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Abstract 

Air quality management regarding PM concentrations in the atmosphere is a complex problem to 

tackle. In this paper, we aim to characterize the temporal patterns and trends of aerosol background 

levels over Portugal. Hourly data from the national air quality monitoring network, gathered from 

2007 to 2016, is analysed using statistical methods. Data from 20 monitoring stations was 

processed to prepare datasets with different time scales, and results were grouped by their type of 

surrounding area (urban, suburban or rural). Urban and suburban background sites are 

characterized by strong seasonal patterns, with higher monthly mean concentrations in winter than 

in summer. In contrast, rural background PM10 concentrations are highest during August and 

September. This study suggests that urban background concentrations are significantly influenced 

by anthropogenic non-combustion sources, which contribute to the coarser aerosol fraction (PMc). 

PMc is about 3 µg m-3 higher during week-days than during Sundays, at urban sites. However, there 

is no clear relationship between the value of the PM2.5/PMc ratio and the type of monitoring 

station. During the 10-year period of study, a decrease of 1.83%/year, 3.58%/year and 4.89%/year 

was registered in PM10 concentrations at Portuguese rural, urban and suburban areas, respectively. 

Despite the higher decrease at suburban monitoring stations, those sites present the highest 10-

year mean PM10 concentrations. This work provides an import insight on temporal variations of 

PM10, PM2.5 and PMc concentrations over Portugal and summarizes trends through the last 

decade, contributing to the discussion on sources and processes influencing those concentrations. 
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1. Introduction 
 

Atmospheric aerosols affect air quality and climate, their impacts have been evidenced in many 

studies across urban, regional, and global scales (Calvo et al. 2013; Fuzzi et al. 2015). 

Furthermore, exposure to atmospheric aerosols may affect human health (WHO-OCDE 2015). In 

the past decades, many studies highlighted the role of ambient airborne particulate matter (PM) as 

an important environmental pollutant for cardiopulmonary diseases and lung cancer (e.g. López-

Villarrubia et al. 2016; Valavanidis et al. 2008). 

In addition to primary emission sources, PM concentrations can be significantly influenced by 

secondary aerosol formation in the atmosphere, which is not only dependent on the precursor 

emissions but also on meteorological conditions and geographical location. Furthermore, in 

addition to local pollution sources, air quality is affected by long-range transport of air masses that 

contribute to regional background pollution levels and air pollution episodes. In this context, North 

African dust outbreaks may influence air quality in Europe, especially on the Mediterranean Basin 

(Pey et al. 2013). Thus, air quality management regarding PM concentrations in the atmosphere is 

a complex problem to deal with. 

Due to the geographic location of Portugal and the dominant wind regime (Valverde et al. 

2015), influenced by the presence of the semi-permanent Azores high-pressure and the Icelandic 

low-pressure systems over the North Atlantic Ocean, it is expected that, most of the year, transport 

of maritime air promotes a decrease of anthropogenic and mineral PM concentrations (Almeida et 

al. 2013). Nevertheless, Portugal has been facing air quality problems, being PM10, together with 

O3, the main critical pollutants. Furthermore, results from Monteiro et al. (2017b) evidence that 

human health protection will be even more critical in the future, particularly for PM; in 2050, due 

to the warmer and dryer conditions and the expected increase of background concentrations, 

degradation of air quality is expected to occur. 

Several studies intend to characterize PM long-term trends in European regions (e.g., 

Barmpadimos et al. 2012; Cusack et al. 2012; Guerreiro et al. 2014). However, to our knowledge, 

no study was published focusing on long-term detailed analysis for Portugal. Specifically for 

Portugal, PM levels were previously characterized by Cruz et al. (2016), throughout a 3-year 

period only. Other studies focused on the characterization of PM levels and composition over 
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specific cities or regions, based on intensive experimental campaigns. PM composition and 

sources have been documented for Lisbon (Almeida et al. 2006, 2009) and Porto (Custódio et al. 

2016; Diapouli et al. 2017). 

