) dy dw

= −
∫
C
T−y,−w

(
CDβ

x,0+
CGβ

+
(x, t)

)
g(y, w) dy dw

= −
∫
C
T−y,−w δ(x, t) g(y, w) dy dw

= −
∫
C
δ(x− y, t− w) g(y, w) dy dw

= g(x, t).

�

In a similar way as in [14], we introduce the fractional Sobolev space W 1,β,p
a+ (C), specifically adapted to our

problem and considering the left Caputo fractional derivative (9), with the norm ‖·‖W 1,β,p

a+
(C) given by:

‖f‖p
W 1,β,p

a+
(C)

:= ‖f‖pLp(C) +
n∑
j=1

∥∥∂xj f∥∥pLp(C) +
∥∥∥C∂βa+f∥∥∥p

Lp(C)
,

where ‖ · ‖Lp(C) is the usual Lp-norm in C and β ∈]0, 1].

Theorem 5.8 The fractional operator CF β
+

maps W
1− 1

p ,β−
1
p ,p

0+ (∂C)−functions to functions belonging to the ker-

nel of CDβ
x,0+ , i.e., the fractional operator CF β

+
satisfies

(
CDβ

x,0+
CF β

+
g
)

(x, t) = 0, for every g ∈W 1− 1
p ,β−

1
p ,p

0+ (∂C)

with p ∈
]
1, 1

1−β

[
and β ∈]0, 1].

Proof: In view of the definition of CF β
+

given in (61), and the relation deduced in (62) with θ1 = −y, θ2 = −w,

and the fact that CGβ
+

is the fundamental solution of CDβ
x,0+ satisfying

(
CDβ

x,+
CGβ

+

)
(x, t) = δ(x, t), we have(

CDβ
x,0+

CF β
+
g
)

(x, t)

=

∫
Γ1

CDβ
x,w+

CGβ
+

(x− y, t− w) dσy,w g(y, w) +

∫
Γ2

CDβ
x,w+

CGβ
+

(x− y, t− w) (−1)n f
(
I1−β
0+ g

)
(y, t) dy

=

∫
Γ1

T−y,−w
(
CDβ

x,0+
CGβ

+
(x, t)

)
dσy,w g(y, w) +

∫
Γ2

T−y,−w
(
CDβ

x,0+
CGβ

+
(x, t)

)
(−1)n f

(
I1−β
0+ g

)
(y, t) dy

=

∫
Γ1

T−y,−w δ(x, t) dσy,w g(y, w) +

∫
Γ2

T−y,−w δ(x, t) (−1)n f
(
I1−β
0+ g

)
(y, t) dy

=

∫
Γ1

δ(x− y, t− w) dσy,w g(y, w) +

∫
Γ2

δ(x− y, t− w) (−1)n f
(
I1−β
0+ g

)
(y, t) dy

= 0, (63)

where the integral over Γ1 is equal to 0 because (x, t) ∈ C and (y, w) ∈ Γ1 ∪ Γ2 and, therefore, (x− y, t−w) 6=
(0, 0).

�

Now, we present some mapping properties of the fractional operators CT β
+

and CF β
+

.

Theorem 5.9 The operator CT β
+

is bounded from Lq(C) to Lr(C) with 1 + 1
r = 1

p + 1
q , such that q ∈

]
1, 1

1−β

[
and the parameters p and β are in the conditions of Theorem 4.2.
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Proof: Let q ∈
]
1, 1

1−β

[
, and the parameters p and β be in the conditions of Theorem 4.2. Using the

Young’s inequality for convolutions (see Theorem 1.4 in [29]) and taking into account the Lp−integrability of
CGβ

+
studied in Theorem 4.2, we obtain∥∥∥CT β

+
g
∥∥∥
Lr(C)

=
∥∥∥CGβ

+
∗ g
∥∥∥
Lr(C)

≤
∥∥∥CGβ

+

∥∥∥
Lp(C)

‖g‖Lq(C)

with 1 + 1
r = 1

p + 1
q .

�

Concerning the derivatives of CT β
+

we have the following theorem.