The aim of this study is to provide a characterization of the aerosol background levels in 

Portugal, based on the long-term observations of PM10 and PM2.5 concentrations. Background 

levels or concentrations are pollution levels which are not influenced significantly by any single 

source, but rather by the integrated contribution from all upwind source areas. This is the first 

attempt to characterize aerosol over Portugal with such a long record (10 years) of observations 

and a large number of monitoring stations. The results of this study bring new insights on the 

temporal patterns and trends of PM levels over Portugal, and also on the distribution between fine 

and coarse particulate matter. 

 
2. Methodology 

 
Surface data from the Portuguese air quality monitoring network (see 

http://qualar.apambiente.pt/) is used in this paper to characterize PM levels in Portugal. We focus 

on PM10 and PM2.5 concentrations collected over the last 10 years, more precisely, observations 

recorded from January 2007 to December 2016. The aerosol coarse fraction, PMc (the size fraction 

between 2.5 and 10 µm), was estimated through the subtraction of PM2.5 from collocated PM10. 

Air quality data is analysed in terms of temporal patterns, long-term trends and legal limit 

compliances. Temporal patterns (which include daily, weekly and monthly cycles) and long-term 

trends of concentrations were performed using the OpenAir package for R (Carslaw and Ropkins 

2012; Ropkins and Carslaw 2012). 

 
2.1. Data 

In Portugal, the air quality stations from the national air quality monitoring network are 

classified by their type of influence (traffic, industrial or background) and the area or environment 

type: (urban, suburban or rural). Within the scope and aim of the present study, we consider the 

background influenced sites, e.g., sites which are not influenced significantly by any single source, 

but rather by the integrated contribution from all upwind source areas. Background sampling 

points shall, as a general rule, be representative for several square kilometres. Sites from Azores 
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and Madeira islands are not included in this characterization. 

Data quality objectives for air quality assessment are defined in the EU Directive 2008/50/EC 

(EU 2008) as a percentage of hourly data availability along the year. The minimum percentage of 

data capture for PM10 and PM2.5 is 90%. Despite the minimum 90% of data quality objectives, 

in some cases, measurements from stations with a minimum annual data capture of 75% are used 

to achieve data continuation over time. Between 2007 and 2016, we could gather data for 8 rural, 

4 suburban and 8 urban sites, distributed along mainland Portugal (see Figure 1, which depicts the 

10-year mean concentrations observed in each of the monitoring stations). Details on the location 

and classification of the stations used can be found in Table 1, together with the information on 

data completeness relative to the period 2007-2016. 

 
[Table 1 about here.] 

 
 

[Figure 1 about here.] 

 
Among the selected stations, 13 only measure PM10 and 7 (4 rural and 3 urban) measure both 

PM10 and PM2.5 concentrations. All the selected monitoring stations are automatic and use the 

beta attenuation method to measure PM10 and PM2.5 concentrations. This method stands on beta-

ray absorption in a sample captured on filtering material. The difference between the beta-ray 

absorption of the exposed and non-exposed filtering material, which is proportional to the mass of 

the captured suspended particle matter, gives the information on its concentration. However, the 

data cannot always be considered equivalent to the manual gravimetric reference method, which 

is required in Europe for compliance measurements. Correction procedures are employed to obtain 

reference equivalent PM10 data series from automatic beta-attenuation monitors. Most of the 

monitoring stations use the Environnement S.A MP101M dust monitor. FRO and VCO use the 

Verewa F-701-20 Ambient Air Dust Concentration Monitor, and MVE and TER use the Thermo 

ESM Andersen ESM FH 62 IR. 

 
2.2. Methods 

By simply plotting data in different ways, a visual analysis can often provide valuable insights. 

As such, a comparison of PM concentrations between different locations or monitoring station 
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types can reveal for example, information concerning the likely sources. 

Hourly measurements from the selected monitoring stations were processed to prepare datasets 

with different time scales. Moreover, in this analysis, data were grouped according to station type. 

In the study of PM temporal cycles or patterns, four different plots are produced: (i) day of the 

week variation, (ii) mean hour of day variation, (iii) a combined hour of day – day of the week 

plot and (iv) a monthly plot. In these plots, relative to PM10, PM2.5 and PMc concentrations, the 

mean and the 95% confidence interval in the mean are depicted, relative to the 10 years data, 

aggregated by the time scale and the station classifications. The daily cycle of PM concentrations 

(mean hour of the day variation) is also plotted split by season. 

PM10, PM2.5 and PMc long-term temporal trends have been estimated with the Openair’s 

TheilSen function, which quantifies monotonic trends in unit/year, and calculates the associated p 

value through bootstrap simulations. Trend is estimated for mean monthly values, and the 95% 

confidence interval of the slope is presented. In this analysis, data has been deseasonalized using 

the seasonal-trend decomposition procedure based on locally weighted scatterplot smoothing, 

LOESS (Cleveland et al. 1990). 

 
3. Results and Discussion 

 
3.1. Temporal patterns in PM concentrations 

Urban and suburban sites are characterized by higher PM levels in comparison with rural ones 

(see Figure 1) and exhibit common typical temporal cycles. Figures 2, 3 and 4 show the monthly 

variability through an average year, the daily variability through an average week and the diurnal 

variability per average week and per average day of PM10, PM2.5 and PMc concentrations, 

respectively, observed between 2007 and 2016 and grouped by station type. 

 
[Figure 2 about here.] 

 
[Figure 3 about here.] 

 
[Figure 4 about here.] 

 
In general, during weekdays, urban and suburban sites show a dip in PM10 concentrations 

during the night (between 00h and 07h) which then rise between 07h and 10h, dropping again 



7  

between 10h and 14h. During the afternoon, concentrations increase and the highest peak of the 

day is achieved between about 20h and 23h. This profile is similar to those found by Harrison et 

al. (2012) relative to specific UK urban background stations. On Sundays, on the same group of 

stations, the peak in the early morning is not significant (probably due to the absence of the 

morning rush-hour traffic) and concentrations reach their minimum values in the beginning of the 

afternoon (around 14h). They then rise until around 21h, achieving the highest peak of the day, 

which is, as expected, lower than during week-days. 

The combined hour of day – day of the week plot for PM2.5 shows a similar cycle to the PM10 

one. Apart from the magnitude of concentrations, the main differences rely on the morning rise of 

concentrations, which is weaker for PM2.5, and on the differences between week-days and 

Sundays. The larger difference, between week-days and Sundays, in the magnitude of PM10 

concentrations during late evening peaks at urban sites, reflects the importance of coarse particles 

of anthropogenic origin in Portuguese urban areas. Figure 4 shows that PM coarse fraction is about 

to 3 µg m-3 higher during week-days than during Sundays, at urban sites. 

The late evening peak shown in the mean hour of day plots is related with both the daily 

evolution of the atmospheric boundary layer, which gets thinner during the night, and evening 

contribution of domestic sources such as heating (Borrego et al. 2010; Gonçalves et al. 2012; 

Vicente et al. 2015) and cooking (Ots et al. 2016). In addition, according to Harrison et al. (2012), 

there might exist a contribution of semivolatile material condensing on ambient particles with the 

lower night-time temperatures. All these causes are more important during winter (due to thinner 

and more stable boundary layers, more emissions from heating, colder night-time temperatures), 

which may explain why the intensity of this late evening peak is much stronger during winter (see 

in Figure 5 the PM10 concentrations daily variability split by season). 

 
[Figure 5 about here.] 

 
It is at suburban sites that we find the larger differences between seasonally averaged daily 

cycles. On those stations, during winter, the PM10 late evening peak concentration is 20 µg m-3 

higher than during summer. This fact suggests a greater use of residential wood combustion in 

urban suburbs than in city centres, as it happens in other European cities such as London (Fuller 

et al. 2014) and Berlin (Wagener et al. 2012). It is important to notice that in this analysis we are 



8  

including monitoring stations with different geographical locations (see Figure 1): the 4 suburban 

monitoring stations are located in the North of Portugal (in Aveiro, Porto and Braga districts), 

while the other 8 urban monitoring stations, 6 are located in Great Lisbon region (Lisbon and 

Setúbal districts), one in Coimbra and another one in the Porto district. The different geographical 

locations might as well contribute to the differences found between PM concentrations measured 

in urban and suburban groups of stations. 