Theorem 5.10 Let g ∈ Lq(C) with q =
]
1, 1

1−β

[
. The spatial derivatives of CT β

+
with respect to xj, j =

1, 2, . . . , n and the time-fractional derivative of CT β
+

are bounded and satisfy the mapping properties

∂xj

(
CT β

+
g
)

: Lq(C) −→ Lr(C), j = 1, 2, . . . , n

C∂β0+

(
CT β

+
g
)

: Lq(C) −→ Lr(C),

with 1 + 1
r = 1

p + 1
q , such that the parameters p and β are in the conditions of Theorem 4.4 and Theorem 4.3,

respectively.

Proof: To show the boundedness of the operator CT β
+

, it suffices to study the convolution terms (see [26])∫
C
∂xj

CGβ
+

(x− y, t− w) g(y, w) dy dw =

∫
C
T−y−w ∂xj CGβ+(x, t) g(y, w) dy dw, j = 1, . . . , n,

and ∫
C

C∂β0+
CGβ

+
(x− y, t− w) g(y, w) dy dw =

∫
C
T−y−w C∂β0+

CGβ
+

(x, t) g(y, w) dy dw,

where on the right-hand side of the last equality we used (62) with θ1 = y and θ2 = w. In Theorems 4.4 and 4.3

were studied the conditions over p and β such that the kernels of the previous convolutions are Lp-functions.

Hence, making use of the Young’s inequality for convolutions (see Theorem 1.4 in [29]), we get for the partial

derivatives with respect to xj∥∥∥∂xj (CT β+ g)∥∥∥
Lr(C)

=
∥∥∥(∂xj CGβ+) ∗ g∥∥∥

Lr(C)
≤
∥∥∥∂xj CGβ+∥∥∥

Lp(C)
‖g‖Lq(C) , j = 1, . . . , n,

and for the time-fractional derivative∥∥∥C∂β0+

(
CT β

+
g
)∥∥∥

Lr(C)
=
∥∥∥(C∂β0+

CGβ
+

)
∗ g
∥∥∥
Lr(C)

≤
∥∥∥C∂β0+

CGβ
+

∥∥∥
Lp(C)

‖g‖Lq(C) ,

where 1 + 1
r = 1

p + 1
q , with q ∈

]
1, 1

1−β

[
, and the parameters p and β are in the conditions of Theorems 4.4 and

4.3, respectively.

�

The preceding last two theorems allow us to prove the continuity of CT β
+

.

Theorem 5.11 Let 1 + 1
r = 1

p + 1
q with q ∈

]
1, 1

1−β

[
, and the parameters p and β be in the conditions of

Theorems 4.2, 4.3, and 4.4 simultaneously. Then operator CT β
+

: Lq(C)→W 1,β,r
0+ (C) is continuous.

This result is a direct consequence of Theorem 5.9 and Theorem 5.10 and, therefore, we omit the proof. We

observe that when β = 1 the mapping results for the Teodorescu operator correspond to the classical ones

(see [7]). Now, we study the mapping properties of CF β
+

.
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Theorem 5.12 Let q ∈
]
1, p

1−(1−β)p

[
, p ∈

]
1, 1

1−β

[
and β ∈]0, 1]. The operator CF β

+
acts continuously on

W
1− 1

p ,β−
1
p ,p

0+ (∂C), more precisely, the operator

CF β
+

: W
1− 1

p ,β−
1
p ,p

0+ (∂C)→W 1,β,q
0+ (C) ∩ ker

(
CDβ

x,0+

)
is continuous.

Proof: Let the parameters q, p and β be in the conditions given. For a function h ∈ W 1− 1
p ,β−

1
p ,p

0+ (∂C) we

can find a function g ∈ W 1,β,q
p (C) such that tr(g) = h, where tr(g) denotes the usual trace of the function g

(see [11]). By the time-fractional Borel-Pompeiu’s formula (58) we may infer that

CF β
+
h =

(
I − CT β

+

RLDβ
y,0+

)
g.