As shown in Figures 2 and 5, rural sites present higher PM10 levels during summer. Most of 

the rural sites (FPO, FRN, FUN and TER) exhibit pronounced seasonal patterns, with the highest 

PM10 concentrations observed during August or August/September, when the monthly mean 

PM10 concentrations are approximately 6 to 8 µg m-3 higher than the rest of the year. Cruz et al. 

(2016), who analysed PM levels in Portugal throughout a 3-year period, attributed this behaviour 

to the influence of high-altitude mountain stations. In that study, only two monitoring sites (FUN 

and Douro Norte, a station which is not considered in our characterization due to non-compliance 

with the data coverage threshold) present the highest PM10 concentrations during summer. The 

authors relate this with enhancement of secondary particulate formation, arising from 

photochemical reactions between biogenic VOC compounds and anthropogenic precursors 

transported from populated coastal areas in the north and the centre of the country. 

In our results, we also observe this seasonal trend in low altitude stations (FPO and TER). We 

agree that the summer maximum might partially result from photochemically driven secondary 

formation of aerosols (Alves et al. 2001), which is, according to our results, not exclusive to high-

altitude stations. Figure 3 also shows an increment in rural PM2.5 concentrations during summer. 

However, our data analysis suggests, with PMc higher summer levels at rural sites (see Figure 4), 

that other factors are influencing particulate mass increase in the rural summer atmosphere. 

Possible reasons which may also contribute for the PM10 summer maximum are local dust 

emissions from dry soils, the impact of forest fires and long-range transport of African desert dust. 

In addition, differences in the precipitation patterns between winter and summer may play a huge 

role in PM concentrations, due to the effect of precipitation scavenging on PM removal from the 

atmosphere. 

Other sites, such as ERM, ERV, FRO, ILH and VCO are characterized by higher average PM10 

concentrations during winter. In this group of stations all types of areas are included: urban (ERM), 
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suburban (FRO, ILH and VCO) and rural (ERV). 

3.2. Relationship between PM2.5 and PM10 and between PM2.5 and PMc 

PM2.5 and PM10 mass concentrations are correlated and slope values for individual sites range 

from 0.44 to 0.54 (not shown). These values are lower than the ones calculated by Dingenen et al. 

(2004) for 11 European sites, using "binned" PM2.5 and PM10 24-h values, which range from 0.57 

to 0.89. Putaud et al. (2010) observed "binned" PM2.5/PM10 ratios between 0.44 and 0.90, in 34 

European sites, having not found any clear relationship between PM2.5/PM10 ratio and the type 

of site or its location in Europe. In our study, we also found no clear relationship between the value 

of the PM2.5/PM10 ratio and the type of monitoring station. Ratios computed for individual 

stations range from 0.44 to 0.52 for urban and from 0.44 to 0.54 for rural stations. 

Lower PM2.5/PM10 ratios are associated with spatial and temporal conditions where the 

observed PM levels are dominated by coarse particles. Higher ratios are observed at sites where 

secondary aerosol sources, which produce fine particles, are predominant (Dingenen et al. 2004), 

or where fuel combustion is amongst the main sources of particulate matter emissions. The values 

we calculated for the Portuguese background monitoring stations indicate that we have a 

significant contribution of the coarser fraction to the total PM10. 

In order to analyse with more detail the fine and coarse contribution to the total aerosol mass, 

Figure 6 shows the daily variability split by season of the PM2.5 and PMc concentrations, at rural 

and urban background stations. In general, background stations exhibit similar values of PM2.5 

and PMc concentrations. 

[Figure 6 about here.] 
 

PM2.5 concentrations are higher during winter. The relative contribution of the PM2.5 fraction 

to the total aerosol mass is on average higher in rural than in urban background stations (mainly 

during winter). In other words, Portuguese urban background stations show a contribution of 

anthropogenic emissions to the PMc concentrations. These findings are in accordance with 

Almeida et al. (2006), which found that during autumn/winter, a predominant fraction of coarse 

soil dust observed in an urban area (in the outskirts of Lisbon) originates from anthropogenic 

activities. Most cities with pollution from transport and other combustion sources show a non-

combustion source which is mainly attributed to dust re-suspension (from vehicle non-exhaust 
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sources, construction activities, soil dust, etc.), which forms part of the coarser fraction PMc. 

Figure 7 shows PM2.5 vs. PMc daily mass concentrations for the 7 sites with data from 2007 

and 2016. There is no clear relationship between the value of the PM2.5/PMc ratio and the type 

of monitoring station. At urban sites, the correlation coefficient between fine and coarse particulate 

matter concentrations indicates a robust relationship between the two variables. This relationship 

may denote similar PM sources in the atmosphere. 

 
[Figure 7 about here.] 

 
The rural sites ERV and FUN show lower values of correlation between PM2.5 and PMc. The 

ERV monitoring station is located 5 km from the seashore, which means that it might be influenced 

by sea-spray. However, sea-spray influences mainly large particles (Cesari et al. 2018; Slezakova 

et al. 2007). The scatter plot of PM2.5 and PMc concentrations shows a large number of points 

with larger PM2.5 than PMc concentrations, which indicates that sea-spray is not the main 

contributor in these cases. 

3.3. Long term temporal trends 

In previous sections PM temporal patterns were presented. Here, the trend in PM 

concentrations through the last decade are discussed. Figure 8 shows the trend in PM2.5, PM10 

and PMc concentrations observed at background stations between 2007 and 2016, according to 

type of station. Statistically significant decreasing trends (p<0.001) are estimated for the evolution 

of average PM10 concentrations of each area type (rural background, suburban background and 

urban background) for the last ten years. The decrease of concentrations is stronger in urban (-

0.96 µg m-3/year) and suburban (-1.46 µg m-3/year) stations than in rural ones (- 0.35 µg m-3/year); 

while in 2007 there was a large difference between PM10 levels observed at suburban, urban and 

rural stations, ten years later, in 2016, the three types of stations measure a similar range of mean 

concentration values. PM10 concentrations decreased by 1.83%/year, 3.58%/year and 4.89%/year 

at Portuguese rural, urban and suburban areas, respectively, between 2007 and 2016. 

[Figure 8 about here.] 
 

Trend estimates for PM2.5 and PMc concentrations are statistically significant (p<0.001) at 

rural background stations and urban background stations, respectively. Over the last decade and 
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according to our results, mean PM2.5 concentrations at rural background stations registered a 

reduction of approximately -0.25 µg m-3/year. Urban stations registered a huge decrease (-0.79 µg 

m-3/year) in the aerosol coarse concentrations,  PMc. 

The improvement in the air quality might be partly related to the Portuguese economic crisis. 

Monteiro et al. (2017a) found a relationship between the reductions in energy consumption 

(registered at transport, industry and residential sectors) and PM10 concentrations in Lisbon and 

Porto municipalities. Moreover, the economic crises severely affected construction activity within 

cities, which may positively affect PM10 concentrations due to a reduction in dust production and 

re-suspension. 

 
4. Conclusions 

 
The aerosol background levels in Portugal are analysed based on data gathered from 2007 to 

2016. Statistically significant decreasing trends (p<0.001) are observed in the average PM10 

concentrations of each area or environment type. The decrease of concentrations is higher in urban 

(-0.96 µg m-3/year) and suburban (-1.46 µg m-3/year) stations than in rural ones (-0.35 µg m-3/year). 

Our analysis shows that the main factor contributing to the PM10 decrease in urban areas is the 

decrease in the PMc concentrations. 

PM10 and PM2.5 concentrations are characterized by typical temporal patterns. Throughout 

the day, concentrations follow the expected patterns with rural sites exhibiting less variability and 

urban and suburban sites characterized by two main peaks during the day: one during the morning, 

and the largest one late in the evening. 

The results of this study point out the importance of coarse particles of anthropogenic origin in 

Portugal. This conclusion is supported by the larger differences between weekdays and Sundays 

in PM10 rather than PM2.5. PMc is approximately 3 µg m-3 higher during week-days than during 

Sundays, at urban sites. 

It is on suburban sites that the larger differences between the PM10 characteristic daily cycle 

of each season are found. In this group of stations, the highest daily concentrations (observed at 

late evening / during the night) during winter are on average 20 µg m-3 higher than during summer. 

PM2.5 concentrations could not be assessed at suburban stations. 