In the view of the continuity of CT β
+

and taking into account that for a function g ∈ W 1,β,q
0+ (C) we have

RLDβ
y,0+g ∈ W 1,β,q

0+ (C), and hence we conclude that
(
I − CF β

+

RLDβ
y,0+

)
g ∈ W 1,β,q

0+ (C). By Theorem 5.8 we

have

0 = CDβ
x,0+

CF β
+
h =

(
CDβ

x,0+

(
I − CT β

+

RLDβ
y,0+

))
g. (64)

This in turn implies that g ∈W 1,β,q
0+ (C) ∩ ker(CDβ

x,0+).

�

Remark 5.13 When β = 1 we obtain the classical results obtained in [7] for the time-dependent T and F

operators.

6 Hodge-type decomposition and Boundary Value Problems

The aim of this section is to obtain a Hodge-type decomposition and to present an immediate application of this

decomposition in the resolution of boundary value problems involving the time-fractional diffusion operator.

Theorem 6.1 Let q ∈
]
1, p

1−(1−β)p

]
, p ∈

]
1, 1

1−β

[
and β ∈]0, 1]. The space Lq(C) admits the following direct

decomposition

Lq(C) = Lq(C) ∩ ker
(
CDβ

x,0+

)
⊕ CDβ

x,0+

(
◦

W 1,β,p
0+ (C)

)
. (65)

Proof: By
(
−∆x + C∂β0+

)−1

0
we denote the unique operator solution for the problem (see [1, 28] where the

existence and uniqueness of solutions of this type of boundary value problems is studied)
(
−∆x + C∂β0+

)
u = v, in C

u = 0, on ∂C
,

where u, v ∈ Lp(C). As a first step we take a look at the intersection of the two spaces that appear in the

decomposition. Let

h ∈
[
Lq(C) ∩ ker

(
CDβ

x,0+

)]
∩ CDβ

x,0+

(
◦

W 1,β,p
0+ (C)

)
.

We directly see that CDβ
x,0+h = 0 in C. Moreover, since h ∈ CDβ

x,0+

(
◦

W 1,β,p
0+ (C)

)
, there exists a function

g ∈
◦

W 1,β,p
0+ (C) with CDβ

x,0+g = h and
(
−∆x + C∂β0+

)
g = 0. From the uniqueness of

(
−∆x + C∂β0+

)−1

0
we obtain

that g = 0. Consequently, h = 0. Hence, the intersection of these subspaces only contains the zero function,

which implies that the sum is direct.
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Now, let h ∈ Lq(C) and h2 such that

h2 := CDβ
x,0+

(
−∆x + C∂β0+

)−1

0

CDβ
x,0+h ∈ CDβ

x,0+

(
◦

W 1,β,p
0+ (C)

)
.

Applying CDβ
x,0+ to the function h1 := h− h2, we get

CDβ
x,0+h1 = CDβ

x,0+h− CDβ
x,0+h2

= CDβ
x,0+h− CDβ

x,0+
CDβ

x,0+

(
−∆x + C∂β0+

)−1

0

CDβ
x,0+h

= CDβ
x,0+h−

(
−∆x + C∂β0+

) (
−∆x + C∂β0+

)−1

0

CDβ
x,0+h

= CDβ
x,0+h− CDβ

x,0+h

= 0.

Therefore, h1 ∈ ker
(
CDβ

x,0+

)
. Since h ∈ Lp(C) was arbitrarily chosen our decomposition is a direct decompo-

sition of the space Lq(C).

�

Corollary 6.2 From the decomposition (65) we have the following projectors

CP β
+

: Lq(C)→ Lq(C) ∩ ker
(
CDβ

x,0+

)
CQβ

+
: Lq(C)→ CDβ

x,0+

(
◦

W 1,β,p
0+ (C)

)
.

Remark 6.3 As a consequence of the “double duality” mentioned previously we can also deduce another Hodge-

type decompositions and P and Q-type projectors for the operators CDβ
x,T− , RLDβ

x,0+ and RLDβ
x,T− .

As in the previous results, when β = 1 the Hodge-type decomposition presented in Theorem 6.1 coincides with

the decomposition presented in [7]. Moreover, for β = 1 we have that q = p and p ∈]1,+∞[. For the particular

case of p = 2 the decomposition is orthogonal with respect to the inner product (2) (see Theorem 3.3 in [7]).

We end this section by presenting an application of our results solving boundary value problems.