The methodology implemented in this work allows to obtain deeper characterization of PM 
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levels in Portugal and provides a different view on pollution patterns that was not identified in 

previous studies. Namely, our results suggest that rural background sites in Portugal reveal higher 

average PM10 concentrations during summer periods. This finding is relevant in the context of 

identification of main pollution sources and definition of future pollution abatement strategies. 

This work provides important insights on temporal variations of PM10, PM2.5 and PMc 

concentrations over Portugal and summarizes trends during the last decade. Our study contributes 

to the characterization of background levels of particulate matter and to the ongoing discussion on 

sources and processes influencing those concentrations. 
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Figure 1: Spatial variation of the PM10 and PM2.5 mean concentrations observed at background stations between 
2007 and 2016, according to the monitoring station environmental classification. 
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Figure 2: Hourly, daily and monthly variability of the PM10 concentrations observed at background stations between 
2007 and 2016. 
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Figure 3: Hourly, daily and monthly variability of the PM2.5 concentrations observed at background stations between 
2007 and 2016. 
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Figure 4: Hourly, daily and monthly variability of the PMc concentrations estimated at background stations between 
2007 and 2016. 
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Figure 5: Daily variability split by season of the PM10 concentrations observed at background stations between 2007 
and 2016. 
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Figure 6: Daily variability split by season of the PM2.5 and PMc concentrations observed at rural (left plot) and urban 
(right plot) background stations between 2007 and 2016. 
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Figure 7: Ratio between PM2.5 and PMc concentrations observed at individual background monitoring stations 
between 2007 and 2016. Rural stations data is represented with green dots in the top panel while data from urban stations 
is represented by grey dots in the bottom panel. 



 

 

  

(a) PM10 at rural background stations. (b) PM10 at urban background stations. 
 

(c) PM2.5 at rural background stations. (d) PM2.5 at urban background stations. 
 

(e) PMc at rural background stations. (f) PMc at urban background stations. 
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(g) PM10 at suburban background sta- 
tions. 

Figure 8: Trends in PM10, PM2.5 and PMc at background stations. The solid black line shows the trend estimate and 
the dashed lines show the 95% confidence intervals for the trend based on resampling methods. The overall trend and 
the 95% confidence intervals in the slope are shown at the top of each plot. The *** are shown when the trend is 
significant to the 0.001 level. 
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Table 1: List of QUALAR background stations with data completeness > = 75% during the period 2007-2016. 
Coordinates and surrounding environment type classification are included. 

 
Code Name LON LAT height (m) Classification PM10 data PM2.5 data 
ALV Alverca -9.040 38.896 22 urban 78.0 % - 
ARC Arcos -8.894 38.529 2 urban 79.1 % - 
CHA Chamusca -8.468 39.353 143 rural 95.9 % 92.2 % 
CUS Custóias Matosinhos -8.645 41.201 100 suburban 82.6 % - 
ERM Ermesinde Valongo -8.551 41.217 140 urban 83.6 % - 
ERV Ervedeira -8.893 39.922 60 rural 93.4 % 92.9 % 
FPO Fernando Pó -8.691 38.636 57 rural 87.3 % 84.3 % 
FRN Fornelo do Monte -8.100 40.640 741 rural 95.9 % - 
FRO Frossos - Braga -8.454 41.566 51 suburban 87.7 % - 
FUN Fundão -7.300 40.232 473 rural 97.2 % 94.0 % 
IGE Inst. Geof. Coimbra -8.412 40.206 145 urban 93.8 % - 
ILH Ílhavo -8.672 40.588 32 suburban 92.7 % - 
LAR Laranjeiro -9.159 38.663 63 urban 94.2 % 78.1 % 
LOU Loures-Centro -9.166 38.828 10 urban 86.1 % - 
MEM Mem Martins -9.348 38.784 173 urban 87.3 % 84.5 % 
MOV Montemor-o-Velho -8.677 40.183 96 rural 87.9 % - 
MVE Monte Velho -8.799 38.076 53 rural 94.4 % - 
OLI Olivais -9.109 38.768 32 urban 90.6 % 87.7 % 
TER Terena -7.398 38.616 187 rural 82.8 % - 
VCO Mindelo V. Conde -8.736 41.345 25 suburban 82.9 % - 

 