Theorem 6.4 Let g ∈W 1,β,p
0+ (C) with p ∈

]
1, 1

1−β

[
and β ∈]0, 1]. Then, the solution of the problem

(
−∆x + C∂β0+

)
h = g in C

h = 0 on ∂C
(66)

is given by h = CT β
+

CQβ
+

CT β
+
g.

Proof: The proof is based on the properties of the operator CT β
+

and of the projector CQβ
+

. Since CT β
+

is

the right inverse of CDβ
x,0+ , we get(

−∆x + C∂β0+

)
h = CDβ

x,0+
CDβ

x,0+
CT β

+

CQβ
+

CT β
+
g = CDβ

x,0+
CQβ

+

CT β
+
g = CDβ

x,0+
CT β

+
g = g.

�

Corollary 6.5 Let g ∈W 1+ 1
p ,β+ 1

p ,p

0+ (∂C) with p ∈
]
1, 1

1−β

[
and β ∈]0, 1]. Then, the solution of the problem

(
−∆x + C∂β0+

)
h = 0 in C

h = g on ∂C
(67)

is given by

h = CF β
+
g + CT β

+

CQβ
+

CDβ
x,0+ g̃, (68)

where g̃ is the W 2,β+1,p
0+ -extension of g.
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Proof: Let p and β in the conditions given. Since g ∈ W 1+ 1
p ,β+ 1

p ,p

0+ (∂C) there exists a W 2,β+1,p
0+ -extension g̃

with tr(g̃) = g. If we consider h = f + g̃, then the problem (67) will be transformed into
(
−∆x + C∂β0+

)
f =

(
−∆x + C∂β0+

)
g̃ in C

f = 0 on ∂C
.

From Theorem 6.4 we conclude that, the solution f of the previous problem has the form

f = CT β
+

CQβ
+

CT β
+

(
−∆x + C∂β0+

)
g̃.

Using the time-fractional Borel-Pompeiu formula (58), and taking into account that CP β
+

= I − CQβ
+

and
CDβ

x,0+
CDβ

x,0+ = −∆x + C∂β0+ , we find

f = −CT β
+

CQβ
+

CDβ
x,0+ g̃ + CT β

+

CQβ
+

CF β
+

CDβ
x,0+ g̃

= −CT β
+

CDβ
x,0+ g̃ + CT β

+

CP β
+

CDβ
x,0+ g̃

= −g̃ + CT β
+

CP β
+

CDβ
x,0+ g̃ + CF β

+
g̃.

Since h = f + g̃ we get (68).

�

From Theorem 6.4 and Corollary 6.5 we get

Theorem 6.6 Let f ∈ W 1,β,p
0+ (C) and g ∈ W

2+ 1
p ,β+1+ 1

p ,p

0+ (∂C) with p ∈
]
1, 1

1−β

[
and β ∈]0, 1]. Then, the

solution of the problem 
(
−∆x + C∂β0+

)
h = f in C

h = g on ∂C
(69)

is given by

h = CF β
+
g + CT β

+

CP β
+

CDβ
x,0+ g̃ + CT β

+

CQβ
+

CT β
+
f, (70)

where g̃ is the W 1+p,β+p,p
0+ -extension of g.

Proof: Let h1 and h2 be the solutions of the problems (66) and (67), respectively. Then h = h1 + h2 solves

the boundary value problem (69).

�

We observe that as consequence of the “double duality” mentioned across the paper, the previous results can

be also deduced with the correspondent rearrangements in the definition of the Teodorescu operators and

Q projectors, according to the correspondent Borel-Pompeiu formula and Hodge-type decomposition, for the

operators −∆x − C∂β
−

, −∆x + RL∂β
+

and −∆x − RL∂β
−

.

7 Conclusions

In this work we presented a generalization of several results studied in Clifford analysis in the context of non-

stationary problems (see e.g., [7]) to the context of fractional Clifford analysis. Possible applications of our

fractional integro-differential hypercomplex operator calculus are the study of boundary value problems with

time-fractional derivatives such as the time-fractional Navier-Stokes equation and the time-fractional Scrödinger

equation. This study is out of the scope of this paper and it will be subject of future research.
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